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We confirm universal behaviors such as eigenvalue distribution and spacings predicted by random matrix
theory(RMT) for the cross correlation matrix of the daily stock prices of Tokyo Stock Exchange from 1993 to
2001, which have been reported for New York Stock Exchange in previous studies. It is shown that the random
part of the eigenvalue distribution of the cross correlation matrix is stable even when deterministic correlations
are present. Some deviations in the small eigenvalue statistics outside the bounds of the universality class of
RMT are not completely explained with the deterministic correlations as proposed in previous studies. We
study the effect of randomness on deterministic correlations and find that randomness causes a repulsion
between deterministic eigenvalues and the random eigenvalues. This is interpreted as a reminiscent of “level
repulsion” in RMT and explains some deviations from the previous studies observed in the market data. We
also study correlated groups of issues in these markets and propose a refined method to identify correlated
groups based on RMT. Some characteristic differences between properties of Tokyo Stock Exchange and New
York Stock Exchange are found.
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I. INTRODUCTION

The price changes of securities such as stocks involve
various economic backgrounds as well as interaction be-
tween securities. They seem to be quite complicated. Con-
ventionally, financial economists model the price changes of
securities by stochastic processes(random walks) [1]. It is a
basic ingredient of modern portfolio theory[2]. Although the
use of stochastic processes is common in finance, the validity
of such a formulation should be empirically tested, e.g., by
statistical properties of the markets, since the underlying er-
godic property of a market may be hard to be established.

Recently, the statistical characterizations of financial mar-
kets based on physics concepts and methods attract consid-
erable attention[3]. Given that a stochastic model is valid,
some statistical properties of the market should be derived as
outsets of stochasticity. For example, the cross correlation
matrix amongN securities can be regarded as a random ma-
trix and it may be legitimate to expect that it shares universal
properties of a corresponding ensemble of random matrix
theory (RMT) in an appropriate largeN limit (since N is
usually large). This has been confirmed by several studies on
actual stock markets[4–6]. The bulk of the eigenvalue dis-
tribution of the cross correlation matrix of a major index
[Standard and Poors 500(S&P 500)] of the New York Stock
Exchange(NYSE) is found to follow the eigenvalue distri-
bution of the Wishart matrix[4], which is a random correla-
tion matrix constructed from mutually uncorrelated time se-
ries [7,8]. Also the eigenvalue spacing statistics are found to
follow those of the gaussian orthogonal ensemble(GOE) [5].

The aim of this paper is to yield further support on the
applicability of RMT to analysis of stock markets. In Sec. II,
we give a brief review on the relevant results of RMT. We
describe our data sample in Sec. III. In Sec. IV, we test
predictions of RMT for the cross correlation matrix for the
daily prices of the issues in the Tokyo Stock Exchange(TSE)
from 1993 to 2001. The quantities we calculated are the dis-

tribution of the eigenvalues, the nearest- and next-nearest-
neighbor spacings, rigidity, and a certain moment of eigen-
vector components. We find good agreement with the real
data within the RMT bounds for the eigenvalues. Indeed,
there are clear deviations outside the bounds which indicate
the presence of deterministic correlations among issues. In
Sec. V, we consider random variables with deterministic cor-
relations and show that the bulk part of the eigenvalue dis-
tribution of the correlation matrix is stable. In Sec. VI, we
closely examine the distribution of the moment of eigenvec-
tor component. Eigenvectors corresponding to the eigenval-
ues outside the RMT bounds deviate from the RMT predic-
tion. According to Ref.[6], the deviating eigenvalues at the
lower edge are a consequence of the strong correlations
among a few issues. However, we find that the observed data
are not explained quantitatively by this reasoning alone.
Therefore, we analyze the effect of randomness on determin-
istic correlations between issues and find an interplay be-
tween deterministic correlations and randomness. We argue
that it gives a refined explanation on the deviations. In Sec.
VII, we identify groups of strongly correlated issues from the
information of the nonrandom eigenvectors. The ways of
grouping in the TSE and NYSE show some differences.

II. BRIEF REVIEW ON RANDOM
MATRIX THEORY

A. Wishart matrix

Let Sistd be a price at timet of a stock labeled byi
si =1,2,¯ ,N, t=1,2,¯ ,Td. The change of price at timet
can be measured by

Gistd ; ln Sist + 1d − ln Sistd. s1d

Here, we take logarithm of the prices because the fluctuation
of stock prices is typically given by the geometric Brownian
motion. Since
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Gistd .
Sist + 1d − Sistd

Sistd
, s2d

whereGistd is approximately the return of the issuei from
t to t+1. We also define the normalized returngistd as fol-
lows:

gistd ;
Gistd − kGilT

si
. s3d

k¯lT indicates the time series average ofT steps and the
dispersionsi is given by

si ; ÎkGi
2lT − kGilT

2. s4d

Then, the correlation matrixC is expressed in terms ofgistd

Cij ; kgigjlT, s5d

whereC is a real symmetric matrix with positive eigenval-
ues.

We will model the price of stocks as a stochastic process.
For N random variablesxistd si =1,2,¯ ,Nd, a matrix M
which is defined byMti =xistd is a T3N matrix. The cross
correlation matrixW is defined as follows:

Wij ; kxixjlT =
1

T
MtM , s6d

where Mt is the transposition ofM. A purely random case
with a uniform dispersions is given by

kxistdl = 0, s7d

kxistdxjstdl = s 2di jdtt. s8d

Here k¯l indicates the average over the random variable
phase space. In this case,W is called the Wishart matrix
[7,8]. We can include “true” correlations among issues by

replacingdi j in Eq. (8) by a nondiagonal matrixC̃. We will

call C̃ a deterministic correlationwhile we call C or W a
cross correlation.

B. Eigenvalue statistics of random matrices

Let us summarize the relevant results of RMT to which
we will refer in this paper.

In the limit N→` ,T→` with Q;T/N fixed, the eigen-
value distributionrsld for the Wishart matrix becomes[9]

rsld =
Q

2ps 2

Îslmax− ldsl − lmind
l

, s9d

lmin
max= s 2S1 +

1

Q
± 2Î 1

Q
D , s10d

where Eq. (9) is exact at N→` ,T→` with Q;T/N
=constant. It is approximately valid at finiteN andT whenN
and T are not small. According to Eqs.(9) and (10), the
eigenvalues of the Wishart matrix distribute only in the range
slmin,lmaxd.

Next, we consider the Gaussian ensembles of random ma-
trices. In the Gaussian ensembles, the probability of a matrix
H to be in the infinitesimal volume elementdH (dH is given
by the product of infinitesimal of independent elements) is
given byPsHddH wherePsHd

PsHd = A expS− ao
i

uliu2D . s11d

Here,a is a parameter which characterizes the ensemble,
li is the eigenvalue ofH, and A is the normalization con-
stant. For general ensembles, one replaces the termoi uliu2
by oiVslid with a functionVsld. For example, one can add
the quartic or higher-order terms, but it is known that, in the
large N-limit (N is the size ofH), the model flows to the
Gaussian model[10]. The Gaussian models are classified by
the symmetry of the matrix as:(i) GOE, the ensemble invari-
ant under the orthogonal group,(ii ) Gaussian symplectic en-
semble, the ensemble invariant under the symplectic group,
and (iii ) Gaussian unitary ensemble(GUE), the ensemble
invariant under the unitary group. Since the correlation ma-
trix C is real symmetric, the ensemble relevant to our analy-
sis is GOE. For GOE, volume elementdH is given by

dH = p
iø j

dHij . s12d

To obtain the statistical measure of the eigenvalue distri-
bution Psl1, l2,¯ ,lNd, one expressesH as the product of
the diagonal matrix with eigenvalue entries and the other
variables, and then integrates the other variables. In this way,
we get the measure

p
i, j

uli − l jubp
k

dlk. s13d

Here, b=1 for GOE, b=2 for GUE, andb=4 for GSE.
Thus, the eigenvalue distribution for a Gaussian ensemble is
determined byb. By this way, we get the eigenvalue distri-
bution for a general potentialV as follows:

Psl1,l2, . . . ,lNd = A8 expF− bSo
k=1

N
Vslkd

b

− o
i, j

lnuli − l judG , s14d

whereA8 is the normalization constant. From Eq.(14), one
sees that the statistical properties at the short spacing be-
tween eigenvalues are dominated by −lnuli −l ju and the total
potential is negligible. Thus,b determines the eigenvalue
spacing at a short distance. For eachb, the level spacing has
been closely studied[11]. As the correlation matrix is real
symmetric, we expect that its statistical properties of the ei-
genvalue spacing are given byb=1. One can characterize
the statistical properties of eigenvalue spacing by the nearest-
neighbor spacingPnn, the next-nearest-neighbor spacing
Pnnn, and the “rigidity” DsLd. Pnn and Pnnn are for short-
range correlations whileDsLd is for long-range correlations.
DsLd is defined as
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DsLd ;
1

LKmin
A,B
E

l−L
2

l+L
2 sFsl8d − Al8 − Bd2dl8L

l

, s15d

whereFsld is given by

Fsld = o
k

Qsl − lkd, s16d

with the Heaviside functionQ. Fsld counts the number of
eigenvalues belowl. The meaning ofDsLd is that one fits
Fsld by a line in an interval with a widthL around each
eigenvalue, and take the average of the deviations of the fit.
DsLd is small when the eigenvalue spacing has a uniform
distribution.

For GOE,Pnn, Pnnn, andDsLd are given by[11],

Pnnssd =
ps

2
expS−

p

4
s2D , s17d

Pnnnssd =
218

36p3s4 expS−
64

9p
s2D , s18d

DsLd =
1

15
L−4E

0

L

dusL − ud3s2L2 − 9Lu − 3u2d

3S1

2
dsud − YsudD , s19d

whereYsud is called a two-spectral cluster function given by

Ysud = Ssinspud
pu

D2

+
d

du
Ssinspud

pu
DE

u

` sinsptd
pt

dt. s20d

According to RMT, the distribution of components of an
eigenvector of GOE is the normal distribution with mean 0
and dispersionN. A useful quantity in characterizing the dis-
tribution of components is the inverse participation ratio
(IPR) [11,12]. For each eigenvectoruk, IPR is defined by the
following formula:

Ik ; o
i=1

N

uki
4 , s21d

whereuki is the i-th component ofuk. For example, let us
consider the caseuki is 1/ÎL for 1ø i øL and 0 for the other
i ’s. This givesIk=1/L. Thus IPR can be interpreted as the
inverse of the number of components which differ from zero
significantly. In RMT, the expectation value of IPR is

kIkl = NE
−`

`

uki
4 1
Î2pN

expS−
uki

2

2N
Dduki =

3

N
. s22d

III. MARKET DATA

The data we analyzed are daily stock prices of:(i) the
TSE from January 1993 to June 2001 and(ii ) the S&P 500
index of the NYSE from January 1991 to July 2001. As for
the S&P, the daily price data for a different period has been

analyzed by Lalouxet al. [4]. Also, the 30 min price data for
the NYSE has been studied by Plerouet al. [5,6]. In the TSE
data, the number of data points(the days that the market is
open) is 1848. We analyze, among all issues in the TSE, the
493 issues which are traded in all of the 1848 days. We select
the data of these issues and analyze them. For these data,
N=493 andT=1848. In the S&P 500 data, the number of
data points is 2599. We select the issues which have been
selected in S&P 500 index before 1991 and analyze their
prices. They amount to 297. For these data,N=297 andT
=2598.

IV. UNIVERSAL RANDOM PROPERTIES OF CROSS
CORRELATIONS IN STOCK MARKETS

In Refs. 4 and 5, the cross correlation matrices of the
NYSE data are analyzed and found to exhibit remarkable
agreement with the predictions of universality properties of
RMT for the small eigenvalues’ distribution, their nearest-
and next-nearest-neighbor spacings, rigidity, and IPR. In this
section, we perform a similar analysis on the TSE data and
confirm these properties. We also use the S&P data for com-
parison.

We diagonalize the correlation matrices of TSE and S&P,
to obtain the eigenvalues and the eigenvectorsuk sk
=1,¯ ,Nd. k is smaller for a large eigenvalue. For TSE,
s 2=1 and Q=N/T=3.75 give lmin=0.23 andlmax=2.30,
also for S&P,Q=8.75 giveslmin=0.43 andlmax=1.79. We
fit the distributions by optimizings 2 smaller than 1, as dis-
cussed in Ref. 4. Figure 1 shows the eigenvalue distribution
for the TSE. We see that the small eigenvalue distribution of
the correlation matrix of the TSE is well reproduced by
RMT. There are large eigenvalues beyond the bound

FIG. 1. (Color online) The figure shows the eigenvalue distribu-
tion for the correlation matrix of TSE. The line in each figure is for
the real data and the dotted line is for the Wishart matrix. We use
Eq. (9) multiplied by N8 /N for fitting whereN8 is the number of
eigenvalues withinflmin,lmaxg. s 2 is fitted to the optimized value
by the least-squares method.s 2=0.47s0.53d for TSE (S&P). For
TSE (S&P), a Kolmogorov–Smirnov test in the fitted region cannot
reject the hypothesis that the RMT prediction is the correct descrip-
tion at the 30%(60%) confidence level.
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flmin,lmaxg predicted by the Wishart matrix. The largest ei-
genvalue we obtain is 121.6(52.2) for the TSE(S&P) and is
interpreted as the factor for market trend as readily verified
by examining the corresponding eigenvector. The multitude
of this factor to the price changes of individual stocks is
given by l1/N, which is 0.247(0.176) for the TSE(S&P).
Thus, the TSE is more correlated with the trend factor than
the S&P.

Next, we compare spacings of the nearest-neighbor and
the next-nearest-neighbor eigenvalues, and the rigidity with
the predictions of RMT. To examine the statistics of the ei-
genvalue spacing, we first do the “unfolding” transformation
on the data. The unfolding transformation is described in
Ref. 6. After doing the unfolding transformation on the ei-
genvalues belowlmax, we compare their nearest-neighbor
and next-nearest-neighbor spacing distributions to the ones
for GOE. The theoretical predictions for the nearest-neighbor
spacing and the next-nearest-neighbor spacing are given in
Eqs.(17) and(18), respectively. We show in Fig. 2 the spac-
ings of small eigenvalues for the TSE. It shows a good agree-

ment with the prediction of RMT. For the rigidityDsLd, the
theoretical prediction is given in Eq.(19). The rigidity of the
eigenvalues of the cross correlation matrix for the TSE be-
low lmax is compared to RMT in Fig. 3. Figure 3 shows that
the rigidity agrees well with the prediction of RMT.

In Fig. 4, we plot the calculated IPR for the eigenvectors
of the cross correlation matrix of TSE. One sees that the IPR
agrees with the prediction of RMT around 1. There are also
eigenvectors whose IPRs are larger than the RMT prediction.
These eigenvalues are from deterministic correlations. As in
Fig. 4, such deviations can be seen at the large eigenvalues.
However, one also sees that there is a deviation in small
eigenvalues. This deviation is concentrated at the lower edge.
A simple model was constructed by Plerouet al. [6]. We will
study this deviation closely in Sec. VI.

As mentioned, we also performed the same analysis on
the S&P data for comparison. Results for the rigidity and IPR
are shown in Figs. 3 and 4. We found that the conclusions of
Plerouet al. [5,6] for 30 min data of the NYSE on eigen-
value spacings also hold for our daily S&P data.

V. STABILITY OF EIGENVALUE DISTRIBUTION OF THE
WISHART MATRIX IN THE PRESENCE OF

DETERMINISTIC CORRELATIONS

In the previous section, we found that the small eigen-
value distributions of the cross correlation matrices of the
TSE and S&P are reproduced well by the ones of the Wishart
matrix, as previously found in Ref. 4. The Wishart matrix is
generated by the random variables without any deterministic
correlations while the real stock data has a distribution of
large eigenvalues, showing a deviation from the Wishart ma-
trix. This indicates the existence of deterministic correla-
tions.

Thus, in this section, we examine the stability of the ran-
dom eigenvalue distribution of the cross correlation matrix
W of random variables when one includes deterministic cor-
relations.

FIG. 2. The figures are the nearest- and the next-nearest-
neighbor spacing distribution for TSE compared to the prediction of
RMT indicated by the dotted line. A Kolmogorov–Smirnov test can-
not reject the hypothesis that the GOE prediction is the correct
description at the 30%(80%) confidence level for the nearest-
neighbor spacing for TSE(S&P), at the 80%(60%) confidence
level for the next-nearest- neighbor spacing for TSE(S&P).

FIG. 3. (Color online) The plus mark is the rigidityDsLd for
TSE while the3 mark is the rigidity for S&P. The line is the
prediction of RMT. A Kolmogorov–Smirnov test cannot reject the
hypothesis that the GOE prediction is the correct description at the
80% confidence level both for TSE and S&P.
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Let us consider a set of random variables for which the
deterministic correlation matrix has only a small number of
large eigenvalues. We assume that theT3N matrix hMti

=xistdj has a deterministic correlation of the form

kMtil = 0, s23d

kMtiMt jl = DttC̃ij . s24d

The cross correlation matrix at stepT is given byMtM. As in
RMT, the eigenvalue distribution ofMtM is calculated from
the Green function,

Gsld ; K 1

l − MtM
L , s25d

by the formula

rsld =
1

2pN
lim
e→0

ImfTrGsl − ied − TrGsl + i«dg. s26d

The present case was studied in Ref. 9. Using the replica
method, a Dyson-type equation forG was obtained atN,T
→` with Q=T/N fixed as follows:

Gsld =
1

l − C̃TrS D

1 − DTrsC̃Gsldd
D . s27d

Equation(9) is readily obtained by puttingC̃=s 21, D=1/T
and taking the trace of Eq.(27)

TrGsld =
N

l − s 2 1

1 −
s 2

T
TrGsld

. s28d

Solving this second-order algebraic equation for TrGsld and
putting the solution to Eq.(26) yields Eqs.(9) and (10).

Now we assume thatC̃ has L large eigenvalueslk
C̃ sk

=1,2,¯ ,Ld and the otherN-L eigenvalueslk
C̃ sk=L

+1,¯ ,Nd. We setlk
C̃ sk=L+1,¯ ,Nd to be a same value

ls
C̃. Since the trace of the cross correlation matrix equalsN

by definition, we have

ls
C̃ =

N − ok=1

L
lk

C̃

N − L
. s29d

We also assume no temporal correlations thus setD=1/T.
From Eq.(27), the eigenvalueslk

Gsld of Gsld are given
by

lk
Gsld =

1

l − lk
C̃ 1

1 −
1

T
sTrSC̃G + TrLC̃Gd

. s30d

Here, TrL and TrS are the trace over the eigenspace spanned
by the eigenvectors forlk

G sk=1,¯Ld, lk
G sk=L+1,¯Nd,

FIG. 4. The upper two figures are IPRs for TSE and S&P. The
lower two figures are IPRs for TSE and S&P at small eigenvalues.
The dotted lines are the prediction of RMT.
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respectively. Summation overk=L+1,¯ ,N gives

TrSGsld =
N − L

l − ls
C̃ 1

1 −
1

T
sTrSC̃G + TrLC̃Gd

. s31d

For N large, rsld should have finite supports aroundlk
C̃ in

the real axis ofl. We denote supports for large and small
eigenvaluesDL andDS, respectively. We assume the case

ls
C̃ ! lk

C̃, sk = 1, . . .Ld, s32d

when DL and DS do not have an overlap. In this case,lk
G

sk=1,¯ ,Ld is analytic inDS while lk
G sk=L+1,¯ ,Nd has

a branch cut. Thus inDS, rsld is determined by the imagi-
nary part of TrSG. For TrSG, the contribution fromlk

G sk
=1,¯ ,Ld comes from the right-hand side of Eq.(31). Since
lk

G sk=1,¯Ld is analytic in the neighborhood ofDS, TrLG is
bounded by a constant. Aslk

G is an algebraic function ofN
and the scaling behavior consistent with Eq.(30) is Os1d, the
constant can be taken to be independent ofN. Thus, if for
k=1,¯ ,L

Llk
C̃ ! Nls

C̃, s33d

then

TrSC̃G = ls
C̃TrSG @ TrLC̃G

for N large because TrSG gets large asN→`. Then, Eq.(31)
is approximated by

TrSGsld =
N − L

l − ls
C̃ 1

1 −
ls

C̃

T
TrSGsld

. s34d

Equation (34) is equal to Eq.(28) when s2=ls
C̃ and N is

replaced byN-L. By putting the solution of Eq.(34) to Eq.
(26), we get

rsld .
N − L

N

Q

2pls
C̃

Îslmax− ldsl − lmind
l

. s35d

This formula is valid under Eqs.(32) and (33). Note that

there is a trade off betweenN,L ,ls
C̃,lk

C̃sk=1,¯ ,Ld under
Eqs.(32) and (33). Thus, theN-L eigenvalue distribution of
this model can be approximated by the one for the Wishart
matrix.

To conclude, the distribution of the small eigenvalues re-
mains the same in theN→`, as long as the numbers of the

large eigenvalues of the deterministic correlationC̃ are finite
and they appear only outside ofDS.

To confirm the validity of the approximation, we per-
formed a Monte Carlo simulation with six large eigenvalues.
We choose the large eigenvalues to be 121.6, 14.5, 11.4, 7.9,
4.7, and 4.0 which are the observed large eigenvalues of the
TSE. The result is shown in Fig. 5. We see that the large

eigenvalues correspond to the large eigenvalues of the real
correlation matrix while the small eigenvalue distribution is
well reproduced by the one for the Wishart matrix. We also
examined other values of large eigenvalues and obtained
similar results. Moreover, the probability of observed eigen-
values has a finite width by the effect of randomness. The
width of an observed eigenvalue is wider for a larger eigen-
value.

VI. LEVEL REPULSION OF DETERMINISTIC
CORRELATIONS BY RANDOMNESS

According to Plerouet al. [5], the deviation at small ei-
genvalues arises from strong correlations among a small

FIG. 5. (Color online) The line is for the model with large
eigenvalues of the real correlation matrix while the dotted line is for

Eq. (9) with s 2=ls
C̃ in Eq. (29). The small eigenvalue distribution

(the upper graph) is very close. The middle graphs are the large
eigenvalue distribution. We take the large eigenvalues of the real
correlation matrix as 121.6, 14.5, 11.4, 7.9, 4.7, and 4.0 which are
found for TSE. The eigenvalues are observed in the neighborhood
of these values. Also, the observed eigenvalues have a finite width
by the effect of randomness. The width of the observed eigenvalues
is wider for the larger eigenvalues.
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number of issues. This is illustrated well by the following
model. We consider a model thatN issues have an equal
correlationc:

C̃ =1
1 c ¯ c

c 1 ]

] � c

c ¯ c 1
2 , s36d

whereC̃ has an eigenvalue 1+sN−1dc with no degeneracy
and an eigenvalue 1−c with degeneracyN−1. The eigen-
value 1−c becomes small ifc is close to 1, i.e., strong cor-
relation. Its eigenvectors have nonzero components at the
correlated issues, resulting in a large IPR.

However, this reasoning of large IPR eigenvectors at
small eigenvalues is not sufficient to explain two facts. First,
eigenvectors with a large IPR appear onlybelow the bulk of
the eigenvalue distribution of the Wishart matrix, concentrat-
ing at the lower edge. Since the correlationc should be dis-
tributed in a wide range, eigenvectors with a large IPR
should also be distributed in a wide range. Thus, the absence
of small eigenvalues with a large IPR within the bulk is
puzzling. Second, each eigenvector with a large IPR is ob-
served at a smaller value than expected from the model
above. As the largest nondiagonal element of the correlation
matrix of the TSE(S&P) is 0.74(0.83), Eq. (36) tells us that
the eigenvector with a large IPR and with the smallest eigen-
value should be observed at 0.26(0.18). Actually, the small-
est eigenvalue with a large IPR is observed at 0.11(0.14)
which is smaller than the lower bound of the eigenvalue
distribution of the Wishart matrix.

These two facts motivate us to study the interplay be-
tween deterministic correlations and randomness. We con-
sider a model of random variables with a deterministic cor-

relation matrixC̃, and examine the IPRs of eigenvectors of
the cross correlation matrixC. As a simple model, we as-

sumeC̃ to have a following form:

C̃ =1
C̃1 0 ¯ ¯ 0

0 C̃2 ]

] �

] C̃ L 0

0 ¯ ¯ 0 1
2 . s37d

Here,C̃l sl =1,¯ ,Ld and1 are

C̃l =1
1 cl ¯ cl

cl 1 ]

] � cl

cl ¯ cl 1
2 1 =1

1 0 ¯ 0

0 1 ]

] � 0

0 ¯ 0 1
2 .

s38d

The form of C̃ assumesL groups of issues with strong cor-
relations. We considerN random variablesxistd with

kxistdxjstdl = C̃ijdtt, s39d

and examine theirT-step cross correlation matrix

Cij =
1

T
MtM =

1

T
o
t=1

T

xistdxjstd. s40d

We setN=493 andT=1847 following our TSE data. We
set the numberL of strongly correlated groups to be 4 and
the number of issuesM participating each group to be 6. We
choose the correlations to bec1=0.8, c2=0.6, c3=0.4, and
c4=0.2. We performed a Monte Carlo simulation of this
model. We present an IPR of the eigenvalues in Fig. 6. Fig-
ure 6 shows that eigenvalues with a large IPR distribute out-
side the bounds of eigenvalue distribution from randomness
as in the real stock data. In this model, there should be 20
(counting degeneracies) small eigenvalues with a large IPR
in the simple model above, but the observed ones with a
large IPR only amount to 10. This implies that,when small
eigenvalues arising from a strong correlation appear within
the bounds of the Wishart matrix, IPRs of their eigenvectors
get smaller and cannot be distinguished from the random
eigenvalues. This is one effect of randomness on determinis-
tic correlations. We also note that even for the eigenvectors
which have a larger IPR than the RMT value, their IPRs are
smaller than expected.

Moreover,C̃ has small eigenvalues 0.2 and 0.4 while the
corresponding eigenvalues ofC distribute in the vicinity of
0.14 and 0.22, respectively. On the other hand, the eigenval-

FIG. 6. The upper graph is the IPR of the eigenvectors of the

real correlation matrixC̃ given by Eqs.(37)–(40). The lower graph
is the IPR for the eigenvector ofC. In the simulation, we setN
=493,T=1847,M =6, L=4, c1=0.8, c2=0.6, c3=0.4, andc4=0.2.
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ues of C corresponding to the large eigenvalues ofC̃ are
shifted to values larger than the original ones. Namely,the
eigenvalues of C from the deterministic correlation are re-
pelled from the distribution of the random eigenvalues. We
performed Monte Carlo simulations by changing the param-

eters forC̃ and got similar results. This may be interpreted as
a manifestation of the universal effect of randomness, called
“level repulsion”[13]. According to RMT, the eigenvalues of
random matrices are repelled from each other by the loga-
rithmic potential in −lnuli −l ju in Eq. (13). Even when some
deterministic terms are present, this logarithmic potential
causes a repulsion between eigenvalues. This universal effect
has been observed for various systems such as levels of com-
plicated nuclei. In the present case, deterministic correlations
between random variables are repelled from the bulk distri-
bution of the random eigenvalues. The eigenvalues in the
RMT bounds form a repulsive potential and it repels the
eigenvalues outside them.

We can deduce this level repulsion by solving the Dyson-
type equations(23)–(26) numerically. We assume for sim-

plicity that the eigenvalues ofC̃ are 1 except one eigenvalue
smaller or larger than 1. We solve Eqs.(23)–(26) numerically

for N=293 andT=1847 and obtain the relation between the
smaller(or larger) eigenvalue and the corresponding eigen-
value ofC. The result is shown in Fig. 7. Figure 7 shows that

smaller (larger) eigenvalues ofC̃ are repelled by the bulk
distribution around 1 and are observed as smaller(larger)
eigenvalues ofC.

Thus, we found two interplays between deterministic cor-
relations and randomness. Namely, when groups of issues
have strong correlations, it results in large and small eigen-
values in the cross correlation matrix. Some of these eigen-
values are soaked up within the RMT bounds and their IPRs
becomes as small as the RMT value. They cannot be distin-
guished from random eigenvalues. On the other hand, eigen-
values from deterministic correlations outside the RMT
bounds feel the repulsive potential generated by the bulk
distribution of randomness. At the lower edge, they are
shifted to smaller values. We believe that these give the ex-
planation for two deviations we raised in this section.

VII. GROUPS OF ISSUES FORMED BY STRONG
CORRELATION

We have seen that the existence of a group of issues with
strong correlation results in eigenvalues of the cross correla-
tion matrix with a large IPR. Conversely, by examining the
eigenvectors with large IPR, we may identify groups formed
by strong correlations.

For the NYSE, Plerouet al. [5] examined the eigenvec-
tors of large eigenvalues and distinguished strongly corre-
lated issues by a criteria to have a large component in these
eigenvectors. They found that the groups are formed accord-
ing to the industrial sectors. However, we found a difficulty
in applying their method to the TSE. Because eigenvectors
for large eigenvalues have significant components not only
from correlations but also from randomness, even if an issue
has a large component in an eigenvector of large eigenvalue,
it is difficult to tell whether it is from the effect of determin-
istic correlation or just from randomness. Especially for the
TSE, the effect of deterministic correlations is apparently not
strong enough to make the separation straightforward. As we
examined the eigenvectors of the large eigenvalues, we
found it impossible to separate the group of strongly corre-
lated issues. For example, Fig. 8 shows the component dis-

FIG. 7. The effect of level repulsion on the eigenvalues ofC.

The horizontal axis is the small(large) eigenvalue ofC̃ and the
vertical axis is the corresponding eigenvalue ofC. The upper

(lower) graph is for the case where eigenvalues ofC̃ are smaller
(larger) than 1. The crosses are the result of a Monte Carlo simula-
tion based on Eqs.(39) and (40). The straight line corresponds to
the absence of the effect of randomness, when the eigenvalues ofC

are identical to those ofC̃. The eigenvalues ofC are repelled from
the bulk vicinity of 1.

FIG. 8. The component distribution of the eigenvector for the
sixth largest eigenvalue 4.0 of TSE. The components distribute con-
tinuously and it is hard to distinguish the components from
correlations.
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tribution of the eigenvector for the sixth largest eigenvalue
4.0 in the TSE. One sees that the components have a con-
tinuous distribution and it is hard to separate large compo-
nents due to deterministic correlations.

Therefore, here we propose a supplementary method to
identify strongly correlated components. As we saw in Sec.
VI, when a group of issues is formed by strong correlations,
they not only have a large component in the eigenvectors of
the corresponding large eigenvalue, but also have a large
component in the eigenvectors of the corresponding small
eigenvalue. On the other hand, issues which do not have

strong correlations with others should have the normal dis-
tribution in eigenvectors. Namely, the deviation from the
normal distribution indicates that the issue is correlated with
others. To quantify how an issue has a distribution different
from the normal distribution, we define a quantityZi as fol-
lows:

Zi = o
k:Ikùdth

uki
2 , s41d

where dth is a threshold for an IPR.Zi is the sum of the
square ofith component of the eigenvectors which have an

TABLE I. TSE issues withZi ùath.

Eigenvector TSE code Company Name Sector

u2 6701 NEC Electric products

u2 6702 Fujitsu Electric products

u2 8035 Tokyo Electron Electric products

u3 1888 Wakachiku Construction Construction

u3 8834 Douwa Real Estate Real estate

u4 9501 Tokyo Electric Power Electric power

u4 9503 Kansai Electric Power Electric power

u4 9504 Chuugoku Electric Power Electric power

u4 9506 Tohoku Electric Power Electric power

u4 9509 Hokkaido Electric Power Electric power

u5 1888 Wakachiku Construction Construction

u5 8834 Douwa Real Estate Real estate

u5 1801 Taisei Corporation Construction

u5 1804 Satou Kogyo Construction

u5 1805 Tobishima Construction Construction

u5 1806 Fujita Corporation Construction

u5 1886 Aoki Corporation Construction

u5 8601 Daiwa Securities Finance

u5 8603 Nikko Cordial Group Finance

u6 8834 Douwa Real Estate Real estate

u6 9501 Tokyo Electric Power Electric power

u6 9503 Kansai Electric Power Electric power

u6 9504 Chuugoku Electric Power Electric power

u6 9506 Tohoku Electric Power Electric power

u6 9509 Hokkaido Electric Power Electric power

u6 1804 Sato Corporation Construction

u6 1805 Tobishima Construction Construction

u6 1806 Fujita Construction

u6 1886 Aoki Corporation Construction

u7 9504 Chuugoku Electric Power Electric power

u7 9506 Tohoku Electric Power Electric power

u7 5801 Furukawa Electric Nonferrous metal

u7 8004 Nichimen Wholesale

u8 8335 Ashikaga Bank Bank

u8 9766 Konami Service

u9 8004 Nichimen Wholesale

u9 8335 Ashikaga Bank Bank

u9 8752 Sumitomo Mitisui Kaijyo Insurance
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IPR ùdth. We setdth=0.008s0.02d for the TSE(S&P), which
sort out 41(28) eigenvectors. If theith issue has no true cor-
relation with others, the componentsuki of the eigenvectors
follow the normal distribution, and hence the probability of
having a largeZi should be small. Thus, theith issue may be
regarded as significantly correlated ifZi is larger than a cer-
tain thresholdath. We chooseath so that the probability of
Zi ùath is 1% if the eigenvector components for theith issue
follow the normal distribution. For our data,ath=0.131
(0.162) for the TSE(S&P). If the ith issue has a large com-
ponent in an eigenvector, we consider it to be in the corre-

sponding group of the strong correlations whenZi ùath.
We applied this method to large eigenvalues observed in

our market data. The results are shown in Tables I and II.
In the S&P, the electric power sector, and oil and gas

related sectors play major parts in the correlations. In the
TSE, the electric products sector and construction sector play
major parts.

In the S&P, each eigenvector corresponds to an industrial
sector. This means that each industrial sector forms a
strongly correlated group. On the other hand, in the TSE,
there are eigenvectors whose participants are from different

TABLE II. S&P issues withZi ùath.

Eigenvector Ticker Company Name Industries

u2 AEP American Electric Power Electric power

u2 DUK Duke Energy Corporation Electric power, natural gas

u3 APC Anadarko Perroleum Corp. Oil,gas

u3 BHI Baker Hughes Inc. Oil, related

u3 XoM Exxon Mobil Corporation Oil, coal, copper

u3 HAL Halliburton Company Oil, gas

u3 RD Royal Dutch Petroleum Co. Oil, gas, chemical

u3 SLB Schlumberger Ltd. Oil

u3 UCL Unocal Corporation Oil, gas

u4 GP Georgia-Pacific Group Paper manufacturer, pulp

u4 IP International Paper Co. Paper manufacturer

u4 MEA Mead Corporation Paper Manufacturer pulp, gum

u4 WY Weyerhaeuser Company Paper Manufacturer, pulp, forestry, wooden goods

u5 MRK Merck & Co., Inc. Medicine manufacturer

u5 PFE Pfizer Inc. Medicine manufacturer

u5 SGP Schering-Plough Corp. Medicine Manufacturer

u6 BK Bank of New York Co. Bank

u6 JPM J.P. Morgan Chase & Co. Finance

u6 PNC PNC Financial Services Finance

u6 STI SunTrust Banks, Inc. Bank

u7 ABX Barrick Gold Corp. Gold mining, gold goods

u7 HM Homestake Mining Co. Gold mining

u7 NEM Newmont Mining Corp. Gold mining

u7 PDG Placer Dome Inc. Gold mining

u8 SBC SBC Communications Inc. Telecommunication, cable television, internet

u8 VZ Verizon Communications Telecommunication, internet

u8 MU Micron Technology, Inc. Semiconductor

u8 TXN Texas Instruments Semiconductor

u9 AMR AMR Corporation Aviation

u9 DAL Delta Air Lines, Inc. Aviation

u9 F Ford Motor Company Automobile

u9 GM General Motors Corp. Automobile

u10 EIX Edison International Holding company of electric power

u10 PCG PG&E Corporation Holding company of electric power

u11 AL Alcan Inc. Aluminium, aluminium can

u11 AA Alcoa, Inc. Aluminium

UTSUGI, INO, AND OSHIKAWA PHYSICAL REVIEW E70, 026110(2004)

026110-10



industrial sectors, which may indicate a more complicated
correlation structure of the market. Thus it seems that the
TSE and S&P(NYSE) have some differences in the structure
of the correlations, while the “random” part is well described
by the universal theory in the both markets. It would be
interesting to find the origin of the difference. This might be
useful to give some insights into the difference of the eco-
nomic structures of the two countries.

As far as our data samples are concerned, we may con-
clude that the method which we propose utilizing small
eigenvectors and their IPR effectively distinguishes strongly
correlated groups in the markets.

We noticed that Giadaet al. investigated the grouping of
S&P data in Ref. 14 based on a model considered by Noh
[15]. The method proposed in Refs. 14 and 15 has the ad-
vantage of directly giving the “noise-undressed” correlation
matrix. However, the basic assumption of their method is
that each issue belongs to only one cluster of correlated is-
sues. This assumption is apparently not quite true according
to our analysis. For example, “Tohoku Electric Power” ap-
pears in three different groups in Table I. Therefore, we be-
lieve that more analysis based on conservative assumptions
should be made before applying the estimated true correla-
tion to the portfolio management.

VIII. CONCLUSIONS

We analyzed the eigenvalues and the eigenvectors of the
cross correlation matrices of the TSE and NYSE(S&P500)
stock market data. We found that results of Refs. 4–6 re-
ported for the NYSE are also valid for the TSE. The eigen-
value distribution obeys the RMT prediction in the bulk but
there are some deviations at the large eigenvalues. We also
examined the nearest-neighbor spacing, the next-nearest-
neighbor spacing, and the rigidity of the eigenvalues and

found that they follow the universality of GOE. These are
consistent with Refs. 4–6 and imply that the large eigenval-
ues are due to the existence of correlations while the eigen-
values distributed in the bulk are due to randomness. We also
examined the IPRs of the eigenvectors of the correlation ma-
trices. In the bulk, the IPR distribution follows the prediction
of GOE, but there are deviations outside the RMT bounds.
Plerouet al. [5,6] argued that deviations at the lower edge
are due to strong correlations. We found that this reasoning is
qualitatively valid, but quantitatively it cannot explain the
fact that small eigenvalues with a large IPR concentrate at
the lower edge and the observed eigenvalues are smaller than
the expected values.

To explain this phenomenon, we studied RMT with deter-
ministic correlations. We found that each eigenvalue from
deterministic correlations is observed at values which are
repelled from the bulk distribution. We interpreted this repul-
sion as a reminiscent of the effect of randomness, known as
level repulsion. This effect is shown to be deduced by solv-
ing the Dyson-type equation numerically.

We also proposed a method to distinguish strongly corre-
lated groups of issues based on the IPR. It reduces the acci-
dental appearance of uncorrelated issues. Applying this
method, we found that issues of the S&P are grouped accord-
ing to the industrial sectors. On the other hand, issues of the
TSE are grouped in more complicated ways, suggesting
some differences in the structure of the markets.
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