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Random matrix theory analysis of cross correlations in financial markets
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We confirm universal behaviors such as eigenvalue distribution and spacings predicted by random matrix
theory(RMT) for the cross correlation matrix of the daily stock prices of Tokyo Stock Exchange from 1993 to
2001, which have been reported for New York Stock Exchange in previous studies. It is shown that the random
part of the eigenvalue distribution of the cross correlation matrix is stable even when deterministic correlations
are present. Some deviations in the small eigenvalue statistics outside the bounds of the universality class of
RMT are not completely explained with the deterministic correlations as proposed in previous studies. We
study the effect of randomness on deterministic correlations and find that randomness causes a repulsion
between deterministic eigenvalues and the random eigenvalues. This is interpreted as a reminiscent of “level
repulsion” in RMT and explains some deviations from the previous studies observed in the market data. We
also study correlated groups of issues in these markets and propose a refined method to identify correlated
groups based on RMT. Some characteristic differences between properties of Tokyo Stock Exchange and New
York Stock Exchange are found.
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I. INTRODUCTION tribution of the eigenvalues, the nearest- and next-nearest-

The price changes of securities such as stocks involvB€ighbor spacings, rigidity, and a certain moment of eigen-
various economic backgrounds as well as interaction bev€ctor components. We find good agreement with the real
tween securities. They seem to be quite complicated. Corflata within the RMT bounds for the eigenvalues. Indeed,
ventionally, financial economists model the price changes ofhere are clear deviations outside the bounds which indicate
securities by stochastic procesgemndom walkg[1]. Itis a  the presence of deterministic correlations among issues. In
basic ingredient of modern portfolio theof®]. Although the  Sec. V, we consider random variables with deterministic cor-
use of stochastic processes is common in finance, the validitielations and show that the bulk part of the eigenvalue dis-
of such a formulation should be empirically tested, e.g., bytribution of the correlation matrix is stable. In Sec. VI, we
statistical properties of the markets, since the underlying erclosely examine the distribution of the moment of eigenvec-
godic property of a market may be hard to be established. tor component. Eigenvectors corresponding to the eigenval-

Recently, the statistical characterizations of financial marues outside the RMT bounds deviate from the RMT predic-
kets based on physics concepts and methods attract consiébn. According to Ref[6], the deviating eigenvalues at the
erable attentiori3]. Given that a stochastic model is valid, lower edge are a consequence of the strong correlations
some statistical properties of the market should be derived eamong a few issues. However, we find that the observed data
outsets of stochasticity. For example, the cross correlatioare not explained quantitatively by this reasoning alone.
matrix amongN securities can be regarded as a random maTherefore, we analyze the effect of randomness on determin-
trix and it may be legitimate to expect that it shares universaistic correlations between issues and find an interplay be-
properties of a corresponding ensemble of random matrigween deterministic correlations and randomness. We argue
theory (RMT) in an appropriate larg®N limit (since N is  that it gives a refined explanation on the deviations. In Sec.
usually largg. This has been confirmed by several studies orVIl, we identify groups of strongly correlated issues from the
actual stock marketg4—6]. The bulk of the eigenvalue dis- information of the nonrandom eigenvectors. The ways of
tribution of the cross correlation matrix of a major index grouping in the TSE and NYSE show some differences.
[Standard and Poors 5@8&P 500] of the New York Stock
Exchangg(NYSE) is found to follow the eigenvalue distri- Il. BRIEF REVIEW ON RANDOM
bution of the Wishart matri%4], which is a random correla- MATRIX THEORY
tion matrix constructed from mutually uncorrelated time se-
ries[7,8]. Also the eigenvalue spacing statistics are found to ) ) ]
follow those of the gaussian orthogonal ensentG©E) [5]. Let §(t) be a price at timet of a stock labeled by

The aim of this paper is to yield further support on the(i=1,2,---,N, t=1,2,---,T). The change of price at timte
applicability of RMT to analysis of stock markets. In Sec. Il, can be measured by
we give a brief review on the relevant results of RMT. We _
describe our data sample in Sec. Ill. In Sec. IV, we test Gi(t) =In§(t+1) =In §(1). (@)
predictions of RMT for the cross correlation matrix for the Here, we take logarithm of the prices because the fluctuation
daily prices of the issues in the Tokyo Stock Excha@i®E)  of stock prices is typically given by the geometric Brownian
from 1993 to 2001. The quantities we calculated are the dismotion. Since

A. Wishart matrix
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S(t+1)-S(t)
S '
where G;(t) is approximately the return of the issuidrom

ttot+1. We also define the normalized retugiit) as fol-
lows:

Gi(t) = )

()

gi(t) = Gi(t) _-<Gi>T.

(---)1 indicates the time series average Tofsteps and the
dispersiono; is given by

E—
a1 = (G- (G)7. (4)

Then, the correlation matri€ is expressed in terms @f(t)
Cij = (g9 (5

whereC is a real symmetric matrix with positive eigenval-

ues.
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Next, we consider the Gaussian ensembles of random ma-
trices. In the Gaussian ensembles, the probability of a matrix
H to be in the infinitesimal volume elemedH (dH is given
by the product of infinitesimal of independent elemgrigs
given by P(H)dH whereP(H)

P(H) :Aexp<— aX |m|2)-

11

Here,a is a parameter which characterizes the ensemble,
\; is the eigenvalue oH, andA is the normalization con-
stant. For general ensembles, one replaces the g2
by Z;V(\;) with a functionV(\). For example, one can add
the quartic or higher-order terms, but it is known that, in the
large N-limit (N is the size ofH), the model flows to the
Gaussian moddglL0]. The Gaussian models are classified by
the symmetry of the matrix agi) GOE, the ensemble invari-
ant under the orthogonal grougi,) Gaussian symplectic en-
semble, the ensemble invariant under the symplectic group,
and (iii) Gaussian unitary ensemb(&UE), the ensemble

We will model the price of stocks as a stochastic processinyariant under the unitary group. Since the correlation ma-

For N random variables(t) (i=1,2,---,N), a matrix M
which is defined byM;;=x;(t) is a TX N matrix. The cross
correlation matriXW is defined as follows:
1 t
Wi = (X))t = TMM, (6)
where M! is the transposition oM. A purely random case
with a uniform dispersiorr is given by

trix C is real symmetric, the ensemble relevant to our analy-
sis is GOE. For GOE, volume elemedit! is given by

i<j

(12

To obtain the statistical measure of the eigenvalue distri-
bution P(\q, N5, **,\y), One expressed as the product of
the diagonal matrix with eigenvalue entries and the other
variables, and then integrates the other variables. In this way,

() =0, D e get the measure
- 2
X (0)x(7) = 028 8- 8 TN = NPT o (13
Here (---) indicates the average over the random variable =i k

phase space. In this casé/ is called the Wishart matrix

[7,8]. We can include “true” correlations among issues by

replacingé; in Eq. (8) by a nondiagonal matric. We will
call C a deterministic correlatiorwhile we callC or W a
cross correlation

B. Eigenvalue statistics of random matrices

Let us summarize the relevant results of RMT to which

we will refer in this paper.
In the limit N— oo, T— oo with Q=T/N fixed, the eigen-
value distributionp(\) for the Wishart matrix becomg®)]

Q VA\max= M\ = Apip)
2ma? A

)\max: 0_2(]_ +1 + 2\/I>
min Q— Q '

where Eq.(9) is exact atN—o, T—o with Q=T/N
=constant. It is approximately valid at finikand T whenN
and T are not small. According to Eqg9) and (10), the

p(N) = , 9

(10

Here, B=1 for GOE, B=2 for GUE, andB=4 for GSE.
Thus, the eigenvalue distribution for a Gaussian ensemble is
determined byB. By this way, we get the eigenvalue distri-
bution for a general potentid as follows:

5 V0w

P()\l,)\z, . ,)\N) =A’ eXp|:_ B(
k=1 B

(14)

- > Inn —>\1-|)] ,

i<j

whereA’ is the normalization constant. From Ed4), one
sees that the statistical properties at the short spacing be-
tween eigenvalues are dominated by [xir-\;| and the total
potential is negligible. Thusp determines the eigenvalue
spacing at a short distance. For eg;tthe level spacing has
been closely studiefll1l]. As the correlation matrix is real
symmetric, we expect that its statistical properties of the ei-
genvalue spacing are given [8=1. One can characterize
the statistical properties of eigenvalue spacing by the nearest-
neighbor spacingP,, the next-nearest-neighbor spacing
Poe @nd the “rigidity” A(L). P,, and P,,, are for short-

eigenvalues of the Wishart matrix distribute only in the rangerange correlations whil&(L) is for long-range correlations.

()\min ’ )\max)-

A(L) is defined as

026110-2



RANDOM MATRIX THEORY ANALYSIS OF CROSS.. PHYSICAL REVIEW E 70, 026110(2004)

1 . A+ L T T T T T T
A(L) = —=( min J Z(F(N)=AN =B)%d\’ ) , (15
L\ aBJ,_L R 8
whereF(\) is given by i
FOO =S 00—\, (16) _
- i

with the Heaviside functior®. F(\) counts the number of
eigenvalues below. The meaning ofA(L) is that one fits
F(\) by a line in an interval with a widti. around each

probability density

eigenvalue, and take the average of the deviations of the fit ‘ N\ My i
A(L) is small when the eigenvalue spacing has a uniform L ALV WY Y L
distribution. 1 15 2 25 3 35 4
For GOE,P,,,, P @andA(L) are given by{11], eigenvalue
s T
Poa(s) = ey exp(— Zsz> , (17) FIG. 1. (Color onling The figure shows the eigenvalue distribu-

tion for the correlation matrix of TSE. The line in each figure is for
the real data and the dotted line is for the Wishart matrix. We use
_ 18 a 2 Eq. (9) multiplied by N’/N for fitting whereN’ is the number of
Ponn(S) = ﬁs exp ~ 9r )’ (18) eigenvalues withif\ min, Amad. 0’2 is fitted to the optimized value
by the least-squares method?=0.470.53 for TSE (S&P). For
L TSE (S&P), a Kolmogorov—Smirnov test in the fitted region cannot
A(L) = iL—4j du(L - u)3(2L2 —9Lu- 3u2) rgject the hypothesis that Fhe RMT prediction is the correct descrip-
15 0 tion at the 30%460%) confidence level.

x(lé(u) - Y(u)), (19 analyzed by Lalowet al.[4]. Also, the 30 min price data for
the NYSE has been studied by Plertal. [5,6]. In the TSE
whereY(u) is called a two-spectral cluster function given by data, the number of data pointthe days that the market is
oper) is 1848. We analyze, among all issues in the TSE, the
_(sin(mu)\?  d (sin(zu)\ [~ sin(at) 493 issues which are traded in all of the 1848 days. We select
Y(u) = U * du t dt. (200 the data of these issues and analyze them. For these data,
! N=493 andT=1848. In the S&P 500 data, the number of
According to RMT, the distribution of components of an data points is 2599. We select the issues which have been
eigenvector of GOE is the normal distribution with mean Oselected in S&P 500 index before 1991 and analyze their
and dispersiofN. A useful quantity in characterizing the dis- prices. They amount to 297. For these dda297 andT
tribution of components is the inverse participation ratio=2598.
(IPR) [11,13. For each eigenvectay, IPR is defined by the
following formula:

u

IV. UNIVERSAL RANDOM PROPERTIES OF CROSS
CORRELATIONS IN STOCK MARKETS

N
=2 ug, (21)
i=1

In Refs. 4 and 5, the cross correlation matrices of the
NYSE data are analyzed and found to exhibit remarkable
whereuy; is thei-th component ofl,. For example, let us agreement with the predictions of universality properties of
consider the casey is 1/\L for 1<i<L and 0 for the other RMT for the small eigenvalues’ distribution, their nearest-
I's. This givesl,=1/L. Thus IPR can be interpreted as the and next-nearest-neighbor spacings, rigidity, and IPR. In this
inverse of the number of components which differ from Zel’OSection' we perform a similar ana|ysis on the TSE data and
significantly. In RMT, the expectation value of IPR is confirm these properties. We also use the S&P data for com-

” 1 W2 3 parison.
(= Nj Uﬁi= exp(— i)d U= —. (22) We diagonalize the correlation matrices of TSE and S&P,
- 27N 2N N to obtain the eigenvalues and the eigenvectags (k
=1,---,N). k is smaller for a large eigenvalue. For TSE,
o?=1 and Q=N/T=3.75 give A,j;=0.23 andX\,=2.30,
Il MARKET DATA also for S&P,Q=8.75 gives\ ,ip=0.43 and\,,,x=1.79. We
fit the distributions by optimizingr? smaller than 1, as dis-
The data we analyzed are daily stock prices (0f:the  cussed in Ref. 4. Figure 1 shows the eigenvalue distribution
TSE from January 1993 to June 2001 gii¢glthe S&P 500 for the TSE. We see that the small eigenvalue distribution of
index of the NYSE from January 1991 to July 2001. As forthe correlation matrix of the TSE is well reproduced by
the S&P, the daily price data for a different period has beerRMT. There are large eigenvalues beyond the bound
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1 1 1 T 1 T 1 T 025 T T T T T T T T T .
09F [] ~ e 7
08F | . 0.2 f el .
z o7k [h : o
£ o6l l Z 015 y
° f kel
z o5/ . =)
g 04 | . & Ll o |
02 W 1 0.05 ¥ 1
0.1 . /
g ; s %01 2345678810
005115 2 25 3 35 4 0
nearest neighbor spacing s L
1.4 T T T T T T FIG. 3. (Color onling The plus mark is the rigidityA(L) for
] TSE while the X mark is the rigidity for S&P. The line is the
12 / \ T prediction of RMT. A Kolmogorov—Smirnov test cannot reject the
o in) hypothesis that the GOE prediction is the correct description at the
G r i ) 80% confidence level both for TSE and S&P.
c \
8 o8 [} -
Z ; ment with the prediction of RMT. For the rigidit(L), the
9 06 ¢ ' . theoretical prediction is given in E¢L9). The rigidity of the
S ¥ eigenvalues of the cross correlation matrix for the TSE be-
o 04 ) low \pax IS compared to RMT in Fig. 3. Figure 3 shows that
o2 L1 "\ i the rigidity agrees well with the prediction of RMT.
’ ! g In Fig. 4, we plot the calculated IPR for the eigenvectors
0 1 T of the cross correlation matrix of TSE. One sees that the IPR
0 051152 25 3 35 4 agrees with the prediction of RMT around 1. There are also
next nearest neighbor spacing s eigenvectors whose IPRs are larger than the RMT prediction.

. These eigenvalues are from deterministic correlations. As in
FIG. 2. The figures are the nearest- and the next-nearesgig 4 gyuch deviations can be seen at the large eigenvalues.
neighbor spacing distribution for TSE compared to the prediction OfHowever one also sees that there is a deviation in small
RMT indicated by the dotted line. A Kolmogorov—Smirnov test can- gjoanyalyes. This deviation is concentrated at the lower edge.

not reject the hypothesis that the GOE prediction is the correc}s\ : .
o . simple model was constructed by Pleretal. [6]. We will
0, 0, -
description at the 30%80%) confidence level for the nearest study this deviation closely in Sec. VI.

neighbor spacing for TSES&P), at the 80%(60% confidence As mentioned, we also performed the same analysis on
level for th t- t- neighb ing f SEP). ! .

evel for the next-nearest- neighbor spacing for TSEP) the S&P data for comparison. Results for the rigidity and IPR
[Amins Amad Predicted by the Wishart matrix. The largest ei- @re shown in Figs. 3 and 4. We found that the conclusions of

genvalue we obtain is 121(62.2 for the TSE(S&P) and is ~ Plerouet al. [5,6] for 30 min data of the NYSE on eigen-
interpreted as the factor for market trend as readily verifiey@lue spacings also hold for our daily S&P data.

by examining the corresponding eigenvector. The multitude,, c1ag| I TY OF EIGENVALUE DISTRIBUTION OF THE

of this factor to the price changes of individual stocks is
. L WISHART MATRIX IN THE PRESENCE OF
given by \;/N, which is 0.247(0.176 for the TSE(S&P). DETERMINISTIC CORRELATIONS
Thus, the TSE is more correlated with the trend factor than
the S&P. In the previous section, we found that the small eigen-

Next, we compare spacings of the nearest-neighbor andalue distributions of the cross correlation matrices of the
the next-nearest-neighbor eigenvalues, and the rigidity witifSE and S&P are reproduced well by the ones of the Wishart
the predictions of RMT. To examine the statistics of the ei-matrix, as previously found in Ref. 4. The Wishart matrix is
genvalue spacing, we first do the “unfolding” transformationgenerated by the random variables without any deterministic
on the data. The unfolding transformation is described ircorrelations while the real stock data has a distribution of
Ref. 6. After doing the unfolding transformation on the ei- large eigenvalues, showing a deviation from the Wishart ma-
genvalues below\,,,, we compare their nearest-neighbor trix. This indicates the existence of deterministic correla-
and next-nearest-neighbor spacing distributions to the onegons.
for GOE. The theoretical predictions for the nearest-neighbor Thus, in this section, we examine the stability of the ran-
spacing and the next-nearest-neighbor spacing are given glom eigenvalue distribution of the cross correlation matrix
Eqgs.(17) and(18), respectively. We show in Fig. 2 the spac- W of random variables when one includes deterministic cor-
ings of small eigenvalues for the TSE. It shows a good agreerelations.
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Tokyo Let us consider a set of random variables for which the
0.016 T T T T deterministic correlation matrix has only a small number of
0.014 large eigenvalues. We assume that g N matrix {M;
) N =x;(t)} has a deterministic correlation of the form
0.012 .
* (My)=0, (23
o +
o 0.01 + -
- + —
0.008 [ 4" “++++ . (MgM,;) = DGy . (24)
0.006 : ------ - The cross correlation matrix at st&gs given byM'M. As in
0.004 . \ . . RMT, the eigenvalue distribution dfI'M is calculated from
. 0 > 4 5 8 10 the Green function,
eigenvalue GO\ = < 1 > (25)
ANV VYA
s&P A=MM
0.35 T T T Y by the formula
0.3 - 1 . .
0.25 | i p(\) = >mN LILT?) IMTrG(\ —ie) = TrG(\ +ig)]. (26)
T 02 - ] The present case was studied in Ref. 9. Using the replica
= 015 F + . method, a Dyson-type equation f& was obtained aN, T
0.1 F i — oo with Q=T/N fixed as follows:
0.05 + . 1
ok T S S S, S G =—— D @
0 2 4 6 8 10 A= CTr( = )
. 1-DTr(CG()N))
eigenvalue
Tok Equation(9) is readily obtained by puttin&zazl, D=1/T
OKyo and taking the trace of E@27)
0016 I I*l-+ I I 1 1 I N
0.014 + - TrG(\) = 1 : (28)
0.012 | * - Aot
& 001 1-ZTrG()
0.008 Solving this second-order algebraic equation foG{v) and
0.006 putting the solution to Eq(26) yields Eqgs.(9) and(10).
0.004 Now we assume tha€ hasL large eigenvalge&f (k
0 0.050.10.150.20.250.30.350.4 “1,2,,1) and the otherN-L eigenvalues\C (k=L
eigenvalue +1,---,N). We set\{ (k=L+1,---,N) to be a same value
S&P \S. Since the trace of the cross correlation matrix eqdals
by definition, we have
035 I 1 I I 1 1 1 L E
| + - -
0.3 . . N=-2 N\ .
0.25 ~ + - s — N —7L . ( )
x 02F - _
o 0.15 F + _ We also assume no temporal correlations thudsetl/T.
0.1 | + _ ) From Eq.(27), the eigenvalueaZ(\) of G(\) are given
0.05 | Py . Y
Q b===b=cockboocboocpooc i G 1
0 0.050.10.150.20.250.30.350.4 RERN 1 - 0
A

eigenvalue -2 (TrEG+Tr CO)

FIG. 4. The upper two figures are IPRs for TSE and S&P. The .
lower two figures are IPRs for TSE and S&P at small eigenvaluesHere, Tt and Tk are the trace over the eigenspace spanned
The dotted lines are the prediction of RMT. by the eigenvectors foxf (k=1,---L), )\E (k=L+1,---N),
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respectively. Summation ové=L+1,---,N gives 1.4
N-L > 20N
TrG(\) = —— 1 . (3 z 4t N
—\¢ S { .
A=A T 08 | N
(T e =S | ™,
1 T(TrSCG +Tr CG) § 0.6 | \\
- e 0.4 \4\,,
For N large, p(\) should have finite supports aroung in * 02} | N
the real axis ofn. We denote supports for large and small 0 i . .
eigenvalued, andDg, respectively. We assume the case 0 0.5 1 1.5 2
— — eigenvalue
A<\ (k=1,...L) (32) s
s ' et 0.05
when D, and Dg do not have an overlap. In this cas}efj 06032
(k=1,---,L) is analytic inDg while A& (k=L+1,---,N) has Z 0,035 ]
a branch cut. Thus iDg, p(\) is determined by the imagi- § 0.03
nary part of TeG. For TrG, the contribution from)\f (k £ 0.025
=1,---,L) comes from the right-hand side of E&1). Since § 0.02
AS (k=1,---L) is analytic in the neighborhood &fs, Tr, G is e 060(1)?
bounded by a constant. Akéf is an algebraic function ofl 0605 fr
and the scaling behavior consistent with E2p) is O(1), the o AT S
constant can be taken to be independenNofThus, if for 0 5 10 156 20
k=1,---,L eigenvalue
L)\E < N)\S' (33) > 0.0004 T ’__\\ T
= L L, i
then § 00003+ /N ]
— © L / .
TreCG =A\STrsG > Tr, CG Z 0.0002 + | \ -
3 - \ 1
for N large because E6 gets large adl— . Then, Eq(31) § 0.0001 | ! ]
is approximated by o [ i ]
= I !
TrsG(N) = — . (34 115 120 125 130
A- ASCE— eigenvalue
s
1- T TrsG(N) FIG. 5. (Color onling The line is for the model with large

~ eigenvalues of the real correlation matrix while the dotted line is for
Equation(34) is equal to Eq.(28) when o®=\S andN is  Eq. (9) with o?2=)\S in Eq. (29). The small eigenvalue distribution
replaced byN-L. By putting the solution of Eq(34) to Eq.  (the upper graphis very close. The middle graphs are the large

(26), we get eigenvalue distribution. We take the large eigenvalues of the real
| correlation matrix as 121.6, 14.5, 11.4, 7.9, 4.7, and 4.0 which are
_N-L Q vVA\max= M\ = Apip) found for TSE. The eigenvalues are observed in the neighborhood
p(\) = = . (39 , hatie
N 2m\C A of these values. Also, the observed eigenvalues have a finite width
S

by the effect of randomness. The width of the observed eigenvalues
This formula is valid under Eqg32) and (33). Note that is wider for the larger eigenvalues.

there is a trade off betweeN,L,\g,\i(k=1,--,L) under  gjgenvalues correspond to the large eigenvalues of the real
Egs.(32) and(33). Thus, theN-L eigenvalue distribution of  correlation matrix while the small eigenvalue distribution is
this model can be approximated by the one for the Wisharvell reproduced by the one for the Wishart matrix. We also
matrix. examined other values of large eigenvalues and obtained
To conclude, the distribution of the small eigenvalues resimilar results. Moreover, the probability of observed eigen-
mains the same in thil— =, as long as the numbers of the values has a finite width by the effect of randomness. The
large eigenvalues of the deterministic correlat@are finite ~ width of an observed eigenvalue is wider for a larger eigen-
and they appear only outside Dk value.
To confirm the validity of the approximation, we per-
formed a Monte Carlo simulation with six large eigenvalues.
We choose the large eigenvalues to be 121.6, 14.5, 11.4, 7.9,
4.7, and 4.0 which are the observed large eigenvalues of the According to Plerowet al. [5], the deviation at small ei-
TSE. The result is shown in Fig. 5. We see that the largggenvalues arises from strong correlations among a small

VI. LEVEL REPULSION OF DETERMINISTIC
CORRELATIONS BY RANDOMNESS
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number of issues. This is illustrated well by the following 1 ¥ T T T T
model. We consider a model that issues have an equal 09 1
correlationc: 08 .
0.7 + 1- i
1 ¢ c x 06F°F ]
o ++
. = 05| +++ .
~ c 1 : +
c=1|. ) , (36) 04 4
: . C 0.3 F+ _
+
c - c 1 0.2 . R . .
0.1 1 1 1 1 L
0 1 2 3 4 5 6

whereC has an eigenvalue AN-1)c with no degeneracy

and an eigenvalue lc-with degeneracyN—-1. The eigen- eigenvalue

value 1-c becomes small it is close to 1, i.e., strong cor- 03 ' T ' ' '
relation. Its eigenvectors have nonzero components at the 025 .
correlated issues, resulting in a large IPR.

However, this reasoning of large IPR eigenvectors at 02 & T
small eigenvalues is not sufficient to explain two facts. First, £ o5} + A
eigenvectors with a large IPR appear obblowthe bulk of B + 7
the eigenvalue distribution of the Wishart matrix, concentrat- 0.1 I 1
ing at the lower edge. Since the correlatioshould be dis- 0.05 + 4
tributed in a wide range, eigenvectors with a large IPR 0 _f__ . . .

should also be distributed in a wide range. Thus, the absence 0 1 > 3 4 & 6
of small eigenvalues with a large IPR within the bulk is
puzzling. Second, each eigenvector with a large IPR is ob-
served at a smaller value than expected from the model FIG. 6. The upper graph is the IPR of the eigenvectors of the
above. As the largest nondiagonal element of the correlatiopeal correlation matrisC given by Eqs(37)<40). The lower graph
matrix of the TSES&P) is 0.74(0.83, Eq.(36) tells us that  is the IPR for the eigenvector @. In the simulation, we sel
the eigenvector with a large IPR and with the smallest eigen=493, T=1847,M=6, L=4, ¢,=0.8,¢,=0.6,¢c;=0.4, andc,=0.2.
value should be observed at 0.@518. Actually, the small-
est eigenvalue with a large IPR is observed at QQ.14) ~
which is smaller than the lower bound of the eigenvalue xi(®)x(7) = Cjj b, (39
distribution of the Wishart matrix. . . : .

These two facts motivate us to study the interplay be_and examine theil-step cross correlation matrix
tween deterministic correlations and randomness. We con-

eigenvalue

T
sider a model of random variables with a deterministic cor- 1 1

. . : . Cij = =M'M = =2 x(t)x(1). (40)
relation matrixC, and examine the IPRs of eigenvectors of T T2

the cross correlation matri€. As a simple model, we as-

-~ ) We setN=493 andT=1847 following our TSE data. We
sumeC to have a following form:

set the numbet of strongly correlated groups to be 4 and
~ the number of issuelsl participating each group to be 6. We
Ci1 0 = - 0 choose the correlations to ’=0.8, ¢c,=0.6, c3=0.4, and
0 C, : c,=0.2. We performed a Monte Carlo simulation of this
~ | . _ model. We present an IPR of the eigenvalues in Fig. 6. Fig-
C=1: B ' (37) ure 6 shows that eigenvalues with a large IPR distribute out-
: CL0 side the bounds of eigenvalue distribution from randomness
as in the real stock data. In this model, there should be 20
(counting degeneracigsmall eigenvalues with a large IPR
~ in the simple model above, but the observed ones with a
Here,C, (I=1,---,L) and1 are large IPR only amount to 10. This implies thathen small
eigenvalues arising from a strong correlation appear within
1 ¢ ¢ 10 -0 the bounds of the Wishart matrix, IPRs of their eigenvectors
~ ¢ 1 : 0 1 : get smaller and cannot be distinguished from the random
G=1. . 1=1. ol eigenvaluesThis is one effect of randomness on determinis-
) ' ) ! tic correlations. We also note that even for the eigenvectors
g g 1 0-- 01 which have a larger IPR than the RMT value, their IPRs are
(38)  smaller than expected.

_ Moreover,C has small eigenvalues 0.2 and 0.4 while the
The form of C assumed. groups of issues with strong cor- corresponding eigenvalues 6f distribute in the vicinity of
relations. We considdx random variables;(t) with 0.14 and 0.22, respectively. On the other hand, the eigenval-
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0.2 8 a4l i
[+ %
0.15 ok i
0.1 0 s AN 1 1 1 I I
++++ -0.2-0.15-0.1 -0.056 0 0.05 0.1 0.15 0.2
0.05 |- P S -
1++7 component of the eigenvector
0 1 1 1 L 1
. 1 2 0.25 0.3 0.35 0.4 L . .
01 015 0 G FIG. 8. The component distribution of the eigenvector for the
5 sixth largest eigenvalue 4.0 of TSE. The components distribute con-
' ' ' tinuously and it is hard to distinguish the components from
correlations.
45 - +
+
Al . & i for N=293 andT=1847 and obtain the relation between the
o i smaller(or largep eigenvalue and the corresponding eigen-
a5 + value ofC. The result is shown in Fig. 7. Figure 7 shows that
O + — ) ~
+ smaller (largen eigenvalues ofC are repelled by the bulk
5 1 T i distribution around 1 and are observed as sm4leger
eigenvalues ot.
- , , ; Thus, we found two interplays between deterministic cor-
T25 3 3.5 4 45 relations and randomness. Namely, when groups of issues
o} have strong correlations, it results in large and small eigen-

) ) values in the cross correlation matrix. Some of these eigen-

FIG. 7. The effect of level repulsion on the eigenvaluesCof  \51yes are soaked up within the RMT bounds and their IPRs
The horizontal axis is the smaflarge) eigenvalue ofC and the  pecomes as small as the RMT value. They cannot be distin-
vertical axis is the corresponding eigenvalue ©f The upper  guished from random eigenvalues. On the other hand, eigen-
(lower) graph is for the case where eigenvaluesCofire smaller  values from deterministic correlations outside the RMT
(largep than 1. The crosses are the result of a Monte Carlo simulabounds feel the repulsive potential generated by the bulk
tion based on Eqg39) and(40). The straight line corresponds to distribution of randomness. At the lower edge, they are
the absence of the effect of randomness, when the eigenval@s ofshifted to smaller values. We believe that these give the ex-
are identical to those df. The eigenvalues of are repelled from  planation for two deviations we raised in this section.
the bulk vicinity of 1.

VII. GROUPS OF ISSUES FORMED BY STRONG

ues of C corresponding to the large eigenvalues®fare CORRELATION
shifted to values larger than the original ones. Namitlg,
eigenvalues of C from the deterministic correlation are re-

pellfed frodmNtlhetdlsCtrll:iunqn Olf ihe rat?dorr? elgen\iﬁluwe tion matrix with a large IPR. Conversely, by examining the
periormed Monte _ar_o simuta |ons_ y ¢ angmg € param'eigenvectors with large IPR, we may identify groups formed
eters forC and got similar results. This may be interpreted asyy strong correlations.

a manifestation of the universal effect of randomness, called For the NYSE, Pleroet al. [5] examined the eigenvec-

“level repulsion”[13]. According to RMT, the eigenvalues of tors of large eigenvalues and distinguished strongly corre-
random matrices are repelled from each other by the logaated issues by a criteria to have a large component in these
rithmic potential in —If\;—X;| in Eq. (13). Even when some  gjgenvectors. They found that the groups are formed accord-
deterministic terms are present, this logarithmic potentiajng to the industrial sectors. However, we found a difficulty
causes a I’epulsion between eigenvalues. This universal eﬁqﬁt appiying their method to the TSE. Because eigenvectors
has been observed for various Systems such as levels of CORtyr |arge eigenvaiues have Significant Components not oniy
plicated nuclei. In the present case, deterministic correlationom correlations but also from randomness, even if an issue
between random variables are I’epe"ed from the bulk distrihas a |arge Component in an eigenvector of |arge eigenvaiue1
bution of the random eigenvalues. The eigenvalues in thg js difficult to tell whether it is from the effect of determin-
RMT bounds form a repulsive potential and it repels thejstic correlation or just from randomness. Especially for the
eigenvalues outside them. TSE, the effect of deterministic correlations is apparently not
We can deduce this level repulsion by solving the Dyson=strong enough to make the separation straightforward. As we
type equationg23)~26) numerically. We assume for sim- examined the eigenvectors of the large eigenvalues, we
plicity that the eigenvalues & are 1 except one eigenvalue found it impossible to separate the group of strongly corre-
smaller or larger than 1. We solve E¢&3)—«26) numerically  lated issues. For example, Fig. 8 shows the component dis-

We have seen that the existence of a group of issues with
strong correlation results in eigenvalues of the cross correla-
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TABLE |. TSE issues withZ; = ay,.

Eigenvector TSE code Company Name Sector
U, 6701 NEC Electric products
U, 6702 Fujitsu Electric products
U, 8035 Tokyo Electron Electric products
us 1888 Wakachiku Construction Construction
Us 8834 Douwa Real Estate Real estate
Ug 9501 Tokyo Electric Power Electric power
Uy 9503 Kansai Electric Power Electric power
Uy 9504 Chuugoku Electric Power Electric power
Ug 9506 Tohoku Electric Power Electric power
Uy 9509 Hokkaido Electric Power Electric power
Us 1888 Wakachiku Construction Construction
Us 8834 Douwa Real Estate Real estate
Us 1801 Taisei Corporation Construction
Us 1804 Satou Kogyo Construction
Us 1805 Tobishima Construction Construction
Us 1806 Fujita Corporation Construction
Us 1886 Aoki Corporation Construction
Us 8601 Daiwa Securities Finance
Us 8603 Nikko Cordial Group Finance
Ug 8834 Douwa Real Estate Real estate
Ug 9501 Tokyo Electric Power Electric power
Ug 9503 Kansai Electric Power Electric power
Ug 9504 Chuugoku Electric Power Electric power
Ug 9506 Tohoku Electric Power Electric power
Ug 9509 Hokkaido Electric Power Electric power
Ug 1804 Sato Corporation Construction
Ug 1805 Tobishima Construction Construction
Ug 1806 Fujita Construction
Ug 1886 Aoki Corporation Construction
u; 9504 Chuugoku Electric Power Electric power
u; 9506 Tohoku Electric Power Electric power
u; 5801 Furukawa Electric Nonferrous metal
u; 8004 Nichimen Wholesale
Ug 8335 Ashikaga Bank Bank
Ug 9766 Konami Service
Ug 8004 Nichimen Wholesale
Ug 8335 Ashikaga Bank Bank
Ug 8752 Sumitomo Mitisui Kaijyo Insurance

tribution of the eigenvector for the sixth largest eigenvaluestrong correlations with others should have the normal dis-
4.0 in the TSE. One sees that the components have a cotribution in eigenvectors. Namely, the deviation from the
tinuous distribution and it is hard to separate large componormal distribution indicates that the issue is correlated with
nents due to deterministic correlations. others. To quantify how an issue has a distribution different
Therefore, here we propose a supplementary method twom the normal distribution, we define a quantyas fol-
identify strongly correlated components. As we saw in Seclows:
VI, when a group of issues is formed by strong correlations, _
they not only have a large component in the eigenvectors of Zi= 2>
the corresponding large eigenvalue, but also have a large lic=din
component in the eigenvectors of the corresponding smailvhere &, is a threshold for an IPRZ; is the sum of the
eigenvalue. On the other hand, issues which do not havequare ofith component of the eigenvectors which have an

uz, (41)
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TABLE Il. S&P issues withZ; = ayy,.

Eigenvector Ticker Company Name Industries
U, AEP American Electric Power Electric power
u, DUK Duke Energy Corporation Electric power, natural gas
Us APC Anadarko Perroleum Corp. Oil,gas
Us BHI Baker Hughes Inc. Oil, related
Us XoM Exxon Mobil Corporation Qil, coal, copper
Us HAL Halliburton Company Qill, gas
Us RD Royal Dutch Petroleum Co. Qil, gas, chemical
Us SLB Schlumberger Ltd. Oil
U3 UCL Unocal Corporation Oil, gas
Uy GP Georgia-Pacific Group Paper manufacturer, pulp
Uy IP International Paper Co. Paper manufacturer
Uy MEA Mead Corporation Paper Manufacturer pulp, gum
Uy WYy Weyerhaeuser Company Paper Manufacturer, pulp, forestry, wooden goods
Us MRK Merck & Co., Inc. Medicine manufacturer
Us PFE Pfizer Inc. Medicine manufacturer
Us SGP Schering-Plough Corp. Medicine Manufacturer
Ug BK Bank of New York Co. Bank
Ug JPM J.P. Morgan Chase & Co. Finance
Ug PNC PNC Financial Services Finance
Ug STI SunTrust Banks, Inc. Bank
u; ABX Barrick Gold Corp. Gold mining, gold goods
u; HM Homestake Mining Co. Gold mining
u; NEM Newmont Mining Corp. Gold mining
u; PDG Placer Dome Inc. Gold mining
Ug SBC SBC Communications Inc. Telecommunication, cable television, internet
Ug \/4 Verizon Communications Telecommunication, internet
Ug MU Micron Technology, Inc. Semiconductor
Ug TXN Texas Instruments Semiconductor
Ug AMR AMR Corporation Aviation
Ug DAL Delta Air Lines, Inc. Aviation
Ug F Ford Motor Company Automobile
Ug GM General Motors Corp. Automobile
Uqo EIX Edison International Holding company of electric power
Uqo PCG PG&E Corporation Holding company of electric power
Uy AL Alcan Inc. Aluminium, aluminium can
U AA Alcoa, Inc. Aluminium

IPR = &, We sets,=0.0080.02 for the TSE(S&P), which  sponding group of the strong correlations wh&ees oy,

sort out 4128) eigenvectors. If théth issue has no true cor- ~ We applied this method to large eigenvalues observed in
relation with others, the componenig of the eigenvectors our market data. The results are shown in Tables | and II.
follow the normal distribution, and hence the probability of In the S&P, the electric power sector, and oil and gas
having a largeZ; should be small. Thus, th¢h issue may be related sectors play major parts in the correlations. In the
regarded as significantly correlatedzfis larger than a cer- TSE, the electric products sector and construction sector play
tain thresholday,. We choosex, so that the probability of major parts.

Z = ay, is 1% if the eigenvector components for fitle issue In the S&P, each eigenvector corresponds to an industrial
follow the normal distribution. For our datag;,=0.131 sector. This means that each industrial sector forms a
(0.162 for the TSE(S&P). If the ith issue has a large com- strongly correlated group. On the other hand, in the TSE,
ponent in an eigenvector, we consider it to be in the correthere are eigenvectors whose participants are from different
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industrial sectors, which may indicate a more complicatedound that they follow the universality of GOE. These are
correlation structure of the market. Thus it seems that theonsistent with Refs. 4—6 and imply that the large eigenval-
TSE and S&RNYSE) have some differences in the structure ues are due to the existence of correlations while the eigen-
of the correlations, while the “random” part is well describedvalues distributed in the bulk are due to randomness. We also
by the universal theory in the both markets. It would beexamined the IPRs of the eigenvectors of the correlation ma-
interesting to find the origin of the difference. This might betrices. In the bulk, the IPR distribution follows the prediction
useful to give some insights into the difference of the eco-of GOE, but there are deviations outside the RMT bounds.
nomic structures of the two countries. Plerouet al. [5,6] argued that deviations at the lower edge
As far as our data samples are concerned, we may corare due to strong correlations. We found that this reasoning is
clude that the method which we propose utilizing smallqualitatively valid, but quantitatively it cannot explain the
eigenvectors and their IPR effectively distinguishes stronglyfact that small eigenvalues with a large IPR concentrate at
correlated groups in the markets. the lower edge and the observed eigenvalues are smaller than
We noticed that Giadat al. investigated the grouping of the expected values.
S&P data in Ref. 14 based on a model considered by Noh To explain this phenomenon, we studied RMT with deter-
[15]. The method proposed in Refs. 14 and 15 has the adninistic correlations. We found that each eigenvalue from
vantage of directly giving the “noise-undressed” correlationdeterministic correlations is observed at values which are
matrix. However, the basic assumption of their method isrepelled from the bulk distribution. We interpreted this repul-
that each issue belongs to only one cluster of correlated ission as a reminiscent of the effect of randomness, known as
sues. This assumption is apparently not quite true accordinigvel repulsion. This effect is shown to be deduced by solv-
to our analysis. For example, “Tohoku Electric Power” ap-ing the Dyson-type equation numerically.
pears in three different groups in Table I. Therefore, we be- We also proposed a method to distinguish strongly corre-
lieve that more analysis based on conservative assumptiofasted groups of issues based on the IPR. It reduces the acci-
should be made before applying the estimated true correlalental appearance of uncorrelated issues. Applying this

tion to the portfolio management. method, we found that issues of the S&P are grouped accord-
ing to the industrial sectors. On the other hand, issues of the
VIIl. CONCLUSIONS TSE are grouped in more complicated ways, suggesting

. ) some differences in the structure of the markets.
We analyzed the eigenvalues and the eigenvectors of the

cross correlation matrices of the TSE and NY&&P500
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