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Exponential and power-law mass distributions in brittle fragmentation
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Generic arguments, a minimal numerical model, and fragmentation experiments with gypsum disk are used
to investigate the fragment-size distribution that results from dynamic brittle fragmentation. Fragmentation is
initiated by random nucleation of cracks due to material inhomogeneities, and its dynamics are pictured as a
process of propagating cracks that are unstable against side-branch formation. The initial cracks and side
branches both merge mutually to form fragments. The side branches have a finite penetration depth as a result
of inherent damping. Generic arguments imply that close to the minimum gbraiimpact energyrequired for
fragmentation, the number of fragments of sizecales as @P~D/Pf,(-(2/)\)Ps) +f (-5, (A +sP)P), where
D is the Euclidean dimension of the spageis the penetration depth, arfg and f, can be approximated by
exponential functions. Simulation results and experiments can both be described by this theoretical fragment-
size distribution. The typical largest fragment sggavas found to diverge at the minimum strain required for
fragmentation as it is inversely related to the density of initially formed cracks. Our results also indicate that
scaling ofs, close to this divergence depends on, e.g., loading conditions, and thus is not universal. At the same
time, the density of fragment surface vanished @ L being the linear dimension of the brittle solid. The
results obtained provide an explanation as to why the fragment-size distributions found in nature can have two
components, an exponential as well as a power-law component, with varying relative weights.
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I. INTRODUCTION approached from the fragmented state by decreasing the en-
ergy.
Fragmentation is a fundamental process in nature. An ex- During the last two decades, similar observations have
ample of microscopic fragmentation is nuclear fission, whileP&en made of the fragmentation of heavy nuclei. The first

soil particles, sand, boulders, and meteorites are fragmen&ower-law-like fragment-size distributions resulting from ex-

on scales that range from micrometers to meters, respeJi’—eriments on heavy nuclei were discovered in the early

tively. Asteroids and tectonic plates are still larger fragments-280'S[4.9]. It was suggested that the origin of these results

while supernovas serve as an example of a violent fragmerﬁhi:hp?éggftégr}r;ypnﬁe%a?iggg nbr(eéyailgggget;/\;ledeg mgﬂzfns,
tation process on an astronomical scale. 9 ' -

During the last few years, there has emerged evidence %ased. on statistical multifragmentation was later found to
. ; X " escribe the experimental mass distributions for a wide range

a continuougor weakly d|scont|nu01)s.tran3|t|on. between a f impact energie$s].
damaged. and a fragmented state in r?“me”.ca' mode!s & Within the mining engineering community, an empirical
brittle solids[1-3]. When elastic energy is fed into a solid, gcqie invariant fragment-size distribution has long been
this will be either fragmented or merely damaged depending i as the Gaudin-Schuhmann distributiérLd| (or the
mainly on the amount of energy provided. Here, fragmentagates-Gaudin-Schuhmann distribuioAccording to this
tion means that the mass fraction of the largest fragmengjstribution, the total mass of fragments with an effective
vanishes for large systems, while a damaged state means thghius smaller than, scales over a few orders of magnitude
the mass of the largest “fragment” is almost proportional toin the small-fragment limit as” with y~1 («=5/3 for D
LP, whereL is the linear dimension of the solid adits ~ =3).
Euclidean dimension. At the point of minimum energy There is thus a considerable amount of indications that
needed to fragment the solid, the distribution of fragmentiragment-size distributions can become scale invariant. How-
sizes may become scale invariants)ds<s . At this tran-  ever, there seems to be little or no consistency in the values
sition point, the average density of fracture surface shouldfound for the scaling exponents. For example, these expo-
for a large solid, vanish continuously as the damaged state isents seem to depend on whether the considered fragmenta-
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tion is a grinding type of proceg41] («=1.0—-2.0, a colli-

sion [2] (e=2.3), or an expansive explosiof8] (a=1.5).

The scaling exponent may also depend on the impact energy
[12] and on the shape of the fractured objgd]. In the case

of nuclear fragmentation, the exponent of the power-law de-
pends, e.g., on temperatytiet] and impact energ8]. In the
experimental Gaudin—Schuhmann distributions, the exponent
of the power law also varies even though it is always fairly
close to unity [15]. Furthermore, there are experimental
fragment-size distributions that do not have a scale invariant
contribution at all, and the distribution is described by an
exponential functiorj16]. A slow grinding type of fragmen-
tation processegike in the formation of soilstypically re-

sult in log—normal fragment-size distributions, but such pro-
cesses are not considered here.

It is quite obvious that fragmentation processes depend
strongly, e.g., on boundary effects and loading conditions.
Loading conditions in particular are important as there are at
least two basic fragmentation mechanisms in operation. One
is the early-stage cracking of the solid, and the other is the
breaking of already existing fragments in collisions with
other fragments. Furthermore, material properties like elas-
ticity, plasticity, and/or viscoelasticity, certainly affect frag-
mentation. Also, temperature fluctuations and quenched dis-
order versus stress concentration at the crack tips strongly
affect crack propagation, and thereby the outcome of frag-
mentation. In order to look for possible universal features
inherent to the fragmentation processes, it is thus important
to construct as minimal a model as possible for fragmenta-
tion. The purpose of this article is to present such a minimal
model, which leads to some analytical predictions, and then
to complement these predictions and to test the validity of
this model by numerical simulations and real experiments.

Il. ANALYTICAL MODEL

In our model, we consider the application of a scalar
strain field to an elastic material, which results in the devel-
opment of a stress field(x,t). When the maximum local
loading in a sample reaches the failure threshold of the ma-
terial, a crack will be nucleated. In a brittle material, this
nucleation leads to crack propagation unless the disorder in
the material is too strong so as to cause stress fluctuations to
dominate over stress concentration at the crack tip.

Cracks have an effective attractive interaction. This means
that a crack propagating alongside an already existing crack
will turn toward this crack, and eventually “die” by terminat- [, 1. Snapshots of simulation of fragmentation of brittle
ing (at an almost right angleat the free fracture surface left sheets. InA) 0=0.016,c=0.001, in(B) 0=0.026,c=0.001, and in
behind by it. Thus, propagating cracks will begin to form (c) +=0.016,c=1.0.L=240.
fragments. We consider here brittle materials in which mate-
rial strength/stiffness variations are uncorrelated. The cracks As the elastic energy loaded in the sample by the time
nucleated in this kind of material, after it has been homogenucleation of cracks begins is typically high in comparison
neously strained beyond the point where the first crack isvith the energy released in the formation of a fracture sur-
nucleated, will thus appear in uncorrelated positions. Thdace, the nucleated cracks will propagate very fast and be
fragment-size distribution resulting from mergings of theseunstable against branching or bifurcati@r crack-tip split-
cracks will be an exponential functiga7]. The typical frag- ting) [18]. All propagating cracks will thus emit side
ment size in such a Poisson process can be writtegyas branches, and adjacent side branches will attract each others
«p~1, wherep is the density of the nucleated cradk®m-  exactly as neighboring cracks do. Thus, neighboring side
pare the highly stretched sheet in FigA] to the slightly  branches around a propagating crack will eventually merge
less stretched sheet in Fig(BD]. so as to form small-size fragmerts®-21]. When the tip of

026104-2



EXPONENTIAL AND POWER-LAW MASS.. PHYSICAL REVIEW E 70, 026104(2004)

a side branch is merged with an adjacent free fracture sur-  1¢* 10°
face, it creates a “merging point” beyond which only one 10, A 10f B
branch( a “second-generation” branchppears to propagate. ,.\} 81 16,
Since adjacent “first-generation” branches have a well- %10‘1’ %1‘?1'""""--:\
defined average mutual distani@?] |,, we can estimate the 10, 10,
fragment-size distribution that results from this kind of merg- ]83 183
ing process by using a simplified model in which all adjacent 100 10' 4 10° 10° 10" 168 10°
side branches are separatedlpy 108 s

If n, branches at intervals, are formed around a propa- 10; c 1 D
gating crack, then in the first generation of mergings 10, ‘)?0-8
ny/ (2°71) fragments of typical siz& will be formed. Every g}g‘ rrareesssss o;g'g
other brancl{on the averagehas thereby disappeared so that 1@2 \ 0.2
the (averagg distance between the remainingecond- 184 0
generatiop branches is . These branches attract each oth- 10° 10" 1802 10° 0 04 08 T2

ers, and adjacent ones of them eventually merge to form

nb/(4D_l) fragments of typical S'ZG{ZIb)D* whereby again FIG. 2. n(s) for disorder type | with(A) ¢=0.018 and(B) o

half of the remaining branches are removed. If this process isg 025 The numerical distributions are fitted by E8). In (A)

continued, it can easily be shown to produce a fragment-sizg =32 5 and in(B) s,=460. The number of free parameters is re-

distribution duced by using\P=s,. The two terms of Eq(3) are also shown
~(2D-1)/D separately in(B). (C) is the same case as {A) but with a large

n(s)dse s - (D damping coefficient=1.0. In this cases,=430 and\=4.0. (D)

4 . ; )
Notice that the only assumptions needed for this result arShOWS)‘ /.SO as afunctt,'onft' Simulation data are compared to the
exponential functior\”/sy=exp(—c/constank

that the crack instabilities appear at intervals which can be
characterized by a typical length scal2?] (i.e., scale- _ ) )
invariant distributions are not allowgdand that the frag- S1. @nd decay rapidly fos>s,. The penetration depth is then
ments formed have an aspect ratio independent of size. THe™ (S)*®. For simplicity, we will assume in the following
derivation of Eq.(1) also involves the assumption that the thatf; is an exponential function.
fragmentation process is heterogeneous enough to produce aThe sizes of the Poisson-process fragments will be re-
continuous distribution. Equatiofl) has been reported be- duced by the creation of small-size fragments around each
fore [24,21,23, but as a result of quite different arguments. crack by the side-branch-merging process described above,
Equation (1) is equivalent to the empirical Gaudin— such that the total fragment-size distribution can finally be
Schuhmann(GS) distribution: Ng(r):f{) ron(r)dr, with r a_Lpproximated by a superposition of two distribution func-
«stP, givesNy(r)«r, which is the GS distribution. Equation tions,
(1) is also consistent with several numerical studies of frag- o -1, 1
mentation[1,19,21,25, and with the recent two-dimensional (S * (1 = Br)s “exp(- (2/M)°9)+p; expl- s5'(sD +M)°),
experimental results reported in Reff26,27. In Refs. 3

[13,24, experimental results are reported for both two- and 1/D . : : .
. . . + -
three-dimensional fragmentation. From these two sets of rev_vheres A is the reduced _Ilnear size O.f the P0|s§on
rocess fragments ang} determines the relative normaliza-

i . . . p
suIFs, the three Q|men§|onal ones are consistent W'.tr(:.sq' tion of the two parts of the distribution. To demonstrate the
while the two-dimensional ones are n@t=1.2). This in-

consistency may depend, e.g., on loading conditions as de fole of the two terms in Eq(3), they are shown separately in

onstrated in Ref[28]. In any case, it is clear that the sizerln:'g' AB) together with the full distribution. From Fig(®),

o . it is evident howg, must be chosen according to the relative
d|s§r|but|on of fragments obey EgD) in the small—fragment weight of small and large fragments. The locations of the two
regime for a large class of brittle fragmentation.

Mechanisms that also need to be taken into account in(_:utoffs,)\ ands, are also clearly seen in this figure. In Fig.

clude energy dissipation in the branching and bifurcatio 2(C), the separation of the distribution into two terms is evi-

. ) o Nent even without plotting the terms separately.
processes, and the elastic relaxation of the existing frag- For a homogeneous strain =1, fragmentation is sim-

frgfrt]ﬁse' ;giieb?;iiuiglzr\?vz Ief?gnt]otﬁe?rn'tsrgr?tngrt;t'on_depmy random cutting of a line. Branches cannot be formed and,
y P trivially, 8,=1 andA=0. Equation(3) becomes now a pure

pare Figs. QA) a_nd .:(C)] S0 that there will _be a cutoff n the exponential function as it should for a one-dimensional Pois-
power-law distribution Eq(l), expected still to be valid for
SON process. o
1

Sm?ggr?rggrigtnizsz distribution that results from merging For [.)>1’ there appear nontrivial cases. When»so' 4
side branches can thus be expressed in the general form the re3|dual(exponent|a)l part almost vanishes, and_ If-fur-
thermore the strain becomes so low that the density of the
n(s) o« 57, (/s;) 2) nucleated cracks begins to vanish(s) becomes a pure
power law. In the limiting case, the fragments are formed by
with «=(2D-1)/D as before. The “scaling functionf;  mergings of the branches of a single nucleated crack, with
should be independent sffor fragments much smaller than the small fragments near the main crack and larger fragments
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farther away. This is the transition point from a fragmentedintroduce random fluctuations in the system by geometrically
to a merely damaged sample. In a sample of $i2ethe  distorting the lattice sites as, e.g., in Rg3]. A distortion
number of fragments of any size should scald_8s’. The parameters, takes values between 0 and 1, where O corre-
size of the largest fragment should scald 8s The average sponds to zero distortion and 1 to maximum distortion. In
density of fracture surface should thus scaleLak if the  order to mimic disorder commonly present in brittle materi-
localized microcracks are excluded. als, we also use uniformly distributed uncorrelated variations

To test Eq(3), we use here a minimal numerical model in in the Young’s modulug& of the beamgE e [1-6,,1+65]),
D=2, and inD=3 the results of impact fragmentation of and introduce a small fractiof;) of prebroken bonds to
gypsum disks. The experimental results reported herenodel microcracks. We concentrate on two casés:s;
complement those of large-scale quarry blastings of granitie0.7, 5,=0.0, 5,=0.0, and(ll) §=0.3, 5,=0.1, §;=0.001.
gneiss, which have been reported elsewH2es. Some other types of disorder were also tested without any
significant changes in the results. We have not attempted a
systematic investigation of different types of disorder, how-
ever.

I1l. NUMERICAL MODEL

In order to test Eq(3) in D=2, we constructed a minimal
numerica_l mgdel of a brittle sqlid. To begin with,.some' kinq IV. NUMERICAL RESULTS
of discretization of the system is needed. For an investigation
of universal features in the fragmentation of brittle materials, Figure 1 shows samples of fragmented sheets for disorder
there is no need to specifically model any particular materialparameterss; =0.7, 6,=0.0, 53=0.002. The fracture thresh-
Therefore, we use here a standard model of a solid, whichld is 0=0.016 in Fig. 1A) and ¢=0.026 in Fig. 1B). In
describes it as a lattice of discrete mass points connected pth these cases=0.001. In Fig. {C) ¢=0.016 andc=1.0.
elastic and breakable beams. We use a square lattice thBbhe maximum strain i&,=0.01. The transition point from a
obviously suffers from anisotropy, but whose disorder is easfragmented to a damaged sheet appears=at0.03. The
ily controllable, contrary to those in isotropic grid structuressnapshots of Figs.(A) and IB) were taken before the frag-
such as, e.g., Voronoi lattices. A beam-lattice model fulfillsmentation process was completed. The crack nucleation
rotational invariance, which is important when modeling points and propagating cracks with splitting and branching
fragmentation. are clearly visible. Decrease in the density of nucleated
In a minimal model, there is no strain or strain-rate de-cracks wheno is increased to a value closer to that at the
pendence in the local stiffness constants, and fracture shouttansition point is also evident. Figur¢Q) shows the final
be instantaneous and irreversible in contrast with models thatonfiguration in a case when damping is considerably in-
allow gradual softening and healing. We use linear elasticreased. A reduction in crack branching is obvious.
beams that simply vanish once a fracture threshold is ex- Figure 2 shows fragment-size distributionis) for disor-
ceeded. The simplest possible threshold is a deformatioder type I, witho=0.018 in Fig. 2A) and =0.025 in Fig.
threshold independent of the deformation directi@e., a  2(B). In these two cases, the damping coefficient+103,
beam vanishes whe#l /| > o, wheredl is the magnitude of This value ofc means that crack branches propagate easily
the relative displacement difference between the end pointsnd\ becomes large. We have therefore fitted the numerical
of the beam, andr the fracture threshojd results by Eq(3) with 5,=\P. These fits are obviously ex-
We use periodic boundary conditions, and loading is percellent, especially when one takes into account thé the
formed by expanding the periodic box up to a maximumonly relevant fitting parameter. To further support the param-
strain e, [e(t) =€, Sirf(wt), for t<m/(2w), e(t)=¢,, other-  eter reduction\P/s, is plotted in Fig. 2D) as a function of
wise]. In the discrete Newton’s equations of motion for the damping coefficient c. Not very surprisingly, \P/s,
system it is easy to remove the inertial effects related to the=exp(—c/constant (the crack branches are formed in the
expansion of the periodic box. The inertia created in theelastic unloading around a crack, which behaves as a damped
elastic relaxation of the systeifmow a sheet inD=2) is  harmonic oscillator This justifies the assumption made
damped by a “viscous” damping for¢E;=—cX) in the equa- above thats,=\P for smallc.
tions of motion. Fragmentation is allowed only after the As mentioned aboves, is related to the density of the
maximum strain is reached. Thereafter, the fracture criteriomucleated cracks througiy=p1. At a low enough strain no
is checked for every beam at every time step in the simulabeams will break, and, diverges. As it is the only relevant
tion of the dynamics. parameter forc=0, s° can be considered as a correlation
The features of the minimal model described above ardength (i.e., the typical maximum distance between beams
rather intuitive. A nontrivial aspect of the problem is how to that belong to the same fragmgnFor systems of size
include the random uncorrelated variations in the propertiet>%’D, the scaling of this correlation length can be investi-
of the material. If a perfectly homogeneous lattice is strainedyated by fitting the numerical distributions by E§). Close
using a scalar tensile strain field, and the lattice has ndéo the transition point the correlation length becomes bigger
boundaries, then all bonds will reach the fracture threshold ahanL. Its scaling can then be investigated through the prob-
the same time and vanish instantaneously, which of course &bility I1(o,L) that a system of sizk is fragmented at frac-
not desirable. In a square, lattice cracks and branches witlre thresholdo. The probability distribution of the density
preferably propagate in the “soft” directions of the lattice. Inof broken bonds is bimodal near the transition point. This
order to avoid the first and to diminish the second effect, walistribution can be interpreted so that damaged systems are
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R y _ For comparison the ling"2P~Y/P s also shown(B) N,LA™P as a
FIG. 3. (A) II((g=op(L))L™™,L) for disorder type 1.(B) o, function of oy—o. In both (A) and (B), disorder type | was used

-0 as a function ofls, for L=120(a), and the standard deviation of hile (C) and(D) show the corresponding results for disorder type
II(o,L) as a function ofL (b). Disorder is of type 1(C) and (D) Il

show the corresponding results for disorder type II.

. ) number of broken bonds related to a fragment of diZe
those with a low density of broken bonds and fragmented,quid belP-2. If. in addition to the cracks. there is a sub-

systems are those with a high density. By defining shiftedsiantial amount of broken bonds that never develop into
probabilities I1(og,L)=I1(o—0y,(L),L) such thatII(0,L)  propagating cracks, the number of broken bonds should

=0.5, we can try data collapse in the forfi((¢  rather bexLP# with 0<B<1. In our casg3~1/3. These
—oy(L))LY7,L). This is done in Figs. @) and 3C) for dis-  results were obtained far=0.001 and they demonstrate that

order types | and II, respectively. Herg,(L) is the value of in this case t_he sheets are not far from being completely
o at which the transition from a damaged to a fragmentec?hattered during fragmentatiqcomplete shattering means
state takes place. =
Another way of estimating the correlation length is to fit
II(o,L) by a Gaussian curve. The standard deviation of the
Gaussian fit should scale bsY”. These results together with

the results foro,—o as a function ofvs, are displayed in For the experiments, 22 disks were each cast by pouring
Figs. 3B) and 3D). The main result of Fig. 3 is that the Jiquid gypsum into a mold and letting it dry for a sufficiently
correlation length seems to scale quite nicely, i.e., it appeangng time to be completely dry. The molded objects were as
to diverge as a power law at the transition point, and that th@jentical as possible: The diameters of the disks were
value of the correlation length exponent is about(#, 10.65+0.10 cm and their heights were 2.28+0.20 cm. In the
=4+£1.0. This value is different from that reported in Ref. data analysis, we have treated the disks as identical. The
[3], wherev=2/3 wasfound. It is thus evident that cannot  disks were droppe¢with zero initial velocity from a vary-
be universal for brittle fragmentation. It is mainly the loading ing height, and they impacted onto a metal plate placed on a
conditions that distinguish the present system from that irconcrete floor. In order to collect all the fragments resulting
Ref. [3], but also disorder should affeet at least to some from the impact, the disks were wrapped loosely into a thin
extent. cellophane membrane. Above the top surface of the disks,
In order to test the finite-size scaling of the resuft&s)  opposite to the impact surface, the remaining cellophane was
and the total number of broken bondg(o,L) were recorded formed into a tiny parachutéextending up to about 3 cm
for different system sizes near the transition point. As prefrom the surface of the digkThe purpose of this parachute
dicted above, the fragment-size distributions scalen@  was to make the disks fall with the flat side down and to
«LP~1 (Fig. 4). The scaling of the largest fragments follow evenly impact the floor.
nicely L? (this is actually rather trivial These two scaling After each impact, we investigated the impact zone to
laws together are enough to determine that the total surfaceerify that the disk had indeed fallen with its flat side parallel
of fragments scales a1, Now N,, which is a direct mea- to the floor. The disks were dropped from the heights
sure of the total fracture surface, can be expected to scak0.25,0.5,0.751,1.5,2,2.5,3,5,7, and 10 m. Faach
also asLP™L. It is evident from Fig. 4, however, that, height, two disks were used so that totally 22 experiments
=53, The reason for this discrepancy is that only a fractionwere done. After each impact, the masses of the fragments
of the broken bonds are parts of the cracks that form thavere carefully weighed. In the analysis of the data, only
fragments. If there were only fragment-forming cracks, themasses bigger than 0.1 mg were used, although the masses

V. EXPERIMENTS
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FIG.5. F t- distributi A, btained for dif- . .

ferent hei ghrtzﬁmlin( :;aiszolig rl:]'ozﬁz fuf(r:)tign ?&i_ 7grl'3 brittle fragmentation processes. The arguments used are ex-

%109 is shown as a line. |r(B)’ h=3.0 m and the line is act forD=1, and the proposed distribution reduces in a re-

130N(s,55,3% 10°9), in (C) h=7.0 m and the line is M(s, 19,5 alistic limit to the empirical GS distribution foD=3. Ini-
%1073, while in (D) h=10.0 m and the line is 250s,33,3.2 tally nucleated cracks propagate and develop branches,
X 1074). From (C), it appears that only one part of the disk has Which mutually merge so as to form an exponential and a

fragmented properly. The rest of it has probably been cleaved into §Cale invariant contribution, respectively, to the fragment-
few large fragments. size distribution. The effects of elastic relaxation and dissi-

pation were taken into account by introducing a penetration

of all fragments were measured in order to be fairly sure thage?lth for .thel 3ide br.arrllches. ¢ hed disord d
all fragments heavier than 0.1 mg were indeed included in umerical data with two types of quenched disorder, an
the analysis. experiments on gypsum disks, were found to agree with the

In theh=0.25 and 0.5 m drops the disks did not break putProposed distribution. The density of the initially nucleated

higher elevations gave disks impact energy enough for fra cracks was shown to decrease when the transition from a

mentation. Figure 5 displays the fragment-size distributiongragm.emed to a merely damageq state was approached by
for h=0.75,3.0,7.0, and 10.0 m. These distributions aréed.ucmg the Impact energy, Igadmg toa d|v¢r_geqce in the
compared with the integrated formi(s)= % n(s)ds, of Eq. typical fragment size. This typical fragment si@es linear

(3). There are fairly large variations in the data as the statis\-/ers'or) can t_)e considered as a correlation Iengt_h in the
roblem. Its divergence can thus be used to determine a cor-

tics is not very extensive, but comparison with the theoretical 0> _
distribution is nevertheless decent for about one third of thrglat'on length exponent. We found thaty=4+1.0 for our

experiments. For the rest of the drops, the concave shape f:.2 numerical data, wh|Iez:0._2510.05 for ourD.:3 ex
the distribution is not clearly visible, and power laws with perimental data. Both values differ from the earlier findings

exponents smaller than the theoretical value provide betteéfl;r v in systems with different loading conditions. We can

fits (in such cases the exponent depends on the impact ener us deduce that the scal_lng of the cor_relatlon I_ength appears
: be system dependent in fragmentation of brittle materials,
so that exponents closer to the theoretical one are found fg

largerh). In contrast with this, for the quarry blasting experi- Whggs'gaghésf:gsﬁ:;tgggz r;c;nsggwdgg:]\/:ésggt%ne in which
ments[29], the theoretical value gave a perfect fit. 9

each fragment goes through a repetitive breakup. If the

From Fig. 5, it is also evident that there are large UNCeT mount of breakups is an uncorrelated random variable, the
tainties in fitting the parametex,=\P, and therefore an in- P ’

L . : ; e result will be a log-normal fragment-size distribution. Power-
vestigation of its scaling behavior becomes difficult. In orderlaw fragment-size distributions can also be obtained in cas-
to estimater, we fitted the experimental data with E®) : e

) . ~ . cade fragmentation by defining the amount of breakups as a
and with functionN(s) = s exp(=s/sp), with B andsyas the  time variable and a probabilistic stopping criterion for the
adjus/table parameters. Figure 6 shows the values obtaingfleakup[30]. Such models are particularly interesting in re-
for s”° as a function ofih—vh,, with h;~0.6. The largest |ation to grinding type of fragmentation, but may also be
fragment of each experiment is also shown in Fig. 6. Thesgglevant to instant fragmentation. The fragmentation pro-
results gaver~0.25, which is a very small value. The un- cesses investigated here are such that the final fragment-size

certainty is however large as is evident from Fig. 6. distribution is formed essentially in a single breakup event.
The fragment-size distribution is in this case a power law, an
VI. SUMMARY AND DISCUSSION exponential function, or a combination of the two. The

model reported here provides a unified explanation to this

To summarize, we have given arguments in support of amualitative variation in the fragment-size distributions ob-
analytical expression for the fragmentation-size distributionserved in instant fragmentation.

in any dimensiorD, and shown that this distribution repro-  Pure power laws are seldom found in nature; in our

duces experimentally observed distributions for a class ofmodel, they appear only when the energy is right at the tran-
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sition point from a damaged to a fragmented state, is uniishes as the fragments resulting from the Poisson process
formly distributed over the sample, and the material is fragilebecome smaller. In materials that are not very fragile, we
enough for branches to propagate without stopping acrosalso expect that branches do not propagate very far, and the
the sample. Such cases may obviously appear quite unfréragment-size distribution should also in this case become an
guently. More commonly, power-law distributions with ex- exponential function, given that the loading conditions are
ponential large-size cutoffs are encountered. These fragmerguch that crack nucleations are more or less random events.
size distributions are related to fragmentation that takes plack this is not the case, and the material is not very fragile, we
away from the transition point. Still farther away from the would expect the fragment-size distribution to show little, if
transition point the power-law part of the distribution dimin- any, universality.
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