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Generic arguments, a minimal numerical model, and fragmentation experiments with gypsum disk are used
to investigate the fragment-size distribution that results from dynamic brittle fragmentation. Fragmentation is
initiated by random nucleation of cracks due to material inhomogeneities, and its dynamics are pictured as a
process of propagating cracks that are unstable against side-branch formation. The initial cracks and side
branches both merge mutually to form fragments. The side branches have a finite penetration depth as a result
of inherent damping. Generic arguments imply that close to the minimum strain(or impact energy) required for
fragmentation, the number of fragments of sizes scales ass−s2D−1d/Df1s−s2/ldDsd+ f2s−s0

−1sl+s1/DdDd, where
D is the Euclidean dimension of the space,l is the penetration depth, andf1 and f2 can be approximated by
exponential functions. Simulation results and experiments can both be described by this theoretical fragment-
size distribution. The typical largest fragment sizes0 was found to diverge at the minimum strain required for
fragmentation as it is inversely related to the density of initially formed cracks. Our results also indicate that
scaling ofs0 close to this divergence depends on, e.g., loading conditions, and thus is not universal. At the same
time, the density of fragment surface vanishes asL−1, L being the linear dimension of the brittle solid. The
results obtained provide an explanation as to why the fragment-size distributions found in nature can have two
components, an exponential as well as a power-law component, with varying relative weights.
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I. INTRODUCTION

Fragmentation is a fundamental process in nature. An ex-
ample of microscopic fragmentation is nuclear fission, while
soil particles, sand, boulders, and meteorites are fragments
on scales that range from micrometers to meters, respec-
tively. Asteroids and tectonic plates are still larger fragments,
while supernovas serve as an example of a violent fragmen-
tation process on an astronomical scale.

During the last few years, there has emerged evidence of
a continuous(or weakly discontinuous) transition between a
damaged and a fragmented state in numerical models of
brittle solids[1–3]. When elastic energy is fed into a solid,
this will be either fragmented or merely damaged depending
mainly on the amount of energy provided. Here, fragmenta-
tion means that the mass fraction of the largest fragment
vanishes for large systems, while a damaged state means that
the mass of the largest “fragment” is almost proportional to
LD, whereL is the linear dimension of the solid andD its
Euclidean dimension. At the point of minimum energy
needed to fragment the solid, the distribution of fragment
sizes may become scale invariant,nssdds~s−a. At this tran-
sition point, the average density of fracture surface should,
for a large solid, vanish continuously as the damaged state is

approached from the fragmented state by decreasing the en-
ergy.

During the last two decades, similar observations have
been made of the fragmentation of heavy nuclei. The first
power-law-like fragment-size distributions resulting from ex-
periments on heavy nuclei were discovered in the early
1980’s[4,5]. It was suggested that the origin of these results
is a percolation type of bond breaking between nucleons,
which leads to fragmentation[6,7] sa<2.35d, and a model
based on statistical multifragmentation was later found to
describe the experimental mass distributions for a wide range
of impact energies[8].

Within the mining engineering community, an empirical
scale-invariant fragment-size distribution has long been
known as the Gaudin–Schuhmann distribution[9,10] (or the
Gates–Gaudin–Schuhmann distribution). According to this
distribution, the total mass of fragments with an effective
radius smaller thanr, scales over a few orders of magnitude
in the small-fragment limit asrg with g<1 (a=5/3 for D
=3).

There is thus a considerable amount of indications that
fragment-size distributions can become scale invariant. How-
ever, there seems to be little or no consistency in the values
found for the scaling exponents. For example, these expo-
nents seem to depend on whether the considered fragmenta-
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tion is a grinding type of process[11] sa=1.0–2.0d, a colli-
sion [2] sa<2.3d, or an expansive explosion[3] sa=1.5d.
The scaling exponent may also depend on the impact energy
[12] and on the shape of the fractured object[13]. In the case
of nuclear fragmentation, the exponent of the power-law de-
pends, e.g., on temperature[14] and impact energy[8]. In the
experimental Gaudin–Schuhmann distributions, the exponent
of the power law also varies even though it is always fairly
close to unity [15]. Furthermore, there are experimental
fragment-size distributions that do not have a scale invariant
contribution at all, and the distribution is described by an
exponential function[16]. A slow grinding type of fragmen-
tation processes(like in the formation of soils) typically re-
sult in log–normal fragment-size distributions, but such pro-
cesses are not considered here.

It is quite obvious that fragmentation processes depend
strongly, e.g., on boundary effects and loading conditions.
Loading conditions in particular are important as there are at
least two basic fragmentation mechanisms in operation. One
is the early-stage cracking of the solid, and the other is the
breaking of already existing fragments in collisions with
other fragments. Furthermore, material properties like elas-
ticity, plasticity, and/or viscoelasticity, certainly affect frag-
mentation. Also, temperature fluctuations and quenched dis-
order versus stress concentration at the crack tips strongly
affect crack propagation, and thereby the outcome of frag-
mentation. In order to look for possible universal features
inherent to the fragmentation processes, it is thus important
to construct as minimal a model as possible for fragmenta-
tion. The purpose of this article is to present such a minimal
model, which leads to some analytical predictions, and then
to complement these predictions and to test the validity of
this model by numerical simulations and real experiments.

II. ANALYTICAL MODEL

In our model, we consider the application of a scalar
strain field to an elastic material, which results in the devel-
opment of a stress fieldtsx ,td. When the maximum local
loading in a sample reaches the failure threshold of the ma-
terial, a crack will be nucleated. In a brittle material, this
nucleation leads to crack propagation unless the disorder in
the material is too strong so as to cause stress fluctuations to
dominate over stress concentration at the crack tip.

Cracks have an effective attractive interaction. This means
that a crack propagating alongside an already existing crack
will turn toward this crack, and eventually “die” by terminat-
ing (at an almost right angle) at the free fracture surface left
behind by it. Thus, propagating cracks will begin to form
fragments. We consider here brittle materials in which mate-
rial strength/stiffness variations are uncorrelated. The cracks
nucleated in this kind of material, after it has been homoge-
neously strained beyond the point where the first crack is
nucleated, will thus appear in uncorrelated positions. The
fragment-size distribution resulting from mergings of these
cracks will be an exponential function[17]. The typical frag-
ment size in such a Poisson process can be written ass0
~r−1, wherer is the density of the nucleated cracks[com-
pare the highly stretched sheet in Fig. 1(A) to the slightly
less stretched sheet in Fig. 1(B)].

As the elastic energy loaded in the sample by the time
nucleation of cracks begins is typically high in comparison
with the energy released in the formation of a fracture sur-
face, the nucleated cracks will propagate very fast and be
unstable against branching or bifurcation(or crack-tip split-
ting) [18]. All propagating cracks will thus emit side
branches, and adjacent side branches will attract each others
exactly as neighboring cracks do. Thus, neighboring side
branches around a propagating crack will eventually merge
so as to form small-size fragments[19–21]. When the tip of

FIG. 1. Snapshots of simulation of fragmentation of brittle
sheets. In(A) s=0.016,c=0.001, in(B) s=0.026,c=0.001, and in
(C) s=0.016,c=1.0. L=240.
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a side branch is merged with an adjacent free fracture sur-
face, it creates a “merging point” beyond which only one
branch( a “second-generation” branch) appears to propagate.
Since adjacent “first-generation” branches have a well-
defined average mutual distance[22] lb, we can estimate the
fragment-size distribution that results from this kind of merg-
ing process by using a simplified model in which all adjacent
side branches are separated bylb.

If nb branches at intervalslb are formed around a propa-
gating crack, then in the first generation of mergings
nb/ s2D−1d fragments of typical sizelb

D will be formed. Every
other branch(on the average) has thereby disappeared so that
the (average) distance between the remaining(second-
generation) branches is 2lb. These branches attract each oth-
ers, and adjacent ones of them eventually merge to form
nb/ s4D−1d fragments of typical sizes2lbdD, whereby again
half of the remaining branches are removed. If this process is
continued, it can easily be shown to produce a fragment-size
distribution

nssdds~ s−s2D−1d/D. s1d

Notice that the only assumptions needed for this result are
that the crack instabilities appear at intervals which can be
characterized by a typical length scale[22] (i.e., scale-
invariant distributions are not allowed), and that the frag-
ments formed have an aspect ratio independent of size. The
derivation of Eq.(1) also involves the assumption that the
fragmentation process is heterogeneous enough to produce a
continuous distribution. Equation(1) has been reported be-
fore [24,21,23], but as a result of quite different arguments.

Equation (1) is equivalent to the empirical Gaudin–
Schuhmann(GS) distribution: Ngsrd=e0

r rDnsrddr, with r
~s1/D, givesNgsrd~ r, which is the GS distribution. Equation
(1) is also consistent with several numerical studies of frag-
mentation[1,19,21,25], and with the recent two-dimensional
experimental results reported in Refs.[26,27]. In Refs.
[13,24], experimental results are reported for both two- and
three-dimensional fragmentation. From these two sets of re-
sults, the three-dimensional ones are consistent with Eq.(1),
while the two-dimensional ones are notsa<1.2d. This in-
consistency may depend, e.g., on loading conditions as dem-
onstrated in Ref.[28]. In any case, it is clear that the size
distribution of fragments obey Eq.(1) in the small-fragment
regime for a large class of brittle fragmentation.

Mechanisms that also need to be taken into account in-
clude energy dissipation in the branching and bifurcation
processes, and the elastic relaxation of the existing frag-
ments. These mechanisms lead to a finite penetration depth
for the crack branches away from their parent cracks[com-
pare Figs. 1(A) and 1(C)] so that there will be a cutoff in the
power-law distribution Eq.(1), expected still to be valid for
small fragment sizes.

The fragment-size distribution that results from merging
side branches can thus be expressed in the general form

nssd ~ s−af1ss/s1d s2d

with a=s2D−1d /D as before. The “scaling function”f1

should be independent ofs for fragments much smaller than

s1, and decay rapidly fors.s1. The penetration depth is then
l,ss1d1/D. For simplicity, we will assume in the following
that f1 is an exponential function.

The sizes of the Poisson-process fragments will be re-
duced by the creation of small-size fragments around each
crack by the side-branch-merging process described above,
such that the total fragment-size distribution can finally be
approximated by a superposition of two distribution func-
tions,

nssd ~ s1 − brds−aexps− s2/ldDsd+br exps− s0
−1ss

1
D + ldDd,

s3d

where s1 / D +l is the reduced linear size of the Poisson-
process fragments andbr determines the relative normaliza-
tion of the two parts of the distribution. To demonstrate the
role of the two terms in Eq.(3), they are shown separately in
Fig. 2(B) together with the full distribution. From Fig. 2(B),
it is evident howbr must be chosen according to the relative
weight of small and large fragments. The locations of the two
cutoffs, l ands0, are also clearly seen in this figure. In Fig.
2(C), the separation of the distribution into two terms is evi-
dent even without plotting the terms separately.

For a homogeneous strain inD=1, fragmentation is sim-
ply random cutting of a line. Branches cannot be formed and,
trivially, br =1 andl=0. Equation.(3) becomes now a pure
exponential function as it should for a one-dimensional Pois-
son process.

For D.1, there appear nontrivial cases: Whenl→s0
1 / D ,

the residual(exponential) part almost vanishes, and if fur-
thermore the strain becomes so low that the density of the
nucleated cracks begins to vanish,nssd becomes a pure
power law. In the limiting case, the fragments are formed by
mergings of the branches of a single nucleated crack, with
the small fragments near the main crack and larger fragments

FIG. 2. nssd for disorder type I with(A) s=0.018 and(B) s
=0.025. The numerical distributions are fitted by Eq.(3). In (A)
s0=32.5 and in(B) s0=460. The number of free parameters is re-
duced by usinglD=s0. The two terms of Eq.(3) are also shown
separately in(B). (C) is the same case as in(A) but with a large
damping coefficientc=1.0. In this case,s0=430 andl=4.0. (D)
showslD /s0 as a function ofc. Simulation data are compared to the
exponential functionlD /s0=exps−c/constantd.
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farther away. This is the transition point from a fragmented
to a merely damaged sample. In a sample of sizeLD, the
number of fragments of any size should scale asLD−1. The
size of the largest fragment should scale asLD. The average
density of fracture surface should thus scale asL−1, if the
localized microcracks are excluded.

To test Eq.(3), we use here a minimal numerical model in
D=2, and in D=3 the results of impact fragmentation of
gypsum disks. The experimental results reported here
complement those of large-scale quarry blastings of granitic
gneiss, which have been reported elsewhere[29].

III. NUMERICAL MODEL

In order to test Eq.(3) in D=2, we constructed a minimal
numerical model of a brittle solid. To begin with, some kind
of discretization of the system is needed. For an investigation
of universal features in the fragmentation of brittle materials,
there is no need to specifically model any particular material.
Therefore, we use here a standard model of a solid, which
describes it as a lattice of discrete mass points connected by
elastic and breakable beams. We use a square lattice that
obviously suffers from anisotropy, but whose disorder is eas-
ily controllable, contrary to those in isotropic grid structures
such as, e.g., Voronoi lattices. A beam-lattice model fulfills
rotational invariance, which is important when modeling
fragmentation.

In a minimal model, there is no strain or strain-rate de-
pendence in the local stiffness constants, and fracture should
be instantaneous and irreversible in contrast with models that
allow gradual softening and healing. We use linear elastic
beams that simply vanish once a fracture threshold is ex-
ceeded. The simplest possible threshold is a deformation
threshold independent of the deformation direction(i.e., a
beam vanishes whendl / l .s, wheredl is the magnitude of
the relative displacement difference between the end points
of the beam, ands the fracture threshold).

We use periodic boundary conditions, and loading is per-
formed by expanding the periodic box up to a maximum
strain em [estd=em sin2svtd, for tøp / s2vd, estd=em, other-
wise]. In the discrete Newton’s equations of motion for the
system it is easy to remove the inertial effects related to the
expansion of the periodic box. The inertia created in the
elastic relaxation of the system(now a sheet inD=2) is
damped by a “viscous” damping forcesFd=−cẋd in the equa-
tions of motion. Fragmentation is allowed only after the
maximum strain is reached. Thereafter, the fracture criterion
is checked for every beam at every time step in the simula-
tion of the dynamics.

The features of the minimal model described above are
rather intuitive. A nontrivial aspect of the problem is how to
include the random uncorrelated variations in the properties
of the material. If a perfectly homogeneous lattice is strained
using a scalar tensile strain field, and the lattice has no
boundaries, then all bonds will reach the fracture threshold at
the same time and vanish instantaneously, which of course is
not desirable. In a square, lattice cracks and branches will
preferably propagate in the “soft” directions of the lattice. In
order to avoid the first and to diminish the second effect, we

introduce random fluctuations in the system by geometrically
distorting the lattice sites as, e.g., in Ref.[3]. A distortion
parameterd1 takes values between 0 and 1, where 0 corre-
sponds to zero distortion and 1 to maximum distortion. In
order to mimic disorder commonly present in brittle materi-
als, we also use uniformly distributed uncorrelated variations
in the Young’s modulusE of the beamssEP f1−d2,1+d2gd,
and introduce a small fractionsd3d of prebroken bonds to
model microcracks. We concentrate on two cases:(I) d1
=0.7, d2=0.0, d3=0.0, and(II ) d1=0.3, d2=0.1, d3=0.001.
Some other types of disorder were also tested without any
significant changes in the results. We have not attempted a
systematic investigation of different types of disorder, how-
ever.

IV. NUMERICAL RESULTS

Figure 1 shows samples of fragmented sheets for disorder
parametersd1=0.7, d2=0.0, d3=0.002. The fracture thresh-
old is s=0.016 in Fig. 1(A) and s=0.026 in Fig. 1(B). In
both these casesc=0.001. In Fig. 1(C) s=0.016 andc=1.0.
The maximum strain isem=0.01. The transition point from a
fragmented to a damaged sheet appears ats<0.03. The
snapshots of Figs. 1(A) and 1(B) were taken before the frag-
mentation process was completed. The crack nucleation
points and propagating cracks with splitting and branching
are clearly visible. Decrease in the density of nucleated
cracks whens is increased to a value closer to that at the
transition point is also evident. Figure 1(C) shows the final
configuration in a case when damping is considerably in-
creased. A reduction in crack branching is obvious.

Figure 2 shows fragment-size distributionsnssd for disor-
der type I, withs=0.018 in Fig. 2(A) ands=0.025 in Fig.
2(B). In these two cases, the damping coefficient isc=10−3.
This value ofc means that crack branches propagate easily
andl becomes large. We have therefore fitted the numerical
results by Eq.(3) with s0=lD. These fits are obviously ex-
cellent, especially when one takes into account thatl is the
only relevant fitting parameter. To further support the param-
eter reduction,lD /s0 is plotted in Fig. 2(D) as a function of
damping coefficient c. Not very surprisingly, lD /s0
=exps−c/constantd (the crack branches are formed in the
elastic unloading around a crack, which behaves as a damped
harmonic oscillator). This justifies the assumption made
above thats0=lD for small c.

As mentioned above,s0 is related to the density of the
nucleated cracks throughs0~r−1. At a low enough strain no
beams will break, ands0 diverges. As it is the only relevant
parameter forc<0, s0

1/D can be considered as a correlation
length (i.e., the typical maximum distance between beams
that belong to the same fragment). For systems of size
L.s0

1/D, the scaling of this correlation length can be investi-
gated by fitting the numerical distributions by Eq.(3). Close
to the transition point the correlation length becomes bigger
thanL. Its scaling can then be investigated through the prob-
ability Pss ,Ld that a system of sizeL is fragmented at frac-
ture thresholds. The probability distribution of the density
of broken bonds is bimodal near the transition point. This
distribution can be interpreted so that damaged systems are
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those with a low density of broken bonds and fragmented
systems are those with a high density. By defining shifted

probabilities P̂sss,Ld=Pss−sbsLd ,Ld such that P̂s0,Ld
=0.5, we can try data collapse in the formP̂sss
−sbsLddL1/n ,Ld. This is done in Figs. 3(A) and 3(C) for dis-
order types I and II, respectively. Here,sbsLd is the value of
s at which the transition from a damaged to a fragmented
state takes place.

Another way of estimating the correlation length is to fit
Pss ,Ld by a Gaussian curve. The standard deviation of the
Gaussian fit should scale asL−1/n. These results together with
the results forsb−s as a function ofÎs0 are displayed in
Figs. 3(B) and 3(D). The main result of Fig. 3 is that the
correlation length seems to scale quite nicely, i.e., it appears
to diverge as a power law at the transition point, and that the
value of the correlation length exponent is about 4,sn
=4±1.0d. This value is different from that reported in Ref.
[3], wheren=2/3 wasfound. It is thus evident thatn cannot
be universal for brittle fragmentation. It is mainly the loading
conditions that distinguish the present system from that in
Ref. [3], but also disorder should affectn, at least to some
extent.

In order to test the finite-size scaling of the results,nssd
and the total number of broken bondsNbss ,Ld were recorded
for different system sizes near the transition point. As pre-
dicted above, the fragment-size distributions scale asnssd
~LD−1 (Fig. 4). The scaling of the largest fragments follow
nicely L2 (this is actually rather trivial). These two scaling
laws together are enough to determine that the total surface
of fragments scales asLD−1. Now Nb, which is a direct mea-
sure of the total fracture surface, can be expected to scale
also asLD−1. It is evident from Fig. 4, however, thatNb
~L5/3. The reason for this discrepancy is that only a fraction
of the broken bonds are parts of the cracks that form the
fragments. If there were only fragment-forming cracks, the

number of broken bonds related to a fragment of sizeLD

would beLD−1. If, in addition to the cracks, there is a sub-
stantial amount of broken bonds that never develop into
propagating cracks, the number of broken bonds should
rather be~LD−b with 0,b,1. In our caseb<1/3. These
results were obtained forc=0.001 and they demonstrate that
in this case the sheets are not far from being completely
shattered during fragmentation(complete shattering means
b=0).

V. EXPERIMENTS

For the experiments, 22 disks were each cast by pouring
liquid gypsum into a mold and letting it dry for a sufficiently
long time to be completely dry. The molded objects were as
identical as possible: The diameters of the disks were
10.65±0.10 cm and their heights were 2.28±0.20 cm. In the
data analysis, we have treated the disks as identical. The
disks were dropped(with zero initial velocity) from a vary-
ing height, and they impacted onto a metal plate placed on a
concrete floor. In order to collect all the fragments resulting
from the impact, the disks were wrapped loosely into a thin
cellophane membrane. Above the top surface of the disks,
opposite to the impact surface, the remaining cellophane was
formed into a tiny parachute(extending up to about 3 cm
from the surface of the disk). The purpose of this parachute
was to make the disks fall with the flat side down and to
evenly impact the floor.

After each impact, we investigated the impact zone to
verify that the disk had indeed fallen with its flat side parallel
to the floor. The disks were dropped from the heightsh
=0.25,0.5,0.75,1,1.5,2,2.5,3,5,7, and 10 m. Foreach
height, two disks were used so that totally 22 experiments
were done. After each impact, the masses of the fragments
were carefully weighed. In the analysis of the data, only
masses bigger than 0.1 mg were used, although the masses

FIG. 3. (A) P̂sss−sbsLddL1/n ,Ld for disorder type I.(B) sb

−s as a function ofÎs0 for L=120(a), and the standard deviation of
Pss ,Ld as a function ofL (b). Disorder is of type I.(C) and (D)
show the corresponding results for disorder type II.

FIG. 4. (A) nssdL−1 as a function ofs for L=30,60,120,240.
For comparison the lines−s2D−1d/D is also shown.(B) NbL

b−D as a
function of sb−s. In both (A) and (B), disorder type I was used
while (C) and(D) show the corresponding results for disorder type
II.

EXPONENTIAL AND POWER-LAW MASS… PHYSICAL REVIEW E 70, 026104(2004)

026104-5



of all fragments were measured in order to be fairly sure that
all fragments heavier than 0.1 mg were indeed included in
the analysis.

In theh=0.25 and 0.5 m drops the disks did not break, but
higher elevations gave disks impact energy enough for frag-
mentation. Figure 5 displays the fragment-size distributions
for h=0.75,3.0,7.0, and 10.0 m. These distributions are
compared with the integrated form,Nssd=es

` nssdds, of Eq.
(3). There are fairly large variations in the data as the statis-
tics is not very extensive, but comparison with the theoretical
distribution is nevertheless decent for about one third of the
experiments. For the rest of the drops, the concave shape of
the distribution is not clearly visible, and power laws with
exponents smaller than the theoretical value provide better
fits (in such cases the exponent depends on the impact energy
so that exponents closer to the theoretical one are found for
largerh). In contrast with this, for the quarry blasting experi-
ments[29], the theoretical value gave a perfect fit.

From Fig. 5, it is also evident that there are large uncer-
tainties in fitting the parameters0=lD, and therefore an in-
vestigation of its scaling behavior becomes difficult. In order
to estimaten, we fitted the experimental data with Eq.(3)
and with functionNssd~s−b̂ exps−s/s0d, with b̂ ands0 as the
adjustable parameters. Figure 6 shows the values obtained
for s0

1/3 as a function ofÎh−Îhc, with hc<0.6. The largest
fragment of each experiment is also shown in Fig. 6. These
results gaven<0.25, which is a very small value. The un-
certainty is however large as is evident from Fig. 6.

VI. SUMMARY AND DISCUSSION

To summarize, we have given arguments in support of an
analytical expression for the fragmentation-size distribution
in any dimensionD, and shown that this distribution repro-
duces experimentally observed distributions for a class of

brittle fragmentation processes. The arguments used are ex-
act for D=1, and the proposed distribution reduces in a re-
alistic limit to the empirical GS distribution forD=3. Ini-
tially nucleated cracks propagate and develop branches,
which mutually merge so as to form an exponential and a
scale invariant contribution, respectively, to the fragment-
size distribution. The effects of elastic relaxation and dissi-
pation were taken into account by introducing a penetration
depth for the side branches.

Numerical data with two types of quenched disorder, and
experiments on gypsum disks, were found to agree with the
proposed distribution. The density of the initially nucleated
cracks was shown to decrease when the transition from a
fragmented to a merely damaged state was approached by
reducing the impact energy, leading to a divergence in the
typical fragment size. This typical fragment size(its linear
version) can be considered as a correlation length in the
problem. Its divergence can thus be used to determine a cor-
relation length exponentn. We found thatn=4±1.0 for our
D=2 numerical data, whilen=0.25±0.05 for ourD=3 ex-
perimental data. Both values differ from the earlier findings
for n in systems with different loading conditions. We can
thus deduce that the scaling of the correlation length appears
to be system dependent in fragmentation of brittle materials,
which in this respect does not show universality.

Cascade fragmentation can be defined as one in which
each fragment goes through a repetitive breakup. If the
amount of breakups is an uncorrelated random variable, the
result will be a log-normal fragment-size distribution. Power-
law fragment-size distributions can also be obtained in cas-
cade fragmentation by defining the amount of breakups as a
time variable and a probabilistic stopping criterion for the
breakup[30]. Such models are particularly interesting in re-
lation to grinding type of fragmentation, but may also be
relevant to instant fragmentation. The fragmentation pro-
cesses investigated here are such that the final fragment-size
distribution is formed essentially in a single breakup event.
The fragment-size distribution is in this case a power law, an
exponential function, or a combination of the two. The
model reported here provides a unified explanation to this
qualitative variation in the fragment-size distributions ob-
served in instant fragmentation.

Pure power laws are seldom found in nature; in our
model, they appear only when the energy is right at the tran-

FIG. 5. Fragment-mass distributionsNss,l ,brd obtained for dif-
ferent heightsh. In (A), h=0.75 m, and function 10Nss,75,1.3
310−4d is shown as a line. In(B), h=3.0 m and the line is
130Nss,55,3310−5d, in (C) h=7.0 m and the line is 75Nss,19,5
310−3d, while in (D) h=10.0 m and the line is 250Nss,33,3.2
310−4d. From (C), it appears that only one part of the disk has
fragmented properly. The rest of it has probably been cleaved into a
few large fragments.

FIG. 6. The linear cutoff fragment sizes0
1/3 as a function of

Îh−Îhc. The line is s0
1/3~ sÎh−Îhcd−0.25. The data are obtained

from the largest fragmentsspd, a fit by Eq. (3) s3d, and a fit by

Nssd~s−b̂ expss/s0d s+d.
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sition point from a damaged to a fragmented state, is uni-
formly distributed over the sample, and the material is fragile
enough for branches to propagate without stopping across
the sample. Such cases may obviously appear quite unfre-
quently. More commonly, power-law distributions with ex-
ponential large-size cutoffs are encountered. These fragment-
size distributions are related to fragmentation that takes place
away from the transition point. Still farther away from the
transition point the power-law part of the distribution dimin-

ishes as the fragments resulting from the Poisson process
become smaller. In materials that are not very fragile, we
also expect that branches do not propagate very far, and the
fragment-size distribution should also in this case become an
exponential function, given that the loading conditions are
such that crack nucleations are more or less random events.
If this is not the case, and the material is not very fragile, we
would expect the fragment-size distribution to show little, if
any, universality.
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