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We propose a model ofcoupled random walksfor stock-stock correlations. The walks in the model are
coupled via a mechanism that the displacement(price change) of each walk(stock) is activated by the price
gradients over some underlying network. We assume that the network has two underlying structures, describing
the correlations among the stocks of the whole market and among those within individual groups, respectively,
each with a coupling parameter controlling the degree of correlation. The model provides the interpretation of
the features displayed in the distribution of the eigenvalues for the correlation matrix of real market on the
level of time sequences. We verify that such modeling indeed gives good fitting for the market data of US
stocks.

DOI: 10.1103/PhysRevE.70.026101 PACS number(s): 89.65.Gh, 05.40.Fb

In recent decades, the analysis of many physical and so-
cial systems has been based on the idea that randomness in
the fluctuations is hallmarked by certain prototypes, such as
eigenvalue distribution of a random matrix, and any devia-
tion from the latter is a result of the presence of correlations.
Such an idea has been used to study the level statistics[1] of
locally activated states[2] for electrons in heavy atoms or in
solids, atomic vibrations in spatially disordered systems, dis-
tribution spectra of eigenvalues for the correlation matrices
of stocks[3,4], internet traffic[5], and atmospheric fluctua-
tions [6]. While recent advances[3–6] suggest a robust ap-
proach to reveal cross correlations from the data of time
sequences, a comprehensive address of the shared dynamics
behind these different systems, however, is still lacking. In
the present paper, we will address this problem by proposing
a stochastic dynamic model for stock-stock correlations
[3,4]. Our approach is useful for studying time evolution of
other interacting many-body systems subject to random
noises.

The nature of fluctuations in financial markets[3,4,7–11]
has been of interest to the traders as well as a variety of
professionals for more than a century. If such fluctuations
could be completely characterized by random walks, as first
proposed by Bachelier in 1900[9], making profit under con-
trolled risks through the transactions in the markets would
seem impractical. Correlations in such fluctuations have been
demonstrated in recent studies[3,4] of the distribution spec-
trum of eigenvalues of the cross correlation matrix for the
price changes of stocks in real markets. The matrix measures
the statistical overlap of the fluctuations[3,4,11,12] in the
price changes(the returns) between pairs of stocks. The
spectrum from market data[3,4] possesses a bulk of continu-
ously distributed eigenvalues, which is similar to the proto-
type predicted by the level statistics of the random matrix
theory (RMT) [1,4,13] and may be considered as mainly

contributed by the randomness. The effects of the correla-
tions [3,4,11] manifest in the eigenvectors of those eigenval-
ues isolated from the bulk, which include one large eigen-
valuelM, corresponding to the correlation among all stocks
(market mode) [4] and several much smaller ones scattered
in betweenlM and the bulk component. The patterns in the
eigenvectors of these latter eigenvalues were related to the
presence of groups of correlated stocks[4,11]. In addition,
the bulk component also shows some important deviations
from RMT predictions.

The spectrum of eigenvalues and the corresponding
eigenvectors are related to the cooperative behavior in the
fluctuations of the stock prices, which is not visible in the
local information of the individual correlation coefficients
composing that matrix[14]. Based on former information,
the connections between the deviated eigenvalues and the
presence of correlated groups of stocks have been clarified
[4] and rewarded with an ansatz[11] which was applied to
modeling the real market data[15]. In the model[11,15], the
return of each stock is linearly decomposed into two uncor-
related fluctuating parts. The interdependence of stocks
within a group is carried by the part which is synchronously
shared by all stocks within that group. This formulation re-
fines the conventional multifactor model[8] leading to
blocked structures in its correlation matrix[11], which repro-
duces those spectral features observed in market data[15]. It
assumes that each of the isolated eigenvalues from the bulk
is contributed by one block of submatrix, with its eigenvec-
tor containing only one activated group. This puts a limita-
tion on the model, not able to digest completely the informa-
tion carried by the eigenvectors for those deviated
eigenvalues in the market data, in which the shared activated
stocks are present very often among different eigenmodes.
Our paper presents a new formulation to include this fact, at
the same time, retaining the realization of grouping in its
simplest form. Our approach is a general formulation which
describes the cooperative activities in the financial fluctua-
tions beyond the statistics of matrices, on the level of time
sequences.*Electronic address: huck@phys.sinica.edu.tw
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We formulate a stochastic dynamic model, calledcoupled
random walks, for the stock-stock correlations based on the
assumption that the changes in the prices of the stocks are
due to the adjustment to eliminate the difference between the
expected price for each individual stock and that for a col-
lection of related stocks. The correlations are imposed as the
underlying network over which the price-balancing pro-
cesses are carried out. We assume two underlying structures
built on the network. One includes the stocks of the whole
market, over which the process underscores the presence of
the market mode[4]. The other one realizes the formation of
groups, which accounts for the presence of the other deviated
eigenvalues. The partitioning of groups and the strengths of
the correlations over each of the two structures are deter-
mined to reflect the degree and the extent of comovement for
the stocks, indicated by the location of the largest eigenvalue
lM and by the information contained in the eigenvectors cor-
responding to those deviated eigenvalues(see latter text).
The comparison between the spectra of our model to be in-
troduced below and the US stocks under such analysis is
presented in Fig. 1 which shows very good agreement.

I. STOCHASTIC DYNAMIC MODEL

Our model consists of a system ofN walks (correspond-
ing to N stocks), and letxistd, i =1,2, . . . ,N, denote the po-
sition (price) of the ith walk (stock) at timet. A random walk
without correlations can be written as

xist + 1d = xistd + jistd,

wherejistd is a random noise. We introduce correlations by
expressing the position at timet+1 by

xist + 1d = s1 − eM − egdf i„xistd… +
eM

N
o
j=1

N

f j„xjstd…

+
eg

ng
o
kPg

fk„xkstd…,

if i P g andg P G, seM + eg ø 1.0d, s1d

whereeM andeg are coupling constants(subscripts “M” and
“g” denote “market” and “groupg,” respectively) andG is a

FIG. 1. (Color) The simulated eigenvalue distributionrsld with egÞ0 (thick solid line) andeg=0 (dashed line) with N=345 stocks and
T=3250 steps, in comparison with the market data(open and filled circles, see text) and the prediction of the random matrix theory[13]
(dotted line). The inset shows large isolated eigenvalues, includinglM. The fit (thick solid line) in the figure is obtained witheM =0.794, 8
major groups, each occupied by more than 10 stocks, and 17 small groups. The number of stocksng in each group and the corresponding
couplingseg are listed in Table I. The simulated data are obtained by averaging over an ensemble of 106 matrices.
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class of nonoverlapping subsets of the system ofN stocks.
We choose the functionf i(xistd) as

f i„xistd… = xistd + jistd. s2d

The second term in Eq.(1) corresponds to a coupling to the
market mean field determined by all the walks(stocks). The
last term corresponds to the coupling to the mean field of the
group g to which the walki belongs and the summation is
over all ng members of the group; for the stock which does
not belong to any group, there is no such term. The type of
coupling proposed in Eq.(1) is commonly used in coupled
maps where the functionf i is usually a nonlinear map[16].
Though the model treats eachjistd as an uncorrelated noise,
while comparing with the actual market data it may be con-
sidered as an integrated effect of the random fluctuation be-
tween the two discrete timest and t+1. In our numerical
simulations,j’s are taken as temporally and mutually uncor-
related Gaussian random values with zero mean and variance
s2

kjistdj jst8dl = s2di jdtt8 si, j = 1, . . . ,Nd, s3d

where the averagingk¯l is over the statistical ensemble.
Equation(1) describes a concise model covering various

cases, from the totally random situationseM =eg=0.0d to the
case where all stocks are fully correlatedseM =1.0,eg=0.0d.
It can be written as an equation of continuity,

r st + 1d = xst + 1d − xstd = jstd + D„xstd + jstd… s4d

where r , x, and j are the column vectors containing the
displacements(the returns), the positions and the noises of
the N walks, respectively.D is a Laplace-type operator de-
scribing the flows due to the presence of gradients over an
underlying network. The displacements of the walks are,
therefore, governed by the mechanism over the underlying
network tending to eliminate the ever-changing unbalance
arisen from the incoming random pulses. In our mean-field
formulation, we assume

D = DM + DG, s5d

where the operatorsDM andDG, defined as theN3N matri-
ces with, respectively, matrix elements

sDMdi j =
eM

N
Hs1 − Nd if i = j

1 otherwise

and

sDGdi j =5
eg

ng
s1 − ngd if i = j P g andg P G

eg

ng
if i Þ j ; i, j P g andg P G

0 otherwise,

s6d

which couple to the collections of flows coming to theith
site, contributed by the whole system and by the individual
groups, respectively. The parameterseM and eg are then re-
alized as the kinetic coefficients controlling the magnitudes
of such flows.

The information of cross correlation is contained in the
matrix C of cross correlation coefficientsCij , which is de-
fined as the statistical overlap of the fluctuationsdr i =r i
−kr ilT between the two stocksi and j , that is,

Cij =
kdr idr jlT

sis j
, s7d

wheresi
2=ksdr id2lT. The averagek·lT is over a time series of

T events. Each eigenvector(eigenmode) of C describes one
possible way of activation for the stock fluctuations, with the
magnitude of the corresponding eigenvalue measuring its
contribution to the fluctuations[17].

II. MARKET MODE

WheneM =1 andeg=0, all the entries of the matrixC are
1. The matrix possesses one eigenvalue equal to the number
of stocks in the market and others are zero. As the correla-
tions decrease, the single large eigenvalue remains isolated
from the bulk of dispersed eigenvalues. This roughly ex-
plains the origin of the two major components found in the
spectrum from the market data, the bulk and the market
modelM. The fitting in Fig. 1 suggests the dominant role of
the market coupling(eM close to 1, see the following text).

In the following, we derive the explicit expressions for
matrix C and find analytically the dependence of the eigen-
valuelM on eM, for the case with no group couplings. In this
caseseg=0d, the returns in Eq.(4) can be written as[18],

r std = jst − 1d + DMs1 − eMdt−1−t0xst0d

+ DMo
s=t0

t−1

s1 − eMdt−1−sjssd. s8d

Here we assume the system, with all walks initially at the
same positionxis0d=0, has been statistically steady at timet0
so that the data can be collected starting fromt= t0+1, for the
evaluation of correlation matrixC. Denoting the N3T
matrices J;sjst0d ,jst0+1d , . . . ,jst0+T−1dd and R;fr st0
+1d ,r st0+2d , . . . ,r st0+Tdg for the sequences of noises and
returns, respectively; and introducing theT3T matrix P by

Pvw = Hs1 − eMdw−v if w ù v

0 otherwise,
s9d

Eq. (8) for t= t0+1,t0+2, . . . ,t0+T can be summarized as

R = J + DMsX0 + JdP, s10d

where X0 is the N3T matrix carrying the information of
initial conditions, with vectorxst0d in its first column and
zeros elsewhere. With properly chosens2 for the random
noises[Eq. (3)] to assure the unity variances in Eq.(7), the
correlation matrix can be written as

C <
1

T
RRT s11d

in the largeT limit (see Appendix). From Eqs.(10) and(11),
we can see that the cross correlation in our model is due to
the statistical overlap managed byboth the site-wise operator
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DM and the time-wise operatorP. The presence of such
combination between the structural and the temporary effects
is true for the general caseDGÞ0 [19]. As a result, the
stocks activated in the eigenmodes deviated from bulk are
not restricted to one group for each eigenmode(see the fol-
lowing text for the numerical results). This is in contrast to
the model proposed in Ref.[11].

Now, we consider the ensemble averagekRitRjtl, which
describes the cross correlation between the two walksi and j
at time t and the mean overT time steps of which gives the
ensemble averaged correlation coefficient[from Eq. (11)]

kCijl =
1

T
o

t=t0+1

t0+T

kRitRjtl. s12d

The quantity can be evaluated analytically by using Eq.(3).
For t@1, we have(see Appendix)

kRitRjtl = s2Fdi jh1 − aseMdj +
aseMd

N
G , s13d

where aseMd=eMs3−2eMd / s2−eMd changes monotonically
from 0 to 1 aseM increases from 0 to 1. Note that the cor-
relation between a pair of different walks isaseMd, diluted by
the size factor 1/N. From Eqs.(12) and (13), we obtain

kCijl = 5 aseMd
s1 − a„eMd…N + aseMd

if i Þ j

1 if i = j ,

s14d

for the mean of distribution for each entry over the ensemble
of matrices. We can see from Eqs.(13) and (14) that, in the
large size limit, the local correlations between a pair of dif-
ferent walks become diminishing. On the other hand, we
show in the following that the divergence due to collective
activities is present for the global quantitylM.

Consider the matrixC* ;kCl defined by Eq.(14). Its larg-
est eigenvaluelM

* is [20]

lM
* =

N

fh1 − aseMdjN + aseMdg
, s15d

which diverges ateM =1, asN→`. In the largeN limit, we
can write Eq.(15) as

lM
* < f1 − aseMdg−1 =

2 − eM

2s1 − eMd2 , s16d

which diverges in a power lawlM
* ~ s1−eMd−2, aseM→1. We

found that Eq.(15) describes also the market modelM for
the ensemble of matrices, foreM near 1. Figure 2 verifies in
simulation that the presence of such divergence forlM, in a
power law with exponent 2 aseM→1. The result is similar to
critical phenomena in that the divergent fluctuations emerge
for a system approaching to the(critical) state with full cor-
relations[20]. This critical state in our model is characterized
by a finite-size scaling relationshiplM

* sẽ ,Nd= ẽ−2LsẽN1/2d in
the critical region [21], where ẽ;1−ẽM and Lsxd
;x2/ s2x2+1d.

III. SPECTRA OF CROSS CORRELATION MATRIX

We now compare the results of our model with the spectra
of the actual market data[22]. Figure 1 shows the simulated
eigenvalue distribution for the cross correlation matrix for a
system of N=345 coupled walks(corresponding to 345
stocks) obtained by averaging overT=3250 steps. The figure
also shows the RMT prediction[23] and the results for 345
US stocks obtained with 3250 values of the 30 min returns in
the year 1996 for 250 days[24] and 6.5 trading hours each
day. In Fig. 1, the open circles are for one data set starting
from 9:30 a.m. while filled circles are ensemble average of
five data sets starting at different times from 9:30 to
10:00 a.m. We see from the figure that our model of coupled
random walks gives an excellent fit for the actual market
data [25] and accounts for the three important deviations
from the RMT predictions, namely, a very large eigenvalue
(market mode), several eigenvalues larger than RMT upper
limit but much less than the market mode, and significant
deviations of the bulk from RMT prediction.

The fitting of the market data to the model includes the
dividing of the stocks into groups and the estimation of the
coupling parameters. Without exploring the sophisticated al-
gorithms for partitioning[26] and fitting[15], we investigate
the feasibility of a procedure of grouping based on the inte-
grated information carried by the eigenmodes of the correla-
tion matrix and the fluctuation properties of the time se-
quences of each group. The grouping obtained in this
approach may not be necessary identical with the division by
the market sectors or by the maximum-likelihood fitting
[15,27]. After all, the grouping for the cooperative activities
signaled by eigenmodes(see following paragraph) are af-
fected by many dynamic factors, such as the trading behavior
of the stock owners, and may be different from those based
on static interpretations[14] of the correlation data.

The parameters of the model used for the fit in Fig. 1 are
determined as follows. The couplingeM is estimated by Eq.
(15) using the market modelM obtained from the correlation
matrix C and is amended with the determination of the rest
parameters. The number of groups and the number of stocks
ng in each groupg are determined by finding the comove-
ments of the stocks in the eigenvectors corresponding to the
K eigenvalues in between the bulk component and the mar-
ket mode. The procedure is as follows. The stocks are con-
sidered as in the same group in the mean-field scenario if
they are activated correspondingly in allK eigenvectors. We
define a base noise level corresponding to the fluctuations in
the components of the eigenvector of the market mode. In
the components of theK eigenvectors a component(stock) is
treated as active if it has a magnitude larger than this base
noise level otherwise its contribution is neglected. To deter-
mine whether two stocks are in the same group, we consider
two K-dimensional vectors composed of the corresponding
components in theK eigenmodes and take the absolute value
of the cosine of the angle between these two vectors. If this
absolute value is larger than some critical valueb then the
two stocks are coupled. After we get all the couples we clas-
sify them into groups. Two groups are merged if they have
one or more overlapping elements and the direction of the
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overlapped part is within the deviation of each group in all
the K directions. The critical valueb<0.835 is determined
such that the final number of major groups after merging isK
(or close toK). The couplingeg for each groupg can be

estimated by matching theeg-dependent properties between
the market and the model[28]. In Table I, we list the param-
etershngj and hegj for the groups obtained in fitting to our
model.

TABLE I. Fitted grouping parameters.

Group indexg A* B* C* D* E* F* G* H* I J K L M

ng 70 62 30 29 26 17 14 12 8 7 6 5 4

eg3103 104 139 111 44.6 9.25 46.9 13.1 98.7 61.4 135 95.2 41.3 0.06

Group indexg N O P Q R S T U V W X Y

ng 4 3 3 2 2 2 2 2 2 2 2 2

eg3103 0.11 123 7.09 2.14 78.6 0.91 17.7 11.4 94.4 1.60 1.76 62.0

FIG. 2. (Color) The plot of the ensemble averaged valuel̄M and the widthDlM of the distribution oflM in the ensemble corresponding
to the market modefor various values ofeMseg=0.0d for three different systems withN=s345,406,1000d walks, lengths T
=s3250,1309,6448d, and over ensembles ofs106,400,50d cross correlation matrices, respectively.[These are the sameN andT values as
the pools of stocks analyzed in this study(Fig. 1), Refs.[3] and [4], respectively.] The corresponding curves for the analytical expression,
Eq. (15), for finite N (thin broken, dotted, and dashed lines are forN=345, 406, and 1000, respectively) are plotted for comparison. The
series of curve approaches in increasingN to that of Eq.(16) (solid line), which is a power law with exponent 2 foreM <1. The inset shows
the same data in log-log plot.
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In Fig. 3, we plot the eigenvectors of a few typical modes
obtained for the model and for the 345 US stocks described
in Fig. 1. It shows the presence of several simultaneously
activated groups in each of the eigenmodes deviated from
bulk [eigenvectors corresponding tol1, l2, andl3 in Figs.
3(a) and 3(b)], for both the market data[Fig. 3(b)] and the

simulation [Fig. 3(a)]. Such situation, however, cannot be
directly interpreted in a model based on the blocked-
structured correlation matrixC [11,15,19]. In our model, the
groupings cause not only the deviation for the eigenvalues in
between market mode and the continuous bulk component,
but also modify the bulk leading to a shift and an extension
of the distribution at the lower edge(Fig. 1). The eigenvec-
tors corresponding to the eigenvalues at lower edge possess
very different patterns compared with those(discretely) dis-
tributed above the upper edge of the bulk. The differences
are easily demonstrated in our model.[Compare the eigen-
vectors corresponding tol5 andl3 in Fig. 3(a).] The stocks
in the latter modes are coherently activated in groups, while
only individual stocks are activated with large amplitudes in
the former modes[29]. Such differences can also be recog-
nized in the market data.[Compare those forl5 and l3 in
Fig. 3(b).]

It is worth to note that, in our model, the grouped activi-
ties are realized as the perturbing parts to the market activi-
ties, as a result of the large magnitude inlM as compared
with the other eigenvalues. The ingredient of cooperative
activities carried by the market mode(the eigenvector corre-
sponding tolM) has been excluded in determining the group-
ing parameters(see Table I). Such division can only be fea-
sible via the decomposing of the fluctuations into collective
modes. It is supported by the observation that, in market
mode[see Fig. 3(b)], the stocks prices of the whole market
change coherently in the same direction(sign). The grouping
obtained in our approach is quite different from that via a
clustering procedure based merely on the static information
of cross correlation[14]. In Fig. 4, we compare the grouping
obtained by our approach with the information of S&P 500
sectors, and with the minimum-spanning tree based on the
analysis of correlation coefficients[14]. It is apparent that the
structure of grouping for the lower level collective activities
obtained in our analysis is different from that based on static
information. In the latter case, the dominant market coopera-
tive activities are not separated.

IV. FINAL COMMENTS

To conclude, we have proposed a dynamical model of
coupled random walks for the evolution of stock prices,
which properly accounts for the important deviations from
the RMT predictions. The correlations are realized on the
level of time sequences rather than on the statistics of corre-
lation matrix, which deserves further investigation for wider
applications. In applying to market data, the coupling param-
eters suggest the usage of the similar concept of(the inverse
of) impedance which effectively describes systems of dense
fluid. To our knowledge, such kind of analysis has never
been carried out from the standpoint of the whole market[8].
The kinetic contents of these parameters and the implication
for the partitioning of the stocks and for the structure of
underlying network are the relevant issues to explore.
Though we have presented results only for the economic
data, we feel that our model and analysis will be useful in
other problems as well where significant deviations from the
RMT predictions are found[5,6].

FIG. 3. The components(scaled fluctuations of returns) for the
eigenvectors of a few typical eigenvalues corresponding to our
model(a) and to the market data(b) as described in Fig. 1. They are
the eigenvectors of(top down) the market modelM, the next three
largest eigenvaluessl1,l2,l3d and two typical modes with their
eigenvalues falling inside the bulksl4d and at the lower edge of the
bulk componentsl5d, respectively. The stocks are numbered so that
the stocks belonging to the same group are consecutively placed
and the groups are arranged in the plots, from left to right, accord-
ing to their sizes in the descending order. There are 27 stocks placed
at the end that do not belong to any group. The vertical lines indi-
cate the boundaries of the groups and the horizontal lines mark the
zero levels.
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APPENDIX: CORRELATION MATRIX

According to Eq.(7), the correlation matrix is

C = G−1/2sR − RVdsR − RVdTG−1/2, sA1d

where theN3N matrix G and theT3T matrix V are de-
fined by

Gi j = H„sR − RVdsR − RVdT
…ii if i = j

0 if i Þ j
andVi j =

1

T
for i, j = 1, . . . ,T, sA2d

FIG. 4. (Color) The 345 US stocks classified by our method and by the minimum spanning tree analysis on the correlation coefficients
in Ref. [14]. We label the stocks in the eight largest groups obtained by our method(see text and Table I) in different colors. The stocks are
also marked by different symbols according to their sectors in S&P 500 classification. In our approach, the grouping is realized as the
perturbing part of the cooperative activities in the fluctuations to the dominant market activities(see text). In the minimum spanning tree
analysis, there is no such division.
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respectively.
To find the distributions for the entries of the correlation

matrix C, we evaluate the ensemble averages ofRRT,
RVRT, andRVVRT. It is useful to evaluatekRisRjtl first.
We have[from Eq. (3)]

kRisRjtl = s2Fdi jdsts1 − eMd + di jAst + dst
eM

N
−

Ast

N
G ,

sA3dwhere

Ast =
eM

eM − 2
fs1 − eMds+t + s1 − eMdus−tu+1g. sA4d

From Eq. (A3), we obtain Eq.(13) in the stationary time
regime and, accordingly,

ksRRTdi jl = s2TFSdi j„1 − aseMd… +
aseMd

N
DG sA5d

and

ksRVRTdi jl = ksRVVRTdi jl

= s2Fdi js1 − eMd + di j
1

T o
t=t0+1

t0+T

o
s=t0+1

t0+T

Ast +
eM

N

−
1

T
o

t=t0+1

t0+T

o
s=t0+1

t0+T
Ast

N G
<

s2

N
+ oS1

T
D , sA6d

where we have used the equality

o
t=1

u

o
s=1

u

Ast = F s1 − eMd2u+2 − s1 − eMd2

eMseM − 2d G − us1 − eMd.

Comparing Eqs.(A5) and(A6), we conclude that, with prop-
erly chosens2 for the random noises[Eq. (3)] to assure the
unity variances in Eq.(7), Eq. (11) is a good approximation
in the largeT limit.
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2ẽ2N + s1 + ẽ − ẽ2d
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