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Stochastic dynamical model for stock-stock correlations
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We propose a model afoupled random walk$or stock-stock correlations. The walks in the model are
coupled via a mechanism that the displacenerice changgof each walk(stock is activated by the price
gradients over some underlying network. We assume that the network has two underlying structures, describing
the correlations among the stocks of the whole market and among those within individual groups, respectively,
each with a coupling parameter controlling the degree of correlation. The model provides the interpretation of
the features displayed in the distribution of the eigenvalues for the correlation matrix of real market on the
level of time sequences. We verify that such modeling indeed gives good fitting for the market data of US
stocks.
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In recent decades, the analysis of many physical and s@ontributed by the randomness. The effects of the correla-
cial systems has been based on the idea that randomnesstions [3,4,17 manifest in the eigenvectors of those eigenval-
the fluctuations is hallmarked by certain prototypes, such ases isolated from the bulk, which include one large eigen-
eigenvalue distribution of a random matrix, and any deviavalue\,,, corresponding to the correlation among all stocks
tion from the latter is a result of the presence of correlations(market modg[4] and several much smaller ones scattered
Such an idea has been used to study the level statjdfic§  in between\ and the bulk component. The patterns in the
locally activated statef?] for electrons in heavy atoms or in €igenvectors of these latter eigenvalues were related to the
solids, atomic vibrations in spatially disordered systems, disPresence of groups of correlated sto¢ksll]. In addition,
tribution spectra of eigenvalues for the correlation matriceghe bulk component also shows some important deviations
of stocks[3,4], internet traffic[5], and atmospheric fluctua- oM RMT predictions.

tions [6]. While recent advance$—6] suggest a robust ap- ___1he Spectrum of eigenvalues and the corresponding
rjlgenvectors are related to the cooperative behavior in the

proach to reveal cross correlations from the data of tim At f the stock pri hich i t visible in th
sequences, a comprehensive address of the shared dyna fb‘g uations of the stock prices, which 1S not visivie in the

; ) L ) ocal information of the individual correlation coefficients
behind these different systems, however, is still lacking. lncomposing that matri§14]. Based on former information,

the present' paper, we will address this problem by propqsin%e connections between the deviated eigenvalues and the
a stochastic dynamic model for stock-stock correlations, aqence of correlated groups of stocks have been clarified
[3.,4]. Our approach is useful for studying time evolution of 4] and rewarded with an ansaftzl] which was applied to
other interacting many-body systems subject to randonyogeling the real market dafas). In the mode[11,15, the
noises. o . return of each stock is linearly decomposed into two uncor-
The nature of fluctuations in financial mark¢84,7-11  related fluctuating parts. The interdependence of stocks

has been of interest to the traders as well as a variety Qfjthin a group is carried by the part which is synchronously
professionals for more than a century. If such fluctuationsshared by all stocks within that group. This formulation re-
could be completely characterized by random walks, as firsfines the conventional multifactor mod¢8] leading to
proposed by Bachelier in 1949], making profit under con-  plocked structures in its correlation matfikl], which repro-
trolled risks through the transactions in the markets wouldjyces those spectral features observed in market ti5galt
seem impractical. Correlations in such fluctuations have beegssumes that each of the isolated eigenvalues from the bulk
demonstrated in recent studig4] of the distribution spec- s contributed by one block of submatrix, with its eigenvec-
trum of eigenvalues of the cross correlation matrix for thetor Containing 0n|y one activated group. This puts a limita-
price changes of stocks in real markets. The matrix measur@gpn on the model, not able to digest completely the informa-
the statistical overlap of the fluctuatiof8,4,11,12 in the  tion carried by the eigenvectors for those deviated
price changegthe returng between pairs of stocks. The ejgenvalues in the market data, in which the shared activated
spectrum from market daf8,4] possesses a bulk of continu- stocks are present very often among different eigenmodes.
ously distributed eigenvalues, which is similar to the proto-Qur paper presents a new formulation to include this fact, at
type predicted by the level statistics of the random matrixhe same time, retaining the realization of grouping in its
theory (RMT) [1,4,13 and may be considered as mainly simplest form. Our approach is a general formulation which

describes the cooperative activities in the financial fluctua-

tions beyond the statistics of matrices, on the level of time
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FIG. 1. (Color) The simulated eigenvalue distributigfi\) with €, 0 (thick solid ling) and ;=0 (dashed lingwith N=345 stocks and
T=3250 steps, in comparison with the market datpen and filled circles, see t@xnd the prediction of the random matrix thegf3]
(dotted ling. The inset shows large isolated eigenvalues, includipgThe fit (thick solid ling in the figure is obtained witla,,=0.794, 8
major groups, each occupied by more than 10 stocks, and 17 small groups. The number afistodach group and the corresponding
couplingseg are listed in Table I. The simulated data are obtained by averaging over an ensemble of 106 matrices.

We formulate a stochastic dynamic model, calkbedipled I. STOCHASTIC DYNAMIC MODEL
random walksfor the stock-stock correlations based on the :
assumption that the changes in the prices of the stocks are Our model consists of a sy_stem Wifwalks (correspond-
due to the adjustment to eliminate the difference between th&Y to N stocks, and let(t), i=1,2, ... N, denote the po-
expected price for each individual stock and that for a colSttion (price) of t.he'th walk(stoc_k) atlimeCATandomiwalk
lection of related stocks. The correlations are imposed as thfithout correlations can be written as
underlying network over which the price-balancing pro- X (t+1) = x(t) + &(t)
cesses are carried out. We assume two underlying structures ! ' e
built on the network. One includes the stocks of the wholewhere 4 (t) is a random noise. We introduce correlations by
market, over which the process underscores the presence @kpressing the position at tinte 1 by
the market mod@4]. The other one realizes the formation of
groups, which accounts for the presence of the other deviated € N
eigenvalues. The partitioning of groups and the strengths of X(t+1)=(1-ey—€g)fi(x(V) + WE f;0(1))
the correlations over each of the two structures are deter- =1
mined to reflect the degree and the extent of comovement for

€
the stocks, indicated by the location of the largest eigenvalue + ng (1),
Av and by the information contained in the eigenvectors cor- gkeg
responding to those deviated eigenvalygsse latter tejt ifiegandge G, (enw+e=10, (1)

The comparison between the spectra of our model to be in-
troduced below and the US stocks under such analysis iwhereey, andey are coupling constan{subscripts M” and
presented in Fig. 1 which shows very good agreement.  “g” denote “market” and “group,” respectively andG is a
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class of nonoverlapping subsets of the systenNaftocks. The information of cross correlation is contained in the
We choose the functiofi(x;(t)) as matrix C of cross correlation coefficientS;;, which is de-
fined as the statistical overlap of the fluctuatiofis=r;
fiGi(0) =x(0) + &(). (20 —(r); between the two stocksandj, that is,
The second term in Eql) corresponds to a coupling to the (or,or)
market mean field determined by all the walk$ocks. The Cj= A T N (7)
last term corresponds to the coupling to the mean field of the 0i0j

group g to which the walki belongs and the summgtion is wherea?=((dr;)?r. The averagé-); is over a time series of
over allng members of the group; for the stock which doesg events. Each eigenvect@igenmodg of C describes one

not bl_elong to any dg.mlljzp’ _{here is no SLfCh ter(:n_. The tylpz Obossible way of activation for the stock fluctuations, with the
coupling proposed in | q .) IS commonly used in couple magnitude of the corresponding eigenvalue measuring its
maps where the functiof] is usually a nonlinear mafi6]. contribution to the fluctuationgL7]

Though the model treats eaé}it) as an uncorrelated noise,
while comparing with the actual market data it may be con-
sidered as an integrated effect of the random fluctuation be-
tv_veen Fhe two discrete timesandt+1. In our numerical Wheney=1 ande,=0, all the entries of the matrig are
simulations £'s are taken as temporally and mutually uncor- 1. The matrix possesses one eigenvalue equal to the number
related Gaussian random values with zero mean and varianeg stocks in the market and others are zero. As the correla-
o? tions decrease, the single large eigenvalue remains isolated
, - from the bulk of dispersed eigenvalues. This roughly ex-
@EOgE) =088 (j=1,... N), ) plains the origin of thpe two ma?or components foungd iﬁ the

where the averaging--) is over the statistical ensemble. ~ spectrum from the market data, the bulk and the market

Equation(1) describes a concise model covering various™odeAy. The fitting in Fig. 1 suggests the dominant role of
cases, from the totally random situatitey, = €,=0.0) to the the market couplinge), close to 1, see the following text

case where all stocks are fully correlatag,=1.0,e,=0.0). In the following, we derive the explicit expressions for
It can be written as an equation of continuity. B matrix C and find analytically the dependence of the eigen-

value\,, on g, for the case with no group couplings. In this
r(t+21) =x(t+1) —x(t) = &t) + AXx(t) + &) (4) case(e,=0), the returns in Eq4) can be written a$18],

Il. MARKET MODE

wherer, x, and ¢ are the column vectors containing the rt) = &t-1) + Ay (1 — gy ox(to)
displacementgthe returng the positions and the noises of 1

the N walks, respectivelyA is a Laplace-type operator de- _ \t-1-s

scribing the flows due to the presence of gradients over an +AM§0(1 €M) E(S). (8)

underlying network. The displacements of the walks are,
therefore, governed by the mechanism over the underlyinglere we assume the system, with all walks initially at the
network tending to eliminate the ever-changing unbalancéame positior;(0)=0, has been statistically steady at titge
arisen from the incoming random pulses. In our mean-fieldso that the data can be collected starting fterty+1, for the

formulation, we assume evaluation of correlation matrixC. Denoting the NXT
~ matrices 2 = (&(tg), &(to+1), ... ,&(tp+T—1)) and R=[r(t,
A=Ay +Ag, ) 41),r(tg+2),...r(t+T)] for the sequences of noises and
where the operatord, andAg, defined as th&lx N matri-  returns, respectively; and introducing the<T matrix I1 by
ces with, respectively, matrix elements . (1-e)"? fw=o ©
- eM{(l—N) if =] w10 otherwise,
mij =\ ;
N (1 otherwise Eq. (8) for t=ty+1,tg+2, ... to+ T can be summarized as
and R=E+Ay(Xo+ B, (10

r

where X, is the NXT matrix carrying the information of

S9(1-n) ifizjegandgeG
ng( o I<9 ge initial conditions, with vectorx(ty) in its first column and

= zeros elsewhere. With properly chosefi for the random
(AG)U i BT R (6) . . . .
if i #]j;i,jegandge G noises[Eq. (3)] to assure the unity variances in Hq), the
9 correlation matrix can be written as

\0 otherwise,

1
which couple to the collections of flows coming to thke C= ?RRT (11)
site, contributed by the whole system and by the individual
groups, respectively. The parameteys and €, are then re-  in the largeT limit (see Appendix From Egs(10) and(11),
alized as the kinetic coefficients controlling the magnitudesve can see that the cross correlation in our model is due to
of such flows. the statistical overlap managed bgththe site-wise operator
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Ay, and the time-wise operatdd. The presence of such

PHYSICAL REVIEW E 70, 026101(2004)

IIl. SPECTRA OF CROSS CORRELATION MATRIX

combination between the structural and the temporary effects

is true for the general cas&;#0 [19]. As a result, the

We now compare the results of our model with the spectra

stocks activated in the eigenmodes deviated from bulk aref the actual market dat@2]. Figure 1 shows the simulated

not restricted to one group for each eigenmgskee the fol-
lowing text for the numerical resultsThis is in contrast to
the model proposed in Refl1].

Now, we consider the ensemble averaggR;;), which
describes the cross correlation between the two wiadksl |

at timet and the mean overF time steps of which gives the

ensemble averaged correlation coefficigfimdim Eq. (11)]

t0+T

> (RiRp).

t=tgt1

(Cy) = T (12

The quantity can be evaluated analytically by using 9.
Fort>1, we have(see Appendix

aley)

(ReRip) = 0?| 8;{1 —a(ew)} + N |

(13

where a(ey) =eu(3—2ey)/(2—€y) changes monotonically
from 0 to 1 asey, increases from 0 to 1. Note that the cor-

relation between a pair of different walksadéey,), diluted by
the size factor IN. From Egs.(12) and(13), we obtain

a(ev)
(Cjy =1 (L -a(em))N +aley)
1 ifi=j,

if % j 14

eigenvalue distribution for the cross correlation matrix for a
system of N=345 coupled walks(corresponding to 345
stockg obtained by averaging ové@r=3250 steps. The figure
also shows the RMT predictiof23] and the results for 345
US stocks obtained with 3250 values of the 30 min returns in
the year 1996 for 250 day®4] and 6.5 trading hours each
day. In Fig. 1, the open circles are for one data set starting
from 9:30 a.m. while filled circles are ensemble average of
five data sets starting at different times from 9:30 to
10:00 a.m. We see from the figure that our model of coupled
random walks gives an excellent fit for the actual market
data[25] and accounts for the three important deviations
from the RMT predictions, namely, a very large eigenvalue
(market modg several eigenvalues larger than RMT upper
limit but much less than the market mode, and significant
deviations of the bulk from RMT prediction.

The fitting of the market data to the model includes the
dividing of the stocks into groups and the estimation of the
coupling parameters. Without exploring the sophisticated al-
gorithms for partitionind26] and fitting[15], we investigate
the feasibility of a procedure of grouping based on the inte-
grated information carried by the eigenmodes of the correla-
tion matrix and the fluctuation properties of the time se-
quences of each group. The grouping obtained in this
approach may not be necessary identical with the division by
the market sectors or by the maximume-likelihood fitting

for the mean of distribution for each entry over the ensemblg15,27. After all, the grouping for the cooperative activities

of matrices. We can see from Edq423) and(14) that, in the

signaled by eigenmodesee following paragraphare af-

large size limit, the local correlations between a pair of dif-fected by many dynamic factors, such as the trading behavior
ferent walks become diminishing. On the other hand, weof the stock owners, and may be different from those based
show in the following that the divergence due to collectiveon static interpretationgl4] of the correlation data.

activities is present for the global quantity.
Consider the matriC” =(C) defined by Eq(14). Its larg-
est eigenvalug,, is [20]

. N
M L —a(en)IN+ aley)]’

which diverges aty,=1, asN—oe. In the largeN limit, we
can write Eq.(15) as

(15

2 _EM
2(1-€ey)?’

which diverges in a power law, = (1-¢y) 72, asey — 1. We
found that Eq.(15) describes also the market mong for
the ensemble of matrices, fef, near 1. Figure 2 verifies in
simulation that the presence of such divergence\fprin a
power law with exponent 2 ag, — 1. The result is similar to

A =[1-a(e)] ™= (16)

The parameters of the model used for the fit in Fig. 1 are
determined as follows. The couplirg, is estimated by Eq.
(15) using the market modey obtained from the correlation
matrix C and is amended with the determination of the rest
parameters. The number of groups and the number of stocks
ng in each groupy are determined by finding the comove-
ments of the stocks in the eigenvectors corresponding to the
K eigenvalues in between the bulk component and the mar-
ket mode. The procedure is as follows. The stocks are con-
sidered as in the same group in the mean-field scenario if
they are activated correspondingly in Klleigenvectors. We
define a base noise level corresponding to the fluctuations in
the components of the eigenvector of the market mode. In
the components of thi€ eigenvectors a componegstock) is
treated as active if it has a magnitude larger than this base
noise level otherwise its contribution is neglected. To deter-
mine whether two stocks are in the same group, we consider
two K-dimensional vectors composed of the corresponding

critical phenomena in that the divergent fluctuations emergeomponents in th& eigenmodes and take the absolute value

for a system approaching to tlferitical) state with full cor-

of the cosine of the angle between these two vectors. If this

relations[20]. This critical state in our model is characterized apsolute value is larger than some critical vafi¢then the

by a finite-size scaling relationshig,(€,N) =€ 2A(eN*?) in
the critical region [21], where e=1-¢, and A(X)
=x2/(2x°+1).

two stocks are coupled. After we get all the couples we clas-
sify them into groups. Two groups are merged if they have
one or more overlapping elements and the direction of the
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FIG. 2. (Color) The plot of the ensemble averaged valygand the widthA\,, of the distribution ofny, in the ensemble corresponding
to the market modefor various values ofey(e,=0.00 for three different systems witiN=(345,406,100D0 walks, lengthsT
=(3250,1309, 6448 and over ensembles ¢106,400,50 cross correlation matrices, respectivdljhese are the sanié and T values as
the pools of stocks analyzed in this studyig. 1), Refs.[3] and[4], respectively. The corresponding curves for the analytical expression,
Eq. (15), for finite N (thin broken, dotted, and dashed lines areNer345, 406, and 1000, respectivelgre plotted for comparison. The

series of curve approaches in increaditp that of Eq.(16) (solid line), which is a power law with exponent 2 fef; = 1. The inset shows
the same data in log-log plot.

overlapped part is within the deviation of each group in allestimated by matching the-dependent properties between
the K directions. The critical valug~0.835 is determined the market and the modg}8]. In Table I, we list the param-

such that the final number of major groups after mergirig is eters{ng} and{ey} for the groups obtained in fitting to our
(or close toK). The couplinge, for each groupg can be  model.

TABLE |. Fitted grouping parameters.

Group indexg  A* B* C* D* E* F* G* H* | J K L M

Ng 70 62 30 29 26 17 14 12 8 7 6 5 4

€g X 10° 104 139 111 446 9.25 469 131 987 614 135 952 413 0.06
Group indexg N (@) P Q R S T U \% w X Y

Ng 4 3 3 2 2 2 2 2 2 2 2 2

€gX 10° 0.11 123 7.09 214 786 091 17.7 114 944 160 1.76 62.0
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o m°d:'_396 simulation [Fig. 3(@]. Such situation, however, cannot be
’ = directly interpreted in a model based on the blocked-
_0°2 T structured correlation matrig [11,15,19. In our model, the
+02 h,=4.84 . groupings cause not only the deviation for the eigenvalues in
0 e between market mode and the continuous bulk component,
c 792 N but also modify the bulk leading to a shift and an extension
._8 o T N g tiing of the distribution at the lower edg€&ig. 1). The eigenvec-
S oz (A AN tors corresponding to the eigenvalues at lower edge possess
o *02 A=3.34 very different patterns compared with thogkscretely dis-
S0 SR e tributed above the upper edge of the bulk. The differences
333 are easily demonstrated in our modglompare the eigen-
0 vectors corresponding to; and A3 in Fig. 3a).] The stocks
~0.2 in the latter modes are coherently activated in groups, while
+0.2 only individual stocks are activated with large amplitudes in
0 the former mode$29]. Such differences can also be recog-
—0.2 nized in the market datdCompare those foks and A3 in
0 86 173 259 345  Fig. 3b) ] , .
It is worth to note that, in our model, the grouped activi-
(a) stock ties are realized as the perturbing parts to the market activi-
ties, as a result of the large magnitudehiyj as compared
o2 I with the other eigenvalues. The ingredient of cooperative
o v ) activities carried by the market modine eigenvector corre-
—02 A IR s et B e wa il sponding to\,) has been excluded in determining the group-
02 A =4.83 M ing parametergsee Table)l Such division can only be fea-
. ° 7@1 R e ARt sible via the decomposing of the fluctuations into collective
< To2 =355 modes. It is supported by the observation that, in market
T o el 1’7,... " M~ M mode[see Fig. &)], the stocks prices of the whole market
S -0.2 / change coherently in the same direct{sign). The grouping
§ +02 L obtained in our approach is quite different from that via a
= 0 ¢ h T clustering procedure based merely on the static information
03 of cross correlatiofil4]. In Fig. 4, we compare the grouping
o WWW%W obtained by our approach with the information of S&P 500
-0.2 sectors, and with the minimum-spanning tree based on the
o2 analysis of correlation coefficienf4]. It is apparent that the
0 structure of grouping for the lower level collective activities
-0.2 obtained in our analysis is different from that based on static
173 259 345 information. In the latter case, the dominant market coopera-
tive activities are not separated.
(b) stock

FIG. 3. The componentscaled fluctuations of returpor the IV. FINAL COMMENTS

eigenvectors of a few typical eigenvalues corresponding to our Tg conclude, we have proposed a dynamical model of
model(a) and to the market dat) as described in Fig. 1. They are coupled random walks for the evolution of stock prices,
the eigenvectors aftop down) the market moday, the next three  yyhich properly accounts for the important deviations from
largest eigenvalueé\;, Az, \3) and two typical modes with their e RMT predictions. The correlations are realized on the
eigenvalues falling inside the bulk,) and at the lower edge of the o\ 0| of time sequences rather than on the statistics of corre-
?huelksigﬂzogzms?h retsop?ﬁg":;yr'nzhergho‘:':r:rsorr';g‘fueﬁr\?:l S0 Itr:?e tion matrix, which deserves further investigation for wider
and the groups ange grranged in the g|Jolotspj from left to right, écpcord- pplications. In applying to market data, the coupling param-

ing to their sizes in the descending order. There are 27 stocks placee ers suggest the usage of the similar conceyihef inverse

at the end that do not belong to any group. The vertical lines indi 2 ) impedance which effectively describes systems of dense

cate the boundaries of the groups and the horizontal lines mark thle.-Uid' To pur knowledge, such ki_nd of analysis has never
zero levels. been carried out from the standpoint of the whole maf&gt

The kinetic contents of these parameters and the implication
In Fig. 3, we plot the eigenvectors of a few typical modesfor the partitioning of the stocks and for the structure of
obtained for the model and for the 345 US stocks describednderlying network are the relevant issues to explore.
in Fig. 1. It shows the presence of several simultaneouslyfhough we have presented results only for the economic
activated groups in each of the eigenmodes deviated frordata, we feel that our model and analysis will be useful in
bulk [eigenvectors corresponding kg, \,, and A5 in Figs.  other problems as well where significant deviations from the
3(a) and 3b)], for both the market datfFig. 3b)] and the RMT predictions are founds,].
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[S&P500 sector : code and name] [model]
& 10 Energy & 40 Financials e group A
o 15 Materials o 45 Information Technology e group B
m 20 Industrials o 50 Telecommunication Service o group C
& 25 Consumer Discretionaryg, 55 Utilities group D
& 30 Consumer Staples ¢ : e group E
¢ 35 Health Care \ e group F
e group G
e group H

o others

L S
8-

i
L

Tt . i ®

¢

FIG. 4. (Color) The 345 US stocks classified by our method and by the minimum spanning tree analysis on the correlation coefficients
in Ref. [14]. We label the stocks in the eight largest groups obtained by our méskedext and Table in different colors. The stocks are
also marked by different symbols according to their sectors in S&P 500 classification. In our approach, the grouping is realized as the
perturbing part of the cooperative activities in the fluctuations to the dominant market aciiségsext. In the minimum spanning tree
analysis, there is no such division.
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respectively.

To find the distributions for the entries of the correlation
matrix C, we evaluate the ensemble averagesRR',
RQRT, andRQQR. It is useful to evaluatéRR;,) first.
We have[from Eq. (3)]

(RisRjp) = o 801 — ey) + 5;Aq+ 5st€WM - Aﬁt ,
where (A3)
A= €M [(1- 6M)5+t +(1- EM)|s—t\+l]. (A4)

€M_2

From Eq.(A3), we obtain Eq.(13) in the stationary time
regime and, accordingly,
a(eM))]
A
N (A5)

(RRT);) = 02T[<5|j(1 —a(ey)) +

PHYSICAL REVIEW E 70, 026101(2004)

(RORT);) =((RQORT);)

1 tgtT  torT .
=o?| 8j(1-ew) + &= > D A+
Tt:t0+l sto+l N
1 T to+T A_st
-2 X
Tt:to‘*l S:t0+1 N
a? 1
~-*ol ], (A6)
N T

where we have used the equality

u-u _ 2u+2 _ (1 _ 2
EEASF[” w -1 EM)]—u(l—ew.

t=1 s=1 em(ew —2)

Comparing Eqs(A5) and(A6), we conclude that, with prop-
erly chosens? for the random noisefEq. (3)] to assure the

unity variances in Eq(7), Eq. (11) is a good approximation

and

in the largeT limit.
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products of the site-dependent and time-dependent parts,
ari() =3 2uyi)v 1), whereugi) is theith component of the
eigenvector corresponding to the eigenvalye

The concise algebraic properties afy and Ag, AyApm
=(~em)Ay andAyAg=AcAy=(-ew)Ag, allow for the ana-
lytic evaluation of various quantities in the approximation to
the first order of thesy's for e;<ey.

The formulation Eq(10) is valid for the general castg+# 0
(with Ay, andII replaced, respectively, b&k=Ay+Ag and a
new IIg which possesses grouping dependentssing the
same notations, the returns in the model of REf] are driven

by E adding a set of noiseéSg which has itsN rows divided
into groupsR=E+E. For each column oE, the entries of
the rows of the same group are the sarfg, provides the
statistical overlap in Eq.11), leading to the blocked structure
in the correlation matrix which accounts for the presence of
those deviated eigenvalues from the bulk of the distribution.

[20] We are looking for the maximum df' C*'f over any column

vectorf with unity norm

Ay = maxfTC’f}
Tf=1

since the maximum occurs for the column vedtequal to the

eigenvector corresponding to the largest eigenvalue. For ma-
trix C”, f happens to have all its components in the same value,
which reflects the general feature of the cooperative activities
of the market mode. The above equation is also valid between
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any C and its largest eigenvalugy. If we consider the time [24] We survey the time sequences of trading prices from the

sequences of the column vectors of the fluctuations of returns
or (t) which generate the correlation mati@ we can write

Trades and Quote§AQ) database for one pool &f=345 US
stocks selected from S&P 500, which have complete records

over the four years 1996-1999.

.
Ay =M EE [FTor (. [25] We also use our model to fit the spectral data of R&fwith
t=1

=1

\v describes then the maximum possible mean square fluctua-
tion over time, and the components of the vedtgiving that

N=1000 andT=6448 (not shown and find good agreement.
For this fit the groups were not chosen from eigenvector analy-
sis.

. . . . [26] D. Korenblum and D. Shalloway, Phys. Rev. &7, 056704
maximum describe the corresponding portfolio. 200 d ref therei
[21] Using’e=1-¢y, Eq. (15 can be written as (2003, an re erenges erein.
[27] M. Marsili, Quant. Finance2, 297 (2002.
. _1+%€ €N [28] We can express the deviatic(miz) of the return for walki

M2 N (1)

We are interested in the region thais small andN is large. It
is apparent that the equation can be reduced as an equality for

two new quantities;, =¢2\}, andx="eN"2,

V= gerltroleg)
M e+ ‘)

for 1/N<e<1.

[22] For market data, we analyze the correlation matrix of the log
returns, that is, the changes of log price (Ry(t+1))
—In(P;(t)) for all stocki’s. The log return can be approximated [29]
by the price returnSP;/P; normalized by the price, which jus-
tifies the use of the stochastically identical walks in our model.

[23] According to the random matrix theof{t3], the spectrum of
the eigenvalues for totally random cagg;=0 ande;=0) is
given by p(\) =Q/ 27N\ (Nmax— N (A —Nmin) With Q=T/N and
)\maxymm=1+1/Q12\fm. For Fig. 1, we hav&)=9.420 and
Nmaxmin=1.7578...,0.4545. . .
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analytically as a linear function of the deviatio@ﬁ) of all the
noisesg’s k=1, ... N, with the coefficients containing the pa-
rametersey, Ng's, andey's. The couplingssy andey's can be
estimated by filling(r?)’s and(&?)’s with the market data(In
practice, it is necessary to carry out certain coarse graining for
this mean-field model by neglecting certain stock-by-stock dif-
ferences in the real market dat&he estimation is then further
finely adjusted to match the spectra. In the procedure, there is
always some compromise between reproducing the grouped
activities in the eigenvectors and matching the distribution
spectra.

Normally, the inverse participation rati@,5] is used to esti-
mate the fraction of components which significantly contribute
to that eigenvector. However, it cannot tell us about the ele-
ments(walks) which are common to different groups, an in-
formation crucial to determine the different groups in our case.
Hence, we use a different procedure to determine the groups as
described in the text.



