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We describe a simple nearest-neighbor Ising model that is capable of supporting a gas, liquid, and crystal, in
characteristic relationship to each other. As the parameters of the model are varied, one obtains characteristic
patterns of phase behavior reminiscent of continuum systems where the range of the interaction is varied. The
model also possesses dynamical arrest, and although we have not studied it in detail, these “transitions” appear
to have a reasonable relationship to the phases and their transitions.
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In many systems, one can observe a rich interplay be-
tween phase separation, critical phenomena, slowed dynam-
ics, and solidification, the latter manifesting itself as both
crystallization and glassification. These questions have a
long and venerable past, but in modern condensed-matter
theory the range of systems where the issues have become
relevant[1–3] is remarkable. Recent interest in model sys-
tems extends from colloidal glasses[4], particle gels[3,5],
polymeric gels[6], globular protein crystallization[7,8], and
gellation. For example, it has recently transpired that even
the simplest system with repulsive core and short-ranged at-
traction exhibits a large range of phase transitions, dynamical
arrest(possibly with new dynamical logarithmic singularity
[5,9]), and kinetic phenomena[10], the pertinent control pa-
rameter being the range of the attraction. So far it has not
been possible to understand the inter-relation of all these
effects. Such issues also lie at the heart of many important
modern problems of materials science, including the forma-
tion of arrays of particles on optical wavelengths and
knowledge-based materials design[11,12].

To fully explore these questions, we would need to de-
scribe an extended range of density, across a number of dif-
ferent phase boundaries, dealing naturally with criticality
[13], metastability, and arrest phenomena[14], all in a coher-
ent fashion, with tools that were applicable and reliable
across these regimes. In the interim, progress can be made in
various aspects of the problem[8,11,15].

The idea that the gas, liquid, crystal, and transitions be-
tween them can be studied within the same lattice model has
been raised over the years in some interesting studies[16],
and complex models have also been studied using such
simple models[17]. However, there has never been any
simple(lattice-based) general mechanism producing a liquid
(considered as a large collection of attraction-dominated
states with nearly degenerate energies) in an appropriate re-
lation to gas and solid. Here, beginning from ideas intro-
duced by Biroli and Mézard[18,19], we show that it is pos-
sible to caricature all the states, and their transitions, in a
remarkably simple nearest-neighbor Ising model. In this
model, dynamical arrest and glassy states are also naturally
incorporated into the story.

In the model, space is divided into cubes of sidea, char-
acteristic of the particle size and the microscopic length of

the system. To the center of each cube we associate a site
(coordination numberc=6, in a tridimensional space) and
Ising-like occupancy variable. Where a site is occupied, we
define(respectively) attractive and repulsive interactions be-
tweenca andc−cr of the nearest neighbors.

Thuscr specifies the fraction of space within a given cube
that is available to neighboring particles, given the nature of
the repulsive interactions, whileca specifies how many of
those particles can benefit from the attractive energy of the
system. While we emphasize that this is a caricature, rather
than a representation, of the potential, we expect thatcr
therefore expresses the complexity or irregularity of the core
of the particle, reflected ultimately in the density at random
close packing in the real system and in the model. The inter-
pretation ofca is more subtle. However, broadly speaking, a
small number of(ca) attractive interactions are shared be-
tween a larger number(cr) of neighbors; there are many local
configurations in which the attractive contribution saturates
in the dense system. This freedom encourages the formation
of a liquid. This idea is consistent with the rationale for the
formation of a gel by short-ranged colloidal particles[1]. In
that case, there is such limited freedom by which the attrac-
tions can be captured that the liquid arrests to form a gel-like
state. There is also a general trend for the model to be domi-
nated by the “liquid” state as we approachcr =ca=6, the
nearest-neighbor model.

In our present study, we assume nearest-neighbor finite
attractions(e) and infinite repulsions, the latter to make con-
tact with related studies[18,19].

Thus, the infinite repulsion betweencr neighbors may be
written s0øcr ø6d

Ej
repulsive= H 0 if l j ø cr

+ ` if l j . cr ,
s1d

wherel j is the number of occupied nearest-neighbor sites. In
the case ofcr =6, no repulsive interaction is present in the
model. The attractive interaction is governed by the param-
eterca s0øcaø6d and is defined(per particle) as

Ej
attractive= H − l je if l j ø ca

− cae if l j . ca,
s2d
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wheree.0 is the strength of the attraction. Throughout the
paper we will define energies and chemical potential in units
of kBT, and the “effective” energy will refer to the combined
exponent of energy and chemical potential in the partition
function.

Despite the fact that this is a simple nearest-neighbor
Ising model, it is remarkably rich and spatial frustration pro-
duces a large range of phenomena, some of which have pre-
viously been observed in more complicated lattice models. In
such cases it has also been possible to formulate methods for
their study[17,20–22]. For the present case we show that the
existence of a liquid disposed between the gas and liquid,
and the resulting triple point, originate in a large degeneracy
of states that are found at zero temperature as “multiphase
points.” In special cases we make the number of such states
macroscopic, but even where they are not so, at finite tem-
peratures we can cause the existence of an infinite number of
near-degenerate states, and a liquid.

It is possible to determine the phase diagram of such mod-
els to a high degree of confidence. To begin with, we deter-
mine the ordered phases by construction of the zero-
temperature states of the model. On the simple cubic lattice
we rewrite the underlying effective Hamiltonian(itself a
combination of pure energy and chemical potential) as a sum
over octahedral fragments[22,23] with each of which we can
associate an independent energy. We may then choose the
“optimal” fragments that are able to tile the lattice, and
thereby classify the zero-temperature states. There is at least
one multiphase point[21–24] at which an infinity of zero-
temperature states is degenerate, though the entropy per par-
ticle remains finite.

In general terms, the zero-temperature states are orga-
nized as follows. In three dimensions, there are 20 different
types of fragment. Now, in the grand canonical ensemble, for
fixed values ofcr and ca, the energy of a particle-centered
fragment has the form −qe−m, wherem is the chemical po-
tential andq is a positive integer number depending on the
number of neighbors. All the vacancy-centered fragments
have zero energy, unlike previous frustrated models. There-
fore, we use a slightly different notation, defining asn anda
the total number of nearest neighbors and the number of
filled axes (linear triplets of sites, the extreme pair being
occupied), respectively, and using a labelp=0,1 on theleft
of the symbol of a fragment distinguishing the vacancy-
centered and the particle-centered ones:p f n

a.
The internal energy per volume of a state of the model is

given by

U

L3 = − So
j

PC

qjr jDe − So
j

PC

r jDm, s3d

whereL3 is the lattice volume andr j is the density of thej th
fragment; the sum is intended only over the particle-centered
fragment types(PC).

For m→−`, the ground state is the zero-density gas, be-
cause in that limit the energy of every particle-centered frag-
ment is infinite.

For m→ +`, the ground state is the most dense crystal,
i.e., the crystal with the lowest density of vacancy-centered
fragments. In between, we have many different situations,
depending on the choice ofca and cr. Below we give only
illustrative examples.

Thus, for the caseca=3 and cr =3 we have two frag-
ments with energy −3e−m, but only one(1 f 3

0) tiles the space
with the highest density vacancy-centered crystal0 f 6

3. So
there is one highest density crystal which is ordered along
the diagonal with a repeat pattern of an occupied pair of
layers and an unoccupied layer. This state is degenerate with
the zero-density gas at the pointm=−3e, the zero-
temperature boundary between the gas and the crystal. There
cannot be finite regions occupied by other states at zero tem-
perature. In fact, a different state could have lower energy
only if

qPC=
o j

PC qjr j

o j
PC r j

. 3 s4d

and this is impossible becauseqj ø3 for every j .
The point m=−3e is a multiphase point, because two

particle-centered fragments(1 f 3
0,1 f 3

1) and every vacancy-
centered fragment are degenerate. Some examples of crystals
at the multiphase point are given in Fig. 1.

For ca=4 andcr =3, there are two crystals with the highest
energy 0.75, made up of the coupless1 f 4

2,0 f 6
3d,s1 f 4

1,0 f 6
3d,

which are represented in Figs. 2(a) and 2(b), respectively.

FIG. 1. Pure states for the casecr =3,4,ca=3. The first is made
up of f 3

1 fragments(top). There are seven pure phases made from
the f 3

0 fragments. Each of the seven pairs constitutes two layers of
a 43434 unit cell, the remainder being the particle-vacancy sym-
metric ones.
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The pointm=−3e is still a multiphase point, but nowfour
particle-centered fragmentss1 f 3

0,1 f 3
1,1 f 4

1,1 f 4
2d are degen-

erate. For this reason, here the multiphase point is much
more degenerate.

Besides determining the low-temperature limit of the
models, such considerations allow us to estimate, and
thereby control, as a function ofca andcr, the number oflow-
temperature states where attraction is dominant. This allows
us ultimately to fix the triple point of the system.

We present examples of grand canonical simulations(L
=12,,106 MCS). (We remark that we have as yet attempted
no systematic exploration of dynamical arrest except the ex-
pected transient arrest phenomena of the underlying model
[18].)

Phase diagrams forcr =4, ca=3 and cr =3, ca=3 are
shown in Figs. 3 and 4, respectively.

The first is representative of a conventional gas-liquid-
crystal phase diagram and the usual range of attractive inter-
actions. Thus the simulations readily reproduce the zero-

temperature states of gas and crystal, and there is a
significant range where the liquid state is present. In the inset
to Fig. 3, we show the density and heat capacity in an iso-
thermal cut of the phase diagram, just above the gas-liquid
critical point. Such isotherms, as the temperature decreases
from this point, exhibit an increasing peak height of the heat
capacity, rising towards the critical point. The liquid-crystal
phase boundary is a conventional first-order phase transition
that asymptotes towards the fluid-repulsive crystal transition,
as expected. Simulations near the(low but finite T) triple
point become quite slow.

The second phase diagram is chosen to show how the
model represents a short-range potential. The simulations
are still for quite small systems. However, the gas-liquid
branch, if it exists, is so short to be almost unidentifiable.
This would be the case, for example, of a continuum square-
well potential when the well width is less than 10% of the
core size.

Furthermore, it is intriguing to note the numerous other
indications of a complex equilibrium, arrest, and kinetics
picture, as expected for the equivalent continuum picture.
In particular, there does appear to be a dense fluidlike
state that is long lived, as well as a stringlike low-density
fluid that may be credibly identified as a gel, both expected.
(In the upper inset to the figure we show an isothermal
scan in which the system makes an apparent transition to a
dense liquidlike phase, whereas in the lower inset we show
that this state degenerates to a crystal at very long times
[7,8].)

In summary, we have shown that a very simple Ising lat-
tice model, with only nearest-neighbor interactions, is ca-
pable of supporting all of the characteristic phenomena of
particles with repulsive and attractive interactions(gas, liq-
uid, crystals, and “glass-transition” phenomena of various
kinds), and that variation of parameters provides a mecha-
nism to mimic the range of the potential into important re-
gimes that have yet to be understood.

Many of the outstanding problems of interest, such as
metastability or buried critical points, arrest phenomena, and
near criticality and gellation, are expected to be quite well-

FIG. 2. Unit cells of the crystals atT=0. The black spheres
represent an occupied position on the lattice and the white ones
represent a vacancy. In both cases, the density isr=0.75. It tran-
spires that the crystal(a) is more stable(at low finite temperature)
than (b), and therefore only(a) is observed by cooling in the
simulation.

FIG. 3. Monte Carlo grand ensemble simulation for the case
cr =4, ca=3. Graph of the temperaturesbed−1 vs chemical potential
sm /ed. The s* d are the results of the simulation lowering the tem-
perature. ThesLd are the results of the simulation increasing the
chemical potential. The critical and triple point are labeledC* and
T*, respectively. The inset shows an isothermal scan of densitysrd
and heat capacitysC̃;CV/kBTd for kBT=0.6e.

FIG. 4. Monte Carlo grand ensemble simulation for the case
cr =3, ca=3. Graph of the temperaturesbed−1 vs chemical potential
sm /ed. Upper inset: density vs chemical potential graph forkBT
=0.5e. Lower inset: long time behavior(density vs MC time steps)
for the point atm=−2.4e.

BRIEF REPORTS PHYSICAL REVIEW E70, 022401(2004)

022401-3



described on lattices. Crystallization nuclei, and to some de-
gree their growth are the most dubious aspects of a lattice
description, but even there, many of the most difficult and
subtle unexplained processes currently involve some element
of near criticality[13], something which is well dealt with in
the lattice, and is difficult to deal with in a useful manner
otherwise.

Besides having a certain elegance in being the simplest

model known to exhibit all of the relevant phenomena, it
seems likely that this model has considerable relevance to
important practical issues.
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