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Exact solution of a linear molecular motor model driven by two-step fluctuations and subject
to protein friction
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We investigate by analytical means the stochastic equations of motion of a linear molecular motor model
based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by
Mogilner et al. [Phys. Lett. A237, 297(1998], and averaging over both the two-step internal conformational
fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the
velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are
not readily accessible from numerical solutions. In particular, we find that the model is able to predict physi-
ologically reasonable values for the load-free motor velocity and the motor mobility.
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I. INTRODUCTION the motor protein in interaction with ATP and the filament

support, and takes place in a thermal environment subject to

There is currently widespread interest in molecular MO+ iscous forces.

tors, "O”T both a biochemical-phy;iological and a physics Modern experimental techniques in biology and biophys-
point of view. Whereas the former is mostly concemed withicg ‘i particular single biomolecule manipulation by, for ex-

the molecular structure of motors and their structural 'nter'ample, optical tweezers or microneedles, and single particle

play with the support on which they move, physicists StUdYtracking methods, have yielded considerable insight into the

the r!onegumbrlqm transport properties of motors and th‘.a'rmechanism and the relevant physical scales in molecular mo-
physical interactions with the support, such as load-velocit

i ) Yor behavior[12—-19. The typical size of a molecular motor
relations or adhesion forces between motor and support. Mqé of order 10—20 nm, moving with a step size of order

lecular motors, in general, are energy consuming, nonequlg nm g g kinesin on microtubules, with one ATP molecule
librium nanoscale engines, which are encountered in variou ydro'lyzeci on the average per ste,p. The velocities of mo-
dynamical processes on the intra- and intercellular Ievefecular motors range from nm/s fem/s and the maximum
[1-3]; for a recent review of the more physical aspects se€ . is of the order of several piconewtofesg., ~6 pN for

for instance, Ref[4]. Such motors are responsible for intra- kinesin on microtubules However, the latter cz;n reach up to

cellular transport of molecules and small vesicles in eukary57 pN for the rotating packaging motor of bacteriophages
otic cells; they are powering genomic transcription and trans[zo]. The time scale of the chemical cycle is a few millisec-

lation, cell division (mitosig, and the packaging of viral onds and the average enerav input from the ATP-ADP cvcle
DNA into nanoscale transport containgisapsid$ [5-10. is of order 15_20(-|-_g gy inp y

Larger assemblies of motors working in unison are respon-
sible for the motility of, e.g., bacteria, they play a role in cell
growth, and they are responsible for muscle contraction lea
ing to macroscopic motiofi,2,4,11.

Linear motor proteins like myosin, kinesin, dynein, DNA

A biomolecular motor represents an interesting and ubig-
itous nonequilibrium system operating in the classical re-
OEime and is thus directly amenable to an analysis using stan-
dard methods within nonequilibrium statistical physics.

heli RNA pol an by th ical h Physical modeling of molecular motors has thus been studied
elicase, or polymerase are driven by the cyclica y'intensively in recent years both from the point of view of the

drolysis of ATP into ADP and inorganic phosphate and wan+nqamental underlying physical principles and with regard
der along linear, polar biomolecular tracks such as actin fllat0 specific modeling of concrete motdi@21—31. More re-
ments, mlcrot.ubules, RNA, or DNA. The mation Is typ|cally_ cently, the concerted action of multiple motors has been con-
associated with two- or multistep conformational changes INidered, such as the action of elasticaBg] and rigidly [11]
coupled motors, for instance, in muscl&8]. Motors inter-
acting with freely polymerizing microtubules or actin fila-

*Electronic address: fogedby@phys.au.dk ments give rise to rich pattern formation such as agt®ts
"Electronic address: metz@nordita.dk and are responsible for the formation of the contractile ring
*Electronic address: svane@phys.au.dk emerging during cell divisiofi35,3§.
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The most common statistical approach to molecular mo- |
tors is that of a ratchet modgt,25], mimicking the periodi- | L
cally alternating energy landscapgiven by the interaction e -
potential with its suppoytperceived by the motor during its ! !
mechanochemical cycle. Such ratchet models date back t ! ! 1
Smoluchowski[37] and Feynmar{38], and Huxley’s pio- ! !
neering work[39] on motor proteins actually corresponds to
a Brownian ratchef4]. We note that ratchets play a much
more general role, and real-space ratchets may even be us&> > > > > > > > > > >
on the microscale for particle separatigt0—42. \ ,

An alternative motor model can be based on protein fric- !
tion [22,25,43—-4% This concept relies on the idea that, due ! L,
to the weak chemical bonds forming between motor protein
and the polar actin or microtubule track, after elimination of
the detailed degrees of freedom, an effective frictign
builds up between motor and track. This protein frictign
acts like a linear friction if the associated time scale of mo-
tion is longer than the characteristic time of the kinetics of :
motor-track bonds. If not, no protein friction can build up, > > > > > > > > > > >
and the motor is subject only to the smaller viscous dfag ' ‘
due to the environment. The protein friction is therefore
highly nonlinear. On the basis of this scenario, Mogileér
al. [47] recently studied a simple two-step linear molecular :‘ ! 5 !
motor represented by two coupled overdamped oscillators ! : [ 3
driven by a two-step Markov process alternating between & : : i |
relaxed and a strained state of the oscillators and embedde ' ' '
in a thermal environment represented by additive white

noise. The two subprocesses are associated with internalcor> > > > > > > > > > >

formational changes of the motor protein such that one sub+

prqcess is SIOV\,” allowing prOt_ein friction to be es_tab”Shed’ FIG. 1. Molecular motor model showing one mechanochemical

while the other is fast and subject only to solvent friction. BY cycle, during which internal fluctuations become directédtch-

means of a numerical analysis, Mogilredral. show that the  eteq) through protein friction. The conformational changes of the

system acts like a motor and can carry a load. Howevemnotor protein are represented by two states of an effective spring

unlike the ratchet models, which operate with an attachmenfith rest lengths for the strained and., for the relaxed states.

to a periodic polar protein filament, the model of Mogileér 1 2: Slow relaxation of the previously strained spring to assume

al. needs only a “passive” groove in order to perform di-the rest length.,; due to protein friction, the white working head of

rected motion, and the “ratcheting” comes about by assumehe motor stays attached to the polar biopolyrteatin filament or

ing the asymmetric internal velocity fluctuations, which aremicrotubule, while the black idle head is free to move—23: As a

then rectified by protein friction. In that sense, it is a roboticconsequence of ATP hydrolysispower stroke’), the spring con-

model of molecular motors. tracts so quickly that the protein friction breaks down, and both
In the present paper we reanalyze the motor model oheads symmetrically converge to assume the strained configuration

Mogilner et al. from a purely analytical point of view and Wwith rest lengthLs. The distance covered per mechanochemical

derive explicit expressions for the motion of the motor andcycle isA=(L;~Ls)/2. (Adapted from Ref[47].)

the velocity-load relationship. Using the biological parameter

values quoted by Mogilneet al. we show that the model Il. MODEL

gives rise to physiologically reasonable values for the motor

velocity, whereas our analysis leads to a correction of the The motor model based on protein friction which was

maximum load force by an order of magnitude in compari-introduced in Ref.[47] is defined as follows(compare

son with the numerical results obtained in Rpf7]. This  Fig. 1). Assume that the mechanochemical cycle of the motor

discrepancy is associated with a difference in the dynamicgrotein moving along a track made up of an actin filament or

of the analytical model as compared with the numericalmicrotubule can be pinned down to the periodical switching

simulation. Allowing for a larger relaxation rate the analyti- between two states, and that each of these two states can be

cal result for the maximum load force approaches the biodescribed by two motor heads connected by an effective

logical regime. The paper is organized in the following man-spring representing the backbone of the motor protein be-

ner. In Sec. Il we introduce the model. In Sec. Il we solvetween these heads. From the strained dt8techaracterized

the model analytically. In Sec. IV we discuss the results andy a rest lengthLg, the motor protein converges toward a

compare with Ref[47]. The paper ends with a summary and relaxed statgR) with rest lengthL, >Lg, i.e., the distance

a conclusion in Sec. V. between the motor heads increases. This process is slow
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enough to make sure that the adhesion between the motortke relaxed staté, ~40 nm, the rest length in the strained
“working head”(white circle in Fig. 3 and track stays intact, state Lg~20 nm, the viscous drag -coefficients,

in such a manner that asymmetric motion with respect to the- 10°® pN s/nm, the protein friction drag coefficietif~5
track is achievedstick). In contrast, during the fast “power X 10° pN s/nm, and the load force~ =1 pN. For further
stroke” from the relaxed state back to the strained state aftatiscussion of the model and parameter choices under bio-
hydrolysis of ATP, the protein friction is broken and both logical conditions we refer to Ref47]. An important differ-
heads move under the low Reynolds number conditions oénce between the model of Mogilnet al. and the present
the environment, such that both heads symmetrically apene in Eqs(2.1) and(2.2) is that we takel(t)=¢, during the

proach each other and assume the rest lehgftislip). entire duration of the strained state S, while Mogilner as-
This model can be cast into the two coupled Langevinsumes{(t)=¢, only in the first short time interval as the
equations spring contractga time interval of ordetg;,~ ¢,/Ks; in the
simulations of Ref[47] ty;, is taken infinitesimally smajl

LX) =-f+ k(t)w +N(1), (2.1 after which the protein bonds will form and protein friction

take over,{(t)=¢,. The two models will be similar if the
relaxation timegr"l is of the order oft,.

Ly = - k(t)W N, (22
I1l. ANALYSIS

in which we have introduced the time-dependent friction co- |, this section, we present a solution scheme for this mo-
efficient {(t) in comparison to Ref{47] for convenience, t0  qr model. The results obtained are then further analyzed in
account for the cyclical attachment to the track. In E@sl)  he following section.

and(2.2) the variables< andy represent the positions of the
two heads of the motor molecule along the track, corre-
sponding to the equations of motion of two coupled, over-
damped oscillators. The coordinate of the idle hgdd as- The motor equation&2.1) and(2.2) are readily analyzed
sociated with a viscous friction drag coefficiefyt of order by (i) solving Eq.(2.1) for y(t) and derivingdy/dt, and(ii)
6myr (Stokes law, where 7 is the viscosity of water and  eliminatingy in Eq. (2.2) and setting the two expressions

the size of the motor protein head. The same friction acts oequal to one another. We thus obtain the following equations
the working head during the fast conformational chafye for v, =dx/dt and v,=dy/dt:
— S, whereas during the slow proceSs- R, it experiences

A. Analytical solution

the protein friction drag with coefficiens, [22,25,43—-4§ 2(LL /vy +[L+ ¢, - Zggv(k/kz) + Zng/k]vx
corresponding to a stick-slip motion of the working head. -, : :
The model equationg2.1) and (2.2) are driven by thermal == (1 - 24, (kk9)) = &,L + 24N, /k

noisesN,(t) andN,(t), with (N, ,(t))=0, representing the am-
bient environment with correlations
<Nx,y(t)Nx,y(t’)> = 2kBT§p,u5(t - t’)v (23) §vvy =—f- §UX+ Nx+ Ny. (32)

balancing the friction terms by means of the fluctuation-Denoting the initial velocity at timé=0 by v, Eq. (3.1) is
dissipation theorem. We note that during the detached straineadily solved by quadrature and together with B2) we
ing step, the role of working and idle heads may be ex-obtain

+(1 - 24, KIKAON, + Ny, (3.1

changed(i.e., the motor heads may be turned around a 0 .
common axi§ as was recently demonstrated for kinesin mo- ou(l) = k(e ’ 40 LJ at’
tor headg48]. X (t) k0 2z,

The conformational changes of the motor driven by the
ATP-ADP hydrolytic cycle and the cyclical attachment to the TR + 7 L) = Nt ) Tert)
substrate correspond to a continuous two-state Markov pro- () +4,L() =Nt Je ' 33
cess for the time-dependent rest lendift), the time-

dependent spring constakit), and the time-dependent pro- ) 1
tein friction {(t), alternating between staRwith rest length vy(t) == — = vy (1) + —[N(D) + Ny(1)] (3.9
L,, spring constank,, and protein friction{=¢, and stateS oo b s

with rest lengthL, spring constank,, and viscous friction which form the basis for our discussion.
¢{=¢,. The power stroke conformational transitidR— S We have introduced the renormalized load fofgethe

driven by the ATP hydrolysis is characterized by the e . =~ . . -
the relaxational conformation change- R has the rate,. renormalized nois&l, and the integrated spring and friction

The relevant biological parameters quoted in Réf], constanty:
entering Egs(2.1) and (2.2), are the rate of hydrolysigg Y Do
~10° s71, the relaxation ratgy, ~ 10° s, the spring coeffi- F=1(1 =24, (Kk), (39
cient in the relaxed state ~0.01 pN/nm, the spring coeffi- ~ , .
cient in the strained state~ 0.5 pN/nm, the rest length in N =27, N/k+ (1 - 2Z,kIk?)N, + Ny, (3.6)
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t t due to the fluctuating spring constakt) and fluctuating
) = (1/2§v)f k(t")dt’ +f k(t')/2{t")dt’". (3.7 |engthL(t) characterizing the conformational fluctuations in
0 0 combination with the cyclical attachment described by the
fluctuating friction coefficient(t).
B. General properiles D. Fluctuating spring constant, rest length,
We note various general features of this solution. First, and protein friction

both the .Ioad forcd and the .therma'l noisels, and N, are The idea behind the model is that fluctuations of the
renormalized by the fluctuating spring const&ntSecond, spring constantk(t)=kg, k. (k <k) and rest lengthL(t)

the thermal noise basically enters additively and entails ther- =L,,L,(L,>Ly), modeling the ATD-ADP driven conforma-

mal fluctuations of the velocities. Since the stochastic con-.
tional changes, provide an energy source. In combination
formational changes giving rise to the fluctuationskof.,
with the synchronized stick-slip mechanism modeled by a

and ¢ are independent of the thermal fluctuations we can, "}Iuctuatmg protein friction(t)={,.,(¢,>,), this process
order to monitor the time dependence of the mean mOtOcan drive the system in the absence of a force. This mecha-
velocity, average over the noise with impunity. Note that the deled by the t ten Mark SssR
heat bath, of course, still enters through the friction coeffi- nlﬁrr]n rlesiarQSt|§nerate)gg f?)r V;O sRegn d gr fg\r”%n 'IE)rzce):cmaster

r — s

cients. In the long time steady state limit we can ignore the" equations for this process denoting the corresponding prob-
initial terms and obtain the reduced equations for the therabllltles by P(t) and P (t) thus take the form

mally averaged velocities

k(t)e™ 0 [t ~ . ) dPy(®) = _

v, (t) = - (ve dr[f(t') + ,,Lt)]e", (3.9 at gsPr(t) — g P(V), (3.13
ngg(t) 0
dP,(t)
k(e (- : nof = = g,Py(t) - geP\(1), 3.1
=+ O [ ey alene- L TR 314
vooe ’ with stationary solutions
(3.9

which we proceed to discuss. P.= 9 (3.19

s+

C. Constant spring constant and rest length 9

Let us first consider as an illustration the case of a con- e gs+ 0 (3.16

stant spring length., a constant spring constakt and a
constant protein frictionf(t)=¢,. In this simple casey(t)
=k[(¢p+{,)12¢,¢,]t and the load force is unrenormalized.

The stationary mean value of, e.g., the spring constant, is
thus given by

We obtain +k
= Py kP, = K (3.17
f Os+0r
U= Uy == . (3.10 ] o
&Lty For the present purposes it turns out to be more convenient in

Here the loadf after a transient period drives the idle and discussing the conformational transitions to focus on the
working heads with a constant mean velocity. Defining theProbability distributionsP4(t) and P(t) characterizing the

mobility according to residence of the system in either the strained state or the
relaxed state at a time The distribution is exponential in
vy =~ uf, (3.1)  time and we obtain properly normalized
we infer the mobility in the absence of conformational fluc- R
tuations P(t)=g.e, (3.18
we ig . (3.12 Pi(t) = ge . (3.19
Py The mean values of the residence times are then given by
In the absence of a load fé+=0, the mean velocity vanishes
and the system does not move, i.e., we do not have motor (the= l (3.20
properties. This is also a statement of the second law of * g’ '

thermodynamics expressing the fact that we cannot extract

work from a system in thermal equilibrium. In the case of

constantk, constant_, and constant the coupled Langevin tr=—. (3.21
equations describe the temporal fluctuations of a system in 9s

thermal equilibrium. The motor property is thus necessarilyThe mean value df may then be obtained as a time average:
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k(s +k(t), ko, +k/gs governed by the same stochastic process, with the valyes
k= OO, - 1lg +1/g, (822 ¢, k, andL,, £, k in the strained and relaxed states, respec-
s ' S tively, we obtain from the expressions farand y in Egs.
in accordance with Eq.3.17). (3.28 and(3.7)
i k|1 1
E. The motor property without a load a = _r[_ B _] ’ (3.30
Here we establish the fundamental motor property of the 218 &
model in the absence of a load. HorO we have from Egs.
(3.8)and (3.9 as=0, (3.3)
k(e ™t . :
0_ _ ’ Nay(th)
Uy = dt'L(t")e"t”, (3.23 k|1 o1
2{(t) =27+t (3.32
’ 2l g
mwmf : ,
0_ ’ ’ t’)
=+ ——— | dt'L(t)e"), 3.24 ks
y 26, Jo (3:29 ¥e= . (3.33
&
At a superficial glance it looks as if the motor heads move i noting the iump times for the transitions between th
opposite directions. However, subtracting the velocities an enoting the jump es 1o _e ansitions betwee €
noting that strained and relgx_ed state by n=1,2,..., andassuming
that the system is in a relaxed state at 0<t; we have
-y = KO k) ,
) = 200 T 2 (3.29 : -
(" 2, L®=(L -L) 2 (- D"8(t-ty), (3.39
we obtain n=1
t / and inserting this in Eq.3.29 we obtain
vy~ vy = - yt)e "V f dt’'L(t")e"), (3.26)
0
. . . . W=tk g a(t)exp( J At )dt’)
Finally, assuming ergodicityto be established laterand
time averaging in combination with partial integrations we (3.35

have forT—«
1 (T t _ wherety<t<ty,;. Note that the exponential term is just a
Y- <v(y)> =- —f dt'y(t)e'y(‘)f dt'L(t")e"t) more complicated way to write efpy(t) + y(t,)}, which will
TJo 0 be useful below. For eveN the system is in the relaxed state

17 d t for ty<t’ <t with probability P,. Similarly, for oddN the
:—f dt—[e‘y(‘)]J dr'L(t")ert) motor ends in the strained state which occurs with probabil-
TJo dt 0 ity Ps. Introducing the time intervat,=t,,;—t,, noting that
T the residence distributions are statistically independent, and
=— —f L(t)dt=0 (3.27)  introducing the notation
where the last step corresponds to an integration by parts R=({exp- 'yrr)>r:f dr P(n)exp(- ¥, 1) = 95. ,
(note thaty(t) is monotonically increasing, and therefore 0 Os+ 7

TYSEL(t ) exp{y(t") -y} T < TYL(t)]J— 0), and we con- (3.36
clude that the average velocities of the two heads are in fact

identical: The working head and the idle head move together. _ o 9

Next we derive an explicit expression far2). Introduc- S=(exp(- 757)>s:f dr Py(Dexp- ¥s7) = R
ing the auxiliary fluctuating variable G+

3.3
_kof1 1 23
alt) = 2 1¢ - ) (3.28 the mean velocity can be expressed in terms of geometrical
series,

and using the above result we obtain by adding E§23
and(3.24:

(o= ks [Pa 1-93 (A"

t
OME % f dt (e O lg)L(t)). (3.29
0 ~PaS1-RS (SR”], (3.39
n=0

Here(---) denotes an ensemble average with respect to the
conformational fluctuations. Sinck(t), k(t), and {(t) are  or, summing the serie€ompletingN— ),
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-L.P,a,R1-9-PaS(1-R)

1-RS (3.39

<°>—

Inserting P, P, R, and S from Egs.(3.15, (3.16), (3.36),
and(3.37) we arrive at

L, - Ls grgs(af :ys_ as')’r)
2 (9sYs+ 9y + %¥)(9s+ 9)

(v = (3.40
First we note that the expression vanishesdidy=y(t) thus
corroborating the validity of the time average in £§.27)
and establishing ergodicity. Finally, insertiag, as, y,, and
v, from Egs.(3.30—~3.33), we obtain for the explicit expres-
sion for the motor velocity in the absence of a load

(Lr B Ls)(éVp B gu)krksgrgs
2(gr + 99[20ksply + Ke(Zp+ £)(9rd, + K]
(3.4)

(W =

F. The motor property with load

PHYSICAL REVIEW E70, 021905(2004)

_o_f Lf /"(t)[ ( 1 )} I O-A)]
vy =0y §U+2£U 0dt 3 1+ 2§Udt, k) e .
(3.46

From the synchronization of the stochastic processes we ob-
tain the identity

1 1 1/k 1k,
—=— - 3.4
KO k - [7( )= %], (3.47)
and therefore
d 1 k= 1k
=——1). (3.48
dtk(t) Ys™ W 7

Inserting into Eqs(3.45 and(3.46) and averaging

<vx>=<v2>——< k(h dt’ L)t/ )]>
kg~ 1/, / K(t)

{0 Jo
_f—< dte[vt) Yt e’ )>

Ys™ N Q)

We next turn to the case of a load force applied to the

motor. First we establish that in the presence of the load the (3.49
two heads of the motor move together with the same average
velocity. From Eqgs(3.8) and(3.9) we obtain k(t) L
(vy) = <v0) -— 2§ 7 dt (0=t
V=D :vg_vo_:y(t)—e_y(t)ftdtff(tr)eﬂt')+i. 1/ Ul/k ktv
g Y & 0 & +f k= 1k ()f dt'e v t)]y(t )
(3.42) ¥s™
(3.50

Inserting? from Eg. (3.5 and averaging over time we have,

using Eq.(3.27),
fi f
-—= f dte" V(1) f dt'e) + —
&oT &

+f= f dte (t)f dt’k(t )2e7< 0.
(3.43

The first integral in Eqs(3.49 and(3.50 has the form

0
t t

=( b(t) f dtexp(— f dt’"y(t”)) , (3.5
0 t’

and is performed by breaking up the integration oyém the
exponents and averaging over the time segments yielding

Perf h Is b | | h again a geometrical series in termsSiR We obtain as an
erforming the integrals by partial integration along the; .- diate result

same lines as in the load-free case, the first two terms in Eq.

(v = <Uy> =

(3.43 cancel, and we find in the limif — o, 1-R R R(1-S
1= Pib, C29)s shr
)=y, (344 i v o
1-S S1-R)
i.e., the two motor heads move together with the same aver- + Psbs(T + .7 )E (SR", (3.52
S r n=0

age velocity.
We now turn to the evaluation of the load-velocity rela- gng performing the sum and insertifyand S from Egs.

tionship. From Eqgs(3.8) and(3.9) and msertlngf we have

k() LI | vy
ng dt g(t)[l S (k(t’)ﬂe T

(3.49

-0
Uy =Uy—

(3.36 and(3.37),

|1 = brpr(gr +0st ’ys) + bSPs(gr +0s+ 7r) . (353)

OsYs+ 0¥ + % ¥s

The second integral has the structure
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¢ —
l,= <c(t)f dt’e‘<7“>‘ﬂt’>>'«'y(t’)>, (3.54) :
0 '
and was performed in the load-free case in Egs. = i
(3.35—3.40. We found § E
|2 —_ (.73_ 7r) Pr.Ps(gs'f' gr)FCr'.ys_ Cs.yr) . (3.53 C% E
OsYst At % ¥s |
It is again convenient to introduce the mobilityaccording ! Mean velocity <v3>
to the relation I ;
0 1 1 1 1 1
<UX> — (US) — ,U«fa (3.56) 1 10 20 ‘:1:/0 40 50 60
-
and we obtain inserting(t)=b(t) =k(t)/{y(t) for (v,), or
c(t)=b(t)=k(t)/ ¢, for (vy>, FIG. 3. Dependence of the mean veIoc{t;E) on the protein
. ) . friction £, reaching a plateau for large valugs=10" pN s/nm.
. (k/2,8p)Pr(gr + s+ ¥) + (KJ2L7) P9 + Os + ¥1) The protein friction/,=5% 10> nm/s pN used in the calculations
= OsYs+ O ¥ + Wy corresponds to the dimensionless value 50 in the plot, indicated by
s S e r S the dashed line. Note thézbS)zO corresponds td,/¢,=1.
_ P.Py(gs + gr)((krlgp) ¥s~ (K4 &) o) (Llks — 1k;)
OsYs+ OV + % ¥s ' for the present model, Eq3.41), we introduce the dimen-
(3.57)  sionless parameters
g
Os=< (4.2
IV. DISCUSSION s
In this section, we examine more closely our results de—and
rived above, and compare them to the analysis in Rf. o= 9s 4.3
r— - .
Vr

A. Free motor which express the ratio between the spring relaxation times,

Let us first examine the simple motor properties in the'y_;l and 'yr‘l, and the residence times E@8.20) in statesS
absence of a cargo, i.e., for0. Here the expression in Eq. andR, respectively. In terms of these parameters we obtain
(3.4)) is at variance with the heuristic expression given by

: - 1
Mogilner et al. [47], 0% = ()%, X b 1 (4.4)
T+ G 1+ gst g,
0 _ 0<0r I-r_ I—s . .. . .
(vX>M——+ PR (4.1  The correction factor to the heuristic velocity given by
9 *0s Mogilner et al. is clearly smaller than 1, but approaches 1 in

which is solely based on the reaction rates, neglecting thtéhe limit of {;> ¢, andgs<1, g, <1, which are exactly the
internal dynamics of the motor. To compare the expressiogonditions under which expressig#.1) was derived.

We note that the velocity vanishes fgy=¢,. In this case
5 . . . . . the attachment to the track has no effect on the friction and

T

there is no motion. In the limit of large protein friction com-
pared to the viscous drag coefficient,>¢,, but gs~1
and/org, ~ 1 each conformational cycle does not yield a full
step of lengthAL/2 due to incomplete spring relaxation, and
the average velocity is reduced. In the limit of eitlige>1
or g,>1 the motor comes to rest, as the relaxation rate or the
hydrolysis rate becomes too large for the spring to change its
average length. The motor would also function under condi-
tions ¢,> ¢, or L¢>L,; it would just move in the opposite
direction.
) " 3 s 10 12 Inserting the characteristic biological numbers from Ref.
g, [10%] [47] we haveg,/{,~50, ¢, ~0.2, andgs~2X 10‘_3, and the
correction factor takes a value of about 0.8. This corresponds
FIG. 2. Dependence of the mean velodit) on the hydrolysis {0 @ average velocity ofv,0®~4x 10° nm/s. However, un-
rategs, exhibiting a maximum at around 2.2510%/s. The vertical ~ der different conditions, the discrepancy between the heuris-
dashed line shows the parameter value given in Ré&l. For large  tic result(4.1) and the exact quantityt.4) may become more
values ofgg, the velocity tends to zero. significant.

<Vg> [umis]

Mean velocity <v3> |
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In Figs. 2 and 3, we show the dependence of the load-fremote that, as expected, the velocity goes to zero for vanishing
velocity on the hydrolysis ratgs and the protein frictiony,  hydrolysis rate, and when the protein friction approaches
(all other parameters fixed at the values of Réf7]). Ac- Lp— 4,
cordingly, with respect to these values the model motor ve-
locity is close to optimum. The maximum in tlig depen-
dence shows the interplay between on and off rates in the B. Motor carrying a load
protein friction model, whereas the final plateau in
dependence indicates the above-mentioned saturation, i.e., In the case of a load or cargo we proceed to discuss the
the motor still works for extremely large values&f as long  expression for the motor mobility in E¢8.57), which can be
as s and/org, do not increase to high values as well. We rewritten in the more convenient form

— 2(gr + gs)(Prkr + Psks)(Prgv + Psgp) + krks(l +P + Psgplgv)
2¢,{205kslp + K (G L, + k(1 + £/ 0} '

(4.5

In the further discussion of the mobility it is convenient to equationg2.1) and(2.2). Interpolating between the limiting
introduce the dimensionless parameters in H4s2) and cases(i) and (ii) above, we introduce the average mobility
(4.3). The expressioi4.5) can then be reduced to the form according to

1 1 _4+P 4 +Pdp

May=Pr——— +Ps—= ) (47)

= (Prdy + PsLp)[20s+ (1 +£,/85)a] + (L + P, + Pelp Sl T2, 205+ 4)
24,(Z,+ &) (1 +gg+ ' o
Gl * L)L+ ) 4.6 and the mobility in Eq(4.6) takes the form
P.Z,+P
1+[2q5+<1+é)qr]—"—P “g”P .

Let us investigate this expression in some limiting caégs. W= oy t o ¥ Pelp* &, . (4.9
In the absence of fluctuations, i.e., the case of a constant 1+0s*q
spring constant and rest length, in the relaxed sitéhe Inserting the characteristic biological numbers of Mogil-

protein friction {(t) is locked onto,, and we haveP, =1, neret al. [47), {p/£,=50, 0,=0.2, s=2X 103, and P, ~ P
Ps=0 andq,=0. By inspection of Eq(4.6) we then obtain  ~05 we obtain the average mobilityu,,~2.6

the mobility ©=1/(,+¢,), as discussed in Sec. lll Bii)  x10° nm/(s pN), while the correction factor in Eq4.8) is
Similarly, in the strained statg, the protein friction{(t) is  0.998, i.e., very close to 1. Hence, this gives rise to the ratio
locked onto¢,, Ps=1, P,=0, andgs=0, and we obtain the

mobility w=1/2Z,. (i) Finally, in the casé,=¢,, we imme- m
diately find u=1/2Z,, as is also evident from the model E ~ 13, (4.9
50 ' . ' ' 20 in comparison with the value estimated in Rgf7]:
_ 4ory = (4.10
3 ! = gp
o A0f S
E Ng The origin of the discrepancy between the present result and
© 35 5 that of Ref.[47] is the slight difference between the models.
= —— Mobility p los = I_n the strained state R4#7] operates with two charac_teristic
sop/ + 0 Stall force fa times, that ofS— R conversion, i.e., the residence time Eq.
(3.20 (t)s=1/g,, and the time of the restoration of bonds
25, : 5 3 . s 60 between the motor working head and the groove, which is
g, [10%s] much smaller. In the present model the two times are as-

sumed equal, corresponding to the assumption that the spring
FIG. 4. Mobility » and stall forcefy,, as a function of the relaxationS— Ris initiated when the working head becomes

hydrolysis rategs. The vertical line marks the value from R§#7]. attached to the groove again. From a physical point of view
Note the different scales. this is equally possible, but implies that the motor spends
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5.0 T T =y 2.0 5 T T T oz 0.20
—— Mobility .
------ Stall force fsa gtmﬁ"f'ty H ; -
451 4 e all force Tstan e
Z = =
o 40} 2 e z
© 3s5f 5 e 3
= { - =
3.0}
2. H ' ' L ) H ol I 1 1 0
5 1 10 20 30 40 50 60 0 5 10 15 20
g, [10%s]

G/

FIG. 6. Mobility « and stall forcefgy, as a function of the rate
of relaxationg,. We observe that for large relaxation rate the stall
force enters the biological range.

FIG. 5. Mobility x and stall forcefg,, as a function of the
protein friction ¢, (model value 5. 1075 nm/s pN.

much shorter times in statethan in stateR, or g,>g, i.e.,
P,~1 andPs~0, and the motor becomes much more vola-
tile to the local force during these periods.

From the mobilityu and the zero-load velocitiv?), we
obtain the stall force

bility, leading to a value for the stall force that is roughly two
orders of magnitude smaller than physiological values and
significantly smaller than the simulation results reported in
Ref. [47]. This variance is associated with a difference in the
stochastic dynamics underlying the analysis and the dynami-
<v2> cal processes impligd in the numerical simL_JIation.

. (4.11 A likely explanation relies on an essential feature of an

model, which is the decoupling of the dynamics of the motor

In Figs. 4 and 5 we have on the same plots depicted thgrotein—rail biopolymer interactiofchemical bonds forming
values of the mobilityu and the stall forcefg,, versus the and breakinginto a fast, detached process during energy
hydrolysis rategs and the protein frictiord,. We note that the ~consumption, and a slow relaxing process in one mecha-
stall force exhibits a maximum as a function @f close to nochemical motor cycle. This purely stochastic picture leads
the parameter values chosen in our calculations, whereas tf@ Situations in which the motor detaches frequently, before
mobility is close to saturation. Similarly, as a functiongf ~ its relaxing step is finished, and therefore the subcycles,
the stall force is close to its maximum value, whereas thavhich actually lend themselves to propulsion, are inter-
mobility does not change much within the chosen plot rangéupted. Obviously, this leads to the underestimation of the
(note that the ordinate does not reach the 0)|g|m generaL stall force. In a real system, the fact that chemical bonds are
we observe that due to the particular dependenge @f the  established ensures that a full propulsion subcycle can be
model parameters, its value varies relatively weakly withincompleted before dissociation takes place for the next load-
large intervals for the individual parameter values. In Fig. 6ing of the internal motor “spring” in parallel to hydrolysis. In
we have depicted the mobility and stall force as functions offomparison to the ratchet models in which the motor prop-
the rate of relaxationy,. For largeg, we obtain a stall force erties are represented by fluctuating between two different,

of the order of piconewtons, which is in the biological range.Periodic potentials, it appears that the latter rely on fewer
parameters, and therefore their stall force can be adjusted

better to actually observed values.
V. SUMMARY AND CONCLUSION We finally should like to emphasize that the exact results

In this paper we have by analytical means solved a moobtained allow for an exact and_ detailed stud_y of the depen-
lecular motor model proposed by Mogilnet al. [47]. This dgnce o_f the _motor cha_racte_rlstlcs_on the various parameters
model represents a robotic motor solely based on an effectiydithout invoking numerical simulations. Additional features,
static friction interaction between motor and its supportSUch as the low likelihood for detaching from the rail during
(track). From the underlying Langevin equations, which rep-the forward motion, could be incorporated into the model
resent the synchronized dichotomous processes of frictior?nd still be solved explicitly, using the solution schemes de-
effective spring constant, and distance between the motofeloped here. We_therefore believe that this study leads to a
heads, we obtain explicit expressions for the load-free motoP€tter understanding of molecular motor models.
velocity, the mobility of the motor, and the stall force.
Whereas the result for the load-free velocity produces a typi- ACKNOWLEDGMENT
cal motor velocity of severglm/s for physiologically rea- We should like to thank John Hertz for very constructive
sonable parameters, the exact solution overestimates the mdiscussions.
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