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Solution of the quasispecies model for an arbitrary gene network
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In this paper, we study the equilibrium behavior of Eigen’s quasispecies equations for an arbitrary gene
network. We consider a genome consisting\Nofenes, so that the full genome sequeaamay be written as
o=0105 - oN, Whereg; are sequences of individual genes. We assume a single fithess peak model for each
gene, so that geriehas some “master” sequenag, for which it is functioning. The fitness landscape is then
determined by which genes in the genome are functioning and which are not. The equilibrium behavior of this
model may be solved in the limit of infinite sequence length. The central result is that, instead of a single error
catastrophe, the model exhibits a series of localization to delocalization transitions, which we term an “error
cascade.” As the mutation rate is increased, the selective advantage for maintaining functional copies of certain
genes in the network disappears, and the population distribution delocalizes over the corresponding sequence
spaces. The network goes through a series of such transitions, as more and more genes become inactivated,
until eventually delocalization occurs over the entire genome space, resulting in a final error catastrophe. This
model provides a criterion for determining the conditions under which certain genes in a genome will lose
functionality due to genetic drift. It also provides insight into the response of gene networks to mutagens. In
particular, it suggests an approach for determining the relative importance of various genes to the fitness of an
organism, in a more accurate manner than the standard “deletion set” method. The results in this paper also
have implications for mutational robustness and what C.O. Wilke termed “survival of the flattest.”
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I. INTRODUCTION dn,
— =2 k(0! 0N, (1)
dt <

A challenging problem in quantitative biology is to suc-
cessfully model the evolutionary response of organisms tevhere «, (o’ ,0) denotes the first-order mutation rate con-
various environmental pressures. Aside from its intrinsic in-stant fromo”’ to o. If p,(o’,0) denotes the probability that,
terest, the development of models which can predict the tim@gter replication,o’ produces the daughter genoraethen
evolution of a population’ genotype could prove useful inclearly (o', )=k, pn(c’, o). To computep, (o', o), we
understanding a number of important phenomena, such agssume a per base replication error probabéjtjor genome
antibiotic drug resistance, cancer, viral replication dynamicsg (different genomes may have different replication error
and immune response. probabilities, since some genomes may code for various re-

Perhaps the simplest formalism for modeling, at least phepair mechanisms which other genomes do).ntitis then
nomenologically, the evolutionary dynamics of replicating readily shown thaf3],
organisms is known as the quasispecies mgdiedt]. This Du(")
model was introduced by Eigen in 1971 as a way to describe oo o) = (6_0) (1-e I)L_DH(J,(;) )
thein vitro evolution of single-stranded RNA genomgl. me S-1 7 ’

In the simplest formulation of the model, we consider a ) )

population of asexually replicating genomes, whose onlyh€réDy(o,0”) denotes the Hamming distance between
source of variability is induced by point mutations during ando’. ) . )
replication. We assume that each genome, denotesd byay In order to r_nodel the relatlv_e competition between vari-
be written asr=s, ..., where each “base? is drawn from  OUS genomes, it proves convenient to reexpress the dynamics
an alphabet of sizé&s. With each genome is associated ai" terms of population fractions. Defining=>,n,;, andx,
first-order growth rate constamt,, which we assume to be =Ns/N, We obtain the system of equations,

genome dependent, since different genomes are expected to dx,

be differently suited to the given environment. The set of all == k(0 )Xy = k(D)X €]
growth rate constants is termed tfitness landscapeavhich dt o

will generally be time dependent.

Replication and mutation give rise to mutational flow be-
tween the genomes. If we lg}, denote the number of organ-
isms with genomer, then,

where k(t) =2« X,, and is therefore simply the mean fit-
ness of the population.

The above system of equations is physically realizable in
a chemostat, which continuously siphons off organisms to
maintain a constant population sifé]. This ensures that
growth is not resource limited, so the assumption of simple
*Electronic address: etannenb@fas.harvard.edu exponential growth is a good one. It should be pointed out,
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however, that it is possible to introduce a death term whicthecome inactivated due to mutatiorfi&7]. In addition,
places a cap on the population size, without changing th&igen’s model neglects the effects of recombination, trans-
form of the quasispecies equations. If we introduce a secongsosition, insertions, deletions, and gene duplication, to name

order crowding ternglogistic growth, so that, a few additional sources of variability. Thus, a considerable
dn amount of work remains to be done before a quantitative
- E K0, 0)N, = kg, (4) theory of evolutionary response is developed.
dt o Nevertheless, some progress has been made. For example,

. . . L ) semiconservative replication was recently incorporated into
then if kg is genome independent it is readily shown thatihe quasispecies modgLg]. A simple model incorporating
when converting to the, the quasispecies equations are genetic repair was developed f8,19. Diploidy has been

unchangeds]. _ o studied in[20], and finite size effects if21,22.
The quasispecies equations may be written in vector form 5. area in which more realistic models need to be de-
as, veloped is in the nature of the fithess landscape. As men-
dx o tioned previously, the most common landscape studied thus
P AX— (k- X)X, (5  far has been the single fitness peak. However, genomes gen-

erally contain numerous gengsven the simplest of bacteria,
where X=(x,) is the vector of population fractionsA the mycoplasmas, have several hundred géa8y, which
=(A,, =km(c’,0)) is the matrix of first-order mutation rate work in concert to confer viability to the organism. There-
constants, an@=(«,) is the vector of first-order growth rate fore, in this paper, we consider the behavior of the model for
constants. For a static fithess landscape, it has been sho@f arbitrary gene network. We assume conservative replica-
that X evolves to the equilibrium distribution given by the tion and a genome-independent error rate for simplicity,
eigenvector corresponding to the largest eigenvalugdof though we hypothesize at the end of the paper how our re-
[2,5,6. sults phange fpr the case of semiconservative replipation.

A considerable amount of research on quasispecies theory This paper is organized as follows. In the following sec-
has focused on the simplest possible fitness landscapBOn, we introduce our generalizétigene model defining the
known as th$|ng|e fithess pea{SFF) |andscap€{6_la_ In “gene network.” We first give the quasispecies equations in
the SFP model, there exists a single, “master” sequence terms of the population fractions of each of the various ge-
for which x, =k>1, while for all other sequences we have homes. We proceed to the infinite sequence length equations,
k,=1. The é';,:p model assumes a genome-independent m@nd then obtain a reduced system of equations which dictates
tation rate, so that,=e for all o. the equilibrium solution of our model. We solve the model in

The SFP landscape is analytically solvable in the limit ofSec. lIl. For_the sake of completen(_ass, we include a simple
infinite sequence length. The equilibrium behavior of the€ample to illustrate how our solution method may be ap-
model exhibits two distinct regimes: a localized regime,Plied to specific systems. We go on in Sec. IV to discuss the
where the genome population clusters about the master Sgafsults and |mpI|cat|ons of our model, such as the relation to
guence(giving rise to the term “quasispecigs’and a delo- Wilke’s “survival of the flattest’[24—26, and also what our
calized regime, where the genome population is distributed0del says about the response of gene networks to mu-
essentially uniformly over the entire sequence space. Thigens. Finally, we conclude in Sec. V with a summary of
transition between the two regimes is known as ¢meor ~ OUr results and future research plans.
catastropheand can be shown to occur whpp,, the prob-
ability of correctly replicating a genome, drops belowk1/

[6]. The error catastrophe is generally regarded as the central Il. THE N-GENE MODEL

res_u_lt of_quasispe_cies theory, and it ha§ been experimentally A. Basic equations

verified in both viruseg14] and bacterig15]. Indeed, the ) ] ) o
error catastrophe has been shown to be the basis for a num- €onsider a population of conservatively replicating,
ber of antiviral therapiegl4]. asexual organisms, whose genomes consibt oEnes. Each

The structure of the quasispecies equations naturally lend#€nomeo may then be written ag=o;...0y. Let us as-
itself to application to more complex systems than RNA mol-Sume, for simplicity, a “single fitness peak” landscape for
ecules. Indeed, the model has been used to successfu§Rch gene. That is, for each genthere is a “master” se-
model certain aspects of the immune response to viral infecdUencea; o for which the gene is functional, while for all
tion [16]. However, in their original form, the quasispecies % # %i,0 the gene is nonfunctional. We assume that the fit-
equations fail to capture a number of important aspects of thB€Ss associated with a given genomes dictated by which
evolutionary dynamics of real organisms. For example, it iJeénes in the genome are functional, and which are not. We
implicitly assumed that each genome replicatemserva- 1€t &;,....j,; denote the fitness of organisms with genome
tively, meaning that the original genome is preserved by théuch thatoi=o;o for i€{l,... N}/{is,... iy}, while o
replication process. Correct modeling of DNA-based life# 0io for i€{iy,... in} (we adopt the convention that
must take into account the fact that DNA replicatiorsésni- {1, ... ,in}={ }=® whenn=0). We assume that the fitnesses
conservativg17]. Furthermore, the assumption of a genome-are all strictly positive. Without loss of generalitiye., by an
independent replication error probability is also too simple,appropriate rescaling of the tipewe may assume that
since cells often have various repair mechanisms which may,  n=1.
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The choice of the landscapex;, }|{|1, ceint In this limit, it is possible to show that, for each gene
Cc{1,...N},n=0,1,... N} is arbitrary, so that the activities the only terms in Eq(8) which survive the limiting process
of the various genes in the genome are generally correlate@re thel; ;=0 terms[3]. This is equivalent to the statement
This correlation arises from the fact that the genes do nothat, in the limit of infinite sequence length, backmutations
function independently to confer fitness to the organismmay be neglected. We also obtain that
Rather, these genes define components of various biological L+
systems, which are defined by gene-gene, gene-protein, and ( '2),5'
protein-protein interactiong@s well as the interactions with |
the messenger RNAsIt is these various systems that are
responsible for cell growth and replication. Thus, tNe
genes may be regarded as defining a “gene network.” (1-eti— eair, (10

The simplest quasispecies equations for thsgene
model are obtained by assuming a genome-independent per

1
12— I—(a.M)'2 9

i,2 i,2

and

The final result is

base replication error probability. We assume that gerie dz Iy IN K
has a sequence lenglh, and we defineL=L;+---+Ly. Nogrd Y L Dyl :
Thenpu(o’,0) =P}, 1) Pl o), Where d = o 1! lN'
e \DHlola) , X (all"’)li"'(aNM)I',\‘ZH—Ii,...,IN—I,’\‘_?(t)zu,...,lN
pm(o-i,vo'i) = <S— 1) (1- )Li_DH(Ui i) (6) (11)

It should be noted that the neglect of back mutations is

Putting everything together, we obtain the system of equavalid only when one can group population fractions into
tions Hamming classes. In our case, by the symmetry of the fithess
landscape, the equilibrium solution depends only on the

dx,, N Du(a! o) Hamming_ class, and henc_e to find the eq_uilibri_a it_ is per-
;”N:E ey Ky U,H( € ) fectly valid to “presymmetrize” the population distribution
dt o o N\ S-1 and study the resulting dynamics.
! Thus, when studying dynamics, it is generally not valid to
X (1 - €)LiPnlei fﬂ)x o — K(DX,..... (7)  neglect backmutations. For example, consider a single-
o o fithess-peak landscape, and suppose that a population of or-
Define the Hamming class @y,....Iy)={c  ganisms is at its equilibrium, clustered about the fitness peak.
:01"'UN|DH(0',,0'| o=li,i=1,... N}. Also, def|nez| Iy If the organisms are then mutated, so that they are shifted
=2secy(ly.. X BY the symmetry of the Iandscape we away from the fitness peak, then eventually they will back-

may assume tha¢g depends only on thk corresponding to Mutate and reequilibrate on the fitness pedits situation
o, and hence we may look at the total population fraction inhas been observed with prokaryofe3]). If we imagine that

Cy(l1, ... ,ly) and study its dynamics. The conversion of thethe mutation shifts the organism from the master genoge
plished by a generalization of the method giver[3p The ~ SC&Pe€ is not symmetric about, and furthermore that the
result is population distribution is not symmetric abawg. Thus, Eq.

(11) does not apply. To correctly model the reequilibration
dynamics, it is necessary to consider the finite sequence

dz . o b how 8 i—liatliz length equations, and explicitly incorporate backmutations
SIS RRS IR | (R ' |
dt LF0 0 N0 N0 1= iz | B. Reduced equations
li +1i =1 i1 , .
x( L1 |’2>E|i,2(1 - )Li_li_li,1< € ) Because of the neglect of backmutations, @d) may in
li1 S-1 principle be solved recursively to obtain the equilibrium dis-
e \lihiz tribution of the .., atanyu, assuming we know the
(1 “5.1 4, iy e It equilibrium mean fitness, denotedt=~). The problem, of
o course, is thak(t=«) needs to be computed. This may be
-k®)z,. (8)  done as follows. Given any collectidiy, ... ,i,} C{1,... N}

of indices, definé{i i Via

We now let thel; — < in such a way that the;=L;/L and

/_LE.L.E remaini fixed. We assume that the are all _s;rictI.y % E E 2, R (12)
positive (allowing an«; to be 0 leads to certain difficulties 1 =1 =1

which we choose not to address in this papBecause the

probability of correctly replicating a genome is simply where e,=(1,0,...,0, &=(0,1,0,...,0, and so forth.
(1-e)-— e, fixing u is equivalent to fixing the genome Thus,”i{il_,_,in} is simply the total fraction of the population in
replication fidelity in the limit of infinite sequence length.  which the genes of indice§,, ... ,i,} are faulty, while the
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remaining genes are given by their corresponding master se- i} Lewel 0

quences. /*\‘

The dynamics of thé{ilpnjn} is derived in Appendix A.

11 i3 X1 21
The result is given by i><t2f><ti‘; Level 1

daz, 1,2} (1,3 2,3 Lewr2

at = (g, g€ T TR =) 2y \‘¢

-1 {1,2, 3} Level 3
S NGO Y
k=0 {j1.. . .jitClig,. ..in} FIG. 1. The directed graph of mutational flow between nodes for
B a three-gene network.
XKy i g LI (e,
i{ip,. . infip.. - d__,
Z L2
(13 —=B7-(k-7)Z, (14)
dt
We can provide an intuitive explanation for _th|s expression, .= i the vector of alls, . & is the vector of all
Because backmutations may be neglected in the limit of in- dB is th i 1f"'"nt i t tant
finite sequence length, it follows that, once a gene is dis/fiy.-J,» @NAE 1S e Malrx of mutation rate constants.
abled, it remains disabled. Therefore, given a set of indices Because of the neglect of backmutations in the limit
{i, i}, mutational flow can occur only frofy; ;, to of infinite sequence length, different regions of the genome
y ]l 1eein

~ S - . . . . space become mutationally decoupled, so that the largest
gjlcbm} f?r:evr\:rgcr]is{lg ”rlc;lne}rgs{dgs.e.t. cjﬂ';} I(]!nﬂthg gaptiré: eigenvalue of the mutation matr& will in general be de-
eitlherfzil i o plroperpsugset o, or é;:QZ.l)_Sirﬁ,ilarly generate. Thus, the equilibrium of the reduced system of

3. ., can receive mutational contributions only from equations is not unique. Howeve_r,_ fqr any initial condition,
Zig,. i) the system will evolve to an equilibrium, though of course

Zj,,...im for which {ji,....jmC{iz,....in}. For such a itferent initial conditions will yield different equilibrium re-
{j1, .-+ .Jm} the probability of mutation tdi4, ...,i,} may be  gyits.
computed as follows. Because the genes corresponding to the
indicesj, ... ,j, remain faulty, the neglect of backmutations
means that it does not matter whether these genes are repli-
cated correctly or not. All genes with indices in In this subsection, we define a variety of constructs which
{1,... N} {iq, ... ,io} must remain equal to the correspond- we will need to characterize the equilibrium behavior of our
ing master sequences after mutation. The probability thamodel. We begin with the definition of mode We define a
genei replicates correctly is given by “#, so the probabil- leveln nodeto refer to any collection of “knocked out”

ity that all genes with indices ifil, ... N}/{i,...,i } repli- genes with indicedi,,...,i,}C{1,... N}. The reason for
cate correctly iﬂie{l,...N}/{il,...,in} g @r=egI-ai~-a)r The  this terminology is simple. We may imagine the set of all
genes which must be replicated incorrectly are those witthodes to be connected via mutations. Because of the neglect

A. Definitions

indices in{iy, ....int/{j1, ... .jm. Since each such gene rep- of backmutations, it follows that a nodg, ... ,in} is acces-
licates incorrectly with probability 1e <, it follows that  sible from a node{j;, ...,jn} via mutations if and only if
the  probability of replicating all genes in {ji,....JmC{i1, ... .in}. The result is that we can generate a
{ig, .. it i, ..ot incorrectly is Mg, o, (4 directed graph of mutational flows between nodes, an ex-
—e %), Putting everything together, we obtain a mutationalample of which is illustrated in Fig. 1.

flow from Zjpin) to Ziy i of Given some ~n0de v={iq,...,in, define G,
e_(l_ail_'"_ai”)”"{Jl,...,im}E{jl,...,jm}HiE{il,...,in}/{jl,...,jm}(l‘e_ai“)- ={vC{1,... N}|»C7¥}. Therefore,G, may be regarded as

the subgraph of all nodes which are mutationally accessible
from v. An example of such a subgraph is illustrated in Fig.
2.

Let () denote any collection of nodes. Then we may de-

fine Go=U,cnG,. Furthermore, defin€={reQ|QNG,

=1} Thus,ﬁ is the set of all nodes i such that no node in
Q) is contained within the mutational subgraph of any other

node inQ). Figure 3 gives an example showing the construc-
In this section, we proceed to solve the reduced system dfon of ) from Q.

Summing over all possibl§, ... ,jnt C{i1, ... .y} gives us
the expression in Eq13).

Note thatx(t)=2{LoZg. . y&G...J 1 Zi,....ip SO We need
to solve Eqg.(13) in order to obtain the equilibrium distribu-
tion of the model.

Ill. SOLUTION OF THE MODEL

equations given by Eq(13). Since this provides us with Given some noddiy, ... i}, define kg({iq,...,int; )
k(t=») and z, =7, it follows that we can recursively =f<{i1,___,in}e‘(l‘“il‘”"“in)“. We then define kyalw)
solve for the equilibrium values of aff . =maXke(v; w)| vC{1,... N}}. Finally, given someu, de-

In vector notation, Eq(13) may be expressed in the form, fine Q. dw)={rC{1, ... N} ke(v; 0) = Kmaf)}-
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10
Simulation —
ap Theory === o
8
7k
o~
8 6
el
hal
%
4k
FIG. 2. The mutational subgraplGg, 5 for a four-gene iF
network. 51
B' A Simple eXample 10 0‘.5 ; 1,.5 ; 275 3 S.IS 4
With the basic definitions in place, we now illustrate the p

equilibrium behavior of a simple two-gene “network” as a

numerical example. This should serve as a convenient refer-
ence point to aid in following the development of the equi- _ o ) ]
librium behavior of the fu”N_gene model. |eaSt one Of tha,,>0 at equ”lbnum. Let’ :{|1, A ,|n} be a

We assume a genome containing two identical genes, saode of minimaln such thaiz, > 0. Then it should be clear
that a;=a,=1/2, and wechoose the following growth pa- that, at equilibrium, we have
rame_terS'K@:lO,K{l}=f<{2}=5, andky 2=1. N _ dz,

With these parameters, the system exhibits two localiza- 0= —
tion to delocalization transitions. First, fare[0,2 In 2 we

haVeﬁmax(M):@- Foru€(2In2,2In5 we haveﬁmag(,u) which, sinceZ,>0, may be solved to givek(t=c)
={{1},{2}}. The error catastrophe occursat2 In 5. = Keii(V' s ). - B

We determined the equilibrium behavior of the model by So now suppose thatk(t=) # kmadu). Then «(t
solving the finite sequence length equations lfer40 and  =%) <kma{u). Such an equilibrium can never be observed
S=2. The details may be found in Appendix C. Figure 4because it is unstable. To see this, gt denote a node for
shows a plot of(t=2) from the simulation results and from which xef(Vmax; #) = kmad ). Then from Eq.(13) we have,
our theory. Figure 5 shows plots @, Zyy, Zy, andZ; 5  at equilibrium, that,

FIG. 4. Plot ofk(t=%) from both simulation and theory.

ar | Tl b= e, (19)

from the simulation results and from theory. dz,
With these definitions and the reference example in hand, o= | = [\ q(y i) ~k(t==)Tz, , (16)
we are now ready to develop the structure of the equilibrium dt |-

solution at a giveru. and soz, =0. Clearly, however, any perturbation @p

will push'z, away from its equilibrium value. This equi-
C. Equilibrium solution max

1

1. Determination ofk(t= o) = — s;maﬂo;l —
v= {}, Theory .....
v = {1} = {2}, Simulation .....
v= {1} = {2}, Theory = 1
v = {1, 2}, Simulation -~
v={1,2}, Theory =

We claim thatk(t=o)=k{u). We prove this in two
steps. First of all, we claim thai(t=o0)= k.(v; 1) for some osf
node v. Clearly, becaus&,c; . nz,=1, it follows that at

i
AN .
{1}/(@ @\ ¥

1,2 BL3Y_ 4 "[2.33 24 3.4

02

{1,2,3} 1,24} {1,3.4; {234}

{192!3!4} 0 “

i i i
3 35 4 45 5

FIG. 3. lllustration ofQ and Q in a four-gene network. The
nodes circled with rectangles and circles constitQteThe nodes FIG. 5. Plots 0fZy, Z1), 7, andZ;; 5 from both simulation and

circled only with rectangles constitufe. theory. By symmetryw;;;=wi»=1/2 whenﬁma,g(u):{{l},{Z}}.
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librium is therefore unstable, and hence unobservable.
Note that sincec(t==) = kya{u), it follows that the mean
equilibrium fitness is a continuous function of

2. Determining the'g ;4

To find the equilibrium solution of the reduced system of
equations, we first need to determine whikr O at equilib-
rium. To this end, we begin with the claim that, far>0,
Z,=0 unless ve Gﬁmaw' For suppose there exists
Ve Gﬁmaw such thaiz,# 0 at equilibrium. Then out of the

set of all nodes which satisfy the above two properties, we

may choose to be of minimal level. We claim that, for any
vCv, we have thal ¢ Gy__(,,), for otherwise it is clear that
vEG;CGy U 0. Therefore, by the minimality of the
level of v, it follows thatZ,=0 wheneveiv is a proper subset
of ». But then the equilibrium equation f@r, gives k(t=)
Zkeif(viw), and SO ke(V; ) =Kmaiw).  Therefore,

vE Qnadm). However, by assumption; ¢ Qpad ), which
means thaG, contains nodes ifi).,(x) which are distinct
from v. Denote one of these nodesby{j, ... .jm}. Then at
equilibrium we have, from Eq.13), that

iz e m-1
. = [ kma i) = Kmad ) [Z5 + €570 %y 'ME E
dt | k=0 /5
X KVIEVI H (1 —e_“i“)
ievh’
ze‘(l‘%"“‘alm”‘x:zv H (1-e%*) >0, (17)

i€vv
which is clearly a contradiction. This establishes our claim.
We now argue that our equilibrium solution may be found

if we know Z, for veﬁmwg(,u). We claim that for any
ve Gﬁmaw) we may write

Y Bz,

;Eﬁma)&ﬂ«)

where theg;, =0, and foru>0 a giveng;, is strictly posi-
tive if and only if v€ G;. The above expression then holds

7 =

14

(18)

=68 i Otherwise, kei({iq, - -
Aig- - dpeat
the equilibrium equation may be solved to give,

then no proper subset dfy, ...
{vCiis, ... it [ vEG3}=D, 50 Bz, ..j . 1=0. Conversely,

PHYSICAL REVIEW E 70, 021903(2004

= [Keff({ila EERTS :in+1};,u) - Kma)&:““)]z{il,......jml}
+ e_(l_ail_"""_ainﬂ)’u E K, E
VC{il"""'il’]+1}‘V€G;)ma>1,u.) ’;}Eﬁma)élu)
Bz, I @-ew
i€ig.oominellv
= [Ker{i, «ovvee dpanhi ) — Kmaxﬂ)]‘zt{il,......jml}
+ e_(l_ail_”“"_ainﬂ.)'u E ’2‘_’; E
;Eﬁma%l‘“) vC{iq,. . odne1h VEGy,
X B, I (-, (19)
i€{ig. ety
Now, if {i,....in} EQma),  then By 5

dneats ) < Kmadp), SO

g (mai = e

KmaX(IL'L) - Kef'f({ilr e ’in+l};IL")
Y Bk

vCiiq,. . .int1h vEG;,

I1

i€{ig,. ..dne}lv

Bifig, gt =

X

% (1-e i), (20)

Note thatgz;, . ; ,=0. Furthermore, iffiy, ... in} € G;,
Jdn+yt IS in G;. Therefore,

if {i1,....ine1} €G;, then sincefiq, ... i} #7, it follows
that{vC{iy, ... .in1}| vE G;} # @. Therefore, the sum in Eq.
(20) is nonempty; hence, since the, appearing in the sum
are all strictly positive, it follows thaﬁi{il,...,in+l}>o- This
implies that 5, Is strictly positive if and only if
{i1, ... ins1} € G;, Which completes the induction step, and
proves the claim.

For eachv € Qppad ), We can definer; =% ,¢_f5;,, and
then definey;, = 3;,/ m andw; = 5, 2. If, for each? we also
definey;=(v;,), that is, the vector of al};,, and if we define

for all v, since we simply take;,=0 for v & Gﬁma&(m'

We can prove the above formula via induction on the
level of the nodes irGg__ (). In doing so, we will essen-
tially develop an algorithm for constructing thg,. So, let
us start withn,;,, the minimal level node@ﬁmaw. Then
clearly v€ Q,{ ), so thatg;,=6;,, hence the formula is
correct forn,,,. So now suppose that, for some= n,;,, the
formula is correct for alm such than,;,<m=n. Then for a
level n+1 node inGg__(,), denoted by{i1, ... ips1}, We
have, at equilibrium, that

0 =[Ker({iv, - ineati ) = Kma)(:”“)]i{il,...,inﬂ}
n
+ e_(l_ail_' : '_aiml)'uz E
K=0 {j... it iz inea)

11 (1-e)

XK iy iid
e W e

02190

Z=(z,), then we obtain

7= > W, (21)

VE Omax(w)

WhereE;E;)ma (wWs=1.
Note that they; form a linearly independent set of vec-

tors. Therefore, ifQ,,5{®) contains more than one node,
then the equilibrium solution of the reduced system of equa-
tions is not unique, but rather is defined by the set
{Zien, W ¥ol Zreq, W =1,W5=0}.

As mentioned earlier, the degeneracy in the equilibrium
behavior follows from the neglect of backmutations in the
limit of infinite sequence length. The various nodes in
Onadm) become mutationally decoupled in this limit, which
can cause the largest eigenvalue of the mutation mBtiix
be degenerate. However, fiinite sequence lengths, the qua-
sispecies dynamics will always converge to a unique solu-

3-6
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tion. In particular, if we start with the initial condition,

=1, then for finite sequence lengths we will converge to théNe can denote these by w4, ..
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v i EQmad )} contains  distinct  elements.
., 4N, Where we assume that

+ap )|, .

unique equilibrium solution. Because all nodes are mutationo< u, <--- < uy<c.

ally connected in the infinite sequence length limit with this

Note that if a collection of node® has the property that

initial condition, we make the assumption that the way toﬁ;&Q, thenQ must be a collection i®_.. This is easy to

find the infinite sequence length equilibrium which is thesee: ) contains somdi,,
limit of the finite sequence length equilibria is to find the distinct{j,, ..

... inp for which there exists a
Cimt €Q where{jy, ... . €Gy i ). There-

infinite sequence length equilibrium starting from the initial fore o; +- -+ +q; <aj +---+a; , which proves our conten-
condition zz=1. This allows us to break the eigenstate de-jon. noot m

generacy in a canonical manner.

We now prove that),,,(u«) is some constant, which we

In the appendices, we describe a fixed-point iteration apgenote by();, over (u;_, w;). Given someuy < (ui_1, mi), let

proach for finding the equilibrium solution of the model.
Within this algorithm, we also use the initial conditiag

ps=SUALE (1o, i) | Qmad ) = Umad o) O € (po, )}
[sup stands for “supremum,” which is the least upper bound

=1 as the analogous approach to the one above for findingf a set of real numbers. 8 is a set of real numbers with an
the infinite sequence length equilibrium which is the limit of upper bound, the=supS exists, and satisfies the follow-

the finite sequence length equilibria.

ing properties(1) A is an upper bound fo®. (2) If B is any

Finally, the treatment thus far has been finding the equiupper bound of5, thenA<B. (2) If B<A, then there exists
librium solution of the reduced system of equations forat least one element & which exceedsB.] Clearly, u,

u>0. The equilibrium solution fog.=0 is obtained by tak-
ing the limit of the u>0 solutions, so thafZ(u=0)

:|im,uﬂ0+'2(,u).

3. Construction of the phase diagram

From the previous development it is clear that the node;’iI

in ﬁmwm) may be regarded as “source”
the solution. To understand how the solution changes with

we therefore need to determine h@\/na%(/f«) depends onu.

We claim the following: That there exist a finite number K =Ky
o

of w, which we denote by ug,...,un, Where
O=su < ---<uy<ew, for which {(K{il,...,in}1ai1+"'
+ain)|{il,...,in}eﬂma)g(ﬂ)} contains distinct elements. In

any interval(ui_1, i), Qmad ) is constant, and may there-
fore be denoted by(Q);. The ; are all disjoint, and
QiU Qi1 CQmaf i)

nodes which dictate{;en QW) =0
m

< w;. We claim thatu, = u;. To show this, note first of all that
Qmad ) =Qmad o) for all w& (ug,ns), and that for any
w>u,, there exists u€[u,, ) such that Q. .(u)
# Qmad o). For, given anyu’ € (ug, 1), we have, by defi-
nition of sup, that there exists some= (u’, ) such that
Qrnad 1) =Qma o) for all w & (ug, ). In particular, this im-
ies thatQ ') =Qmad o). Furthermore, if there exists
> ps for which Qupal ) =OQmafuo) for all pwep., ),
mad o) for all w& (ug, ), contradicting
the definition of u,.

Now, suppose Qmalus) € 2. Then we can write
L and @ttt Say for all
{ig, o it € Qmad s). Then sinCexmad us) = ke 17ar it
follows by continuity that x,e 4> k. ((viu) for
v & Qmad us) in some neighborhootu, — 8, u,+ 8). But this
implies thatQ ) =Qmad pt+) Over (u,— 38, us+35). Since
Qmad 20 =Qmadn) over (u,—d,us), we obtain that
Qmad ) =Qmad o) OVer (ug, e+ ), contradicting the defi-

We begin proving this claim by introducing one more pition of u,.
definition. LetX . denote the set of all sets of nodes, such \We have just shown thatQm.(u,)ES.. Since

that a collection of node®Q is a member ok .. if and only if
{(K{il’_._’in},a’il"""+ain)|{i1,...,in}EQ} contains distinct
elements.

Note that since there areNodes, there arezri sets

of nodes; henc& . consists of a finite number of elements.

Given some Q.€3., we claim that Qqp(uw)=Q.

for at most onew. To show this, suppose that there exist

ur<po for which Q1) =Qmad ) =Q .. Choose any
two nodes{iy, ... it {i1,---.Jmf in Q, and note that
Ky, )€ 7T TS €T TR o (),
and similarly for u, However, a,e”*=a,e®>* and
ae=a,e®Y implies that eP0XY=g®0X g0 that
b;=b, and hencea;=a,. Therefore, Ky b= Ky i
and 01i1+ te +ain:a]- +ee +01jm, SO {(K{ilv"vin}’ ai1+ s
+“in)|{i1' ...,int€Q.} does not contain distinct elements.
Because this contradicts our assumption atfouy it follows
that Q) = for at most oneu.

So, sinceX . contains a finite number of elements, it fol-
lows that there are a finite number affor which Q.,(u)
satisfies the property that {(K{il_._yin},ail"""

Qad i) & 2 over(wi_q, &), we must have that., = u;. Us-
ing a similar argument with inf, we can show tHat, ()
=Omad o) over (ui—q, o), and soQa{u) is constant on
(ti—1, mi). (inf stands for “infimum,” and is defined as the
greatest lower bound of a set of real numbers. It satisfies
properties analogous to those of sup.

Suppose for twd,j with i <j, we have(); and (}); that
are not disjoint. Then they share at least one node, and so,
by the nature of the two sets, we must have that();.
Define « to be «;, ;4 for any node in€;, €, and a
to be o +---+a; . Now, Omaw) contains some node
{ig,....inr & Q such thatkeg({ig, ... in};u) < ke -9~ for
mooin (uiog, m) U (ujoq, ). But if for x<x, we
have that a,eP<ae™®1 and aePre<ae®??
then (a/a)e®1™™X<1  and (a;/ay)ePrPe<],
Since (aj/ay)e”®1™* is  monotone decreasing
increasing, it follows that(a;/a,)e P1P2X<1 on (xq,%,),
or equivalently a,ePX<a,e™®*. Therefore, maii)
= keii({ins - ink; ) < ke 940 0. The (; are thus all
disjoint, as claimed.

or
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Finally, since kma{u) is continuous, we have that

N
M, Kmad ) = kma ). If - vEQ;, then this  gives 2y Uiy """”})

Kmaxd i) = Keit(V; 1i). Similarly, considering Iirp_,#rxmax(,u) S E
gives that kmad wi) = kest(v; wi) for v€ Q;,4. Therefore,(};, Ty :1' Z'Jlejl M & e, N
Qi1 C Qmaf( i), S0 QU Q411 C Qpad i), as claimed. .

The varioux); may therefore be regarded as defining dif- .
ferent “phases” in the equilibrium behavior of the model. Z; '__J-k}(l{i L })
Physically, each “phase” is defined by a set of “source
nodes,” which dictate which genes in the genome are E 2 23)
knocked out, and which are not. The transition fréInto _| = 4, St e, i iE
;.4 corresponds to certain genes in the genome becoming
knocked out, and perhaps other genes becoming viablg is possible to show that
again. This transition can happen more than once, and so we
refer to the series of); — ();,, transitions as an “error cas- - K _ -
cade.” z, gy iy =2 > Zjr ()

Becausexe({1, ... N}; u)=1, for sufficiently largepu, =043, iy ik
Kefi({1, ... N}; ) > keii(v; ) for any v#{1,... N}. There- (24
fore, for sufficiently largeu, Qmadw)={{1,... N}}. Since
Qi) is constant on(uy,»), it follows that Q,.(x) and hence, that
={{1,... N}} on (uy,%). Thus, the final transition fronf ~ >
to Q1 corresponds to delocalization over the entire genome Zjy, iy i)
space, which is simply the error catastrophe. k R

4. Finding the 7. | = Z (-1 > 4J'iv---rl'(}(l{ilv---rin})'
_ N =0 {5 d{¥Cin ik
Once we have determinedt=cc), we can in principle (25)

obtain the population fractionzsl,___JN in the various Ham-
ming classes. The problem is thatzif=0, then for anyfinite ~ We may then derive the expression fod"z{ily__,,in}

values ofly, ... I, we get thaw, __, =0. To show this, sup- (Ii..; p/dt. Since the derivation uses techniques similar to
pose we can find,, ... Iy such thatz,ly__.’|N>O at equilib- o

’ ; those used in Appendixes A and B, we simply state the final
rium. Of thely, ... Iy for whichz__, >0, choose a set of (agyit, which is

indicesly, ... I{ such that;+--- +I} is as small as possible.
Note that if z =z, o with (17,05 dZi,, iUy i)

n
= e—(l—ail—. . .—ain)ﬂz E

#(0,...,0, thenz| N =0. dt o~
Now, let the nonzerd, be denoted byt/ ... I . Then k=0 iz Cliz-dnl
K 1=K , and we have, from Eq11 that ‘at equi- o
i, A SR
’ /=0 i€ Niffig. g !
0 dz, [ v = o)) i€(L,. .. NYig,. ..o}
= =[ Ky e M- k(t= Z Y _
T P oy X Wiegi,.. iiy,...j (1 =€)
22
- 22 XKy
which  gives «k(t=)= Ki,. €% But  k(t=o) - .
= K{ily---,in}e_(l_ail ] )M Therefore e Hh=ag (1- @, “ﬂ’in)ﬂ, ><(I{i ,...,in}_ I{il ...in})

and so ¢; +---+«; =0; hence n=0. But then z, <3 7 Y
_ 1 - . o Zj,,.. lk}( {igednt ~ Hig,e .,in})
=z5>00 0. This proves our claim.

If Qnad) =D, then the above claim does not present us ‘F(t)hz‘{il,...,in}“{il,...,in})v (26)
with any problem. We can simply recursively solve [Etfl)
at equilibrium for all thez, ;. But once any delocalization wherexy, . ]k}(l{l ,n}):K{h,___,jk}u{jiv___'jlf}, where{j1, ... i/}

occurs, it is impossible to solve for the equilibrium distribu- 56 the indices of the nonzero Hamming distancdag in .
tion in terms of the Hamming classes. However, we . - ) v o)
can recursively obtain the distribution of another YV claim that, at equilibriun%,(l,)>0 only if vEG; for

class of population fractions, as follows: Given somesomeveﬂmax(,u) for whichz,>0. For, |fz(I ,) >0, letw

collection of indices {i;,....,in}, another collection ={i;,...,i,;Cv be a node of minimal level for which there
of indices{jy, ... .jit C{i1, ... ,in}, and a collection of Ham-  eyists I, such thatZ;(l)>0. Note then that for any
ming distanced, ... Iy, we define”z{jlp__,jk}(l{ily___,in}) and  proper subsefji,....,jit C{i1,....in}, we must have that
Zj,.. .. lgiy,.iy) @s 2z, jo(g,...i ) =0. This implies that, at equilibrium,

021903-8
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dz: . (r . ) w e
0= iy gy i) = g (e = —aj Ju <|i>{i1,...,in}E S Iiz'i o -+l &+
dt |i1=0 |in:0|i=1 11 nn
I v 9
(aip)’
X > I1 |’|
1'=0 i€t NMig,. ..} !

i€, N¥ig...dn}

<Ti>{il,...,in} = Iz T 2 E Iiz|ilell+~--+Iin«'-:~|"+lic-:«|- (30)

X ki iUy iy = Vig i)

=1 =1
Xi{ilv---,in}(r{il,...,in}_r{,il,...,in})
‘;(t:°°)7{i1,...,in}(r{il,...,in})- (27) Note that
. ~
Among alll ;. for whichZ;, ;\(I,..;1)>0, there ex- GOM”JJZE%ny”ééh,ﬂa“mh“Jﬁ’ (31

ists anl?’ilmin} such thaicq . nyg,,...i 17 is minimal. Then

we obtain and so, in analogy witl; _;yandz; ;. we have that

CrZ{il,...,in (r"il,,,,,in) - n
0= (}jt{ : Wiy,oip = > (- > Wy, g~ (32
k=0

=00 (g G Cligein)

= [K{ilv' . -vin}(lgil,- . .,in})e_(l_ail_. . -—ain)ﬂ — 7('[)]
We also define the localization length) by

XZg oG i) (28)
which givesk(t==)=xy, }(I?il in})e‘(l‘”‘if'“‘o‘in)f‘. Now, ()= |2—o IE_()|i2|1,...,|N- (33
n 1= N=
letiy, ... i}, denote the indices of the nonzero Hamming dis-

tances il ;. ThenK{ily___Yin}:K{il’.__’in}U{iiy___Yi;n}. But since
7(t=°°)?K{il,...,in}u{ii,...,i,’n}e_(l_ail_‘“_ai"_aii_'“_ai'm)” , we get
aj+---+ay =0, som=0. Thereforex(t=o2)=kq(V; ), SO

Note  that  {I)=(Idw, . iy = Eheo iy .i L. MY
X{i)g,....ip» and so is finite if and only if all thelg ;)
~ are finite.
sincez, >0, we haveére () . ~ _ —
vl v m,aX(’U“) ) We can computel;);;, ;1 at equilibrium by finding the
Thez,l,) may be obtained recursively from E@®7),  {ine derivative and setting it to 0. In Appendix B we show
starting with the values ok, for vE€ Q,{x). The idea is that

that, starting with the values &, for veﬁmax(,u), we may
compute?v(fv) recursively. We then proceed down the levels,

S T s el .

corrlputmg thez,(l,) using Fhe values o”iV(IV—I_V) andz(l;) % = (ket({ig, =it ) — K(t))<|i>{il,...,in}

for vCv. Note then that instead of computing th,(lanN,

which will be 0 as soon as any delocalization occurs, we first + ai,ue'(l'“il_"_“in_“i)“(K{il,_._,i Ziy iy

sum over a set of gene indices containing the delocalized _ - o :

genes as a subset, and only compute the population distribu- RGNy i) TE T T

tion for finite Hamming distances of the localized genes. n-1
x> o 2 gty g

. k=0 {j1,.- i) tCligs--dpnt
D. Localization lengths _ _
KGR i)
In this subsection, we compute various localization o

lengths associated with the population distribution. Specifi- x I @-eem. (34)

cally, given a noddiy, ... i}, and somd ¢ {iy,... i}, we J€lig - dnip- i

define two localization lengthsl;, ;y and(l; .. as

follows: Therefore, at equilibrium, we get
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e_(l_ai 1_' - ._al n_al)ll-
Aip— ; ©o.
K(t - m) - Keff({lla e 1|n1|}11u’)

XKy i3 Zigeid Ky g i)

e (L-aj ——a —ajp

(Ti>{i1,...,in} =

+ =
K(t=) = kei({i1, - inni}ip)

n-1
) > (Kt

K=0 {jp.. it Clige. i}
+ ai:U«K{jl,...,jk}’z{jl,...,jk}
+ aiMK{jl,...,jk,i}i{jl,...,jk,i})

X 11 (1 -k, (35)
J€{ig. it ikt

We can characterize the behavior of (ﬁgilv_jn}. First of
all, we claim that(l)y;, ;=0 if and only ifZ; ; 4=0.
Second, we claim that<~li>{i1,__,in}=oo if and only if

{jl,...,jk,i}eﬁmax(u) with  Z; ;. 3>0 for some
{1 -t Cia, - i

To show this, note first of all that, from physical consid-
erations,<Ti>{i1,,__,in}=0 if E{il*""in'i}:o' If ”z{il,___jn,i}>0, then
{iy,...in}EGy_(, and  so,  since «(t=x)
= kei({in, ... dnk; ), it follows that I}y, ;,>0. This es-
tablishes the first part of our claim.

So now suppose that{jl,...,jk,i}eﬁmax(,u), with
~Z{J’1~---kai}>0 for some {j,....jit C{i1,....in}. Then «(t
=) = Kefi({j1, - - o1} 1), @and so

QU= ; P
I K(t = m) - Keff({Jla e 1Jk=|};lu’)
X K{jl,...,jk,i}NZ{jl,...,jk,i} =®, (36)

Wiy i =

which of course implies tha(ii){ilwin}zoo.
To prove the converse, let us suppose t@g}.@l, =00,

n

Let us choosgj, ... ,ji t C{i1, ...,y to be the minimal level
subset for  which (g, . ;4= Then if &t
=) > Kkef{j1, -+ o115 1), 1t IS clear from the expression
fgr d§|i>{jl,.:.,jk}/dt_ thallt <|‘>{iiv---:i(}:00 for. some
{i1, . 01 c{j1, ... i with O<I=<k-1. But this contra-
dicts the minimality of k, hence k(t=x)
=rker{j1, -+ i} m), SO sincez; ;>0 it follows that
{igy .- ,jk,i}eﬁmax(,u). This proves the converse, which es-
tablishes the second part of our claim.

PHYSICAL REVIEW E 70, 021903(2004

IV. DISCUSSION

The first point to note about the solution of the quasispe-
cies equations for a gene network is that, unlike the single-
gene model, which exhibits a single “error catastrophe,” the
multiple-gene model exhibits a series of localization to delo-
calization transitions which we term an “error cascade.” The
reason for this is that, as the mutation rate is increased, the
selective advantage for maintaining functional copies of cer-
tain genes in the genome is no longer sufficiently strong to
localize the population distribution about the corresponding
master sequences, and delocalization occurs in the corre-
sponding sequence spaces.

The more a given gene or set of genes contributes to the
fithess of an organism, the largerwill have to be to induce
delocalization in the corresponding sequence spaces. Even-
tually, by makingu sufficiently large, the selective advan-
tage for maintaining any functional genes in the genome will
disappear, and the result is complete delocalization over all
sequence spaces, corresponding to the error catastrophe.

The prediction of an error cascade suggests an approach
for determining the selective advantage of maintaining cer-
tain genes in a genome. Currently, the standard method for
determining whether a gene is “essential” is by knocking it
out, and then seeing if the organism survives. By knocking
out each of the genes, one can construct a “deletion set” for
a given organism, consisting of the minimal set of genes
necessary for the organism to survifsg].

While knowledge of the deletion set of an organism is
important, it does not explain why the organism should
maintain functional copies of other, “nonessential” genes.
One possibility is that these “nonessential” genes do confer a
fitness advantage to the organism, however, the time scale on
which organisms are observed to grow during knockout ex-
periments is simply too short to resolve these fitness differ-
ences.

Thus, an alternative approach to the deletion set method is
to have organisms grow at various mutagen concentrations.
By determining which genes get knocked out at the corre-
sponding mutation rates, it is possible to determine the rela-
tive importance of various genes to the fitness of an organ-
ism. Such an experiment is likely to be difficult to perform.
Nevertheless, if successful, it would provide a considerably
more powerful approach than the deletion set method for
determining fitness advantages of various genes.

The results in this paper also shed light on a phenomenon
which Wilke termed the “survival of the flattest[24].
Briefly, what Wilke (and others showed was that at low
mutation rates, a population will localize in a region of se-
quence space which has high fitness. At higher mutation
rates, a population will relocalize in a region of sequence
space which may not have maximal fithess, but is mutation-
ally robust[24].

The error cascade is exactly a relocalization from a region
of high fitness but low mutational support to a region of
lower fitness but higher mutational support. The reason for
this is that the fitness landscape becomes progressively flatter
as more and more genes are knocked out, because the more
genes are knocked out, the smaller the fraction of the ge-
nome which is involved in determining the fitness of the
organism.

021903-10



SOULUTION OF THE QUASISPECIES MODEL FOR AN PHYSICAL REVIEW E 70, 021903(2004)

This implies that an error cascade is necessary for thgyat ﬁmax(,u) define the “source” nodes of the equilibrium

“survival of the flattest” principle to hold. Robustness in this so|ytion. Indeed, we hypothesize that, for semiconservative
sense is therefore conferred by modularity in the genomeepiication, Eq(13) becomes

That is, robustness does not arise because an individual gene

may remain functional after several point mutations, but

rather arises from the fact that the organism can remain vi-

able even if entire region®.g., “genes) of the genome are dzily---{n} _ _ o

knocked out. In faimess, it should be pointed out that the  — = =[Kenl{is, ... Inti) =602,
idea that mutational robustness is conferred by modularity in

the genome has been discussed befad29, and the con- /2”'1
cept of an “error cascade” has been hintedi3a31). + 267y T 2y o E A
To see this point more clearly, one can consider a “robust” k=0 {j1.. - JidCin - dnt

landscape in which the genome consists of a single gene.
However, unlike the single-fitness-peak landscape, the organ-
ism is viable out to some Hamming claksg. Therefore, if X 11 (1 - e @irl2), (37)
Dy(o,09)=I, thenk,=1 if [ >1,; otherwisex,=«, where i€ige i i
ko= K==k > 1 Using techniques similar to the ones
used in this papetneglect of backmutations and stability
criterion for equilibrig, it is possible to show that the equi-  Another subject for future work is the incorporation of
librium mean fitness is exactlg,e™#, unchanged from the repair into our network model. 18,19 it was assumed that
single-fitness-peak results. Thus, in contrast to robustnesly one gene controlled repair. By assuming that several
studies which consider finite sequence lengths and do ngenes control repair, then, in analogy with fithess, we hy-
have a well-defined viability cutoff32], in the limit of infi-  pothesize that instead of a single “repair catastrofBel',
nite sequence length there is no selective advantage in hawe obtain a series of localization to delocalization transitions
ing a genome which can sustain a finite number of pointover the repair gene sequence spaces, a “repair cascade.”
mutations and remain viable. Finally, once we have incorporated a sufficient level of
detail into our multiple-gene model via the extensions de-
scribed above, we would like to simulate the equilibrium
evolutionary behavior of genomes from real organisms.
There has already been some experimental workaccha-
romyces cerevisiag83] andEscherichia coli[34] relating to

This paper developed an extension of the quasispeciegorrelated mutations and the influence of network topology
model for arbitrary gene networks. We considered the case afn fitness landscapes. While the genomes of these organisms
conservative replication and a genome-independent replicare likely too large for a direct simulation, if possible it
tion error probability. We showed that, instead of a singlewould be interesting to study the equilibrium behavior for
error catastrophe, the model exhibits a series of localizatiofisubgenomes” corresponding to individual systems in the or-
to delocalization transitions, termed an “error cascade.”  ganisms.

While the numerical example we used in this paper was
relatively simple, it is possible to have nontrivial delocaliza-
tion behavior, depending on the choice of the landscape. For
example, it is possible that certain genes which are knocked ACKNOWLEDGMENTS
out in one phase can become reactivated again in the follow- ) _ )
ing phase. That is, instead of a delocalization, one can have a This research was supported by the National Institutes of
relocalization to source nodes not contained in the muta-Health. The authors would also like to thank Eric J. Deeds
tional subgraphs of the source nodes in the previous phastr helpful discussions.
The types of equilibrium behaviors possible is something
which will be explored in future research.

Future research also will involve incorporating more de- APPENDIX A: DERIVATION OF THE REDUCED SYSTEM
tails to the multiple-gene model introduced in this paper. For OF EQUATIONS
fe_‘xample, on"e extenspn is to move away from the “single- In this appendix, we derive E¢L3) from Eq.(11). To this
itness-peak” assumption for each gene. Another natural ex- .

oo N . . end, define

tension is to study the equilibrium behavior of the multiple-
gene quasispecies equations for the case of semiconservative
replication. While this is a subject for future work, we hy-
pothesize that many of the semiconservative results would be o o
essentially unchanged from the conservative ones. Thus, we Z,. = > o> Z e+t e - (A1)
claim that at equilibrium, we would still have thatt=~) =0 =0 1 no
= kmad &), only this timexx(v; u) is computed by replacing
e* with 2e7#2-1. We also claim that we would still have We then have that

XKL i d e i

V. CONCLUSIONS
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dZ{. i |n K(lIl II )e + +(I )e I "
—— E E € “2 > " | (01.1#«) (o )iz, -1 g+l g T K(t)Z| o e
=0 4,70 I'=0  1/=0 li, ! mlin' et
1 In
=e “2 E n (a’| M)' (ainM)lin
=0 1= 'n
X2 2 K1 e, ovl )6 2,y e vl —K(t)Z{l1 ot
LA A
= g (a7 'ME E Kk, ok g ZkI ke ?(t)z{il,...,in}
k=0
e P N S ) .
=e 17, ")ME _ 2 _ K{]l,...,Jk}z{]l,...,Jk} K(t)z{|1,...,|n}- (A2)
k=0 {j,- . it Cigs. - i}
|
We now claim that U1, e CSligs - inett i1 - -4 3o Therefore, there are
(”+1 ') distinct k-element sets which contafly, ... .j/}. Re-
arranging the sum, we obtain
n
~Z{i1,...,in}:2 (- > zj, g (A3)
k=0 {1 i d i it
n
This can be proved by induction. Foe=0 this statement is ~z{ et T i i) T > Z,. i
clearly true, since;=7;. Suppose then that for some=0, 120 {j,- - Jp i dnea)
the statement is true for allO@m=n. Then we have n N+l
XE(—l)k"( ): iy
ot k=1 Z{'l' dnett
n+1l n
Z{il,...,in+1} = g}{j j }Cz{i i }Zjl'-"vjk} 22{i1,,__,in+1} _ 2 2 Z{jl---i|}[_ (_ 1)n+1—l]
=R 120 {jg dlClinevinen)
" ~ n+l
=T L =X Xz (A9
Lo dl= el 1=0 (e g bl et
and so
This completes the induction step and proves the claim.
We are almost ready to derive the expression for
n K dz; . ;./dt Before doing so, we state the following iden-
> _ 2 E(_ 1)k—| L Bl . . .
Ziydiperd = Zigee e} tity, which we will need in our calculation:
k=0 {jg,. . it Clig,- . -ines} 120
X2 g (A5)

(i i3l

Now, for each sefj,, ...
subset{j;,...,jj} occurs only once. Thek-element sets
{j1, .- .ix which contain{ji, ...
the form U drudit, -

dwerts where

ik} appearing in the sum, a given

J{} as a subset must be of

(A7)

[Ha-=2-n X a--
i=1 k=0

PR
fig. - idciL,...n}

k

We now have
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n
d-i{ll,.. _ E 1)n K E dz{llr---dk}
dt iy ddClie iy At
n k
=S o S ,(w*%wwwx S ki ’ﬁMMJJ
k=0 {ip- - ddCip,. - int 120 (i1 il i
n n
:E_ E ‘ K{jl,...,j|}2{j1,...,j|}2 (-~ > e A
1=0 {ig.. - JifCHin. - ok k=l (i bkt Sl d iz it}
n n-l
=X 2wy, € T X ()T
1=0 {j1,.. i, - dnt k-1=0
XE ik« -+ @l M — Htﬁ{il,. i}
T I (PR I T PR 1

>

~ _l — 1_ . e ey
iy, ip iy 1)l ey, e n

120 g, iy i}
n
x]1 (1-e") = k(V7Z,,.. ;)= R > Ky i g i)
i€{ig i1 i1} 1=0 {jg,. . .j}Ci. i}
[T @-e®) -«tz, ;) (A8)
i€{ig g1 i1}

which is exactly Eq(13).

APPENDIX B: DERIVATION OF THE LOCALIZATION LENGTHS

In this section we derive the expression ﬂ{h>{i1,.__,in}/dt- We have

I.’n)e|n+(|i—li’)eI

i1_|| )ei +( il‘l_ i

! ! !/
Illl "'Iin!li!

ﬂi;~2 ssifes st

1;,=01=0 i =0

=0 —
'1 Iin—O |i =

X (ailﬂ)lil o (ain,u)lin(aiﬂ)li Z(|i1-|i'l)e,1+---+(|in—|i' e +i1)e _?(t)ziilql+---+lineln+li(-:~|

(e, )"+ (o )"ty )

! !
|il. "'Iin!li!

SRS D>

o0 oo oo
XE"‘EEK'H Kke+ +ke+kezke+ +k & +kig
k=0 kK =0k=0

Il =0 I/ =01{=0
1 n
n
— kO, g = e_(l_ail_m_ai"_aim<2 2 Ky i
k=0 {ig,. it Cligse. i)
n+l n
+aip A > K. jk}E{jl,...,jk}> = kO, = S TR A o 2 R T !
k=0 {j1, . it Clig,. - i} k=0 {jq, - i i, - -int
XAy g * aiMK{jl,...,jk}E{jl,...,jk} +aipkg, i) ~ KO- (B1)

We therefore have that
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dt {

=2y X
k=0

{ig- - id<ig,.

1A Clige -

e—(l—aj 1—' . ‘—Dlj
Adnt

PHYSICAL REVIEW E 70, 021903(2004

A, i
i) dt

SN

ik i
120 i1 i Cine ik

(Kgig... g

oKy, 2t gy i)~ KOG m)

n
=> > (= D™ ey el g
1=0 (i, iyCligse it
oy T GGG i)
n-|
x> (= D! > et - e = k(O iy
k=1=0 {i - dkc) iz dnfigeif}
n
N l_Déi _"'_Ct‘i _ai . L. ~. . .
=g (1o, n )ME 2 (K{Jl,...,]k,|}<||>{11,...,]k}

k=0 {jy,..

ACip,. -}

+ aiMK{jl,...,jk}NZ{jl,...,jk} + aiMK{jl_..,jk,i}NZ{jl,...,jk,i})

X [T a-es-xnd, i (B2)
i€{i. vl
[
which is exactly the expression in E@5). 1
Zo1= = ZnBZn (C3

APPENDIX C: NUMERICAL DETAILS

The finite sequence length equations, given by @d),

may be expressed in vector form

dz_ . . ..
—=Bz-(k-2)z.
ot (k-2

At equilibrium, we therefore have that

1 .
Bz.

Z=——
K-Z

The iterations are stopped when thestop changing. This is
determined by introducing a cutoff parameteand stopping
iterating when the fractional change of each of the compo-
nents afteiN, iterations is smaller thaa. N, is chosen to be
sufficiently large so that, on average, each base mutates at
least once afteN, iterations. Thus, we choos¢.=1/e.

What this method does is account for the fact that equili-
bration takes longer for smaller values ©fThis means that
the smaller the value of, the more times it is necessary to
iterate before comparing the changes in ZheFor our two-
gene simulation, we took=10* and zy=(1,1). We chose
this initial condition to show that, even though backmuta-
tions may become small at large sequence lengths, they still
strongly affect the equilibrium solution. By iterating a suffi-
cient number of times, the cumulative effect of the backmu-

(C1)

(C2)

The equilibrium solution may be found using fixed-point it- tations becomes sufficiently large to lead to a unique equi-

eration, via the equation

librium solution, independent of the initial condition.
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