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Mean-field approaches to the totally asymmetric exclusion process
with quenched disorder and large particles
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The process of protein synthesis in biological systems resembles a one-dimensional driven lattice gas in
which the particlegribosome$ have spatial extent, covering more than one lattice site. Realistic, nonuniform
gene sequences lead to quenched disorder in the particle hopping rates. We study the totally asymmetric
exclusion process with large particles and quenched disorder via several mean-field approaches and compare
the mean-field results with Monte Carlo simulations. Mean-field equations obtained from the literature are
found to be reasonably effective in describing this system. A numerical technique is developed for computing
the particle current rapidly. The mean-field approach is extended to include two-point correlations between
adjacent sites. The two-point results are found to match Monte Carlo simulations more closely.
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INTRODUCTION nism consists of ribosomes “reading” the codons of mMRNA

. . . as the ribosomes move along an mRNA chain, and the re-
The process of protein synthesis, called translation, can b@ruitment and assembly of amino acigppropriate to the
modeled using a driven lattice gas in ID-4]. This type of

- 3 > codons being regdo form a protein(See, e.g.;6], for more
model is well understood when all particle hopping rates argjeqails) This process is often described as having three steps:
uniform, but a model for the real biological process requirespjtiation, where ribosomes attach themselves one at a time
nonuniform particle hopping rates. Direct Monte Carlo simu-at the “start” end of the mRNA: elongation, where the ribo-
lation of such models is possible when only a few genes argomes move down the chain in a series of steps; and termi-
involved. However, it is desirable to perform large-scalenation, where they detach at the “stop” codon. Since ribo-
simulations to fit translation models to experimental data colsomes cannot overlap, their dynamic is subject to the
lected for many genes simultaneousbg., data fron{5]). excluded volume constraint. Apart from being impeded by
For this purpose, Monte Carlo approaches would be compuanother ribosome(steric hinderange a ribosome cannot
tationally too slow. Therefore, other analytical or computa-move until the arrival of an appropriate transfer RNA, carry-
tional methods are needed. ing the appropriate amino acith combination known as

In this paper, we address the issue of quenched disord@minoacyl-tRNA, or aa-tRNA Thus, the relative abun-
(site-dependent hopping rajea a driven lattice gas model dances of the approximately 60 typ@$ of aa-tRNA signifi-
for translation. The paper is organized as follows. The modefantly affect the elongation rate. Assuming reactant avail-

is first described and its connection to biological protein synabilities in a cell are in their steady state, with a time-
thesis explained. Section Il contains a brief summary ofindependent concentration of ribosomes and aa-tRNA, there

known results. In Sec. Ill, we use a simple coarse-grained/ould be an approximately steady current of ribosomes

approach to obtain crude, approximate solutions. Section IV0Ving along the mRNA, resulting in a specific production

treats our central topic: application of a mean-field methoc{ate of this particular protein. Our goal is the prediction of

. . he protein production rates for various mRNA'S, as a func-
[1,2) to the problem of quenched disorder. Analytical ar]dtion of the concentration of ribosomes and aa-tRNA's.

comput.at|onal results are.presented. In Sec. v, we e_xtend the The process of translation is well suited to modeling using
mean-field approach to mcl_ude tvvp-pomt correlaﬂon; fOra driven lattice gas in 1D. Particles enter at some rate on one
better accuracy. We close with a brief summary and disCusgnq of a chain of discrete lattice sit@sitiation), then hop
sion of how these methods may be applied to problems Ofj,, the chain one site at a time with another rate or set of
interest, such as fitting translation models to eXpe”ment%]ates(elongatior), and finally exit the chain at the other end
data. (termination. The excluded volume constraint is imple-
mented by insuring the spacing between ribosomes is no less
|. DESCRIPTION OF MODEL than 12 sites—the approximate number of codons that a ri-
bosome block$8,9]. Quenched disorder arises because there
is nonuniformity in the hoppingelongation rates along the
chain. This effect occurs because at each codon, a ribosome
$as to “wait” for the appropriate aa-tRNA before continuing,
and the various aa-tRNAs are present in nonequal abun-
dances.
The model we employ is the same ag4i. We model an
*Electronic address: 1bs22@cornell.edu mRNA with N codons as a chain of sites, each of which is

We focus on translation in prokaryotes, particulaig-
cherichia coli because of its relative simplicity. The process
involves the synthesis of specific proteins based on the s
quence of messenger RNAMRNA) molecules. The mecha-
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labeledi. The first and last site$s=1,N, are associated with systems. Exact analytic results for the 1 steady state exist
the start and stop codons, respectively. At any time, attachefd4,15. Systems with extended objedté>1)) have been

to the mRNA areM ribosomes(particleg. Being a large less frequently investigated, but have also been understood
complex of molecules, each ribosome will covérsites from various approaches. Using a mean-field approach, Mac-
(codong, with €=12 typically [8,9]. Any site may be cov- Donald, Gibbs, and Pipkin derived mean-field equations for
ered by a single ribosome or none. In case of the latter, wéhe average site occupatign;) and considered both closed
will refer to the site as “empty” or “occupied by a hole.” To [1] and oper|2] systems. In the former case, exact solutions
locate the ribosome, we arbitrarily choose tloevestsite  Wwere found, leading to a current versus density relation. For
covered. For example, if the firt sites are empty, a ribo- the latter, the authors resorted to numerical solutions to find
some can bind in an initiation step, and then it is said to bdéhe phase diagram for a variety of initiation and termination
“on sitei=1." We definen, to be the ribosome density at site "at€S- Lakatos and Chdi3] considered uniform open sys-

i, where only the left end of the ribosome is countgd.  €MS With extended objects. Using a discrete Tonks gas par-
[1,2], particles were located by their right end, but eitherlition _funct|on, they derived the current versus den5|ty rela-
choice leads to the same rules of motjdVe also define the tion first presented by MacDonald, Gibbs, and PipKif

coverage density =S . which is the probability that Via a refined mean-field theory, they extended this result to
cite isgcovered)f)l;sgrrole BS(;rtion of a ribospome y predict currents and bulk densities for the open system,

X . which they confirmed by Monte Carlo simulations. Finally,
_ Next, we specify the dynamics of our model. An attachedgy o\ 7ia, and Leg4] used an extremal principle6] based
ribosome located at sitewill move to the next siteli+1) o5 domain wall theory17] to obtain the phase diagram, with
with a ratek;, provided sitei +{ is empty. For Monte Carlo  cyrrents and bulk densities, for the uniform open system.
simulations, it is convenient to update configurations in dis-They also found approximate density profieslated to the
crete time unitsAt. In implementing the simulations, it is coverage density)) from a continuum limit. From all of
better to use probabilitieg =kAt, so that a ribosome on site these studies, thé>1 phase diagram is well known. De-
i will be moved (or nof with probability p; (or 1-p;). We  pending on the initiatior{or injection) and termination(or
purposefully associate these hopping probabilities with a sitglepletion rates, the system will settle into one of three
because a site is associated with a particular codon. Thus, th#ases. From their dominant characteristics, the three phases
hopping rate from that site may depend on the relative abungre known as low density, high density, and maximal current.
dance of the appropriate aa-tRNA. Apart from these prob-The initiation and termination probabilities are often referred
abilities, another aspect of our simulations is random sequenp asa and g in the literature. A phase diagram in thisp
tial updating, i.e., during each Monte Carlo si@8CS), M plane has been determined, showing second-order transitions
+1 particles are chosen at random, in sequence, to attempktween the maximal current phase and the others, as well as
moves. They are selected from a pool that includesMhe 3 first-order transition between the high- and low-density re-
particles on the lattice plus another unbound particle that cagjons.
initiate if there aref holes at the beginning of the chain. When disorder is introduced, i.e., not all thés are equal,
In our computational studies, systems begin empty ang¢hen methods for exact analytic approaches(taitept in the
are run long enough to reach steady state. After steady staggtremely dilute limit, where only the motion of a single
is attained, data including the current and density diStribUtiorpartic|e is of concerfl8]). Indeed, even a Sing|e slow rate in
can be collected. Density data is typically collected everya closedsystem poses serious difficultig9—21). However,
100 MCS. We often use continuous-time Monte C4d6]  Kolomeisky[22] obtained approximate steady-state solutions
because it runs far more quickly than and provides the samgnd phase diagrams for apensystem with a single non-
results as standard Monte Carlo. Using continuous-timgniform rate in the bulk by splitting the system into two
Monte Carlo also avoids the need to specify a fixed time stegmaller systems connected by the nonuniform rate. Tripathy
At. and Barmg23] considered a closed system, but with a finite
In our studies of real MRNA sequences, we use gene s€raction of identical slow sites. Based on a combination of
quences fromEscherichia colistrain MG1655, obtained Monte Carlo simulations and numerical solutions of mean-
from [11]. Elongation rates at each codon are estimated usinfleld equations, they found current-density relations. Lakatos,
commonly accepted values for the availability of tRNAEN  Chou, and Kolomeisky[24] studied an open system with
coli [12]. The rate at each codon is assumed proportiongidentical, periodically spaced slow sites. Mean-field tech-
(with an arbitrary proportionality constartp the availability  niques allowed accurate prediction of currents and particle
of the appropriate tRNA that can decode the codon, as igensity profiles. Chou and Lakat§85] used similar tech-
[13]. Corresponding data are not available for estimating ininjques to predict currents through an open system with a few
tiation and termination rates, so we choose various rates Gflentical slow sites arranged in clusters. Harris and Stinch-

interest to study. combe[26] applied discrete mean-field equations and con-
tinuum limits to both closed and open systems in which hop-
Il. SUMMARY OF PREVIOUS RESULTS ping rates at each site were selected randomly from a

distribution. Further references on TASEP with disorder may
Extensive investigations of the simple totally asymmetricbe found in a review papef27]. All of these studies are
exclusion procesgTASEP, defined as point particles hopping restricted to¢ =1. Studies of disorder in systems wiéh> 1
with unit rate along a linewith open boundaries can be have been fairly limited. Shaw, Zia, and Le§ found upper
found in the literature. We first consider studies of uniformand lower bounds for the current in systems with arbitrary
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disorder. In another work, Shaw, Kolomeisky, and 1[28]
considered an open system with>1 and a single nonuni-
form rate in the bulk. As was done fér=1 [22], the system
was divided into two smaller systems connected by the non-
uniform rate. Steady-state currents and bulk densities to ei-
ther side of the nonuniform site were obtained.

Ill. SIMPLE COARSE-GRAINING APPROACH 021
We consider briefly an approximate method motivated by 0 - - -
the method of Shaw, Kolomeisky, and LE28]. Their par- 0 100 . 200 300

ticle hopping rate in the bulk was 1, except for the nonuni- l

form rateq at special sit&. Important in their analysis is the FIG. 1. Coverage density profile for tt@mpAgene ofE. coli
parameter when elongation rates are limiting. Bold curve is Monte Carlo
simulation result, and lighter curve is coarse-grained prediction
¢ from Eq. (3) using the Monte Carlo current. The positive root was
g+ (€ -1)° used to the left of the current-limiting region and the negative root
o the right. The real part is plotted where the predigieid com-
lex. Elongation rates at each codon were assumed proportional to
availabilities of corresponding tRNAL2].

Oeft=

This parameter appears in the current passing from the le
sublattice into the right sublattice:

Pleft (1- Pright)
¢ (1- Pright T Prightw) ,
where pes; and pyigne are the bulk densities in the left and

right sublattices. We note thagy is the same agK, y in the
notation of[4], where

J = Qs (1) IV. MEAN-FIELD APPROACH

We next turn to a mean-field approach using equations
developed by MacDonald, Gibbs, and Pipkitj and Mac-
Donald and Gibbg2]. The equations were applied only to
uniform systems, but we will find that they can be success-

HEL\ T fully applied to nonuniform systems. Here the location of a
Kei = > P particle is determined by the location of its left end. The

j particle density at siteis n;, and the hole density at sitds

=N
. . . . -1 : e :
is a coarse-grained rate for translatifigites. The form of 1-2¢gni-s. For a particle to move from siteto i+1, pro-

Eq. (1) motivates us to suggest that ducing a current, sité+¢ must be empty. The method is
“mean field” in the sense that some correlations have been
_ pi_ 1-pi neglected. The conditional probability that sitef is empty
J=tKii=> 77— (2 ; o . O .
"0 1l-pi+pll given that sitd contains a particle is replaced by the condi-

. , . . . i tional probability that sitei+¢ is empty given that site
in regimes in which the coverage densitys slowly varying  contains either a particle or a hole. That is,
in i. Becausep and K, are both coarse-grained over a dis-

tancef, a relationship between them is unsurprising. Equa- P(O- o)
i . P(O-o|O3-?)=
tion (2) can be solved fop;: (-] ) PO= =)+ Po- )
1 ~
pi= Ko+ 3= 02 \(K o+ 3= 3107 = 43K, ). ~P(?-¢|?-7?)
€

_ P(O-°)+Plo=°)
CP(O-°)+P(3- C)+P(e—°)+P(- )

)

It is reasonable to use the positigggh density root to the ¢
left of the current-limiting regionwhere the minimunkK, _ 1_2;1 Mivs
occurg and the negativ€low density root to the right. Re- - 1 _Ee no+n
sults of this approach are shown in Fig. 1 for tirapAgene s=1 s i
when elongation rates are limitin@e., initiation and termi-
nation rates are sufficiently largerhe value for currend in

where we use] to denote a site filled with the right end of a

Eq. (3) is taken from Monte Carlo simulations ompA The particle,C to denote a site filled with the left end of a par-

agreement between the coarse-grained result and Monfi¢!€, ande to denote an empty site. g .
Carlo simulations is good in low-density regions, but is The mean-field assumption for the conditional probability

poorer in high-density regions because long-range correlé—eads to the following equations the time evolution of the

tions become more important—an effect not captured by
coarse-graining over the relatively short distafcd-inally,

¢
we note that Eq(3) can be used only when the currehis dny ¢ 1 —E,Fl Ny4s
known, either from Monte Carlo simulations or from some E =ko| 1 ‘E Ns | —kiny E€

analytical means. 1 1= 20 Must Ny
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¢ ¢ ¢
dny 1‘25;1 Ni-14s 301 ‘25;1 Mips+ Mg 301_2$1 Nits * Nivg
E = ki-aMi-1 ¢ m,—n; > F 7 - F 7
1 _25:1 Ni—14sF Niz14¢ i 1 —E 1 Miss i 1 —Eszl Niss
¢ ¢
1 _E Nits ‘JO
—kn, —— fori=2,...N—¢ S oS M| 1= 2 Nivs
1 _23:1 Nivs+ Nisg ki(1 - s=1 Mg (1= =1 Ni+s) 1
¢
¢ _ni+€(1_2mi+s) > 0.
dny_¢s1 1- Egl NN-¢+s =1
T Kn-cMn-¢ ¢ = Kn- 1NN 41
1- Eszl NN-g+s T NN

Therefore, the densitigl;} increase with increasing,
Finally, we again consider E¢ba). The left side increases
monotonically with increasing), and the right decreases

% =k_n_;—kn fori=N-€+2,... N, (4) monotonically with increasing, while densities are in physi-

dt cal ranges. If we follow the iterative approachyalues that

lead to =L ni,s>1 or I>ky(1-=L,n) are too large and

where we use, to denote the initiation rate. should be decreased. On the other hahehlues that lead to

For the steady-state solution, time derivatives are set to < ko(l—Eé 1Ny are too small and should be increased. One
and the current is introduced. The resulting set of equa- can start with upper and lower bounds for the currérmtm

tions, [4]) and use bisection to converge to the correct current. If a
physical solution exists, it is uniqgue and should be found by
¢ this method.
J=ky(1-2ny (59 Note that the upper bound fdrfrom [4],
s=1
-1 1 -1
¢
J 1- E;l Nits T Nivg ] J= (EO F-*—s) ©)
n=— 7 fori=1,...N-¢ (5b) =
ki 1- 2;1 Nivs
for all i, applies also to the mean-field equations. This can be
; shown from
n=— fori=N-€¢+1,...N, (5¢0)
. ¢ ¢ ¢ ¢
J i 1- Et:l N +stt
can be solved iteratively famy to n, if J is specified. Then 2= 2 Mg ¢ <2 ns<1.
N 1 ) =1 Kies &1 1- Et:l Nissit T Nigsre 51

Eq. (58 becomes an initial condition to check for consis-
tency to determine whethek has been chosen correctly. If
Eq. (59 is not satisfied, thed should be adjusted appropri-
ately and the process repeated.

We present an argument for the validity of this iterative
approach. First, a physically meaningful solution will have

particle densityn; < (0,1) and coverage densitECiNius  the actual currenffrom Monte Carlo simulationsfor vari-

5 (0,}) for all i. (Endpoints of the interval are exclude;d if ous real gene sequencesofcoli. However, numerical prob-
there is to(be nonzero current flguppose that fo;_slome lems arise in findingy values that are high densitypstream
J>ki(1-Zg 9. Then from Eq.(5b), m>1-I N5, of the current-limiting region For high-density solutions,
meaning thattjn;.s> 1, which is a contradiction. So we we have observed that there generally exists a very narrow
see thatl<k/(1-S¢,ni.o) for all i. [Note that although we range forJ, with a width of less than machine precision, for
have not dealt separately witkN-€¢+1,... N, Eq.(5C) is  which the smallerd values will fail to satisfy Eq(5a) be-
consistent with the previous statemgnithus, J cannot be cause the densities are too small, and for which the latger

In practice, computing iterative solutions for} and ad-
justing J by bisection is effective in finding and findingn,
values that are low densitydownstream of the current-
limiting region). Table | shows that there is fairly good
agreementwithin 5%) between the mean-field current and

too large if physical solutions are to be obtained. values will lead to nonphysical densities. An example of this
Next, we show that the densiti¢s;}, while within physi-  phenomenon is shown in Fig. 2.
cal ranges, are increasing functionsJofConsider two dif- We next present an argument for why high density solu-

ferentJ values:Jy with its associated densitigs;,} andJ;  tions are associated with numerical difficulties. For conve-
with its densities{m;}, which we assume to be in physical nience, we assume that theare uniformly 1, and we seek
ranges. Suppose tha>J, Clearly my>n; for i=N-¢ uniform density solutions. Equatiofbb) gives an iterative
+1,... N. Using induction on the remaining it can be map forn,. We assume that a fixed point exists. It will
shown from Eq(5b) that then satisfy
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TABLE 1. Currents for real gene sequences Bf coli from 0.5
Monte Carlo(MC) simulations and mean-fieldMF) calculations. .
Both the original mean-field and the two-point mean-field are in- 04 1
cluded. Units for the currents are arbitrary. Percent errors for the 03 | n
mean-field currents, as compared with the Monte Carlo currents, are -
given in parentheses. Elongation rates were assumed proportional to = 02 | -
the availability of the appropriate tRNA for each codd®]. Sev- ' a" 5’
eral of the genes were chosen to be initiation-limited by making the o1 lmm® u : o ° N
initiation rate 0.78 of the slowest elongation rate. Others were made Mﬁ_
termination-limited by making the termination rate 0.3dr asnS 0 r .
and envY or 0.52(for fabG) of the slowest elongation rate. The 0 50 100 150

. . S . i
remainder were elongation-limited. Errors in the Monte Carlo re-

sults are less than 0.001. FIG. 3. Particle density profile for a uniform system with initia-

— _ tion rate 1, elongation rates 1, and termination rate 0.1. The system
gene limit MCJ orig. MFJ (%ern  2-pt. MF J (%ern hadN=150 and¢=12. Density peaksevery{ siteg are displayed
as symbols: filled squares are the Monte Carlo simulation result,

adk  elong.  0.139 0.136+.3 0.137(1.4) open triangles are the prediction from the original mean-field
cysK elong.  0.120 0.1221.7) 0.118(1.7) theory, and open diamonds are the prediction from the two-point
gapA elong. 0.194 0.1901.5 0.191(1.5 mean-field theory. Nonpeak densities are displayed as curves; non-
ginH elong. 0.156 0.1541.3 0.158(1.3) peak results from all three methods overlap.

aceF  init.  0.170 0.1643.5) 0.166(2.4)

crr init. ~ 0.172 0.1772.9 0.172(0.0) = 1--Dn,-(¢-1)48

fabD  init.  0.114 0.1121.8 0.112(1.9 i 1-¢6n,-€6

asnS term. 0.114 0.11@.0) 0.114(0.0 43

envY term. 0.092 0.0911.1) 0.091(1.1 =n,+ o

[-1+-DI+\[L+I(¢ - D - 23]
fabG term. 0.112 0.118.9 0.112(0.0) A
+0(8).
1-(£-1n* To determine stability of the high-density fixed point, we
n*=J——. consider thes prefactor:
1-¢n*

We find high-density and low-density fixed points, 4]

2 [1+(0-1I+\[1+I¢ - 12— a3]*

n, = 2—1€[1 +J(0 - 1) £\[1+3(¢ - )P - 40d].

- _ For currents in the expected ranges (0,1/(1+v‘?)2) (cf.,
Suppose the densitigs,, ... iy, are slightly perturbed [2]), a>1 so that the high-density fixed point is unstable. A
from the high-density fixed point, so thaf=n.+4, where  similar argument shows the stability of the low-density fixed

|6|<1, forj=i+1,...i+¢. Then point. Although these ideas are proven here only for uniform
density solutions, our numerical resulssich as those in Fig.
0.8 2) lead us to believe that the nonuniform density case is

similar. It appears that small numerical imprecisions prevent
us from accurately finding high-density solutions, while low-
0.4 1 density solutions can be easily found.

Finding steady-state high-density mean-field solutions is a

n;

\reepeetb b AL nontrivial problem. We have attempted multidimensional
R P , e Newton’s method approaches to solve Es).for {n;} andJ,
50 100 150 but these have their own difficulties. Convergence often fails
unless the initial guess is very near the solution. The most
04 reliable method is to start with an empty lattice and integrate

Eq. (4) to steady state. Although integration is computation-
ally slow, it consistently produces density profiles that are

FIG. 2. Particle density profiles calculated by iteration of mean-"€S0nable and similar to the Monte Carlo simulation density
field equationgEq. (5)] for a uniform system with initiation rate 1, Profiles. Agreement is best in the low-density regime, when
elongation rates 1, and termination rate 0.1. The systemMad the correlations neglected by the mean-field theory are less
=150 and¢=8. The dark curve is the result for currenglightly too ~ important(data not shown In the high-density regime, the
large, and the light/diffuse curve is the result forslightly too ~ mean-field results underestimate the correlations between ad-
small. The two curves are superimposed ifor50. The difference  jacent particles. An example of this discrepancy is shown for
between the twd values was X 107%° J. a uniform system in Fig. 3.

i
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V. MEAN FIELD WITH TWO-POINT CORRELATIONS dn, n.i, N iwe
) :k'_lnH'_)—’_k' €n _’—r
To obtain more accurate solutions for density profiles, es-  dt ' ! N -1+ N e N ise + N ivg
pecially in the high-density regime, we extend the mean-field (9b)

theory to include two-point correlations between adjacent N )

sites. Variables in the two-point mean-field theory are densi¥Ve also have boundary conditions, and for convenience, we
ties of bonds, indexed bl where bond connects sité to ~ assume that particles enter the lattice one site at a time, so
site i+1. There are four types of bond densities, which wethat only the first site must be free for initiation to occur. We
denote as followsn, ;, hole-hole pairge—°); n_, ;, particle-  also assume t_hat a pa_rtlcle whqse rlght edge is orhsitan

hole pairs(7-o); n_;, hole-particle pairde—); andn,;, leave the lattice, freeing the findl sites. Particle-particle
particle-particle pair§—- ). Note that the particle-particle bonds thus cannot exist in the fin@lsites. Then the bound-

pair consists of a bond connecting the right edge of oné"Y conditions are, for initiation,

particle with the left edge of the next particle. Geometry dn ., N 14
requires that Tk T+ Ko~ KNy
dt e N 1
Mo ¥ N = Ncig N g (7
dn n,
and *d = Kon_,1 = k1+€nx,1—'1+€
dt o1+ TN 14
Noi+N_i=Nojeg TN sy (8)

and, fori=N-€¢+1,... N,
A third equation,

dn—> i N1
¢ g Ko ki
I=n_;+n+ > (Nujirs* N jiso), —i1 7 ol
s=1
. . o . . dny i
can be written because each lattice site is occupied by either F =0.

a hole or some part of a particle. However, this third equation
is linearly dependent on Eqgr) and(8). It is possible to obtain an iterative steady-state solution
We can use Eqs7) and(8) to eliminaten_; andn.; from  for the bond densities, fro=N to i=1. However, this so-

the problem, so we will write differential equations for the |ution appears to exhibit numerical instabilities in the high-
time evolution of only the two remaining types of densities, density regime that are similar to those observed with the
n_; andny ;. Fluxes into and out of each state take the formpriginal mean-field theory. We would prefer to have a simple
of a product of the appropriate rate constant, the density ofhethod, like the iteration and bisection method, for comput-
the state that may evolve, and the conditional probability thajng the current despite the numerical difficulties in comput-
adjacent particles and holes are arranged appropriately foRg the densities. However, such a method is not apparent.
the evolution to occur. For example, a hole-hole pair at bongnstead, we begin with an empty lattice and directly integrate
i will evolve to a particle-hole pair at boridwith rate the differential equations for the bond densitj€sj. (9)] un-

K4 P(O= o= o 2=o— o) til steady state is attained. The two-point mean-field ap-

e ' ' proach produces both densities and currents that agree more

We make mean-field assumptions for the conditional probelosely with Monte Carlo simulations than did the original
ability, similar to that of MacDonald, Gibbs, and PipKit].  (one-poinj mean-field theory. Table | compares two-point

For example, mean-field currents with currents from Monte Carlo and the
5 one-point mean-field theory for real gene sequences. In each
P(O-e=c[?-0=¢) case, the two-point mean-field does as well as or better than
~P(O—o-?|?2-0-127 the original mean field at matching the Monte Carlo currents.
(- )
Figure 3 compares the two-point mean-field density profile
- & with that obtained by the other methods, showing that the
N_j1+Ni two-point mean-field theory successfully incorporates more
Thus the flux of hole-hole pairs at sit¢o particle-hole pairs c.)f the long-range correlations than does the one-point mean-
oo field theory.
at sitel Is
k. & VI. CONCLUSIONS
i1 i .

We have considered 1D driven lattice gas models with
The resulting differential equations for time evolution of |arge particles and quenched disorder. Mean-field theories
the bond densities in the bulk are were found be effective in computing quantities of interest.
dn - n n The mean-field equations originally proposed by Mac-
— =Ny ——— 4k n,,——"2—-kn_, Donald, Gibbs, and PipkifL] and MacDonald and GibHg]
dt TN et Mg TNt N " for uniform systems were found to work equally well for
(99 nonuniform systems. An iterative method allowed easy and
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rapid computation of the steady-state current through th&ariables and equations, as well as the complexity of the
system. Steady-state particle densities were also computedjuations, would increase as more correlations are added.
by this method, although only when the system was in also, humerical instabilities might still exist so that solutions
low-density phase. We have gained some insight into theould be found only by integration. We therefore feel that it
numerical difficulties that arise in obtaining high-density so-is not convenient to extend the method to include higher-
lutions. Direct integration of differential equations for the order correlations.
time evolution of particle densities can always be used to We conclude that mean-field approaches can be effective
find the steady-state densities. We found good agreement big studying disordered systems. If one is primarily interested
tween the mean-field current and the Monte Carlo currentin the current through the system, this quantity can be com-
Agreement between the densities was also adequate, thoughted rapidly using iteration and bisection. We expect the
not as good in the high-density regime. iteration and bisection method to be quite valuable in future

We extended the mean-field approach to two-point correstudies because the calculated protein production rates could
lations, using similar mean-field approximations for condi-be compared to experimental daéag., data irj5]) and used
tional probabilities. Currents and particle densities were obin fitting unknown rate constants.
tained more accurately from the two-point mean-field theory
than from the original. _ _ _ _ ACKNOWLEDGMENTS
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