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Statistical theory of nucleation in the presence of uncharacterized impurities
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First order phase transitions proceed via nucleation. The rate of nucleation varies exponentially with the
free-energy barrier to nucleation, and so is highly sensitive to variations in this barrier. In practice, very few
systems are absolutely pure, there are typically some impurities present which are rather poorly characterized.
These interact with the nucleus, causing the barrier to vary, and so must be taken into account. Here the
impurity-nucleus interactions are modelled by random variables. The rate then has the same form as the
partition function of Derrida’s random energy model, and as in this model there is a regime in which the
behavior is non-self-averaging. Non-self-averaging nucleation is nucleation with a rate that varies significantly
from one realization of the random variables to another. In experiment this corresponds to variation in the
nucleation rate from one sample to another. General analytic expressions are obtained for the crossover from a
self-averaging to a non-self-averaging rate of nucleation.
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I. INTRODUCTION be a correlation between the pattern of groyahd hence the

Nucleation has long been known to be very sensitive tdin@l distribution of grain sizes if the new phase forming is
impurities. Very pure water can be cooled to tens of degree§'yStalling and sample to sample variability in the nucle-
below freezing, 0 °C at atmospheric pressure, before it crys2tion rate. Castro and co-workers consider only growth, they
tallizes, but in practice the water in our freezers freezes a‘fi_'d not exp|I|C|tIy con3||der n!JCI‘.eI.""t'O”’ and they did not con-
only a little below 0 °C[1]. The crystals of ice in our freezer SId€r sample to sample variability. . .
presumably nucleate heterogeneously, in contact with some JUSt @s Karpov and Oxtoby difB], we will consider
unknown impurity in the water. The nucleus of water may benucleatlon in the presence of disorder. We will model the

only a few water molecules across and so is only a nanomts_ys’[em as a nucleus interacting with random disorder, i.e.,

. o he free energy of the nucleus will contain a part that is a
eter or so across. Thus, even impurities only a nanometer 9y P

. . fandom variable. Essentially, faced with a situation where we
across can interact with the nucleus and so greatly reduce th

) . ) : Khow the free energy barrier to nucleation depends on its
free-energy barrier to nucleation. The impurity may, of 9y b

. . .~ interaction with species unknown, we realize that it is not
course, be much larger. Often we know little of the impurity

; - : ossible to base a theoretical description on precise knowl-
that is providing a surface where the nucleus of ice can forngdge and make a plausible simple guess. Individual interac-

at a much lower free-energy cost than in the bulk. Here, Wgjons are modeled by random variables with some mean and

circumvent the problem that the impurities are typically un-standard deviation and the system is then characterized just
characterized, by using a statistical theory. We address thgy these two numbers.

question: Under what conditions can chance variations from  The rate of nucleation at a site is proportional to the ex-
sample to sample in the impurities present, cause the nucl@onential of minus the free energy divided by the thermal
ation rate to vary significantly from sample to sample? ThatknergykgT. See the book of Debenedditi] or the review of
is we develop a theory that links an observable, the variabilOxtoby [8] or of Kashchiev and van Rosmalgf] for an
ity of nucleation rate, with the variability of the impurities at introduction to nucleation. Thus the rate at a particular site is
microscopic length scales. proportional to the Boltzmann factor of the nucleus at that
Given the ubiquitous nature of this problem of heteroge-site and so a sum over different sites with different free-
neous nucleation occurring on uncharacterised impuritiesgnergy barriers has the form of a sum over Boltzmann
relatively little theoretical work has been done. Karpov andweights. This is of course the form of a partition function; a
Oxtoby [2,3] have considered nucleation in the presence opartition function of a system where the energies are random
random static disorder, and Harrowell and Oxt¢#llylooked  variables. Such a system is called the random energy model
at the effect of the distribution of time scales present in(REM) and was first proposed and studied by Deriitie].
glasses. But this work did not address the problem of samplele was using it as a simple model for a glass. We can take
to sample variability, and little theoretical work has beenover much of the analysis of the REM done by Derrida and
done for a number of years. apply it to our system. Most importantly, at low temperatures
Castro and co-workergb,6] studied the process that fol- the REM is not self-averaging: different realizations of the
lows nucleation, namely, growth. See also Ré&f. The pat- disorder give rise to significantly different partition func-
tern of growth depends on whether nucleation occurs cortions. In our system the analog of the partition function of
tinuously throughout the process of phase transformation ahe REM is the total rate of nucleation, and different realiza-
only at a few sites near the start of the process. We findions correspond to different samples prepared in the same
sample to sample variability occurs when one or a few sitegonditions. So, we have a regime in which the rate is not
have unusually low nucleation barriers and so there shouldelf-averaging: it differs significantly from sample to sample.
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nucleationAF* the free energy of the critical nucleus. The
critical nucleus is, by definition, the nucleus at the top of the
barrier to nucleatioril]. Thus, if at sitei of the system, the
free energy barrier iﬁFi*, and the frequency of attempts at
unfolding is »;, then the rate of nucleation at the sites

R = v exp(— AF;}). (1)

We will assume that the attempt frequengyis only weakly
dependent om and so treat it as a constami=v. As AF; is
exponentiated, if it varies appreciably then its variation
dominates that of, which can then be neglected. We use
FIG. 1. (Color onling Schematic representation of a nucleus UNits such that the thermal enerigyT=1. If the system con-
represented by a:83x 3 cube of dark blue monomers, in contact SiSts of Ng possible sites for nucleation then the average
with a flat surface composed of two types of monomers: light andiucleation rate per site is simply
dark yellow.

NS

e o _ R=N'2 R 2
Note that this is distinct from variability in properties such as i=1
the time until the first nucleus appears. As the crossing of a
nucleation barrier is a random process the time it takes will Ng
alvygys'be a random variable, t_)ut if there' is I|ttlelor no vari- :N;lvz exp(— AFi*). 3)
ability in the free-energy barrier theate itself will self- i1
average and so not vary from sample to sample. Having rec-
ognized that our problem is isomorphic to Derrida’s REM we Thus to calculate the nucleation rate we requireNhealues
have a model for the experimental observation of sample-tcof the nucleation barrier at all possible nucleation sites.
sample variability. This model allows us to obtain quantita- Often, the system of interest is complex, or poorly char-
tive relations between the width of the distribution of the acterized with unknown impurities present. Then, we have
free-energy barriers to nucleation, the number of nucleatiofittle hope of determining all théls values ofAF;. To deal
sites, and the sample-to-sample variability. with these situations we resort to a statistical approach: we

The next section is a very general study of nucleation withguess the values dF; . We do this by picking th&F; from
a free energy barrier that contains a term that is a randoré probability distribution function that is characterized by
variable. The number of nucleation sifdgis fixed, although two parameters, its mean and standard deviation. These
our theory can be generalized to deal with varying amountéwo parameters can in turn be obtained from a model, esti-
of impurity nucleation sites, see Sec. Il B. Section Il is de-mated from experimental data, or simply varied to see what
voted to the study of an explicit model of a disordered sys-qualitative behavior is possible. We estimate them from a
tem: a surface composed of two types of monomers that argpecific model in Sec. il .
distributed at random. Figure 1 is a schematic of this model. It is convenient to express th&F; as a mean plus a de-
We show how this random distribution of monomers leads toviation,
a random term in the free energy of a nucleus in contact with .
the surface and obtain an explicit expression for the width AR =m+ 4, (4)

if.th.e distribution g]l‘ free—ener%]y barrielrs..The moddel of Fig:whereéi is a random variable with zero mean, it is the de-
IS Just one possible system that results in a random term Diation of the nucleation barrier at sitérom its mean value

the free-energy barrier to nucleation, we can envisage many, Taking the probability distribution of,p(3), to be a
others. Indeed other activated processes with the same eXPEy  ssian. we have ! !

nential dependence on the height of a free-energy barrier,

such as protein unfoldingl1l], have essentially the same exd - 82w |

behavior in the presence of disorder. Disorder can be a model p(s) = W 5)
not only for uncharacterized impurities but also for very ( )

complex environments such as that inside a living cell. Secysing Eq.(4) for AF; we can write Eq(3) as

tion IV outlines the use of Bayes’s theorem to estimate the

nucleation rate from a small number of observations of Ns

nucleation. This is useful as if the nucleation rate can be R=N;'vexp-m)> exp-4). (6)
estimated for two different samples and shown to be different i=1

in these two samples, the experimental system must be in t

. . yo ) t"@ow, with theAF; independent random variables, the rate of
non-self-averaging regime. The last section is a conclusio

nEq. (6) is, except for constant factors, equivalent to the par-
tition function of the random energy mod@REM) of Der-
rida[10]. The REM is a simple and well understood model
Nucleation is an activated procd4s8,9. As such, its rate  of glasses and other disordered systems that undergo a tran-
has an exponential dependence on the free-energy barrier $@ion to a state that is non-self-averaging.

Il. GENERAL THEORY
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Just as in the REM the average partition function can be In the non-self-averaging regime, a single unfolding site
obtained, we can obtain the average, over realisations of thean be responsible for a significant fraction of the entire rate.

disorder, of the nucleation rat This site must of course be the site with the lowest, i.e., most
Ng negative, value of5;. We denote this lowest value by We
(R) = N;lv exp(—m) 2 exp(- &) @) can easily find an estimate fo; which we call §,,. It is

simply the value ofé§ at which the mean number density,

Ngp(5), of sites drops below 1. This is easy to see: it cannot

) be much below the value af for which Ngp(8) =1 as there
are rarely any sites at all below this value and it cannot be

If the rateR is self-averaging then for almost all realizations much above it as for these values &there are many sites.

R will be close to(R) and the right-hand side of E¢() will Thus, we have that,, satisfies the equatiadNp(J,,)=1, and

be a good approximation to the nucleation rate of almost also is given by

realizations of our model. But if the ratR is not self- _ 112

averaging then Eq8) will not be a good approximation and b=~ (2INNY™“w, (1D

the rateR will differ appreciably from one realization to \here to obtain this result we ignored the denominator of Eq.

another. Nucleation in the presence of random static disordgs).

was considered by Karpov and Oxtolp§] who obtained So when a single site dominates the r&eand has a

results similar to that of Eq8), but they only considered value of5I close tO(SeU, the rate is approximate|y
self-averaging systems.

i=1

=vexp- m+w?2).

Rr = N;'vexgd— m+ (2 In N9 ¥2w], (12

using Eq.(11) in Eq. (6). Note thatR;<(R) for large widths,
We will now look at how as the width of the distribution (R) increases as the exponentialwf, Eq. (8), whereasR;
of free-energy barriers increases the behavior ceases to bencreases as only the exponentialvaf Equation(9) tells us
self-averaging. First, we will look at how many nucleation that at, for examplew=6 the maximum contribution to the
sites contribute significant amounts to the nucleation rate in gyerage ratéR) comes from sites with values &f around
typical realization. If this number is large then as the sites are; +=36. At these values o# the probability density5) is
assumed independent the rate is a sum of a large number QI%se to 10°. Thus even foN,=10° there is on average less
independent random variables and so will be self-averagingnan one site at values oﬁcks)se 108 ae FOr Ng=10° most
whereas if it is small this will not be the case. , realizations have no sites aroudg,,=36, and so have val-
_From Eq.(6) we see that the rat is dominated by siteS e5 ofR rather less than its mean val(i®), and closer t&R;.
with values O.fni wherg the product of the ““T“be.f of.3|tes The large value ofR) is due to a few realizations with very
and exjy—4), is a maximum. The number of sites is simply large values oR
Fhroporrtldonal (t(c;)thxe Fﬁrg??b'“:y O\j IIEC{S).f;he maximum of Our analysis started with E@l), the standard expression
e productp(s)e 1) 1S at a value oo, for the rate of a barrier-crossing process. This is only valid if
= -2 there is a barrier to cross, i.e.,nf+ & is at least a fevkgT.
Omax =~ W". 9) . . ;
_ _ . If there are sites present for whiagh+ 6 is close to zero,
Now, theaveragenumber of sites around this value 4fis  which is true if m—(2In NoY2w=0 [Eq. (11)], then the
just Ngp(dmay), and because this average is a sum over indenycleation rate at these sites will be essentiallin this case
pendent random variabléien;) the ratio of the fluctuations - we would expect these sites to dominate the nucleation rate
to the mean scales a8yp(nad ] Thus the fluctuations in - as nuclei form effectively immediately at these sites. The rate
the number of sites that contribute the dominant amount tqyill then be self-averaging if and only if the average number
the rate, and hence the fluctuations in the rate itself are smafif these sites in a sample is much larger than one. In the
relative to the mean if and only Msp(dye) > 1. From EQs.  remainder of the manuscript we will assume that

A. Measures of non-self-averaging behavior

(5) and (9) this is true whenever 2 INg—w?> 0. -(2InN9Yw is at least a fevkgT.
Thus, the boundary between self-averaging and non-self- Also, Eq. (12) is for the rate when it is dominated by a
averaging regimes is given by the equation single site. We would expect that often when nucleation has
2 InNg—w2=0. (10) occurred at a site the growing domain of the nucleated phase

will prevent the formation of further nuclei at this site. If this
Thus the rate is self-averaging if and only if the logarithm ofis so then once the first nucleus has formed then theRate
the number of possible sites for nucleation, is larger than halfvill decrease as then only the other sites with higher free-
the variance of the nucleation barrier. This is the main resulenergy barriers to nucleation will remain. Thus associated
of this work. It is a very general result, i.e., it applies gener-with non-self-averaging nucleation rates we expect rates that
ally to activated processes in a random or near-random envéare time dependent. When the r&econtains contributions
ronment. Our conclusions here apply to any process with rom many sites, clearly the rate will only decrease after
rate given by an equation of the form of E8). In the next many nuclei have formed and so any time dependence will
section we will give the example of heterogeneous nuclebe much less noticeable. The ratesconsidered here are
ation at a disordered surface and in R&fl], we showed that thereforeinitial rates. As determining the time dependence of
it held for a model of protein unfolding vivo. rates requires study of the behavior of nuclei after they have
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crossed the barrier we do not consider this time dependenc 1
here, although see Refgg,6] for post-nucleation growth in
systems with distributions of nucleation barriers. 08

We will now perform a quantitative analysis of the frac- )
tion of the rate due to the site with the lowest free-energy
barrier, i.e., due to the one with=x. We calculate the av- 0.6
eragef,, of the fraction of the rate due to the site with the %
lowest free-energy barrier. This can be calculated from the 04
probability distribution functiorpg,(x) using )

vexp(—m)
fep N(R) J Pe, (X)EXP(— X)dX. (13 0.2

We can simplify Eq(13) by introducing the reduced variable 0

y=x/w. Then, from Eq.13) and using Eq(8) for (R), we
obtain

FIG. 2. The mean fractiofy, of the rateR that is due to the site
fo = |\|;1 exp— W2/2) f dyp, (Y)exp(—wy), (14) with the lowests, as a function of the width of the GaussianThe
solid, dashed, and dotted curves are y=10*,10°, and 16?2

where py,(y) is the probability distribution function for the S!t€S: respectively.

minimum value of a set ofig values taken from a Gaussian

of zero mean and unit standard deviation. Note that althougke lowest value of the nucleation barrier will vary substan-

the absolute value of the raleand of the contribution of the tially from realization to realization at large. For some

extreme value both depend on the meanf,, does not. It ~ realizations it will be rather larger thafy, and for others it

depends only onv and N will be much smaller. Whereas of coursewfis small the
The determination ofp,(y) is a standard problem in rate R has signif_icant contributions fr_om_many unfpldi_ng

extreme-value statistigd2]. We start from the fact that the Sites and so varies weakly from realization to realization,

probability that the minimum oN; values isy is the prob- essentially duc_e to variations in t_he rate being averaged out in

ability that 1 of theN sites has a valug, and all the remain- accordance with the central-limit theorem.

ing Ng—1 sites have larger values, multiplied by, as any

one of theNg sites can have the lowest value. Thus, B. Variable Ng

Pe,(Y) = Nsp(y)pg -1(y), (15) There is data on the effect of impurities from the work of

] ) ) _Turnbull [14] and co-workers, and that of Perpezko and co-

wherep(y) is a normalized Gaussian of zero mean and unityorkers[15] on nucleation from dispersions of liquid drop-
standard deviation, anp.(y) [p(y)] is the probability of |ets[1,8]. These experiments were motivated by the idea that

obtaining a number largg¢fower) thany from a Gaussian of i sufficiently small droplets could be formed some droplets
zero mean and unit standard deviation. We are interested ijould be free of all impurities and in those droplets the

the region where is several standard deviations below the nycleation would then be homogeneous. It is not clear that

mean,y<-1. Now, p.=1-p., and so as foy<-1, p-  this objective was achieved,8,15. Perpezkd15] assumed
<1, we can rewrite Eq(15) as that the impurities are randomly distributed, and then the
Pe,(¥) = Nep(y)exd— Nep~(y)], (16) numbgr Qf impurity pgrticles in a droplet is given b_y a Pois-
son distribution function. He addressed the question of ran-
where we replacedNs—1 by Ns. Also, p-(y)=(1/2)  dom variation in the number of impurity particles but not
X erfa(-y/27?), which fory<-1 simplifies to that of variation in the interaction of the impurity with the
- _\2 12 _ nucleus. Thus in a sense it is complementary to this work. If
P<(y) = exp(=y I @m =] (17 we make the number of sité¢ itself a random variable but
In Fig. 2 we have plotted the fraction of the rate due to thesetw=0 then we obtain the model of Perpez{db]. Thus if
site with the lowest barrief,, as a function ofv. We took  we allow the number of nucleation sitég to be a random
Ns=10%10°, and 182 For protein crystallizatiori13] dis-  variable while maintainingv nonzero we have a model that
tinct sites should be at least 1 nm apart. Tigr 1P sites  can describe both variation in both the number of impurity
corresponds to a surface of order 106v2. The dependence particles and disorder in the surface of these particles. We
on N is logarithmic, varying\s by orders of magnitude does leave such a generalization to future work.
not have a marked effect. My should nearly always be of
order 10. We see that ag increases, so doefg,. For Ng IIl. DISORDERED SURFACES
=10%, Eq. (10) is satisfied forw=6.07. Forw around this
value the site with the largest interaction energy already con- In the previous section we merely assumed that the pres-
tributes a large amount to the total rate, on average. Thisnce of disorder introduced a random p&rinto the nucle-
large contribution will vary significantly from one realization ation barrier at sité¢, and that the5; are drawn from a Gauss-
to the next, and so the fraction of the rate due to the site withian distribution. In this section we will start from a simple
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model of a disordered surface and show that in a certain m=AFg+n[fs ea+ (1 —fa)eg)]. (22)
limit, a Gaussian distribution of free-energy barriers is ob- ) .
tained, and obtain expressions for the meaand widthw, For the ’21“0'93“0” rate to be non-self-averaging we re-
of this Gaussian, in terms of the parameters that characteriZire thatw” be larger than 21N, Eq. (10). UnlessNs is
the surface. extremely large or small 2 INg will be of order 10. From
Surfaces of impurities, can provide sites for nucleation.Ed- (21) we see that if the difference in interaction energy
We consider a simple planar surface formed of a plane of&tween the two types of monomey,~ g is a fewkgT, and
sites of a cubic lattice all occupied by fixed monomers. Thef We have aroundi;=10 sites of the surface in contact with
nucleus is taken to be a block of monomers of single typdhe nucleus, them< will be around 10 to 30, providing that
which may be the same type as some of those of the surfade IS neither very small nor close to unity. Thus, we predict
or different. We assume that not more than one monomer caifat heterogeneous nucleation at disordered surfaces com-
occupy a site, thus the nucleus can be in contact with th@0osed of significant fractions of different species whose in-
surface and so interact with it but it cannot penetrate thdéractions with the nucleus differ by a féT, will often be
surface. Apart from this excluded-volume interaction, thedominated by one or a few sites. It will therefore vary ap-
only interactions are those between monomers in contact. freciably between realizations. Experimentally, this means
the surface were uniform, i.e., composed exclusively of ondhat the rate will differ appreciably between nominally iden-
type of monomer then the free energy barrier to nucleatiortic@l samples. . _
would of course be the same at every point on the surface. Finally, for the purposes of comparison we consider ad-
However, if the surface is composed of two types of mono-SOrption onto the surface of individual monomers. These
mers that are not uniformly distributed then the barrier will Monomers are of the same type as those that made up the
vary from point to point, depending on the numbers ofhucleus. For simplicity we do so in the regime where we

monomers of the different types that the nucleus is in contadt@ve much less than a monolayer, i.e., where the number of
with at a particular point. A schematic of a cubic nucleus in@dsorbed monomeis<N,. Now, we can compare the rafie

contact with such a surface is shown in Fig. 1. with the adsorbed amouit in order to get a feel for which
Let us call the two types of monomess and B, and  Property is more likely to be no_n-self-averaging. WhEn
assume they are distributed at random. Let monomers of typ& Ns then few pairs of adjacent sites are occupied and so we
A and B interact with the nucleus with energieg and eg, ~ Can treat each surface site as independent. Thsmiven by
respectively. Then the shift in the barrier to nucleation when Ng

the nucleus is at a sitiein contact with the surface is = explp+ neat (1 -n)eg] ,
i1 L+exgu+nea+ (1-n)eg]

(23

AF; = AFg+niea+ (Ng— M) €g, (18)
. wheren;=1 if the monomer at sité on the surface is an
whereAF, is the nucleation barrier when the the nucleus isa-type monomer and, =0 if the monomer is &-type mono-
not in contact with the surface, is the total number of sites mer. » is the chemical potential of the monoméirs units of
in the nucleus that contact the surface; as the surface is takegT). The variation ofl" from realization to realization will
to be planar this number is taken to be a constanis the  depend ore,, eg, 5, and .
number of A monomers of the surface in contact with the  However, this variability simply comes from the fact that
nucleus when the nucleus is at sitdf the monomers of the the terms in the sum of EC{23) take one of two values
surface are eithe or B at random, then the probability of depending on whether the monomer is typeor type B.
any one of then. sites of the surface being a@atype mono-  These two values are bounded by 0 and 1. Thus we can
mer is just the fraction of-type monomers, which we de- easily obtain an upper bound for this variationIinby as-
note byf,. Then the probability of the nucleus being in con- suming the terms in the sum fby, Eq.(23) are either 0 or 1.
tact withn; A-type monomers and;—n; B-type monomers is  This corresponds to, say, thetype monomers always hav-
Just ing a monomer adsorbed onto them while Bxype mono-
mers never have an adsorbed monomer. For definiteness we
fRi(L =) (19) assume thaf-type monomers are the ones with adsorbed
n ! (ng—ny! monomers. This approximation will clearly overestimate the
variability in I' but even within this approximation the vari-
exp[— (n, — my%/(2w?)] ance ofl" is just fo(1—f5)Ns for large Ng. The ratio of the
= (ZWW§)1/2 ' (20 standard deviation to the medgl\; is then given by

Pa(ny) = e

_ 1/2
where the mean valuen,=f,n;, and the variance of the std. dev.:<1 fA) N;UZ (24)
GaussiamZ=ncfa(1-f,). mean fa

_ Using Eqs.(4), (18), and(20) we see that the Gaussian gnq sg is small for larghls andf,=0(0.1). At least when the
d|st.r|but|on forn; becomes a Gaussian distribution #rof adsorption is small’ is self-averaging. So disorder large
variance enough to cause the rai to be non-self-averaging may

- 2= _ RY leave other properties, e.dl, still self-averaging. As the
W= wi(en - )’ = efal ~fa)(ea ). (2D) nucleus is largen,=0(10), the variance in the free-energy
The mean value of thAFf of Eq.(4) is barrier at a site is larggt is multiplied byn. in Eq.(21)] and
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the rateR is then proportional to the exponential of this large the set of nucleation times} given that the nucleation rate is
quantity. Both the factor ofn, and the exponentiation RN, This last probability is easily obtained from E@®5)
strongly enhance the effect of disorder and make the nuclewhich gives the probability of observing a single valuet of
ation rate one of the most likely properties of a system to bgjiven the rate. As the measurements are independent,
non-self-averaging. p({t}|RN,) is simply given by

R RNYNATINA exp(— RN 27
IV. DETERMINING THE NUCLEATION RATE USING p({ }| NS) * ( NS) i=1 X[X Ns ') ( )

BAYESIAN INFERENCE

= (RN expl- RN, (28)
In this section we will discuss the use of Bayesian infer- .

ence to determine the probable nucleation rate from measur&v-herets is the sum of theN, measurements

ments of nucleation, and hence determine whether or not two Na

(or more different samples have the same or different nucle- te= > t;. (29)

ation rates. This is required as observing the effects of dis- i=1

order on nucleation is hampered by the fact that nucleation i?’he signe indicates that we have dropped a normalization

inherently a random process. There is more than one way t

. . . onstant. We can restore normalization at the end of the cal-
study nucleation and inference should be applicable to all ofulation
them, but for definiteness and because our nucleation Rates .
are initial nucleation rates we study determining the rate Ofri
nucleation from the time until the first nucleus appears. For-
tunately, the inference problem we need to solve is the same P(RNJ{t}) = cpo(RN)(RNYMA exp(—- RN, (30)
as that given and solved as an example in chapter 3 of the o o
textbook of MacKay[16]. We shall therefore give only a Wherecis just a constant of normalization,
brief presentation, referring the reader for details to Ref.
[16]. c‘lzf Po(RNY (RNYNA exp(—- RNt d (RN, (31)
Nucleation is due to a fluctuation and so is random even
in a completely uniform pure system. The timat which the We have considered a pair of randomly generated sys-
first nucleus appears is a random variable. The probabilityems. Each habl;=10" sites with free-energy barriers taken
distribution function fort is an exponential, from a distribution with meam=20 and standard deviation
_ _ w=3. We generate two realizations, the first has a total nucle-
P(V) = RN, exp(~ RNY). (25 ation rate RN,=3.623x103v and the second ha®N,
Experiments can also involve counting the number of eventss 1.575x 10 3v. To employ Bayesian inference we require a
and if these events are independent this number is given bygior distribution for the total ratp,(RN,). We pick a top hat
Poisson distribution function. For example Galkin and Veki-function

Using Eq.(28) in Eg. (26) we obtain the probability dis-
bution function of the rate

lov [17,18 count the number of protein crystals formed. The 1
analysis here can also be applied to determine whether or not Do(RNY = Ry" RNy=<Ry, 32)
two Poisson distributions have different means. If they have 0 0 RN>Rp.

then that too indicates a varying nucleation rate. . . -
cher reasonable priors give similar results, as they should.

that have been prepared in the same way. If we can deter- We have numerically generated setsNj=20 nucleatlo_n
mine that they have different nucleation rates then clearly wdmes for both SySte’_“S and use_d_ bOth S?ts .Of values_ in Eq.
must be in the non-self-averaging regime whereas if we extd- The wo resultlng pr_obablhty d|str|but|0|j functlpns
amine a number of samples and they all have indistinguishP(RNSHt}) ?re pIotted_ln Fig. 3. We used a prior of width
able rates then we are in the self-averaging regime. A giveffo=2> 10"“v. Even with such a broad prior, 20 measure-
sample will have some unknown total nucleation i, If ments are clearly enough to d_emonstrate tha_t it is very likely
we determine the timeat which a nucleus appeas, times, that the two syst’ems have _dlﬁgrent ngcleatlon rates. Thus,
then we will haveN, values,t; to ty,, drawn from the dis- the use of Bayes's theorem in this way is an effective way of
tribution of Eq.(25). We denote this set of times Hgh. determining that the rate is varying from sample to sample,

We now need Bayes's theorem, which[is] and so the rate is not self-averaging.

Po(RN) p({t}RNy)

P(RNY{t}) = , (26) V. CONCLUSION

f Po(RN p({t} RNy d(RNy) Nucleation often occurs with the nucleus interacting with,
and with a free energy strongly reduced by, impurities. This
where P(RNy|{t}) is the probability we want: it is the prob- is called heterogeneous nucleation. Here, we have addressed
ability that the rate iRN; given the set of measured nucle- the question: Under what conditions can chance variations
ation times{t}. Also, po(RNy) is the prior probability distri- from sample to sample in the impurities present, cause the
bution, the probability distribution before we made the nucleation rate to vary significantly from sample to sample?
measurements, ani{t}| RN,) is the probability of observing In the previous section we showed how Bayes'’s theorem
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200 N T ' follow the fraction of the system that has undergone the
i ! \ | phase transition as a function of time. The evolution over
6001 o i time 7 of this fraction, which we denote bj{(7), is often
I [ | described using the Kolmogorov-Johnson-Mehl-Avrami
" 00k ! \ | (KIJMA) theory[5,6], according to which
\
| " ‘\ X(7)=1-exg—- A7), (33
200 ] _
) whereA is a constant that depends on both the rate of nucle-
5 \o e T— ation and the rate of growth of the droplets/crystallites of the
e ' ) | ' new phase. Equatiorf33) is sometimes referred to as

RN Avrami’s law. If the nucleation rate is uniform throughout the

FIG. 3. The probability distribution functio®® for the total ~ System, the exponemh=d+1 with d the dimensionality of
nucleation ratRN. It is obtained using Bayes's theorem applied to SPace. The power af+1 contains a power af due to the
Na=20 measurements of the timeat which the first nucleus ap- fact that if the growth front of the domains of the new phase
pears. The true nucleation rates aRd\,=3.623<1073y (solid IS moving at a constant velocity, then the volume of a
curve) andRN,=1.575x 103y (dashed curve domain scales a@ )% The additional power of time comes
from the fact that for uniform nucleation the number of do-
allows an efficient estimation of the nucleation rate in amains increases linearly with time However, if nucleation
sample and so allows variations in this rate to be detected. Ais not uniform but occurs at just a few sites then nucleation
the impurities are typically uncharacterized and uncontrollednay occur at early times at these sites, and then nucleation
we resorted to a statistical theory to model chance, i.e., rarceases as the sites with low free-energy barriers have been
dom, variations in the impurities. The impurities were mod-“used up.” Then the KIMA exponemh equalsd not d+1.
eled by quenched disorder and we showed that the rate dfhe nucleation rateR calculated here are initial rates, when
nucleation has the same form as the partition function othe rateR is dominated by a few sites it will decrease as they
Derrida’s random energy modgll0]. There is a regime are “used up.” Thus, as has been discussed by Castro and
where the nucleation rate in different samples prepared in theo-workers[5,6], disorder can result in deviations from a
same way may be different, where it is non-self-averagingsimple KIMA growth law with exponenin=3, in two di-
This occurs when the widtv of the distribution of nucle- mensions. See Reff5,6] for calculations showing effective
ation barriers is large. The crossover from this regime to thexponents between 2 and 3. We would expect that non-self-
regime where the nucleation rate is very similar in differentaveraging systems, where nucleation occurs predominantly
samples occurs at a width given by Eq.(10). The nucle- at one or a few sites, should exhibit an exponent nean to
ation rate is very sensitive to disorder in the sense that it may 2. It should be noted that they point out thatalone is a
be non-self-averaging even when other properties may stilhot a particularly discriminating and that if the new phase
be self-averaging. This is in accord with experiment wherdorming is crystalline, then the grain size distribution pro-
nucleation is known to be highly sensitive to impurit[@$]. vides more information.
Our study of a specific model of nucleation at a disordered Finally, Harrowell and Oxtoby4] have discussed the ef-
surface(Sec. Ill) showed that, at least within this model, the fects of the rapidly increasing relaxation time, essentially our
origin of this sensitivity lies in the fact that the nucleus is v, and heterogeneity present in a glass. Of course, glassy
quite large, it consists of not one but many molecules, andystems show non-self-averaging behavior. Future work
that the rate is proportional to the exponential of the freecould study non-self-averaging behavior of the nucleation
energy barrier. Nucleation is important in a number of fieldsrate in glasses.
for example, it is crucial for protein crystallizatiga3]. The
crystal phase of proteins is required for x-ray determination ACKNOWLEDGMENTS

of their structure.
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