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Brownian dynamics simulations of Laponite colloid suspensions
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Colloidal suspensions of Laponite clay platelets are studied by means of Brownian dynamics simulations.
The platelets carry discrete charged sites which interact via a Yukawa potential. As in the paper by StKutter
al. [J. Chem. Phys112 311(2000], two models are considered. In the first one all surface sites are identically
negative charged, whereas in the second one, rim charges of opposite sign are included. These models mimic
the behavior of the Laponite particles in different media. They are employed in a series of simulations for
different Laponite concentrations and for two values of the Debye length. For the equilibrium states, the system
structure is studied by center-to-center and orientational pair distribution functions. Long-time translational and
rotational self-diffusion coefficients are computed by two different methods, which yield very similar results.
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[. INTRODUCTION that the highly anisotropic shape of the particles makes the

interparticle potential extremely complicated. There are,

Clay colloidal suspensions appear in several industriahowever, three very interesting theoretical works by Dijkstra
processes. Examples are found in the ceramic, paint, cogt al. and Kutteret al. [15,16. In the first two, the Laponite

metic, and petroleum industries, among otH&g]. In many  particles are modeled by platelets which carry a constant

of their applications, the interest in them is driven by theelectrostatic quadrupole moment. This approach, although

diversity of behaviors they show. These go from a Newton-crude, was capable of predicting a sol-gel transition, in good

ian liquid up to a viscoelastic gel; they may even form aagreement with experimental observations. The third work, a

flocculated dispersion, depending on their type, size, shap#)olecular dynamics study, presents a much more realistic

concentration, and medium compositif®-6]. Hence, un- model, where the platelets carry a given number of charged

derstanding their behavior is both a challenge and a neces§ites homogeneously distributed over their surfaces. In addi-
sity. tion, the particles are assumed to be dispersed in water, and

particles are three-layer synthetic clays composed of a cenlukawa potential. Another important feature of this model is
tral magnesium sheet sandwiched by two silica shigeg. that it allows the study of the effect of rim charges of a

This structure forms thin platelet-shaped lamellas of diamJifférent nature than the surface ones. In this way, the flat
eters close to 25 nm and thicknesses of 1 nm, which can b%nd edge surfaces of the Laponite particles are modeled.
’ In this paper, we further study the behavior of the Lapo-

separated to form a water dispersion. Due to existing isomor-.. . suspensions by means of Brownian dynand) con-

phous substitutions of a fraction of divalent magnesium ionsSiderirlg a model similar to the one employed by Kuter
by monovalent lithium ions, the net charge of the Laponite,; “tpig technique has the advantage of considering the ef-
flat _surface is negative. The e.dge.surfaces of the Laponitpect of the solvent, although we still do not consider the
partlcles', .however, behave quite differently. Herg, the telra, ch more complicated hydrodynamic interactions between
h_edral silica sh_eets and the octa_hedral magnesia sheet_s ?)rlgtelets. Hence, the dynamical and transport properties have
disrupted, leading to the adsorption of specific ions Whichy yayer physical grounding. This allows us to study the be-
rulel t_he surface charge. Hence, dependmg.on the med|.a_ COMavior of the diffusion coefficients as a function of the plate-
position, the edge surface may be negatively or positivelfey ooncentration and the Debye length. Nevertheless, the ac-
charged. . , curacy of the obtained diffusion coefficients is expected to
We should mention here that the regular size and shapge.rease with increasing platelet concentration, due to the
that characterizes this synthetic clay make it very convenie eglect of hydrodynamic interactions. On the other hand, our
for experimental studies. In fact, lately there has been a lot o odel impedes platelet interpenetration by considerir;g a
experir_nental work on _Laponite Qispersions by means Oarge number of short-ranged repulsive sites. As we will
scattering and rheological techmqu@—?,Q,lQ. Qn the show, this plays an important role in the structure of those
other hand, although the one-dimensional swelling of hy'systems that show a tendency to aggregate.
drated clays has been very well studied by computer simula- The paper is organized as follows. The model for the
tions[11-14, a theoretical description of their suspensions iSLaponite particles and the implementation of the BD simu-
not very developed. This is at least partially due to the faciyiion s described in Sec. II. Section Ill is devoted to the
presentation and discussion of the results. In Sec. IV we
discuss the implications on the local structure and on the

*Electronic address: godriozo@imp.mx self-diffusion coefficients of the pair potential as a function
"Electronic address: mromerob@imp.mx, rom@xanum.uam.mx of the number of charged sites. Finally, in Sec. V we present
*Electronic address: fguevara@imp.mx our conclusions.
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26‘:ttttt:ztz&‘&::::g::gz:: of positive and negative ions angT is the thermal energy.
YT YYYY Y %%UU%%U $66666 66 At this point_, we should mention that Kuttgt al. have
ek “u‘;ﬁfb‘b%: iy ”@“U‘v“vbbbb‘: g used several rigid hexagonal bead models to implement the
©e ‘“&o“‘u"u ® ‘_S-Lu u: ‘L‘«Ubbﬂb‘,b ©e interaction between these types of particles. They checked
. e %%‘“bb’“bu‘ub‘“:b%‘“& ol the form factor[defined by Eq(2.6) of Ref. [15]] and con-
ey :b.;:, bbo%t:‘« Ubbhcfo" cluded that a 61 bead discrete model provides a good ap-
u“«bb‘«u@gugu‘xb%o“ proach for the form factor of a solid disk. They also per-
MY PrAA A L he formed a test to study the effect of discretizing the ch&pge

on the surface of spherical particles. For this purpose, they

FIG. 1. Bead model formed by;=469 spheres of diameter;  carried out two molecular dynamic simulations, one for a set
for evaluating the Laponite-Laponite interaction energy. As can bef spheres with their charge continuously distributed on their
seen, the arrangement geometry is a disk of diameter25 nm  surface and the other for the same set but with discretized

and thickness;=1 nm. charge, and calculated the radial distribution function for
each case. They observed a good agreement between the
Il. THE MODEL radial distribution functions of both systems for a discretiza-
_ _ tion of 61 sites and for the same total cha@g They con-
A. Pair potential cluded that the discrete representation of the chapge

through 61 sites is a good approach to the continuous distri-

As mentioned in the preceding section, Laponites are synt-) X fthe ch h ; fth icl
thetic clay particles with a highly regular geometry similar to ution of t ec _arg@T on the sur ace o the partic es. Nev-
ertheless, it is important to emphasize the following facts:

a disk of diametero, =25 nm and thicknessr=1 nm, ; S o L
which have the following unit cell formula: the radial distribution function is not very sensitive to

; i -0. ; hanges in the charge discretization over spherical particles
Nag £ (SigMgs sLio 9020(OH)4] 7. When dispersed by wa- © .
ter, the sodium ions are released from their surface, Ieadingue to t.he|r symmetry and _the Debye length employed for
to a net surface charge @;~-700 e, and hence, to 700 erforming th_e test58.9 nm) is much larger than t_hose used
charged sites. Hence, a first model for the Laponite is giverﬁOr the study itsel{~9,3, and' 1 nm Hence, there is not any
by distributing this charge over its surfa¢model A). For guarantee that systems _havmg other Debye lengths and par-
acid conditions, however, due to the absorption of certai icles with other geometries such as platelets should also be-

specific ions on the particles edges, they may also show ave properly if their particles are discretized in a similar

local positive ring charge whose value may reach 10% of th §Sh|on. As a first .step, however, we also assume tha}t a 6.1
absolute value of their net charge, depending ongiHeof Site charge discretization may approach the 700 site discreti-

the suspension. In this case, we assume a negative cha %uon of the charg@y on the surfac_e of the plate!ets. Thus,
e subset of beads where we assign the electric cligrge

Q_-~1.1Q; and a positive charg®,~-0.1Q; uniformly  ~ . T ;
distributed on the flat and edge surface of the Laponite parTQT/61 IS shpwn |n_F|g. 1 as dark spheres, Whe_reas the light
ticle, respectively(modelB). ones are assilgneq;ia_—o. In this way, we have defined model
To obtain the thermodynamic and transport properties of\. ofa Lapo_nlte_ particle characterlzed by a complgtely repul-
such a suspension we modeled the Laponites by rigid al§|vle: pOtg)ﬂtl?L 't'el'(’ fqrta high hy(tjr;)hxyl cf?ncten;r?ﬁlon. i
rangements oN.(=469 spherical particles of diameter;, h order 1o take into account the efiect of the positive.
as shown in Fig. 1. In this way, the Laponite-Laponite inter-elec'[.rIC charge_s on the Laponite edges that appear in acid
action energy is evaluated as the sum of single site—to—sitg]ed'a‘ we define modd by

Yukawa type interactions, namely, QJN, dark spheres on the edge

Nr Ny 0 Gio = Q-/N_ inner dark spheres, (3)
o) =2 > " exp- kpligp), (1) 0 light spheres,
i=1 j=1 €liqjB

where N, =24 andN_=37. Here, we define the number of
where a(# ) is an index associated to the Laponites, charged sites bg =N, +N_.
=78 is the water dielectric constant at room temperatye, This last model may lead to particle interpenetrations and
is the electric charge assigned to each be,gg;:|ria—rjﬁ| is  numerical instabilities as a consequence of the attractive in-
the site-to-site distance, amg, is the vector located in the teractions between the positive and negative charges of dif-
center of each charge. Of course, the net charge of eadkrent particles. Thus, in order to avoid particle interpenetra-
Laponite platelet i§iN:qum=QT. Finally, kp=1/\ is the De-  tion we imposed a short-range potential given by

021405-2



BROWNIAN DYNAMICS SIMULATIONS OF LAPONITE...

Nr Ne

P=22 5 (4)

i=1 j=1 Niajp

Here, theC value is adjusted in such way that the total in-
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the axial axis of the particle and so, the description of vector
R(t) in the body-reference frame turns:

RY(M=(R_,R, ,R). (10)

teraction energy between a positive and negative site at CORthe same procedure is done for the total fdf¢8 acting on

tact (1 nm) is around 1kgT, wherekg is the Boltzmann’s

the c.m. of the platelet due to the interactions with the other

constant andr=300 K is the temperature. Hence, the total patelets. Hence, after obtainifg®(t) by means of Eq(7),

interaction energy in &l platelets system is given by

N-1 N

p=2 2 (650+ %)), (5)

a=1 B=a+1

whereas the net force acting on sitef plateleta is

N Ny
0ia0jgXP~ Kpliaip) . C

Fia=— > Eviaw( el Dl =] (6)
B=1j=1 €liajp liajg

and the net force acting on the center of m@ss,) of plate-
let « is

Fo=2 Fia (7)

Finally, the net torque acting on the c.m. of plateleteads

relationship
FOM® =A™ (1) - FO) (11)

is applied for obtaining:(b)(t):(le,Fiy,FH). Thus, for a
finite time stepAt, the evolution of the platelet's c.m. is
given by

DT,O

ARP(t + At) = k*T FO () At + ARD(AY),
B

(12

wheres= L,, Ly, andl. In this equationp! =D} andDj

are the free translational diffusion coefficients of the platelets
whose values are discussed in the following section. In the
same equatior‘ARig)(At) is the random displacement of the
particle c.m. that appears due to the solvent transference of
momenta. This random displacement has a Gaussian distri-
bution with zero mean and variance

Ny
Ta= .21 (Tia = Ra) X Fig, (8) (|ARD(AD|? = 2DT AL, (13)
whereR,, is the c.m. position of platelet. Next, the c.m. position is updated by
RO(t+ At) = RO(t) + A(t) - ARP(t + At). (14)

B. Brownian dynamics algorithm . . . .
whian dynami dort Note that in Eq(14) we use the rotation matri&(t) instead

In an ordinary BD simulation, the evolution of the c.m. of A(t+At). This is because we split the complex evolution
and the orientation of a nonspherical particle is given by theyf the platelet in two parts. The first part, previously ex-
integration of the appropriate set of Langevin equations. Irpjained, accounts only for the pure c.m. translation. The sec-
the simplest case of spherical particles, this methodologyng, to be explained, accounts for the pure rotation around
was developed and implemented by Erm@k]. In this  corresponding Laponites’ axes having their c.m. positions
work, the methodology is adapted for updating the c.m. pofixed. Hence, this procedure updates all matrides
sitions of the platelets. To update the orientation of the plate- oy this purpose, the torqugt) is calculated by means of

Ie_ts, hovx_/ever, there are two equivalent methodologies thaéq. (8) and is decomposed to its corresponding body refer-
simply differ on the selection of the reference frame. Thegnce components using

first one uses the body reference frame to describe the BD.
This methodology is, for example, employed by Lowés]

for a set of spherocylinders. The other one uses a fixed ref- o )
erence frame to solve the equations of motion. This last id hus, for the same finite time steft and a given platelet,
employed by Heyef19-21] for a set of particles modeled by the evqlut_lon of _each angle around the corresponding plate-
a linear arrangement of beads. In this work we adopted th&t's principal axis are given by

first methodology, and thus for each platelet, the c.m. posi- DRO

tion is decomposed into a parallel and two perpendicular Ag,(t+At) = k* TO(1)At + Ag9(AL),

components to the axial axis through gl
where the random angular displacemempig)(At) has a

ROt =A(t) - R®(), 9)
where A(t) is the rotation matrix associated to the corre—GaUSS'an distribution with zero mean and variance

sponding platelet. This matrix relates the two descriptions of
the same object, i.e., the c.m. vector. The descriptions of
vectorR(t) are denoted bys) and(b) corresponding to sys- The anglesAszx,Aqaiy, and Ag, [Eq. (16)] are then em-
tem and body references, respectively. Moreover, the axes @loyed for constructing the matrixes associated with the ro-
each body-reference frame are parallel to the principal axeftion around each platelet principal axis. These matrixes
of the corresponding platelet. In particular, thaxis is along  read

TO@W) = ATY(t) - TO(1). (15)

(16)

(A9 (A1) = 2DROAL. (17)
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1 0 0 C. Free diffusion coefficients
Aix(t+At) =(0 COSA%X - SinAQDLX , The BD simulation technique requires the knowledge of
0 sinAg, —cosAg, the free diffusion coefficients of the considered particles. In

the case of a spherical particle the free translational diffusion
. coefficient is given by Einstein’s identity and the Stokes law
cosAe, 0 sinde, value, i.e.D{=kgT/37 70, whereo is particle diameter and
A, (t+AD) = 0 1 0 7 is the solvent viscosity 7~ 1.002 cP for water at room
y temperaturg23]). In this simple case, the free rotational dif-
fusion coefficientD is directly related to the free transla-
tional diffusion coefficient by?DY/3=D/ [24]. These coef-

- sinAc,oLy 0 cosAgoLy

cosAg, —sinAg; 0 ficients are used further in this subsection to normalize the
| free diffusion coefficients of the particles of interest.
Alt+Ay = SmOAQD” COSOAQD” (i (18) As previously mentioned, the Laponite platelets are com-

posed ofN; identical spheres which form a rigid arrange-
ment. This is illustrated in Fig. 1. Nevertheless, this bead
model is employed exclusively to evaluate the configuration
energy. From a hydrodynamic point of view, the Laponite
platelets are modeled by oblate ellipsoids with diametgrs
ando . These diameters are parallel and perpendicular to the
(b)) — (D) axial axis, respectively. For such particles, its aspect radio is
U = AA(t+ AL -u(E+ AY. (19) usually defined byx=o,/0y, since the hydrodynamic
Substituting the definition of the rotational matrix at time  theory leads to analytic expressions for the diffusion coeffi-
Eq. (9), into Eq. (19), the updating rule for the rotational Cients as a function of i{25,26. They read
matrix A to timet+At is found to be

Given an arbitrary vectou fixed in the system-reference
frame, the rotational matriAA=A LA J_yAH relates its repre-
sentation in the body reference at timwith its representa-
tion in the body reference at tinte- At by means of

- 3| (3k*-2)S-1
A(t+At) = A(t) - AA(t + At). 20 TORT = 2| 9K — 897 -
(t+At) =A(t) - AA(t+ At) (20) DL/D_S[ e ,
It is important to mention that the previous definition of ma-
trix AA will induce an error since the matricds ,A, , and
X y — -
A, are not commutable. Nevertheless, the mean error be- 3[ (¥-2)s+1
comes negligible for a small enough value of the time step D, %D§ = il 2o |
K - -

At used during a long run of the BD simulati¢®0,23.
Finally, and similarly to the above described translational
case,D} =D andDf are the free rotational diffusion co-

. . . [ (2 — i
efficients of the platelets. In the following section, we focus DT,OIDE: 3| (k=2)S+1

on them in order to complete the methodology. 2l -1 |
3 T T T T T T T 3 ! T j T
2 . 2+ _

FIG. 2. Radial distribution functioicontinu-
ous line and angular distribution function
(dashed ling for model A, A\=1 nm and(a) p
=0.01,(b) 0.05,(c) 0.09, and(d) 0.13.
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IIl. RESULTS
A. Simulation details

The computations were performed by considering the
Laponite models previously described. All systems studied
consisted oN=100 platelets, which were randomly located
and oriented in a cubic simulation cell of volumé For
avoiding platelets to be interpenetrated in the initial configu-
ration, we resituate those that overlap with others. In order to
identify them a full site to site test was performed. The tem-
perature was chosen to he 300 K and the solvent viscosity
170=1.002 cP, which corresponds to water under this tem-
perature. The volume fractiop (defined asNV,/V, where
vp:mﬁaum is the platelet volumewas varied in the range
[0.01, 0.15 in steps of 0.02 and the Debye lengthwas
fixed to 1 and 3 nm. This makes 16 simulations for each
model. Periodic boundary conditions were considered and a

FIG. 3. Typical configuration for modeA, N\=1nm, andp  cutoff equal to half the edge size of the cell was imposed.
=0.09. The particle trajectories were generated according to the al-

gorithm defined in Sec. Il B. Energy was monitored in the
KS—-1 progress towards equilibrium.
262-1 " (21 For each condition set an equilibration run c_>f5]sﬂeps
was performed, during which the value of the time sidp
where was adjusted in such a way that the mean-square displace-
ment of the Laponites’ c.m. positions was approximately
S= (K%~ l)‘l’zarctar(v"xz— 1)_ (220 0.01 nn?. The obtained time-step mean values after equili-
bration range in(0.003, 0.004 ns in all cases except for
In Eq. (22), DI and D[ are free translation diffusion coeffi- model B, with A\=3 nm andp=0.13 and 0.15 which were
cients that correspond to displacements that are perpendicaround 0.0015 ns. It is important to mention that the adjust-
lar and parallel to the particle axial axis, respectively. Simi-ment of the time-step was carried out only during the equili-
larly, DT and DHR are free rotation diffusion coefficients that bration process. During the formal run of2.0° steps, the
correspond to angular displacements around axes that avaelue of the time step remains fixed and equal to the mean
perpendicular and parallel to the particle axial axis, respecvalue previously found.
tively. Naturally, the free diffusion coefficients associated to

3
DRO/D§ = 5{

our Laponite model corresponds #& 25. Thus, the method- B. Structural properties

ology for the BD simulation that was introduced in the pre- The quantitative characterization of the local structure of

ceding section is completed. the suspension is provided by two different pair distribution
2 T T T T T T T 2 T T T T

a(r).p(r)

FIG. 4. Radial distribution functioicontinu-
ous lineg and angular distribution function
(dashed lingfor model A with A=3 nm and vol-
ume fraction(a) p=0.01, (b) 0.05, (c) 0.09, and
(d) 0.13.

&

a(r).p(r)
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lowest values op the suspension behaves almost as an iso-
tropic gas since the corresponding radial and angular distri-
bution functions are structureless. It is to be noted p{at
indicates a preferential parallel orientation of platelets for
c.m. distances of the order of the platelet radius or less, al-
though these configurations are quite rare because of the re-
pulsion between sites. In fact, the parallel orientation is seen
for all p considered, but its relative importance increases
with it. Hence, with an increasing value the structure
gradually builds up, and is dramatically enhanced for not so
high concentrations. In particular, fgr=0.09, the system
shows signatures of long range order corresponding to a
structure of several parallel platelets, as is indicated by the
threeg(r) peaks, which are equally separated by a distance
close to 0.35, . A snapshot of a typical equilibrium configu-
FIG. 5. Typical configuration for mode8 with p=0.05 and\  ration of this particular system is depicted in Fig. 3. As can
=1nm. Arows show a T-shapedleft) and PPO (righty  pe seen, the system is composed of several parallel local
configuration. arrangements of platelets which are oriented in different di-
rections, thus making the peak pfr) very close to 1, with
functions. One of them is the radial distribution functigin)  decreasing height at larger separations. For even higher vol-
[27] which describes the correlations between the c.m. of aime fractions, a large first peak gtr) is observed, indicat-
platelet with the c.m. of another at the radial distanc€he ing an increase of short range parallel order, whereas the
second one is the angular distribution function, which is ob-other peaks have a much lower height.
tained by taking the statistical average of the second Leg- Upon increasing. from 1 to 3 nm the extended range of
endre polynomial for a fixed distancrec|Ra—R,3| between the repulsion between sites dramatically enhances the struc-

the c.m. of two platelets, namely, ture of the suspension, as can be seen in the results presented
. in Fig. 4. For example, ab=0.01 the structure is that of a
(= -1 2 simple fluid instead of a gas. In gddltlon, the long range
p(r) <2(3 CoSA(r) )>’ @3 parallel order that foh=1 nm sets in ap=0.09, now pre-

sents itself at the lower volume fraction p£0.05. Indeed,
where(:--) means a statistical average over all pairs. Herefgy p=0.09 andp=0.13 an extra peak close to #.4 is ob-
6(r) is the angle between the normalg andn of platelets  tained for theg(r) function.
a and . In this way, when neighboring platelets are nearly The influence of the rim charges on the structure and
parallel the value ofp(r) is close to 1, whereas for a phase behavior is best understood by comparing the BD re-
T-shaped configuration it is close to —1/2. sults for modelB with those pertaining to moded under

The results forg(r) and p(r) corresponding to model similar physical conditions. Inspection of typical configura-

A, A=1 nm as a function o are presented in Fig. 2. For the tions in this regime, such as those shown in Fig. 5, clearly

g(r).p(r)
a(r).p(r)

I . 1 . . 1 . FIG. 6. Radial distribution

0 2 3 0 1 2 ; . .
@) r/o, (b) /o functions (continuous ling aqd
angular  distribution  function
6 . T 6 . . (dashed ling for model B with \
L _ L i =1 nm and(a) p=0.01, (b) 0.05,
4L _ al | (c) 0.09, and(d) 0.13.
= T
g g
S =

C
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~
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FIG. 7. Radial and angular distribution functions for moéel
with A\=1 nm and two different volume fractions aroumg;,,
which correspond to Fig.(6) and Fig. &d).

FIG. 8. Potential energy of mod8lwith A\=1 nm as a function
of volume fractionp.

nature of the PPO arrangement previously mentioned. The

points to the formation of clusters which are composed ofact that there is a very structured system at the lowest vol-
two characteristic pair structures. In the first one the plateletame fraction 0.01 indicates that spontaneous aggregation is
tend to be perpendicular to each other forming a T-shapethking place. Hence, this behavior is also expected for even
pair configuration. In the second, the platelets tend to be in anore diluted systems.
parallel, partially overlappedPPO pair arrangement, with As the volume fraction is increased the amplitude of the
the centers separated by a distance close tawQ.8% should  peaks depicted in Fig. 6 drops. In addition, a parallel con-
be mentioned that this configuration is not observed if thefiguration appears at a separation lower thar 2, which is
noncharged sites that prevent the interpenetration of thdetected by a small hump ig(r) for the volume fractiorp
platelets are not accounted. It is then not surprising that this0.09. The hump ing(r) has a higher amplitude for the
particular arrangement is not reported in H&6]. Both con-  system with volume fractiop=0.13, as can be readily seen
figurations are pointed out in Fig. 5. Other configurationsin the comparison of the distribution functions presented in
involving more than two platelets, such as the house-of-cardsig. 7. This configuration certainly originates from the pack-
type, are also clearly seen. ing of the platelets, since it is not energetically favored by

These qualitative observations are confirmed by a moreéhe presence of the rim charges. Another way of visualizing
quantitative analysis of the pair structure. Figure 6 shows thehis phenomenology is by plotting the potential energy of the
distribution functions for the same physical parameters asystem as a function of the volume fraction, as seen in Fig. 8.
those of Fig. 2 for model. The sharp first peak ig(r) and It is worth to notice in Fig. 8 that the volume fraction at
the corresponding well of the(r) at a distance slightly which the potential energy has a minimysg,, is close to
larger than the platelet radius confirms the predominance dd.11. The picture that emerges is that the T-shaped configu-
T-shaped pair configurations at short range. A second peak oétions always dominate the structure at all volume fraction
lower but significant amplitude is present around @:8%or  values lower tharp, with a less significant contribution
both radial distribution functions. Hence, this peak is a sigfrom the PPO configurations. Fer> p.,, the parallel con-

a(r).p(r)
9(r).p(r)

FIG. 9. Radial distribution
function (continuous ling and an-
gular distribution functiorfdashed
line) for model B with A=3 nm

A
)
z

oL i and volume fraction(@) p=0.01,
=~ = (b) 0.05,(c) 0.09, and(d) 0.13.
S— o
S g
5 5
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FIG. 10. Time-dependent SDD' (squarg, D] (up triangle, (@) 0.00 004 058 012 016
D'f (down triangle, and DF (circle) computed from the BD simu-
lation. Solid, dashed, dotted, and dot-dashed lines are the corre- 12
sponding fits. The particular case illustrated here corresponds to a ) '
model B system with volume fractiop=0.13 and\=1 nm. Lo 5 5 %
figurations are the only option to make the system more 08" 2 ]
dense, thus increasing the value of the potential energy, as 2 v ¢
can be clearly seen. Q A 5
Figure 9 presents the results for 3 nm. For this\ value “E. 04 %—
the effect of the rim charges is to a great extent screened by A L |
the enhanced range of the surface charges’ potential. In fact, . ; i 2 5 § ¢
as shown further in the text, there is no energetic well for the 0.0 - 1 . L —
pair potential that corresponds to the PPO and the T-shaped 000 004 008 012 046
configurations. Instead, we found an ever-increasing nonne- ® ' D ' '

gative potential energy as a function of the volume fraction.
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FIG. 11. Normalized SDC for modél with A\=1 nm (top) and
A=3 nm (bottom) as a function ofp. D”" were obtained from the
asymptotic value of the fitting functiofEq. (27)]. The symbols in
each figure correspond 0" (squarg, D" (up triangle, D"

(down trianglg, andD**" (circle).

FIG. 12. Normalized SDC for mod@ with A=1 nm (top) and
A=3 nm (bottom) as a function ofp. D%" were obtained from the
asymptotic value of the fitting functiofEq. (27)]. The symbols in
each figure correspond D" (squarg, D/ (up trianglg, D"
(down trianglg, andD*" (circle).

Consequently, no aggregationlike behavior is seen and the
g(r) for p=0.01 behaves as a simple fluid, as in the case of
model A for the same value of. By increasing the volume
fraction, a largeg(r) peak is developed that coincides with a
not very pronouncedp(r) well. This indicates that the
T-shaped configurations still appear, although the position of
the peak in the radial distribution function is shifted to larger
separations. This means that the platelets in this T-shaped
configuration are not in contact any more, but separated as
far as possible. Hence, this peak is shifted to the left as the
concentration is increased. All these features are in high con-
trast with respect to the=1 nm case, in which the position

of this first peak remains at a fairly constant distance of
~o /2. On the other hand, the peaks that characterize the
PPO pair configurations are no longer present, indicating that
these configurations have disappeared from the bulk. Finally,
the small hump that signals the existence of very closed par-
allel configurations appears at a volume fraction value of
0.05, and is more clearly defined than in the corresponding
values ofp for the casev=1 nm. As in the previous case, we
can conclude that all these features are an effect of the pack-
ing of the system at high volume fraction values.

Self-diffusion coefficients

One of the purposes of this work is to present the results
for the long-time self-diffusion coefficient6SDC's) of a
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FIG. 13. Potential energy for two modBlplatelets withh=1 nm and for different configuration&) For a T-shaped configuration and
as a function of the c.m.-c.m. distan¢b) For a T-shaped configuration and as a function of the rotation af@ylEor a PPO configuration,
with a fixed perpendicular projection of the c.m.-c.m. distance at 2.5 nm and as a functionxgirihjection of the c.m.-c.m. distanc@l)
For a parallel configuration with a c.m.-c.m. distance of 6 nm and as a function of the rotation angle. The solid, dashed, dotted, and
dashed-dotted lines correspondNg=469, 91, 61, and 37, respectively. The total rim and superficial charges are kept constant.

tracer. The BD simulation of a tracéhat is governed by the
direct interactions with the rest of the particles in the colloi-
dal suspensionprovides information of the self-diffusion
process as a function of time through the calculation of the
mean-square-displacement, namely,

1 N M 2
Witw) = =2\ | 2 ARVt | ),
Na=1 m=1 —
1 N M 2 D:“"
a=1 m=1
wherex=_1,, 1, andl. Thus, the time dependent SDC'’s are 0 , ; . , . .
defined by 0 25 50 75 100 125 150
, time (ns)
DV(t ) = M (25)
eMI T 2ty FIG. 14. Time evolution of the rotational correlation function

py . for the same andX\ values used in Fig. 10. Solid and dashed
wherev=T,R andty,=MAt. In Fig. 10 we show, as an ex- lines are the least-squares, linear asymptotic fit to the data from
ample, the time-dependent SDC's for a moBelystem with  which D}/DR? (triangleg andD}**/Df*° (squarepare computed.
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FIG. 16. Normalized rotational SDC'’s for mod@& with X\
FIG. 15. Normalized rotational SDC’s for modé& with X\ =1 nm (top) and A=3 nm (bottom) as a function of the volume
=1 nm (top) and A=3 nm (bottom) as a function of the volume fraction p. Filled symbols correspond to SDC’s computed from the
fraction p. Filled symbols correspond to SDC’s computed from the asymptotic value of the fit to the functiq@7), whereas open sym-
asymptotic value of the fit to the functiq@7), whereas open sym- bols correspond to values computed from the slope of(&Q).
bols correspond to values computed from the slope of(8@).

p=0.13 and\=1 nm. These SDC's are normalized with the not considered as a fitting parameter because it is related to
free-diffusion coefficients obtained in Sec. Il C. In Fig. 10 the free SDC'’s at short timed”°=D""+A”. In the Appen-
we can observe a complex decreasing behavior for the difdix, the values of all fitting parameters obtained for all sys-
ferent SDC's as a function of time. Its complexity is due totems are reported.
the direct interactions the tracer presents with the other plate- The normalized long-time SDC'®”-/D*° computed
lets. In general, at long times the SDC's tend to a low finitefrom the fitting function[Eq. (27)] are displayed graphically
value in the limitt— oo, in Figs. 11 and 12 for modelé& and B, respectively. It is
observed in any of these figures that, in general, the long-
time SDC'’s present a pronounced dependency on the volume
D"t = limDX(t). (26)  fraction. Asp increases, the value of these coefficients drops
to0 considerably. This effect is not surprising since the transla-
tional mobility of the particles is drastically reduced at high
olume fraction values. Nevertheless, the very low SDC'’s
und might point to gel formation. Note that these low
DC'’s are obtained for both models and for simparalues.
In addition, it is also to be noted that a lower valuepois
enough to produce such small values of the SDC'’s for higher
\. On the other handD}*“/DR° behaves quite differently.
For modelA andA=1 nm, its value remains constant for all
p studied, whereas for=3 nm, its value drops only at very
large p values. In fact, this behavior was expected since ro-
, tations around the axis normal to the platelet surface should
D(t) = D' + Alexd - (t/t2)*], (27)  not change the free energy of the system, i.e., the platelets
are free to make these movements because of their symme-
try. Nevertheless, due to the charge discretization the plate-
whereA”, t¥, and ! are fitting parameters. Note that'- is  lets partially break their symmetry, and hence oscillations in

In practice, the different values for the SDC'’s at long
times were evaluated through an extrapolation procedure,
This resource is necessary because the BD simulation on
spans a small time interval. The procedure is based on th
definition of a function that fits the simulation data and its
value in thet—-oeo limit is taken as the long-time SDC's.
Several functions exist to adjust the simulation d&i3,29.
Our proposal is
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the pair potential appear, as is shown in Figs(bl3and tion function that is obtained from Eq%28) and (29),
13(d). The fact thaD[*"/D*° decreases fok=3 nm is just namely,

due to the enhanced range of the repulsive potential. For the

other normalized SDC's, it is seen that they present a similar

behavior, i.e., they strongly decrease as the volume fraction (t)=- In(P4(t)) (30)
increases. One should note tHaf/DR? is affected in a b 2DR%

similar way to that already observed for the translational

SDC'’s. Obviously, movements around tkeandy axes are

strongly hianLeregofqr large conqentrations. In particular, therhe time behavior of functiop, .(t), Eq.(30), which is plot-
value of D;"/D;" is systematically lower than that of teq in Fig, 14, shows that initially this function increases
D,~/D " forA=1 nm in the entirg value range. This effect |inaqry with a slope value of 1, with time. Thus, for a very

is gxplained by the fact that, asincreg;es, parallel configu- short time intervalt<5 n9, the particles rotate as in a dilute
rations are favored, and so the mobility along the plane par-

allel to platelet surfaces is less hindered than the mobiIity?gll:tt;grge\'zg,[e;/i%n:o;% t'Lanfng; ihnoxzéltr&icgm;trl]%n dis-
perpendicular to that plane. Fa=3 nm, however, this ef- 1 purely exp y

fect is no longer observed. Instead, it is seen from Figb)t1 P'ays a complicated nonlinear behavior, which makes diffi-

that thep dependency is enhanced for all the translationafult to obtain quantitative predictions. However, for interme-
coefficients. diate times the behavior is sufficiently smooth to allow a
As was already mentioned, the results of the Iong-time””ear fit over a representative time interval. From Fig. 14 it

SDC's for modeB are presented in Fig. 12. In general, simi- is observed that, when passing from a regime of short times

lar features to modeh are observed. That iQF,L/DHR,o does 10 a regime of intermediate times, a decrease of the slope

not depend significantly on the volume fraction as the otheffom 1 to DE_’L_/DEO |§,Lobtgloned. fL RO

SDC's do, and the dependency of the SDC'’s witfs more The coefficient®’"/D'[™ andD;™/D;™, computed from
pronounced forn=3 nm. There are, however, some differ- the slope ofp; .(t) over a time interval that is highly depen-
ences. Due to the fact that, far=1 nm, the system aggre- dent on the particular case studied, are compared with the
gates even for the very diluted cases, B{é/D>° values are corresponding coefficients obtained from the fitting function,

smaller than those corresponding to modelThis result is  Ed-(27), in Figs. 15 and 16 for models andB, respectively.
no longer valid for larger concentrations. Note that, for In these figures we can observe the agreement between both

=1 nm, DR*/DR? is always smaller than one, which is a methods for all\ values studied. Now, for both modefs

consequence of the potential energy oscillations of thénd B, the error inDi*"/DF® computed from the slope of

T-shaped configuration for rotational movements around th®1,(t) is always higher than the corresponding error com-
z axis[see Fig. 1®)]. For A=3 nm the effect is the same as Puted from the asymptotic fitEq. (27)]. This behavior is
that already observed in modél. Translational and rota- More pronounced for values &f**/DR° close to 1.
tional motion are hindered by the repulsion at high volume
fractions, and so the corresponding SDC’s decrease in com-
parison to their values for the=1 nm case. IV. PAIR POTENTIAL ANALYSIS

Comparison with other method$n order to verify the
validity of the employed method for calculating the rota- In order to check the effect of discretizing the charge on
tional SDC’s, we recalculate them by using a different onethe surface of the Laponite model, we carried out a pair
This alternative method was originally employed in R&0]  potential analysis by considering several numbers of charged
for rodlike particles which interact via a two-site Yukawa sitesN,. In particular, we present the results for moBednd
potential. The rotational motion of disk-shaped particlesdifferent pair configurations in Fig. 13. Here, Fig. (48
such as those studied in this work, can be conveniently chashows the pair potential energy for platelets in a T-shaped
acterized using the single-particle orientational time-configuration as a function of the c.m.-c.m. separation and
correlation functions for A=1 nm. As can be seen, all curves present a minimum

C..(1) ={(P,(e.(t) - £,(0))), (2g)  for distances slightly larger tham /2 (even for theN,

’ =469 case, although, its value is close to 2efde depth of
where Pi(x) is the Ith Legendre polynomial ane, is the the well, however, strongly depends dhy. That is, if the
vector along the principal axig«=_1,,L,, and ). These charge discretization is increased, the depth of the energy
functions are used to describe the light scattering data of well also increases. This effect is due to the large amount of
colloidal tracer particleg[30]. For very dilute solutions the charge per site at high discretization values, which allows a
rotational motion is a pure diffusive process, so the Debydlecrease in the energetic contribution of two unlikely
rotational diffusion equation is applicable. This leads to arncharged sites close to each other, and also due to the fact that

exponentially decaying correlation function equally charged sites on the surfaces of the platelets become
more separated.
C.(t)y=exd-I(I+ 1)DRY%]. (29 For this same configuration the effect of the rotation on

the potential energy as a function of the displacement angle
Clearly, the potential interactions modify this purely expo-is presented in Fig. 1B). For all N, values the potential is
nential decay. Thus we study the first orientational correlaalways attractive, although its strength greatly diminishes
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TABLE |I. Fitting parameters corresponding to model =1, and 3 nmt. is given in nanoseconds.

A=1nm A=3 nm
P v, AlID.° t 7 AlIDL° t 7
0.01 T, L 0.0242 84.82 0.9588 0.1258 43.90 0.9873
T, 0.0609 310.2 0.5391 0.1560 47.83 1.2912
R, L 0.0111 5.883 0.7234 0.0507 70.16 1.5426
R, Il 0.0075 2.299 0.9442 0.0017 2911 3.4551
0.03 T, L 0.1599 83.53 0.9603 0.8536 39.26 0.6429
T,ll 0.5537 680.0 0.6372 0.8795 22.00 0.6011
R, L 0.1482 77.82 0.9851 0.8214 114.3 0.6011
R, Il 0.0059 2.065 2.5883 0.0832 3.929 4.5756
0.05 T, L 0.4904 251.0 0.6088 0.9383 13.54 0.5271
T,ll 0.6423 79.76 0.6989 0.9494 5.407 0.4443
R, L 0.5122 143.5 0.7444 0.9421 17.07 0.5583
R, Il 0.0133 9.710 1.5725 0.0084 8.702 3.0645
0.07 T, L 0.6590 138.2 0.6135 0.9519 6.676 0.5018
T, 0.8109 41.59 0.5870 0.9637 2.096 0.3980
R, L 0.6872 76.84 0.6905 0.9630 6.632 0.5015
R, Il 0.0079 12.35 0.7280 0.0233 1.069 6.1141
0.09 T, L 0.8205 75.46 0.6354 0.9503 3.969 0.5022
T, 0.8814 18.30 0.5232 0.9720 1.037 0.3765
R, L 0.8769 46.24 0.5827 0.9720 3.321 0.4857
R, 0.0089 47.36 3.9826 0.0110 3.829 0.4329
0.11 T, L 0.8483 32.50 0.5856 0.9810 3.126 0.4404
T, 0.9211 8.545 0.4670 0.9851 0.550 0.3244
R, L 0.9020 20.17 0.5596 0.9904 1.983 0.4332
R, Il 0.0286 4.232 8.7700 0.0385 6.653 0.9897
0.13 T, L 0.8496 93.25 0.5814 0.9767 2.180 0.4373
T,ll 0.9366 22.01 0.4585 0.9781 0.358 0.3350
R, L 0.9248 52.14 0.5412 0.9923 1.315 0.4240
R, Il 0.0398 140.7 1.3027 0.2194 19.81 0.5954
0.15 T, L 0.8971 12.35 0.5863 0.9854 1.794 0.4225
T,ll 0.9488 2.528 0.4440 0.9882 0.208 0.2988
R, L 0.9525 6.126 0.5170 0.9939 0.850 0.4116
R, Il 0.0073 0.982 1.3570 0.3614 8.074 0.6945

with an increasingN, value. Furthermore, the potential other and vice versa, creating a minimum in the configura-
curves oscillate around given mean values. Note that th&onal potential energy. For a separation=eér, the potential
number of maxima and minima coincides with the number ofhas a repulsive hump, which is explained by the fact that, at
rim sites. Naturally, the oscillations are more pronounced athis distance, the rim charges of both platelets are at the
the number of sites is reduced. Rgg=469, the oscillations closest possible distance. As in the case of the T-shaped con-
turn almost negligible. These oscillations in the pair potendiguration, increasindN, diminishes the depth of the attrac-
tial, which lead to a symmetry breaking, explain the decreastve well and shifts its location to larger separation values. It
of D**/DR? with an increasing platelet concentration. is important to note that, even fof;=469, there is still an

As previously seen, mod@ presents another type of ar- attractive well in the potential, but with a very small depth.
rangement that was found to be present in the system bulk. It should be mentioned that the attractive wells shown in
This is the PPO configuration which is considered in Fig.Figs. 13a) and 13b) are enhanced for smaller values Xof
13(c). Here, the pair potential is plotted against shprojec-  higher values ofQr, and higher ring charges. Even fbl,
tion of the c.m.-c.m. distance. As can be seen, the curves469, deep wells are obtained if the parameters are some-
show an attractive well in the potential located at a separawhat changed. In particular, we obtain &8I depth well in
tion slightly larger than 0.7&,. At this position, the rim  Fig. 13a) for Q;=850 e,\=0.8 nm, and a positive ring
charges of one platelet are faced to the surface charges of tikbarge equal to 0.1@, which is not very far from the one
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TABLE II. Fitting parameters corresponding to modiel A=1, and 3 nmt; is given in nanoseconds.

A=1nm A=3 nm
P v, AlID2° t 74 AlIDL° ty 7
0.01 T,L 0.2212 8.930 0.4607 0.1474 161.7 1.2934
T, 0.1657 2.637 0.6856 0.5217 476.2 0.8386
R, L 0.2770 33.22 0.4914 0.0009 81.30 0.7990
R, Il 0.0485 3.961 0.4954 0.0028 12.31 0.6234
0.03 T, L 0.5244 24.04 0.3555 0.8083 63.68 0.7197
T, 0.4546 7.775 0.3779 0.8228 64.77 0.6607
R, L 0.4721 41.60 0.4315 0.3369 163.7 1.0156
R, Il 0.0596 3.011 0.7148 0.0201 71.84 3.0404
0.05 T, L 0.5269 13.55 0.4409 0.9217 19.61 0.5808
T, 0.5726 9.605 0.3330 0.9301 15.83 0.5480
R, L 0.6460 87.40 0.4581 0.8157 125.5 0.7118
R, Il 0.0789 12.47 1.0297 0.0539 32.21 0.746
0.07 T, L 0.6565 7.775 0.4257 0.9459 7.814 0.5168
T,ll 0.7664 11.13 0.3264 0.9506 5.278 0.4963
R, L 0.7371 22.87 0.4237 0.8778 28.77 0.6043
R, Il 0.1541 3.028 0.7360 0.0329 7.624 1.0595
0.09 T, L 0.8708 13.86 0.3474 0.9503 3.652 0.4945
T,ll 0.8932 11.59 0.3150 0.9625 2.217 0.4389
R, L 0.8467 19.70 0.4082 0.9191 9.205 0.5569
R, Il 0.2176 5.780 0.6744 0.1444 7.349 0.6307
0.11 T,L 0.8263 7.599 0.4285 0.9580 2.020 0.4767
T, 0.8684 6.206 0.3689 0.9647 1.088 0.4399
R, L 0.8274 12.64 0.4532 0.9493 4.505 0.5121
R, Il 0.2343 6.095 0.7188 0.3029 4.356 0.6867
0.13 T, L 0.8694 6.506 0.4570 0.8292 0.721 0.6587
T, 0.9284 4.416 0.3742 0.9429 0.553 0.4751
R, L 0.8651 11.57 0.4626 0.9320 2.035 0.5287
R, Il 0.2596 11.39 0.6312 0.5453 3.273 0.6622
0.15 T, L 0.8633 4.209 0.4696 0.8332 0.453 0.6559
T, 0.9132 1.978 0.4191 0.9197 0.296 0.5402
R, L 0.8579 6.679 0.4994 0.8209 1.500 0.6359
R, Il 0.2587 6.028 0.9539 0.5650 1.473 0.6476

obtained forN,=61. We should remark that the surface andthey are almost imperceptible for not so large values\ %f
ring charges of Laponites vary depending on the way theyrhese oscillations explain the slight decreaseDﬁiL/DR

are synthesizefl’], and so, these other parameters and the 61or model A A=3 nm, where no T-shaped configurations are
sites model are still representative of a Laponite particle. present.

Figure 13d) reports the variation of the potential energy  Although it is not shown, a similar analysis was per-
as a function of the rotational displacement between twdormed for thex=3 nm case. Here, the effective range of the
model B parallel platelets. The interaction is dominated bypotential is greatly extended, leading to strong effects in the
the repulsion of the equally charged sites in both plateletspair interaction between platelets if compared with the
However, for rotational displacements of one platelet with=1 nm case. Here, we observed that the potential well dis-
respect to the other, the effect of the charge discretization iappeared for both the T-shaped and PPO configurations, and
seen again as an oscillation of the potential around a medor all N, values considered. This explains the result of an
value. The maximum value of the oscillations corresponds t@ver-increasing system energy as a function of the volume
an arrangement in which the rim charges of the two plateletfraction for this case.
are closest, and the minimum to the opposite case. Since the In modelA, the potential energy is purely repulsive, and a
platelets are more separated than in the case of the T-shappdir configuration of parallel platelets is favored, since this
configuration, the oscillations are less pronounced. Indeedype of arrangement avoids the closeness of sites, and hence
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lowers the potential energy. This is why we omitted a de-the SDC'’s are strongly influenced by the structure of the

tailed study of the pair potential of this model. suspension. For example, for those systems with a preferen-
tial parallel structure, the translation parallel to the axial axis
V. CONCLUSIONS of each plateletnormal to the platelet surfagés most hin-

dered. In addition, it was shown that increasing the Debye

In this paper we presented a systematic study of twaength or increasing the platelet concentration leads to a re-
simple models for a synthetic clay by means of BD simula-duction of the SDC’s. This reduction is quite large for large
tions. These models mimic the Laponite’'s charge behavioenough volume fractions, suggesting the formation of a gel
when dispersed by a solvent at differepiti conditions. phase. The only exception was seen for the SDC associated
Hence, a model with equally charged sites, mo#leland  with rotations around the axial axis. This SDC diminishes
another with rim charges of opposite sign, mo@lwere  only when the effect of the charge discretization becomes
considered. Static and dynamic properties were studied famportant.
both models for two different values of the Debye length and We would like to point out that considering just 61
several volume fractions that span a wide range of concercharged sites to model the charged surface of the Laponite
trations. particles is nowadays a necessary simplification, due to the

Our results reproduce to a great extent the complex mecomputational effort that would surely lead to qualitative dis-
sostructure and rich phase behavior previously reported fogrepancies with the predictions of a model having 700
similar models studied by MD simulatiorfd5]. However,  charged sites and the same parameters. This is supported by
due to the addition of several sort-range repulsive sites thahe analysis performed in Sec. IV. On the other hand, if pa-
impede the interpenetration of the platelets, our simulationgameters such as the surface charge, edge charge, and Debye
predict another nonreported type of configuration for modelength are allowed to change for obtaining a match between
B. This is a parallel, partially overlapped arrangement inboth pair potentials, similar results are expected from the
which the rim charges of one platelet are faced to the surfacgodels based on 61 and 700 charged sites.
charges of the other and vice versa. As shown in Sec. IV, this Finally, this work can be seen as a step along the way
configuration also shows an energetic well when plottedowards the study of other interesting properties, such as vis-
against the c.m.-c.m. distance between platelets. This Weu';osity_ This property is very important for practical purposes
and the one yielded for the T-shaped configuration, explainguch as well drilling operations.
why the system'’s energy decreases with increasing platelet
concentration up to a given volume fraction. For concentra- ACKNOWLEDGMENT
tions over this volume fraction, the tendency is reversed due This work was subported by Instituto Mexicano del Petré-
to the appearance of crowded parallel configurations. Thi? h hG Npp D 003y24 4 D.00072
exemplifies the complex behavior of this kind of system. eo through Grant Nos. D. and . '

On the other hand, the BD technique allows the proper APPENDIX: EITTING PARAMETERS
study of time dependent SDC's from which the asymptotic
SDC’s are extrapolated. This was done by two different In Tables | and I, the values of the fitting parameters of
methods which yield very similar values, and hence, corEg.(27) to the long-time SDC are presented for the different
roborate the physical relevance of the results. As expectedystems studied.
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