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We extend our previous gas-kinetic theory analysis of drag force in a uniform temperature field[Li and
Wang, Phys. Rev. E.68, 061206(2003); 68, 061207(2003)] to particle transport in fluids with nonuniform
temperature. Formulations for drag and thermophoretic forces are proposed for nanoparticle transport in low-
density gases. We specifically consider the influence of nonrigid body collision due to van der Waals or other
forces between the particle and gas molecules and find that these forces play a notable role for particles a few
nanometers in size. It is shown that the present formulations can be easily reduced to the classical result of
Waldmann[Z. Naturforsch. A14a, 589(1959)] by assuming rigid body collision. From the force formulations
we also obtain the equation governing the thermophoretic velocity. This velocity is found to be highly sensitive
to the potential energy of interactions between gas molecules and particle, and as such Waldmann’s thermo-
phoretic velocity is not expected to be accurate for nanosized particles.
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I. INTRODUCTION

In recent studies[1,2] we obtained the mathematical for-
mulations for the drag force, diffusion coefficient, and elec-
tric mobility of small particles in a fluid with a uniform
temperature and a small particle Reynolds numbersRe,1d.
In the free molecule regime our analysis showed a notable
influence of the van der Waals and other forces between the
particle and fluid molecules on particle drag, and these forces
were not considered in previous studies(e.g.,[3]). The pur-
pose of the present study is to generalize our analysis to
particle transport in low-density gases with nonuniform tem-
perature. Our special interest here is the thermophoretic force
and velocity. Below we shall provide a brief review about
past contributions to the formulations of thermophoretic
force and velocity, from the continuum to the free molecule
regime.

Thermophoresis describes a phenomenon by which par-
ticles suspended in a fluid with nonuniform temperatures are
subject to a force in the direction opposite to the temperature
gradient[4]. This phenomenon was first described by Tyndall
[5], who observed that in a chamber filled with dusty air
there existed a spatial region around a hot body free of par-
ticles. The force that removes the particles from the hot re-
gion is termed the thermophoretic force[6]. The thermo-
phoretic force is often counteracted by the fluid drag on the
particle, and in steady state the motion of particles has a
constant velocity due to equal thermophoretic and drag
forces. This velocity is known as the thermophoretic veloc-
ity. Thermophoresis is of major importance in a variety of
applications, including aerosol science[7], biology [8], and
combustion[9]. For example, a recent study[10] demon-
strated that depositing flame-synthesized TiO2 nanocrystals
onto a substrate with tailored particle sizes and crystal mor-
phology requires a quantitative knowledge of the thermo-
phoretic velocity. This is especially true for particles a few
nanometers in size.

Similar to the drag force, the thermophoretic force is
strongly dependent on the Knudsen number Kn(Kn=l /R,

wherel is the mean free path of the fluid andR the radius of
the particle). In the continuum regimesKn!1d, Epstein[11]
examined the thermophoretic force for a sphere immersed in
a fluid. Brock [12] improved on Epstein’s solution by con-
sidering slip boundary conditions in the continuum deriva-
tions. Other attempts were made using the Boltzmann equa-
tion as the starting point of the analysis[13–15], but the
validity of these approaches remains questionable[11,16,17].

In the free molecule regimesKn@1d, Waldmann [18]
proposed an expression for the thermophoretic force that re-
mains the foundation of modern engineering analysis for
thermophoresis. The Waldmann equation is given by

FT = −
8

15
Î2pmg

kT
kR2 ¹ T, s1d

wheremg is the mass of the gas molecule,k is the Boltzmann
constant,T is the temperature, andk is the thermal conduc-
tivity of the gas. The corresponding thermophoretic velocity
is given by

VT = −
k ¹ T

5s1 + pw/8dNkT
, s2d

wherew is known as the momentum accommodation factor
and N is the number density of the gas. A value of 0.9 is
traditionally chosen forw [19] based on Millikan’s oil drop-
let experiments[20]. In recent studies[1,2] we demonstrated
that w depends on particle size and possibly some other fac-
tors. For this reason, we shall termw the momentum accom-
modation function hereafter. Waldmann’s solution was later
reproduced by Mason and co-workers[21,22] using a dusty-
gas model that considers both specular and diffuse scattering.
Experimental[23–26] and numerical studies[27,28] have
shown that for large Knudsen numbers the thermophoretic
force and velocity approach the Waldmann solution.

In the transition regimesKn,1d the problem is somewhat
more difficult. Brock[29] extended the solution in the free
molecule regime to the transition regime, while Talbotet al.
[30] suggested that Brock’s continuum equation[12] could
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be used as an empirical formula for the entire range of Kn if
the coefficients in the formulation were chosen properly. Nu-
merical studies have been reported using several different
forms of the Boltzmann equation[27,28,31]. The numerical
results seem to agree with experimental data, although ques-
tions have been raised concerning the validity of these data
since they do not converge to Waldmann’s solution at large
Kn [32].

It is seen that the theories for thermophoresis in the con-
tinuum and transition regimes are far from complete. In the
free molecule regime, however, the gas-kinetic theory ap-
pears to work very well as manifested by the success of
Waldmann’s solution. Yet the accuracy and validity of the
Waldmann formulation have not been adequately questioned
and tested for nanosized particles. It is possible that based on
our previous studies[1,2] the rigid body collision model em-
ployed in the Waldmann analysis can lead to large errors for
nanosized particles. Furthermore, to accurately predict the
thermophoretic velocity, it is crucial that a thermophoretic
force formulation be obtained in the manner that is consistent
with the drag force formulation reported earlier[1,2].

In this paper, we investigate the thermophoresis of nano-
particles in the free molecule regime. The theoretical foun-
dation of this analysis is the gas-kinetic theory. The influence
of van der Waals force and other interactions is considered. It
is shown that the current formulas are more general than
Waldmann’s solution in that these formulas can be reduced
to Eq.(1) if a rigid body collision is assumed. The theoretical
formulas are then parametrized and presented in a form that
can be readily used in applications.

II. A GENERALIZED THEORY FOR FORCES ON A
PARTICLE IN THE FREE MOLECULE REGIME

Following the pioneering work of Epstein[3], we ap-
proach the problem by finding the total momentum transfer
during collisions between the gas molecules and the particle.
The total force exerted on the particle is the net momentum
flux upon numerous collisions. Consider a gas in local equi-
librium with a temperature gradient given by¹T. Let the
velocity of random motion of a gas molecule relative to the
center-of-mass velocity of the gas bev. A particle is intro-
duced into the gas with an instantaneous drift velocityV,
again relative to the center-of-mass velocity of the gas. After
collision, the velocities of the particle and gas molecule are
denoted byV8 andv8, respectively.

As in our previous study[1], we attach the coordinate
system to the particle with the originO located at the mass
center of the particle, as shown in Fig. 1. The velocity of the
gas molecules is given byg=v−V before collision andg8
=v8−V8 after collision. Let thez axis of the coordinate sys-
tem be parallel tog, andi, j , andk be the unit vectors in the
x, y, andz coordinates, respectively.

Consider the gas molecules traveling in a cylindrical re-
gion with an impact parameterb and velocityg (Fig. 1) and
a small sector of this cylindrical shell of an area given by
bdbd«. In the coordinate system defined above, the differen-
tial force in the sector on the particledF is the time deriva-
tive of the momentum of gas molecules,

FIG. 1. (a) Collision model and the reference
frame. (b) Relationship among various vectors
(reproduced from[1]).
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dF =
p − p8

dt
, s3d

wherep and p8 denote the momenta before and after colli-
sion, respectively. The incident momentump for the mol-
ecules in the sector is given by

p = mrng, s4d

wheren is the number of molecules in this sector at timet,

n = fgbdbd«dt, s5d

mr =mgmp/ smg+mpd is the reduced mass of the gas molecule
and a particle with mass equal tomp, and f is the velocity
distribution function of the gas molecules. In the presence of
a thermal gradient, the velocity distribution function is given
by [33,34]

f = f0s1 − fTd, s6d

where f0 is the velocity distribution function with uniform
temperature distribution

f0 =
N

s2pkT/mrd3/2e−v2/s2kT/mrd, s7d

and fT accounts for the temperature variation,

fT =
2mrk

5NskTd2Smrv
2

2kT
−

5

2
DV ·v

V
¹ T. s8d

The momentum of reflected moleculesp8 depends on the
scattering model. We shall treat here separately two limiting
models of collision, namely, specular and diffuse scattering.
For specular scattering, the angle of incidence is equal to that
of reflection, as shown in Fig. 1, and the magnitudes ofg and
g8 are assumed to be equal. For diffuse scattering, the mag-
nitude ofg8 is Maxwellian, and the direction ofg8 is random
above the element surface of impact[20,35]. The dynamics
of flyby scattering are identical for both cases.

For specular scattering the angle of scattering is given by
[36]

xsg,bd = p − 2bE
rm

`

r−2F1 −
b2

r2 −
Fsrd

mrg
2/2

G−1/2

dr, s9d

wherer is the center-to-center distance between the gas mol-
ecule and particle, andrm is the distance of the closest en-
counter. The van der Waals and other forces between the gas
molecule and particle are accounted for byFsrd, i.e., the
potential function of interactions. The momentum of the re-
flected molecules is therefore

p8 = mrngsk cosx + i sin x cos« + j sin x sin «d.

s10d

It is shown previously[1] that the second and third terms in
the above equation vanish upon integration over« from 0 to
2p, and thus only the first term needs to be considered. Com-
bining Eqs.(3) through(6) and (10) and integrating overv,
b, and«, we obtain the force in the limit of specular scatter-
ing Fs as

Fs = mrE
v

ggsf0 − f0fTdQssgddv, s11d

whereQssgd is the collision cross section[36],

Qssgd = 2pE
0

`

s1 − cosxdbdb. s12d

Clearly, the force in Eq.(11) can be split into two terms such
that Fs=FD,s+FT,s, where the first termF

D,s
is the drag,

FD,s = mrE
v

ggf0Qssgddv, s13d

and the second term accounts for the thermophoretic force,

FT,s = − mrE
v

ggf0fTQssgddv. s14d

The solution of Eq.(13) has been obtained previously[1] as

FD,s = −
8

3
Î2pmrkTNR2Vs

s1, 1 d*V , s15d

whereVs
s1,ld* is the reduced collision integral[36]

Vs
s1,ld* =

2e 0
`g2l+3e−g2

Qssgddg

sl + 1d ! pR2 , s16d

and g=g/Î2kT/mr. For the thermophoretic force, we com-
bine Eq.(14) with Eqs.(7) and (8) and simplify to obtain

FT,s = −
8

5p3/2S mr

2kT
D7/2

k ¹ TuE
v

gge−v2/s2kT/mrd

3Smrv
2

2kT
−

5

2
DvQssgddv, s17d

whereu=V /V is the unit vector in the direction of the drift
velocity of the particle. As in the previous study[1], we
assume thatV!v, because the particle is much heavier than
a gas molecule yet the temperatures(kinetic energies) of the
particle and gas are not very different from each other. The
error resulting from this assumption will be discussed in Sec.
V. We therefore havedv<dg. Let f andu be the colatitude
and azimuthal angles ofg in a reference frame in whichV is
collinear with the z axis (Fig. 1). We have v2=g2+V2

+2gV cosf<g2+2gV cosf for g@V. Since kT,mgg
2

,mrg
2@mrgV, gV/ skT/mrd!1. Therefore the exponential

term in Eq.(17) may be expanded and simplified to

e−sg2+2gV cos fd/s2kT/mrd < S1 −
gV cosf

kT/mr
De− g2/s2kT/mrd < e−g2

.

s18d

Furthermore, it can be shown that
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Fmrv
2

2kT
−

5

2
Gu ·v < Sg2 −

5

2
DsgÎ2kT/mr cosf + Vd

+ 2g2V cos2 f. s19d

Using Eqs.(18) and (19) andg=gÎ2kT/mr, we rewrite Eq.
(17) as

FT,s = −
16

5Îp
S mr

2kT
Dk ¹ TuE

0

` E
0

p

g4e−g2FSg2 −
5

2
D

3sgÎ2kT/mr cosf + Vd + 2g2V cos2 fG
3Qssgdsin f cosfdfdg. s20d

Eliminating the inner integral, we obtain

FT,s =
8

3
Î 2mr

pkT
k ¹ TFE

0

`

g5e−g2
Qssgddg

−
2

5
E

0

`

g7e−g2
QssgddgGu. s21d

The above equation may be expressed in terms of the re-
duced collision integralsVs

s1,1d* andVs
s1,2d* as

FT,s =
8

3
Î2pmr

kT
R2k ¹ TSVs

s1,1d* −
6

5
Vs

s1,2d*Du. s22d

We note thatVs
s1,1d* −6Vs

s1,2d* /5,0. Therefore the unit vec-
tor u in Eq. (22) ensures that the thermophoretic force is in
the direction opposite to the temperature gradient. The inter-
actions of gas molecules and particle are manifested in the
reduced collision integrals. It can be shown that in the limit
of rigid body collision(Vs

s1,1d* =1 andVs
s1,2d* =1) and assum-

ing thatmp@mg, Eq. (22) is easily reduced to the Waldmann
equation(1).

We shall now obtain a similar expression for diffuse scat-
tering. The velocity distribution of molecules diffusely scat-
tered is Maxwellian and given by[1]

f8 =
1

2p
Smr

kT
D2

gf0s1 − fTde−g82/s2kT/mrd. s23d

The subsequent analysis is simplified by recognizing that the
effective angle of diffuse scattering is normal to the surface
of impact [1], because the net momentum transfer is zero in
the direction parallel to the surface. Define the polar angles
betweeng8 and e3 as j and c, wheree3 is a unit vector as
shown in Fig. 1. The momentum of the reflected molecules
can be written as

p8 = bdbd«dtE
g8

mrg8g8 cosjf8dg8

=
mrne3

skT/mrd2E
0

`

g84e−g82/s2kT/mrddg8E
0

p/2

cos2 j sin jdj.

s24d

Integrating the above equation, we find that

p8 =ÎpmrkT

2
ne3 =ÎpmrkT

2
gfbdbd«dte3. s25d

Decomposing the unit vectore3 on the principal axes of the
coordinate system, we obtain the momentum of the reflected
molecule as

p8 =ÎpmrkT

2
fg cosz + ig sin z cos«

+ jg sin z sin «gfbdbd«dt, s26d

wherez=sx+pd /2. Putting Eqs.(26) and(4) into Eq.(3) and
integrating, we obtain the force equation as

Fd = mrE
v

ggf0s1 − fTdQdsgddv, s27d

whereQdsgd is the diffuse scattering cross section

Qdsgd = 2pE
0

` S1 +
1

g
ÎpkT

2mr
sin

x

2
Dbdb. s28d

The above integral is divergent and should be modified to
account for the fact that forbùa critical impact factorb0,
diffuse scattering is switched to orbitingsb=b0d and grazing
sb.b0d scattering[1,36] (see Fig. 3 of[1]). The resulting
expression is

Qdsgd = 2pFE
0

b0 S1 +
1

g
ÎpkT

2mr
sin

x

2
Dbdb

+E
b0

`

s1 − cosxdbdbG . s29d

Again Eq. (27) can be split into a drag force term and a
thermophoretic force term,

Fd = FD,d + FT,d = mrE
v

ggf0Qdsgddv − mrE
v

ggf0fTQdsgddv,

s30d

where FD,d=−s8/3dÎ2pmrkTNR2Vd
s1,1d*V [1]. For the ther-

mophoretic term, we obtain the force equation in a similar
manner as that for specular scattering,

FT,d =
8

3
Î2pmr

kT
R2k ¹ TSVd

s1,1d* −
6

5
Vd

s1,2d*Du, s31d

where Vd
s1,1d* and Vd

s1,2d* are the reduced diffuse scattering
collision integrals

Vd
s1,ld* =

2e 0
`g2l+3e−g2

Qdsgddg

sl + 1d ! pR2 . s32d

Comparing the specular and diffuse scattering models, we
see that the formulations governing the thermophoretic force
and reduced collision integral are identical. The difference is
manifested by the collision cross section[see Eqs.(12) and
(29)]. This difference, however, vanishes when the rigid
body collision model is adopted. Specifically, the collision
integrals in Eq.(32) are simplified toVd

s1,1d* =1+p /8 and
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Vd
s1,2d* =1+5p /48 for rigid body collision. Then again, Eq.

(31) turns out to be the exact Waldmann solution. It has been
shown[2] that the rigid body collision is accurate as long as
the particles are much larger than 1 nm. Therefore, for large
particles the choice of the collision model(i.e., specular and
diffuse scattering) is inconsequential to the thermophoretic
force.

III. PARAMETRIZATION

The derivations in the preceding section consider two lim-
iting scattering cases. The real case should fall between these
limits [2]. A generalized equation for thermophoretic force
may be obtained in terms of average reduced collision inte-
gralsVavg

s1,1d* andVavg
s1,2d* and parametrized by

Vavg
s1,ld* = wVd

s1,ld* + s1 − wdVs
s1,ld* , s33d

where l =1 or 2, andw is the momentum accommodation
function to be discussed in Sec. IV. This parametrization ac-
counts for the limiting case of diffuse scattering withw=1
and of specular scattering withw=0. The resulting thermo-
phoretic force may be written in terms ofVavg

s1,ld* as

FT =
8

3
Î2pmr

kT
R2k ¹ TSVavg

s1,1d* −
6

5
Vavg

s1,2d*Du, s34d

and the drag force is

FD = −
8

3
Î2pmrkTNR2Vavg

s1,1d*V . s35d

IV. COLLISION INTEGRALS AND MOMENTUM
ACCOMMODATION FUNCTION

The collision integralsV
s1,1d*

for both specular and dif-
fuse scattering are tabulated in[1] using Rudyak-
Krasnolutski’s 9-3 potential function[37]. Here we shall

tabulate V
s1,2d*

values. In its original form the Rudyak-
Krasnolutski potential energy is expressed as a function of
the center-to-center separation distancer as

Fsrd = F9srd − F3srd, s36d

where Fisrd=Cihfsr −Rd−i −sr +Rd−ig−aifsr −Rd−i+1−sr
+Rd−i+1gj, a9=9r /8, a3=3r /2, C9=4p«s

12
/ s45nd, and C3

=2p«s
6
/ s3nd, n=M̄ /rs is the effective volume of the par-

ticle per molecule,rs is the particle mass density, andM̄ is
the mean atomic mass of the particle material. The collision
diameters and well depth« are those of the Lennard-Jones
(12-6) potential function for the interactions of the gas mol-
ecule and constituent atom or molecule of the particle. These
potential energy parameters may be estimated from the self-
interaction potential parameters[2,37] using the simple mix-
ing ruless=ssg+spd /2 and«=Î«g«p, whereg andp denote
the gas molecule and constituent atom or molecule of the
particle.

Equation (36) may be nondimensionalized[2] and ex-
pressed as a function of modified reduced temperatureT*

=kT/«8 and reduced collision diameters8=s /R with «8

=2p«s
3
/3n. It follows that V

s1,2d*
may be tabulated as a

function of T* and s8 as presented in Tables I and II for
specular and diffuse scattering, respectively. The ranges
0.1,T* ,100 and 0.01,s8,0.6 are chosen to be suffi-
ciently wide for all practical purposes. For example, the
maximums8 value ensures that the collision integral is ap-
plicable to particles with radius as small as 0.5 nm.

These sameV
s1,2d*

values are plotted in Figs. 2 and 3 as a

function of T* and s8. It is seen that just likeV
s1,1d*

[2],
toward high temperatures and large particle size(small s8),

theV
s1,2d*

integrals approach their asymptotic limits of 1 and
1+5p /48 for specular and diffuse scattering, respectively.
The influence of nonrigid body collision occurs mostly for
low temperatures and/or small particle sizes.

We parametrize the reduced collision integrals in the form
of [2]

Vs/d
s1,2dp

= 1 +a + FaT0
+

aT1

Tp1/4 +
aT2

Tp1/2Gs8

+ FbT0
−

bT1

Tp1/4 +
bT2

Tp1/2Gs82, s37d

where thea’s and b’s are coefficients, and their values are
found in Table III. Equation(37) satisfies the asymptotic lim-
its of rigid body collision atTp →` and/or s8→0. The
maximum fitting errors are 3.9% and 3.0% forVd

s1,2dp and
Vs

s1,2dp, respectively, both of which occur for larges8 and
small Tp, i.e., the high-curvature areas shown in Figs. 2 and
3. In other regions, the fitting error is well within 2%.

As discussed in[2], the momentum accommodation func-
tion w in Eq. (33) is dependent on the particle size. By com-
paring the particle radius measured by transmission elec-
tronic microscopy with mobility size data measured at room
temperature and ambient pressure, we found thatw switches
from a value of 0 to a value of 0.9 at 2–3 nm in particle
radius (see, for example, Fig. 7 of[2]). This function was
empirically fitted in the following form:

w =
1 + 0.9 Knh1 − 1/f1 + sR/2.5d15gj

1+Kn
, s38d

where R is in nanometers. Equation(38) accounts for the
transition from specular-scattering -dominated collision dy-
namics for particles with sizes approaching the molecular
size[33] to diffuse scattering being the predominant collision
outcome for large particles as reported by Millikan[20]. Put-
ting Eq. (38) into Eq. (33), we obtain the average reduced
collision integral as
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TABLE I. Reduced collision integralVs
s1,2d* .

T*

s8

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.2 0.3 0.4 0.5 0.6

0.10 1.04 1.13 1.21 1.31 1.38 1.49 1.59 1.66 1.75 1.88 1.92 2.50 3.21 3.96 4.75

0.15 1.04 1.11 1.18 1.27 1.34 1.42 1.52 1.58 1.65 1.76 1.80 2.28 2.86 3.49 4.12

0.20 1.04 1.10 1.17 1.24 1.31 1.38 1.47 1.53 1.59 1.69 1.72 2.15 2.66 3.20 3.75

0.25 1.03 1.09 1.15 1.22 1.29 1.35 1.44 1.50 1.55 1.64 1.67 2.06 2.52 3.00 3.48

0.30 1.03 1.09 1.15 1.21 1.27 1.33 1.41 1.47 1.52 1.60 1.63 2.00 2.41 2.85 3.29

0.35 1.03 1.09 1.14 1.20 1.26 1.31 1.39 1.44 1.50 1.57 1.60 1.95 2.33 2.73 3.13

0.40 1.03 1.08 1.13 1.19 1.25 1.30 1.37 1.43 1.48 1.55 1.57 1.90 2.26 2.63 2.99

0.45 1.03 1.08 1.13 1.18 1.24 1.29 1.36 1.41 1.46 1.53 1.55 1.87 2.20 2.54 2.88

0.50 1.03 1.07 1.12 1.18 1.23 1.28 1.34 1.40 1.45 1.51 1.54 1.84 2.15 2.47 2.79

0.55 1.02 1.07 1.12 1.17 1.22 1.27 1.33 1.38 1.44 1.49 1.52 1.81 2.10 2.40 2.71

0.60 1.02 1.07 1.12 1.17 1.22 1.26 1.32 1.37 1.43 1.48 1.51 1.78 2.06 2.35 2.64

0.65 1.02 1.07 1.11 1.16 1.21 1.26 1.31 1.37 1.42 1.47 1.50 1.76 2.03 2.30 2.57

0.70 1.02 1.07 1.11 1.16 1.21 1.25 1.31 1.36 1.41 1.46 1.49 1.74 1.99 2.25 2.52

0.75 1.02 1.06 1.11 1.16 1.20 1.25 1.30 1.35 1.40 1.45 1.47 1.72 1.97 2.22 2.47

0.80 1.02 1.06 1.11 1.15 1.20 1.24 1.29 1.34 1.39 1.44 1.47 1.70 1.94 2.18 2.43

0.85 1.02 1.06 1.11 1.15 1.19 1.24 1.29 1.34 1.39 1.43 1.46 1.69 1.92 2.15 2.39

0.90 1.02 1.06 1.11 1.15 1.19 1.24 1.28 1.33 1.38 1.42 1.45 1.67 1.89 2.12 2.36

0.95 1.02 1.06 1.11 1.15 1.19 1.23 1.28 1.33 1.37 1.41 1.44 1.66 1.87 2.10 2.33

1.00 1.02 1.06 1.10 1.14 1.19 1.23 1.27 1.32 1.37 1.40 1.43 1.64 1.86 2.07 2.30

1.10 1.02 1.06 1.10 1.14 1.18 1.22 1.27 1.31 1.36 1.39 1.42 1.62 1.82 2.03 2.25

1.20 1.02 1.06 1.10 1.14 1.18 1.22 1.26 1.30 1.35 1.38 1.41 1.60 1.80 2.00 2.21

1.30 1.02 1.05 1.10 1.13 1.18 1.21 1.25 1.29 1.34 1.37 1.40 1.58 1.77 1.97 2.18

1.40 1.02 1.05 1.10 1.13 1.17 1.21 1.25 1.29 1.33 1.36 1.39 1.57 1.75 1.95 2.15

1.50 1.02 1.05 1.10 1.13 1.17 1.20 1.24 1.28 1.32 1.35 1.38 1.55 1.74 1.92 2.12

1.60 1.02 1.05 1.09 1.12 1.17 1.20 1.24 1.28 1.31 1.35 1.37 1.54 1.72 1.91 2.10

1.70 1.02 1.05 1.09 1.12 1.16 1.20 1.24 1.27 1.31 1.34 1.36 1.53 1.71 1.89 2.08

1.80 1.02 1.05 1.09 1.12 1.16 1.19 1.23 1.27 1.30 1.33 1.35 1.52 1.69 1.87 2.06

1.90 1.02 1.05 1.09 1.12 1.16 1.19 1.23 1.26 1.30 1.33 1.35 1.51 1.68 1.86 2.04

2.00 1.02 1.05 1.09 1.12 1.16 1.19 1.22 1.26 1.29 1.32 1.34 1.50 1.67 1.85 2.03

3.00 1.02 1.05 1.08 1.11 1.14 1.17 1.20 1.23 1.26 1.29 1.30 1.45 1.61 1.77 1.94

4.00 1.01 1.05 1.07 1.10 1.13 1.16 1.18 1.21 1.24 1.27 1.28 1.42 1.57 1.72 1.88

5.00 1.01 1.05 1.07 1.10 1.12 1.15 1.18 1.20 1.23 1.26 1.27 1.41 1.55 1.70 1.85

6.00 1.01 1.04 1.06 1.09 1.12 1.14 1.17 1.19 1.22 1.25 1.26 1.39 1.53 1.68 1.83

7.00 1.01 1.04 1.06 1.09 1.11 1.14 1.16 1.19 1.21 1.24 1.25 1.38 1.52 1.66 1.81

8.00 1.01 1.04 1.06 1.09 1.11 1.14 1.16 1.18 1.21 1.23 1.25 1.37 1.51 1.65 1.79

9.00 1.01 1.04 1.06 1.09 1.11 1.13 1.16 1.18 1.20 1.23 1.24 1.37 1.50 1.64 1.78

10.00 1.01 1.04 1.06 1.08 1.11 1.13 1.15 1.18 1.20 1.23 1.24 1.36 1.49 1.63 1.77

20.00 1.01 1.03 1.05 1.07 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.33 1.45 1.57 1.70

30.00 1.01 1.03 1.05 1.07 1.09 1.11 1.13 1.15 1.17 1.19 1.20 1.31 1.42 1.54 1.66

40.00 1.01 1.03 1.05 1.07 1.09 1.11 1.13 1.15 1.17 1.19 1.20 1.30 1.41 1.52 1.64

50.00 1.01 1.03 1.05 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.19 1.29 1.40 1.51 1.62

60.00 1.01 1.03 1.05 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.19 1.29 1.39 1.50 1.61

70.00 1.01 1.03 1.04 1.06 1.08 1.10 1.12 1.14 1.15 1.17 1.18 1.28 1.38 1.49 1.59

80.00 1.01 1.03 1.04 1.06 1.08 1.10 1.12 1.13 1.15 1.17 1.18 1.28 1.38 1.48 1.58

90.00 1.01 1.03 1.04 1.06 1.08 1.10 1.11 1.13 1.15 1.17 1.18 1.27 1.37 1.47 1.58

100.00 1.01 1.03 1.04 1.06 1.08 1.09 1.11 1.13 1.15 1.17 1.18 1.27 1.36 1.46 1.57
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TABLE II. Reduced collision integralVd
s1,2d* .

T*

s8

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.2 0.3 0.4 0.5 0.6

0.10 1.44 1.60 1.74 1.89 2.04 2.18 2.33 2.48 2.63 2.79 2.87 3.70 4.63 5.65 6.75

0.15 1.42 1.57 1.70 1.83 1.96 2.08 2.21 2.34 2.47 2.60 2.67 3.38 4.16 5.01 5.92

0.20 1.41 1.55 1.67 1.79 1.91 2.02 2.13 2.25 2.37 2.49 2.55 3.19 3.88 4.62 5.42

0.25 1.41 1.54 1.65 1.76 1.87 1.97 2.08 2.19 2.30 2.41 2.46 3.05 3.68 4.35 5.07

0.30 1.41 1.53 1.63 1.74 1.84 1.94 2.04 2.14 2.25 2.35 2.40 2.95 3.53 4.14 4.80

0.35 1.40 1.52 1.62 1.72 1.82 1.91 2.01 2.10 2.21 2.30 2.35 2.87 3.42 3.98 4.58

0.40 1.40 1.51 1.61 1.70 1.80 1.89 1.98 2.07 2.17 2.26 2.31 2.80 3.32 3.84 4.40

0.45 1.40 1.51 1.60 1.69 1.78 1.87 1.96 2.05 2.14 2.23 2.28 2.75 3.23 3.73 4.25

0.50 1.40 1.50 1.59 1.68 1.77 1.85 1.94 2.03 2.12 2.20 2.25 2.70 3.16 3.63 4.12

0.55 1.40 1.50 1.59 1.67 1.76 1.84 1.92 2.01 2.10 2.18 2.22 2.65 3.10 3.55 4.02

0.60 1.40 1.49 1.58 1.66 1.75 1.83 1.91 1.99 2.08 2.15 2.20 2.62 3.04 3.47 3.92

0.65 1.40 1.49 1.58 1.66 1.74 1.82 1.90 1.98 2.06 2.13 2.18 2.58 2.99 3.41 3.84

0.70 1.40 1.48 1.57 1.65 1.73 1.81 1.89 1.96 2.04 2.12 2.16 2.55 2.95 3.35 3.77

0.75 1.40 1.48 1.57 1.64 1.72 1.80 1.87 1.95 2.03 2.10 2.14 2.52 2.91 3.30 3.71

0.80 1.40 1.48 1.56 1.64 1.72 1.79 1.86 1.94 2.02 2.09 2.12 2.50 2.87 3.25 3.65

0.85 1.40 1.48 1.56 1.63 1.71 1.78 1.86 1.93 2.00 2.07 2.11 2.47 2.84 3.21 3.60

0.90 1.40 1.47 1.55 1.63 1.70 1.77 1.85 1.92 1.99 2.06 2.10 2.45 2.81 3.17 3.55

0.95 1.40 1.47 1.55 1.62 1.70 1.77 1.84 1.91 1.98 2.05 2.08 2.43 2.78 3.14 3.51

1.00 1.40 1.47 1.55 1.62 1.69 1.76 1.83 1.90 1.97 2.04 2.07 2.41 2.76 3.11 3.48

1.10 1.39 1.47 1.54 1.61 1.68 1.75 1.82 1.89 1.95 2.02 2.05 2.38 2.71 3.05 3.41

1.20 1.39 1.46 1.54 1.61 1.68 1.74 1.81 1.87 1.94 2.00 2.03 2.35 2.67 3.01 3.36

1.30 1.39 1.46 1.53 1.60 1.67 1.73 1.80 1.86 1.92 1.99 2.02 2.33 2.64 2.97 3.31

1.40 1.39 1.46 1.53 1.60 1.66 1.72 1.79 1.85 1.91 1.97 2.00 2.30 2.61 2.94 3.28

1.50 1.39 1.46 1.53 1.59 1.66 1.72 1.78 1.84 1.90 1.96 1.99 2.28 2.59 2.91 3.24

1.60 1.39 1.46 1.52 1.59 1.65 1.71 1.77 1.83 1.89 1.95 1.98 2.27 2.57 2.88 3.21

1.70 1.38 1.46 1.52 1.58 1.64 1.70 1.76 1.82 1.88 1.94 1.96 2.25 2.55 2.86 3.19

1.80 1.38 1.45 1.52 1.58 1.64 1.70 1.76 1.81 1.87 1.93 1.95 2.24 2.53 2.84 3.16

1.90 1.38 1.45 1.52 1.58 1.64 1.69 1.75 1.81 1.86 1.92 1.95 2.23 2.52 2.82 3.14

2.00 1.38 1.45 1.51 1.57 1.63 1.69 1.74 1.80 1.86 1.91 1.94 2.21 2.50 2.81 3.13

3.00 1.37 1.44 1.49 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.88 2.14 2.41 2.70 3.01

4.00 1.36 1.43 1.48 1.53 1.58 1.63 1.68 1.73 1.77 1.82 1.85 2.10 2.37 2.65 2.95

5.00 1.36 1.42 1.47 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.83 2.08 2.34 2.62 2.91

6.00 1.36 1.41 1.47 1.52 1.56 1.61 1.65 1.70 1.75 1.79 1.81 2.06 2.32 2.60 2.89

7.00 1.35 1.41 1.46 1.51 1.56 1.60 1.64 1.69 1.74 1.78 1.81 2.05 2.31 2.58 2.87

8.00 1.35 1.41 1.46 1.51 1.55 1.59 1.63 1.68 1.73 1.78 1.80 2.04 2.30 2.57 2.86

9.00 1.35 1.41 1.46 1.51 1.55 1.58 1.63 1.68 1.73 1.77 1.79 2.04 2.29 2.56 2.85

10.00 1.35 1.41 1.46 1.50 1.54 1.58 1.63 1.68 1.72 1.76 1.79 2.03 2.29 2.56 2.84

20.00 1.35 1.40 1.45 1.48 1.52 1.56 1.61 1.66 1.69 1.73 1.77 2.00 2.25 2.51 2.79

30.00 1.35 1.40 1.45 1.47 1.51 1.56 1.61 1.66 1.68 1.72 1.76 1.98 2.22 2.48 2.75

40.00 1.35 1.40 1.45 1.46 1.51 1.56 1.61 1.64 1.67 1.72 1.75 1.97 2.21 2.47 2.74

50.00 1.35 1.40 1.45 1.46 1.50 1.55 1.61 1.64 1.67 1.72 1.74 1.96 2.20 2.46 2.73

60.00 1.35 1.40 1.44 1.46 1.50 1.55 1.60 1.63 1.67 1.72 1.73 1.95 2.19 2.45 2.72

70.00 1.35 1.40 1.44 1.45 1.50 1.55 1.60 1.62 1.66 1.72 1.73 1.95 2.19 2.45 2.72

80.00 1.35 1.40 1.44 1.45 1.50 1.55 1.60 1.62 1.66 1.71 1.72 1.95 2.19 2.44 2.71

90.00 1.35 1.40 1.44 1.45 1.50 1.55 1.60 1.62 1.66 1.71 1.72 1.95 2.18 2.44 2.71

100.00 1.35 1.40 1.43 1.45 1.50 1.55 1.60 1.61 1.66 1.71 1.72 1.94 2.18 2.44 2.70
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Vavg
s1,ld* =

Vd
s1,ld* + Kns0.9Vd

s1,ld* + 0.1Vs
s1,ld*d − 0.9 KnsVd

s1,ld* − Vs
s1,ld*d/f1 + sR/2.5d15g

1 + Kn
. s39d

Our recent studies(not reported here) have suggested that
in addition to particle sizew may also be influenced by tem-
perature, the potential energy of interactions between the gas
molecules and particle, and thus the particle material. We
nonetheless assume here thatw is a function of particle size
only and use Eq.(39) to obtain the average collision integral
Vavg

s1,ld* , since a quantitative description of the influences of
temperature and potential energy onw is not available.

V. THERMOPHORETIC VELOCITY

Following Waldmann[18], we define the thermophoretic
velocity VT as the terminal velocity of vanishing total force
on the particle, i.e.,FT+FD=0, and obtain the expression for
VT as

VT = S1 −
6

5

Vavg
s1,2d*

Vavg
s1,1d* Dk ¹ T

NkT
. s40d

For the specular and diffuse scattering cases, one needs only
to replace the subscript “avg” in the collision integrals by “s”
and “d.” As expected, Eq.(40) reduces to the exactVT equa-
tion of Waldmann[Eq. (2)] for rigid body collision if w is
assumed to be a constant.

Based on Eq.(40), we calculate that for air at the ambient
condition VT<5 m/s, even if the temperature gradient is as
large as 103 K/cm. In comparison the mean velocity of air
molecules is around 470 m/s. Therefore we expect that the

assumption ofV!v leads to merely 1% error inFT andVT
(see Sec. II).

We now examine the effect of nonrigid body collisions on
the thermophoretic velocity. Figure 4 shows the ratio of non-
rigid body VT to rigid bodyVT for several types of particles.
The material properties used in the calculation are found in
Table IV of [2]. Soot is assumed to be composed of carbon
only and its density is chosen to be 1.8 g/cm3 [38]. In this
figure, the solid lines are calculated usingw;0.9 for the
Waldmann thermophoretic velocity, a value traditionally
used in computing the thermophoretic velocity[9,18] and the
drag force[19,20]. Dashed lines in Fig. 4(c) are similarly
calculated with the exception that Eq.(38) is used forw in
Waldmann’s equation.

As seen in Fig. 4, the variation of this velocity ratio is
attributable both to the variation of the momentum accom-
modation function and, more importantly, to the potential
force of interactions between the gas molecules and particle.
The zigzag behavior in this ratio atR=2–3 nm is largely
caused by the switching of the dominant scattering mecha-
nisms from specular to diffuse reflections, which subse-
quently affect the drag force. For ultrasmall particles, the
deviation of Waldmann’s thermophoretic velocity from the
current formulation is severe, by more than an order of mag-
nitude in some cases. ForR.10 nm, the difference is dras-
tically reduced compared to that forR,10 nm. Even then,
the rigid body assumption can overpredict the thermo-
phoretic velocity by as much as 20% forR=10 nm. The
strong influence of potential interactions on the thermo-

FIG. 2. Variation of the reduced collision integralVs
s1,2d* as a

function of modified reduced temperatureT* =kT/«8 and reduced
collision diameters8.

FIG. 3. Variation of the reduced collision integralVd
s1,2d* as a

function of modified reduced temperatureT* =kT/«8 and reduced
collision diameters8.
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phoretic velocity is not surprising considering that the same
effect was observed for the nanoparticle drag force[1,2]. By
considering the potential interactions, we showed that the
predictions of the theory were in excellent agreement with
data obtained for silver, copper oxide, and protein nanopar-
ticles with sizes ranging from 1 to 10 nm in diameter(see
Figs. 6 and 8 of[2]).

In addition, we compare the thermophoretic velocity Eq.
(40) with the thermal diffusion velocity predicted by the

Chapman-Enskog theory[33]. As the particle size is reduced
to molecular level,Vavg

s1,ld* becomesVs
s1,ld* [2]. In a dilute

particle-gas mixture the Chapman-Enskog thermophoretic
velocity may be simplified to

VT
CE = CS1 −

6

5

Vs
s1,2d*

Vs
s1,1d* Dk ¹ T

NkT
s41d

by assuming that the molar mass of the particle is much
larger than that of the carrier species. In the above equation,
C represents a higher-order correction toVT and may be
expressed in terms of a number of reduced collision integrals
[33],

C =
6Î2s2Vs

s2,2d* + 5Vs
s1,1d*d

16Vs
s2,2d* − 60Vs

s1,2d* + 48Vs
s1,3d* + 55Vs

s1,1d* . s42d

For rigid body collision, it is easy to find thatC;1. For
nonrigid body collision, the coefficientC is listed in Table IV
as a function of reduced temperatures and for both the
Lennard-Jones(LJ) (12-6) potential function and the current
(9-3) potentials employed for particle-gas interactions. It is
seen thatC is close to unity for most cases. At high tempera-
tures the correction amounts to about 10% for the LJ(12-6)
potential, which is probably smaller than the uncertainty in
the potential function. Therefore, as the particle size ap-
proaches that of a molecule, the current theory is quite accu-
rate compared to the Chapman-Enskog theory.

VI. SUMMARY

We extended our previous kinetic theory analysis of drag
on particles in a low-density gas to thermophoresis of nano-
particles in the free molecule regime. Formulas for thermo-
phoretic forces and velocities were derived on the basis of
gas-kinetic theory. Our derivation considered the influence of
the potential energy of interactions between the gas mol-
ecules and particle. This influence was expressed in terms of
reduced collision integrals. We demonstrated that the as-

TABLE III. Coefficients of Eq.(37). Coefficients forVs/d
s1,1d* are obtained from[2] and those forVs/d

s1,2d* are
from the present study.

Integral a aT0
aT1

aT2
bT0

bT1
bT2

Vs
s1,1d* 0 0.316 1.470 0.476 1.530 −5.013 4.025

Vs
s1,2d* 0 0.338 1.315 0.412 1.503 −4.654 3.410

Vd
s1,1d* p /8 1.072 2.078 1.261 3.285 −8.872 5.225

Vd
s1,2d* 5p /48 1.159 1.506 1.204 3.028 −7.719 4.180

TABLE IV. CoefficientsC in Eq. (42) as a function of reduced
temperatureT* .

Potential functionFsrd

T*

0.3 1 10 20

Lennard-Jones(12-6) 1.002 0.950 0.925 0.918

Equation(36) with s8=1 1.060 1.034 1.018 1.017

FIG. 4. Ratios of nonrigid to rigid body thermophoretic velocity
calculated by dividing Eq.(40) by Waldmann’s equation(2). The
molecular parameters are found in Table IV of[2]. Solid lines are
calculated using Eq.(38) for the momentum accommodation func-
tion andw;0.9 for the Waldmann thermophoretic velocity. Dashed
lines are similarly calculated with the exception that Eq.(38) is
used forw in Waldmann’s equation.
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sumption of a rigid body collision in Waldmann’s analysis
can lead to thermophoretic velocity values significantly dif-
ferent from the more realistic nonrigid body model, espe-
cially for nanosized particles. The current analysis also dem-
onstrated that Waldmann’s formula may be considered as a
limiting case of the current result under the assumption of
rigid body collisions.

On the basis of the current analysis, we propose that the
thermophoretic force and velocity in the free molecule re-
gime be modeled by

FT =
8

3
Î2pmr

kT
R2k ¹ TSVavg

s1,1d* −
6

5
Vavg

s1,2d*Du s43d

and

VT = S1 −
6

5

Vavg
s1,2d*

Vavg
s1,1d* Dk ¹ T

NkT
, s44d

respectively. In these equations the average reduced collision
integrals can be evaluated by

Vavg
s1,ld* =

Vd
s1,ld* + Kns0.9Vd

s1,ld* + 0.1Vs
s1,ld*d − 0.9 KnsVd

s1,ld* − Vs
s1,ld*d/f1 + sR/2.5d15g

1 + Kn
, s45d

where the values ofVs
s1,ld* andVd

s1,ld* are found in Tables I and II of[2] for l =1 and Tables I and II of the current paper for
l =2. Alternatively, these collision integrals may be evaluated using the parametrized equation

Vs/d
s1,2d* = 1 +a + FaT0

+
aT1

T*1/4 +
aT2

T*1/2Gs8 + FbT0
−

bT1

T*1/4 +
bT2

T* Gs82, s46d

where the coefficientsa andb are found in Table III.
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