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Thermoacoustic boundary layers near the liquid-vapor critical point
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We measure and calculate the sound attenuation within thermoacoustic boundary layers between solid
surfaces and xenon at its critical densiyas the reduced temperatures (T-T.)/ T, approaches zergT, is
the critical temperaturglUsing the known thermophysical properties of xenon, we predict that the attenuation
at the boundary first increases approximatelyra® and then saturates when the effusivity of the xenon
exceeds that of the solifiThe effusivity ise = (pCp\1)Y/2, whereCy is the isobaric specific heat ang is the
thermal conductivity. The model correctly predicig1.0%) the quality factorsQ of resonances measured in a
stainless steel resonatt,=6400 kg K s7°); it also predicts the observed increase of @eby up to a
factor of 8, when the resonator is coated with a polyrtg;=370 kg K'* s7/2). The test data span the
frequency range 04 f< 7.5 kHz and the reduced temperature rangeé 40r<10°1. We also predict that the
thicknessé; of the thermal boundary layer in the xenon decreases approximatefy/*amitil 27fyZ/(pc?)
~0.5. (¢ is the bulk viscosity,y is the heat capacity ratio, aradis the speed of soundStill closer toT,, &t
becomes complex and its magnitude increases. These predictions conaggrhange not yet been tested. We
deduce accurate values for the heat capa€lfy and thermal conductivityAt for xenon in the range

103<7<10,
DOI: 10.1103/PhysRevE.70.021201 PACS nunier51.40-+p, 51.20+d, 43.20++g, 64.60.Fr
[. INTRODUCTION dominate the attenuation and where gravitational stratifica-

tion plays an important role.

We plan to determine the bulk viscosity of xenon ten A standard model of the thermoacoustic boundary layer
times closer[in reduced temperature=(T-T.)/T] to its  [e.g., Eq.(9) in Ref.[2]] combined with the known thermo-
liguid-vapor critical point than has been possible heretoforephysical properties of near-critical xenon predicts that the
[1], to our knowledge. To do so, we must measure the disboundary attenuation is proportional &6 for 7>1072 and
persion and attenuation of sound at frequencies 1/100 dhen crosses over t6°€in the fully asymptotic region close
those used previously. As a first step, we measured the frde T.. The present data disagreed with this prediction and led
guency response of a compact, acoustic resonator filled withs to refine the model of thermoacoustic boundary layers for
xenon at its critical density.. From the frequency-response near critical fluids. The refined model predicts three phenom-
data in the range 169f <7500 Hz, we obtained the reso- ena that do not appear in the standard model. First, the
nance frequency and the attenuation for six resonant modelsoundary attenuation increases a8° (0.6 is an effective
In general, the attenuation has contributions from the bullexponent as 7— 0 for 7> 1072 as before; however, the in-
viscosity acting throughout the volume of the xenon as wellcrease saturates when the effusivity of the xenon exceeds
as contributions from the shear viscosity and the thermathat of the solid wall.[The effusivity is e=(pCphy)'/?,
conductivity acting within thin thermoacoustic boundary lay- whereCp is the isobaric specific heat and is the thermal
ers at the interface between the xenon and the solid walls afonductivity] Second, the thicknes% of the thermal bound-
the resonator. Thus we can determine the bulk viscosity onhary layer depends upon the bulk viscosityand &; decreases
when the boundary layer attenuation is small and well underas 7°4 (0.4 is the observed effective exponeas 7— 0 until
stood. In this paper, we show that the attenuation from th@ minimum is reached at the condition
boundary layers in our stainless steel resonator is indeed un-
derstood to within 1%(Unless otherwise noted, standard Yol 05 (1)
uncertainty is used throughout this papé&urthermore, we pc? "
show that the boundary attenuation is decreased by as much
as a factor of 8 by coating the interior surfaces of the reso(Here, y=Cy/C,, and w=2=f.) Third, still closer toT, &
nator with a thin layer of a polymer that conducts heatbecomes complex and its magnitude increases. Whdie-
poorly. comes complex, the spatial dependence of the thermal wave

The present data span the reduced temperature rangbanges; also, the usual phase relationship between the tem-
103<7<10'. These data test our understanding of ther-perature and pressure changes. These predictions concerning
moacoustic boundary layers becausis small enough that &; have not been tested to date.
the singularities in the thermophysical properties of xenon Previously, Carlés and ZappdR] discussed the thermal
play a prominent role in the boundary attenuation. Howeverrelaxation of a near-critical fluid confined between two semi-
7 is large enough that the bulk viscosity makes only a smalinfinite, insulating walls. They applied a heat flux at one wall
contribution to the attenuation. In the future, we will analyzeand calculated the evolution of the temperature, pressure,
the results closer td., where we expect the bulk viscosity to and fluid velocity.(In contrast with this work, heat transfer
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did not occur within either wal). They found that the char- PZT i
acter of the temperature relaxation depended on whether the A :

g ! Fill tube
initial temperature of the fluid,;;, was above or below the
characteristic temperatur@r ansiion AS Tiniiar @PProached A
Trransition from above, temperature gradients in their model (€ 27 —>
relaxed via the piston effect at increasing rates while the
time-dependent pressure remained nearly homogeneous ]\

(4

throughout the fluid. Whe,;iy Was less thanl.sition
temperature gradients relaxed more slowly Taswas ap-
proached. This slowing down occurs when the bulk viscosity
becomes_large_enough that pressure_gr_adlents develop near e 1,—>
the walls impeding the thermal expansigiston effect. The
authors referred to the regions @f,;, above and below
Trransition @S “classical” and “viscous” regimes, respectively.
At Trransiion the Viscous stress first reaches the same order of
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magnitude as the time-dependent pressure. ¥y PZT
We identify Tyansiion d€fined by Carlés and Zappoli with
the temperature at which E@l) holds. Our calculation in- (a)

cludes heat flow in the walls; we find that the magnitude of
the viscous stress is limited by the effusivity of the walls. For
the polymer walls that we used, the viscous stresses were
significantly less than the acoustic pressure. In a future pub-
lication, we shall present a more complete discussion of the
influence of the bulk viscosity on acoustic measurements.
The results reported here were obtained with a double-
Helmholtz acoustic resonator consisting of two cylindrical
chambers connected by a small circular tgbee Fig. 1 In
its lowest-frequency mode, the enclosed xenon oscillated be-
tween the chambers through the connecting tube. This mode
is particularly advantageous for studies of near-critical fluids
because it has a low frequency corresponding to an acoustic
wavelength of 51 cm, yet the resonator is only 4.8 cm long Thermometer
and 2.35 cm high. Thus this resonator is easily thermostatted (b)
and stratification of the near-critical xenon in the Earth’s
gravitational field is insignificant in the data reported here. FIG. 1. Cross sectional views of the resonator are shown from
Resonators of this type are also useful for measurements @d) the top andb) the side, relative to the direction of gravitg).
shear viscosity in dilute gases and, for such applications, arehe nominal dimensiongin mm) were: Z,=16, L;,=48, X
referred to as Greenspan viscometers. Recent publicatior®3.5,L,=22, X4=4, L4=15, andL;=10.5.
[2,4—§ describe the theory of the Greenspan viscometer and ) , ,
its application to shear viscosity measurements in eighfar from the wall, the temperature oscillates with amplitude
gases. When our resonator was filled with a dilute gas ando=(y—1T Bo/(pc?) due to the nearly adiabatic pressure
driven with an acoustic transducer, the primary damping ocescillations with amplituded,. (T is the average tempera-
curred in the viscous and thermal boundary layers characteture)jhe temperature amplitude decreases exponentially
ized by the gas’s viscous diffusivit, = 7/p (also called from T, to zero at the perfect wall with the characteristic
the kinematic viscosity and thermal diffusivity Dt thermal penetration lengthy =~ (2D1/ w)Y/2. [Equation(A19)
=N1/(pCp), respectively. In dilute gases, thesarface s the exact expression fdk.] The lengths; is the distance
damping mechanisms are orders of magnitude larger than thgat heat can diffuse during one acoustic cycle; in this work
viscous and thermatolumeprocesses that contribute to the 0.5< ;<10 um. The oscillating temperature gradient is on
so-called “classical” attenuation of freely propagating waves . ordeﬁ'oléT; it drives heat flow between the fluid and the

A third damping process occurs throughout the volume ofy ) ‘and it shifts the phase between the pressure and density
polyatomic fluids and fluids near their critical points. The os:ijations. Because of this phase shift, the acoustic wave

associated transport property is the bulk viscogitand it 4,5 jrreversible work. The rate of acoustic energy loss per
causes significant attenuation when the product of the acous- . q heat fi lis of oraei2/ (T
tic frequency and the relaxation time is order urifyg]. unit area due to heat flow near a wall is of ordeiy/ (T4y).

Kirchhoff [9] was the first to develop a theory for acoustic  ViScous friction imposes a no-slip boundary condition on
attenuation in dilute gases due to heat flow near a rigid waltn® acoustic velocityi at the wall. Tha,t is, the tangential
with infinite heat capacity and infinite thermal conductivity, COmMPOnent ofl is zero at the resonator’s wall. Far from the
We refer to such a wall as gerfect wall Dissipation near a Wall, U oscillates with amplitud@y~Po/ (o). The velocity
wall occurs because the boundary conditions imposed on the
fluid produce large velocity and temperature gradients there.we use a tilde to distinguish acoustic fields from average values.
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oscillations exponentially vanish over the distanée S, andu. These fields represent the fluctuating pressure, den-
=(2D,/ w)?~ 10 um, whereD, is called either the viscous sity, temperature, entropy per unit mass, and flaicoustig
diffusivity or the kinematic viscosity. The velocity gradient velocity, respectively, and have time dependeegiteby con-
near the wall is of ordety/ §,; therefore the rate of acoustic vention. Throughout this discussion, we assume the ampli-

eggrgy loss per unit area due to viscous friction is of ordetydes of the fluctuating fieldg, p, T, ands are small com-
7o/ O, pared to their average valuBsp T, andS. The amplitude of

To lowest order in the quantitié®,/L) and(r/L), where  {j is assumed to be small compared to the speed of sound
L is the smallest physical dimension of the resonator, theNear the critical point, we further restrict the magnitudes of
fractional energy lost per cycle for a given mode dafiute  the fluctuating fields to be small compared to the average

gas enclosed by a perfect wall[i8,1 distance from the critical point, i.eJ<(T-T,), P<(P
B wl -P.), andp<(p—p.), to ensure that the sound wave does not
Q'=0q,8,+(y=Darsr + gy (2)  influence the critical behavior. Local thermodynamic equilib-

P rium is tacitly assumed. Thus hydrodynamics with no-slip,
whereQ is the quality factor for the mode, amg) andgr are  no-temperature-jump boundary conditions is appropriate. To
mode-dependent geometric factors. A more general form oénsure local equilibrium, we require that the wavelength, the
Eq. (2) is discussed in Sec. Il. For geometries with a highthicknesses of the boundary layers, and the dimensions of the
degree of symmetryy, andg; can be calculated analytically resonator be larger than the correlation length or the mean
from perturbation theory. For more complicated geometriesfree path, whichever is larger. The smallest boundary layer
g, and gy can be determined from numerical calculation orthickness for this work was-2x 107" m at r=1x 1073, At
from calibration measurements with a well-characterized gathis temperature, the correlation length wad x 1078 m,
far from its critical point. The termw{/(pc® in Eq. (2) is  and the mean free path was3 X 107° m. Local equilibrium
negligible in dilute gases, except for polyatomic gases thais therefore assured for the present work. Furthermore, we
have internal modes which relax on a time scale comparablestimate that the boundary layer thicknéassaudio frequen-
to the acoustic period or in gases so dilute that the mean freges will be larger than the correlation length as closeras
path becomes a significant fraction of the wavelength of<1x107°.
sound. With these definitions, the basic equations are the linear-

As the fluid approaches its liquid-vapor critical point, the ized Navier-Stokes equation
effusivity of the fluid increases as%€ When the effusivity y
9f the fluid aeproachgs the effusivity of the solid, Kirchhoff’s p&_u =-Vp+ <§+ ﬂn)V(V T) - 7V X (VX T), 3
perfect wall” approximation fails. Then heat exchange be- at 3
tween the fluid and the solid modulates the temperature
the boundary and a temperature wave penetrates the solid.
smaller values of,, most of the temperature gradient occurs ap 5
in the solid. Then, the generation of entropy and the thermal T pV-u=0, (4)
boundary dissipation near the critical point are determined
by the effusivity of the solid, a quantity that is independentand the diffusion equation for heat flow
of 7.

For values ofr equal to or smaller than those spanned by T(?—S =\ VT (5)
the present data, the damping from bulk viscosity and ther- p ™o
mal diffusivity is much larger than damping from the viscous
diffusivity. The very weak divergence of the shear viscosity
(79943 is barely detectable in the present experiments.

e continuity equation

In addition, there are thermodynamic relationships between
the fluctuating pressure, density, temperature, and entropy
fields. We have neglected the entropy generation due to vis-
Il. ACOUSTIC MODEL cous stres$8] in Eq. (5) because the? dependence in this
term leads to a nonlinear solution and amplitude dependent
Morse and Ingard8] present a theory of acoustic attenu- djissipation, which was not observed. We estimate that omis-
ation in free space and near a solid boundary. However, theljon of this term is justified as long as the acoustic pressure
theory neglects the thermal wave in the solid, and it assumgg much less than 2 10* Pa atr=3x 1074 We estimate that
that the attenuation is a small perturbation. OtHd8,11  the largest acoustic pressure at this temperature was
have pUbllShed extensions of the theory that include the ther= 100 Pa, therefore the omission is eas"y Just|f|ed for this
mal and mechanical properties of the solid boundary, bufyork. At 7=1x 10°°, the acoustic pressure must be much
these extensions also assume DgtD+, andy—1 are small.  |ess than 20 Pa to avoid these nonlinear effects. Our mea-
We extend the theory to include the thermal wave in a rigidsyrements show that the acoustic pressure=dtx 1075 is
boundary, but we do not assume the attenuation is small. Thess than 5 Pa.
present theory is valid close to the liquid-vapor critical point  Without further approximation to the system of equations,
(one-phase regign where the dissipation is large and the we derive in the Appendix the relationships between the
heat transport in the solid is significant. fields for three possible wave modes: the propagating acous-
The governing equations for the thermal boundary layefic wave, the thermal wavgn the fluid and in the solig and
dissipation are functions of the time-dependent fi@ids, T,  the shear wave. To do so, we separatéto two parts: a
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divergence-free pait,,, that makes up the sheéarorticity) v grow rapidly ast— 0 and eventually dominate. Thu¥
wave and a curl-free paili, that contributes to both the becomes complex and its magnitude passes through a mini-
acoustic wave and the thermal wave. The scalar fields comaum, signifying the transition between the “classical’ and
tribute to only the acoustic and thermal waves. We obtairfviscous” regimes described by Carlgy. The minimum of
relationships between the complex wave vectors and freld| occurs whenyA,~0.5, and it coincides with the appear-
guencies for these modes. We require only that the ampliance of a non-negligible thermal wave pres§ursvithin the
tudes of the oscillating temperature, density, and entropy bboundary layer. The magnitude pf is limited by the ther-
linear functions of the acoustic pressure. As long as this remal effusivity of the wall.
quirement is met, the solution is valid both near to and far From the requirement that the temperature and the heat
from the critical point. flow are continuous across the fluid-solid boundary, we find
The solid wall is assumed to be rigid, nonporous, andhat the relationship between the thermal wave amplitudes in
smooth. Thermal expansion and sound propagation in ththe solid and fluid involves the ratio of the effusivities of the
solid are ignored. Heat flow in the solid is governed by thetwo media,s/e.. Far from the critical point, this ratio is very

diffusion equation small and the resonator wall is very nearly isothermalTAs
~ is approached along the critical isochosd g increases as
A VAT, = pSTS‘?_SS =i wpCpeTs. 6) (CpApM?7798(-0.8 is an effective exponenand eventu-

ally becomes much larger than 1. We define the reduced
mperaturery as the value ofr whereeg=¢g thus 7, de-
ends on the effusivity of the solid.

For a standing wave in an acoustic resonator, we define
the resonance quality fact@ as 27 (total acoustic energy
(energy lost per cycle The fractional energy lost per cycle

Therefore the solid supports a thermal wave characterized b
the solid’s effusivitye,=(pCph 192 and thermal diffusivity
Drs=\1/ (pCpy, Wherepy is the densityCp, is the specific
heat per unit mass, and is the thermal conductivityUn-
less stated otherwise, the subscsptentifies a property of ;=
the solid) The solid contains no heat sources, so heat cag IS
enter or leave the solid only through the boundary with the 1 )
fluid. As in the fluid, the thermal wave in the solid vanishes —f (E)dV
exponentially with a characteristic thermal penetration length @Jv

-1
Sre=(2D14 w)Y2 The temperature and heat flow across the Q"= ’ ©)
boundary are assumed to be continuous. These consider- f [(Ep)t + (Ex)]dV
ations lead to the boundary conditions on the fields at the v
wall whereE is the rate of energy loss per unit volunkg, andEx
[G,(0)| =0 (rigid wall), (7a)  denote acoustic potential and kinetic energies per unit vol-
ume, respectively, and the angle brackets denote a time av-
[T,(0)| = 0 (no slip), (7b)  erage. From the fields that satisfy Eq8)—(6) and the

boundary conditiong7), the time-averaged rate of energy

7(0) =7(0) (local equilibrium, (7 0SS per unitvolumér] is

. 1 o 1) e 1 o o~
AV, T(0)]=[\;V, T(0)]s (energy conservation (E)=- ERe [V-(pul=- 2—p|m[“;3 pl- ERG[(VE )-ul,
(7d) (10)

The subscripts_L and |l designate, respectively, the COMPO- where the asterisk denotes complex conjugation. The time-
nents perpendicular and parallel to the wall. The notationgyeraged acoustic potential and kinetic energies per unit vol-
T(0) andVT(0) stand for, respectively, the temperatldrand  ume are, respectively,

the gradient ofl evaluated at the boundary. 1
As shown in the Appendix, the thermal boundary_layer (Ep) = —RdPP] (11)
thicknessd; comes naturally out of the fourth order differ- 4p
ential equation for the acoustic fields, shown for the tempera-
ture as Eq(A2), in terms of the dimensionless wave vector and

q+1 Iev
1. 1
5$—_C_22_i~&1+i7’Av ® <EK>t:<EpU-U>t:ZP|U|2- (12

w? P o 1+iA,

. ) In the steady state, the time-averaged potential and kinetic
WhereAUE(w/CZ)(§+§77)/p. Far abOVeTC WhereAU IS very energies are equaL e} E(@) becomes
small, & is real and has the physical interpretation as the
distance heat will diffuse during an acoustic cycle. As the Ql=Q'+ Qi (13
temperature is lowered towafld on the critical isochore, the
value of Dt drops and, initially, so doe&;. However,/ and  where
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J RE(VP) -TUldV
1Jv

pe f T2V
\%

f Im[p pldV
Nz

(14
and

Q;l =— (15

fv RAFFIOV

Q;l represents predominantly viscous dissipation, Qﬂ}&i

represents predominantly thermal dissipation. Volume and

surface processes contribute to b@ft and Q™.

Equations(14) and (15) show how the dissipation de-

pends on the phase relat|onsh|ps betwpgep, andl. When
p andp are in phase, the quantifyp has no imaginary part
and there is no thermal dissipation. Equatj®B) can also be
written in terms of the compressibility="/(pp),

f [BlPIm[ «]dV
Qit=- (16

| prrdiaav
\

When the conditiongwD;/c?<1 andywD,/c?< 1 are sat-

isfied, i.e., not too close to the critical point, the compress-

ibility is

—(l+i)x/§1—:| , (17)

y—1
K= Kg 1+1+ﬁe

whered=¢e/es. [Equation(A28) in the Appendix is the ex-
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separation of the dissipation into surface and volume terms is
an approximation; the separation of the thermal and viscous
dissipation is an additional approximation. These separations
are useful for designing the experiments and for interpreting
the qualitative features of the results.

At the frequencies we use, the volume dissipation from
shear viscosity and thermal conduction is negligilple.xe-
non at7=1x10"® and 10 kHz, the volume dissipation from
shear viscosity4/3)(w/c?)D, is =2 10°° and the volume
dissipation from thermal conductiofy—1)(w/c?)Dy is =5
X 107°%.] However, the leading volume dissipation term that
depends on the bulk viscosity,

Q=% (20

is important; this term is<0.1 at7=1x 10 and 10 kHz.
Because this paper focuses on the boundary layers, the analy-
sis in Sec. IV is restricted to the data for Whi(i)j1 is less
than 0.8% of the total dissipation.

The expressions for the dissipation, E¢E8) and (19),
are familiar[2,12] except for the factof1l+) in Eq. (19).
Far from the liquid-vapor critical point, the energy content
per unit area within the thermal boundary layer of the gas is
much smaller than that in the solid, i.e%<1; then, (1
+19) =1, and the usual expression is recovered. The ratios of
integrals in Eqs(18) and(19) are geometric factors that can
be calculated analytically for resonators with a high degree
of symmetry[2,12]. The integral ratios for the more compli-
cated resonator used in this work were estimated from nu-
merical computation§13] and then adjusted slightli#2%)
to improve the agreement between the measurements far
from T. and theory. We replace the integral ratios in Eqs.
(18) and(19) with 2q, and 2y, respectively, and wnt@

act expression fof).] Equation(17) reduces to the adiabatic andQ;* as

compressibility kg far from the wall (x— ). (Note thatx
equals the isothermal compressibilitt=yxg at x=0 for a

perfect wall[8].) In this level of approximation, the corre-

sponding dissipation terms become

f |Uu|2dS
w

—<—+2D>+0(52) (18)
f|u|2dv

N 135 Blds
y-4

21+9 .
flplzdv
Vv

The leading terms in Eq$18) and(19) are denoted};l and

and

Qr'= +(y=13Dr+ 0(8). (19

Q,'=~q,s, (21)
Q= (y- D (22)

Figure 2 shows plots 0@;1 for the Helmholtz mode of our
resonator for two wall materials: bare stainless steel and a
polymer coating. The solid curve in Fig. 2 sho@§1 for an
idealized resonator that has walls with an infinite thermal
conductivity. The dotted line in Fig. 2 shows the viscous
dissipationQ;* for the Helmholtz mode in both the steel and
the polymer-coated resonators. The crosses in Fig. 2 indicate
the reduced temperature whebe=1. The reduced tempera-
ture 7y separates two regimes. Fer> 7,5, the temperature
gradient near the fluid-solid boundary occurs mostly in the

Q;l because they come from the surface viscous and therméuid; for 7<ry, the temperature gradient occurs mostly in
dissipation, respectively. The lowest order contributions tathe solid, where the thermophysical properties are indepen-
the volume dissipatiorithe second termshave been sepa- dent of 7. Equation(22) predicts that forr< 7y the thermal
rated out from the other high order terms. In general, thedissipation is approximately
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sociated energy dissipatipm reaction to the oscillating xe-
non. By avoiding seams, we reduce the chance of energy
dissipation in crevicegiv) Thick (2.5 mnm) diaphragms are
used to transmit sound into and out of the resonator. These
robust diaphragms withstand a differential pressure of
10 MPa, thereby eliminating the need for a pressure vessel.

Two identical resonators were made for this study. Both
resonators were machined from type-316 stainless steel. The
interior surfaces of both resonators were polished to a mirror
finish to ensure that their effective areas were independent of
the length scale set by the thermal penetration length in the
xenon (0.5<&;<10 um). The polishing removed tool
marks and scratches with a series of grits; the smallest grit
was 0.5um.

The inner surface of one resonator was left bare. The in-
ner surface of the other resonator was coated with an 80

-um-thick layer of poly-monochloro-para-xylylene, a poly-
FIG. 2. Predicted thermal boundary dissipation as a function oiner known commercially as Parylene [@4]. The rms
reduced temperature in resonators made from stainless steel, a pohsughness of the polymer surface was less than p198as
mer, and a perfect solid. The crosses indicate wherel. The  determined with atomic force microscopy for length scales
viscous boundary dissipation is also shown for comparison. up to 80um. The ratio of the topographic surface area to the

projected area was 1.0089 for areas between 3 and
2 g 2300 um?.
Q;l ~ rﬁ We chose this polymer as the coating material because it
ac (pLyVC
In the asymptotic critical regimegs<1 and Q;le 7208
Therefore a maximum occurs i@;' near 7,. Solids with

has a low effusivity, it is chemically stable, and because it
adheres well to metal substrates. The polymer was deposited
smaller effusivity have larger values ofy; and smaller
maxima inQ; .

(23)

from its vapor. The deposition process creates a honporous
conformal film(no shadowingand does not leave a solvent
residue that might contaminate the xenon. The thickness of
the polymer coating was estimated from micrometer mea-
surements and from mass measurements of samples that
were deposited when the resonator was coated. The esti-
mated polymer thickness wd85+15um. Using the ther-
mophysical properties supplied by the manufacturer, we es-
The double-Helmholtz resonator shown in Fig. 1 was detimated the effusivity of the polymer to be 277 kgks™>/2,
signed to be compact and to have several widely spacedhe effusivity that best fits our data is 370 kg2 Us-
low-frequency, non degenerate modes. Widely spaced modésg the manufacturer’s data, we estimate the thermal penetra-
are needed to accurately measure the frequency dependerizn length in the polymeb;=17 um at 100 Hz. Therefore
of the speed of sound and the attenuation of sound in neathe polymer thickness was 432, We calculated the thermal
critical fluids. Degenerate modes must be avoided becaudsoundary dissipation when the xenon is in contact with a
small imperfections of the resonator’s shape or small interfayer of one solid on a semi-infinite slab of another solid. If
mode couplings will partially remove the degeneracy andhe layer is at least & thick, the thermal dissipation is
yield a frequency response composed of partially overlapwithin 1% of that for an infinitely thick layer.
ping peaks. Fits to overlapping peaks require many highly The two resonators were filled and studied in identical
correlated parameters; the correlations increase the uncesays but not simultaneously. One resonator at a time was
tainty of theQ'’s determined by fitting such modes. mounted inside a multishelled thermostat that had been used
We mention four design features of the resonator in Figto test a previous microgravity experime@ritical Viscosity
1. (i) The resonator is deliberately asymmetric, i.e., the twoof Xenon, CVX) [15]. The performance of the thermostat has
cylindrical chambers have equal volumes; however, theibeen described in a previous publicatifk6]. The resona-
length-to-diameter ratios differ. Because of this, the longitu-tor’s temperature was measured with a thermistor located in
dinal modes of the longer chamber are not degenerate with machined well in the resonator’s body. The thermistor was
modes in the shorter chamber. In this work we studied thealibrated against an industrial platinum resistance thermom-
five lowest-frequency longitudinal modes of the longereter that itself had drifted by 15 mK since it was last cali-
chamber as well as the Helmholtz mode. These modes hdatated on ITS-90. We used 15 mK as the combined standard
nominal wave numbers/c=12, 65, 130, 197, 261, and uncertainty of the thermistor’s calibration.
326 nil. (i) The two chambers are oriented at right angles A 0.5-mm-i.d. copper tube was vacuum brazed to a port in
to each other to keep the resonator comp@icy. The cham-  the resonator, through which gas could be removed or added
bers and the tube connecting them are machined from with ease. The other end of the copper tube was attached to
single piece of metal to make a rigid, seamless structure. Tha small gas handling system through a high-pressure valve.
rigidity reduces the deformation of the resonatamnd its as- The gas-handling system consisted of a pressure gauge, a gas

Ill. ACOUSTIC ATTENUATION MEASUREMENTS

A. Resonator
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storage vessel, and a leak detector connected by smallienerator drove the source transducer with a sinusoidal volt-
diameter stainless steel tubing. With the valve closed, thage at frequency, and it provided the reference signal for a
evacuated or filled resonator could be detached from thdigital, two-phase lock-in amplifier. The lock-in amplifier
manifold and weighed. Once the resonator was filled withmeasured the in-phase and quadrature signals, afsdram
xenon to the critical density, the tube was crimped over a the detector. For each acoustic mode we studied, the drive
-cm length, cut, and then brazed to permanently seal thand detector voltages were measured at 11 frequencies span-
xenon inside. ning the full width of the resonance. The frequency was
scanned upward and downward to remove the effects of a
linear temperature drift. The measured signal was averaged
for 2 sec at each frequency to improve the signal to noise

The xenon’s density was determined from mass and volratio. A computer controlled the data acquisition.
ume measurements. We measured the combined volume of When the piezoceramic source transducer was excited
the resonator, the fill tube, and the valve by a gas expansiowith 7 V (rms), it generated a volume displacemey; in
technique. We filled a known volume with argon gas andthe chamber of approximately>x10~ V,, whereV, is the
measured its initial temperature and pressure. After succesolume of one chamber. This volume displacement did not
sive expansions of the argon from the known volume to thevary by more than 10% between 100 Hz and 6 kHz. The
manifold and then to the resonator, we again measured thdiaphragm’s sinusoidal volume displacement generated a
temperature and pressure. We determined the argon’s densjtyessure wave in the gas. The acoustic pressure at the reso-
from an equation of statg¢l?7] after each expansion. The nance frequency of the Helmholtz modd, was
uncertainty in argon’s density was 0.02%. The volume of theQpc?sV./(2V,). For the longitudinal modes, the acoustic
bare stainless steel resonator, its fill tube, and valve wagressure wasQpc?sV./V..

(19.501+0.00%cm?. For the polymer-coated resonator, the  We determined the acoustic pressure from the detector
combined volume wagl8.822+0.00Y cnr. signal using a model for the electro-acoustic response of the

After the mass of the empty resonator was measured, wenick diaphragms and piezoceramic transducers. The model
added enough xenon to overfill the resonator by approxiyielded a detector sensitivity of gV/Pa for all the modes.
mately 5%. The amount of xenon added was estimated frorror the 7-V source excitation, the acoustic pressuré,at
the change in pressure of the storage vessel. Then the resanged from 100 Pa at the highest temperature4
nator was placed back on the balance and small amounts of 107) to 9 Pa at the lowest temperature=3x 10°%). For
xenon were released until the desired mass of xenon was lefie same excitation voltage, the acoustic pressure of the lon-
in the resonator. The bare stainless steel resonator was fillefitudinal modes was approximately ten times higher than
with (21.757+0.002g of xenon at a density of that of the Helmholtz mode because the longitudinal reso-
(1115.7+0.2 kg m3. The polymer-coated resonator was nances had highe®’s and because the coupling to the lon-
filled with (21.006+0.002g of xenon at a density of gitudinal modes was four times more efficient.

(1116.0+0.4 kg m 3. Precautions were taken to avoid nonlinear dependence on

The manufacturefMatheson Gas Produc{d4]) stated the drive level. The acoustic pressure amplitudes in all our
that the xenon was 99.995% pure. No additional analysis omeasurements were small enough to avoid hydrodynamic
purification was performed. nonlinearities. If the temperature oscillation is too large very
close to the critical point, then the average of the singular
thermodynamic properties over the acoustic cycle will differ
from the values at the average temperature and the true criti-

The thick diaphragms mentioned above were machinegal behavior will not be observed. This limit on the tempera-
into flanges that formed the ends of the cylindrically shapedure oscillation places a stricter limit on the pressure ampli-
chambers. The flanges were sealed to the resonator bodlyde than hydrodynamic linearity. An acoustic pressure of
with gold wire o-rings and high-strength alloy screws. Thin60 Pa will result in a 1% error in the bulk viscosity &t 3
piezoceramic disks were firmly cemented to the outside surx 1074, whereas 90 Pa is required to cause a 1% err@gin
face of each diaphragm. These transducers generated atichonlinear hydrodynamics or nonlinear averaging had been
detected sound. The polarization for these disks was orientégportant, then the measured resonance line shape would
perpendicular to the electrodes, which were bonded to thbave depended on the drive level. For all the modes we stud-
flat faces. The voltage across the electrodes was coupled ted, a ten fold reduction in the drive level did not measurably
the acoustic pressure in the gas through stresses and straiféect theQ. Also, we verified that the power dissipated in
in the piezoceramic material caused by the flexure of thdhe drive transducer did not heat the resonator significantly.
diaphragm.

The three piezoceramic transducers attached to the dia-
phragms were identical. A transducer at one end of the long
chamber was used as the sound source. A transducer at theTo determine the critical temperatufg of the xenon in
other end of the long chamber was the detector. The samgach resonator, we measured the resonance frequency of the
pair of transducers was used to drive and detect all thélelmholtz modef,(T) as a function of the temperature. In
modes. The third transducer at the end of the short chambéhne approximation thaf, is proportional to the thermody-
was used only for diagnostic purposes. A digital functionnamic speed of soundi.e., the zero-frequency speed of

B. Sample density and purity

C. Acoustic transducers

D. Determination of the critical temperature
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TABLE I. Results for the Helmholtz mode in the bare steel
resonator. The resonance frequeificand half widthg, were from
fits of Eq.(24) to the acoustic data and corrected according to Egs.
(25) and(26) as discussed in the text. The speed of sogpgwas
determined from the acoustic dakg,from a calibration with argon,
and Eq.(29). The fractional deviations o€ '=2g,/f, from the
model, whereAQ Y/ Q7'=(Q/*- Q2 )/Qrk 4

steel
—eo— 0.1 mK/min

—a— 0.5 mK/min
—4— 1.2 mK/min

130 |

128 N

'f T(°C) T f(H2) g/(H2) cps(ms? AQ Q™
I 16.683 3.48x107* 161.7581 4.3963 84.942
126 16.704 4.20x107* 164.7404 4.3307 86.422
16.73% 5.18x10* 168.1319 4.2189 88.084

5% polymer 16.767 6.3%10%* 171.7045 4.1167 89.842  3.340*

124} 9y —o— 0.1 mK/min 16.810 7.8%10* 175.4707 3.9691 91.676  1.1310°3

) —o— 0.2 mK/min 4 3

i . 05 mK/min 16.864 9.7%10* 179.3597 3.8050 93.564  1.6910°

—a— 1.2 mK/min 16.939 1.2% 1073 183.9478 3.6019 095.787  7.5110°*

6.580 L 6'82 L 6l58 L 6I586 L 6l588 17.023 1.5X10°° 188.1982 3.4194 97.851 9.6910*
16. 165 ! .T4° 16. 16. 17.125 1.8% 1073 192.6129 3.2303  99.996 134104
c 17.252 2.3%10°°% 197.2016 3.0411 102.231 -1.840°3

FIG. 3. The Helmholtz mode resonance frequefigyplotted as ~ 17.409  2.85¢10°® 201.9735 2.8629 104.566 2.6210°*
a function of temperature for different temperature ramp rates. Thd7.602 3.5%10°° 206.9397 2.6839 107.001 -9.2810*

temperatures of the minima were used to deterriine 17.841 4.35¢1073 212.1077 2.5142 109.545 -1.%20°3

18.135 5.36¢10°° 217.5125 2.3580 112.217 -1.86073
sound in xenon at its critical density, the theory of critical 1g 498 661102 223.1647 2.2106 115021 -1.%¥20°3
phenomena predicts(T) varies as”? (with @=0.110, and 14 46 g 16:10% 2200934 20748 117.973 —-9.300°4
gi‘géff]fi’rﬁ ;’r‘?‘:':f?s;g’vgptﬁecé‘asgh?st the critical point. We for19.498 10K 107 2353336 19508 121.090 45707

gravity and then the effec 5 s

of nonzero frequency. 20.179 1.2&10“ 241.9257 1.8378 124.394 -7.%80

Under the earth’s gravity, near-critical xenon compresse@1.020 15X 1072 248.9156 17363 127.906 6.7A0"
under its own weight and forms a vertically stratified sample22.057 1.8% 1072 256.3622 1.6436 131.657 4.890°*
such that the density equajgs at only one height(This  23.337 2.33% 1072 264.3278 1.5609 135.677 3.8810*
height is midway between the top and bottom of the resonas4.915 2.88¢102 272.8887 1.4880 140.007 5.89Q.0°%
tor, if the average density of the xenonpis) In equilibrium, 55860 355102 282.1399 1.4232 144.693 A4.%8.0°%
the frequency of the Helmholtz modg(T) is determined by
suitably averaging the speed of sound over the stratified?oint omitted from the analysis.
sample. We calculated the averaged value§,0f) by solv- o) the resonator was warmed 0.42 K abdyeand al-
ing numerically the wave equation in stratified xenon with aj\yeq to equilibrate. Then the temperature was loweied
rectangular cross section 23.5 mm high. In this motlgll)  10_30 min to just aboveT,, and the ramp was begun. The
does not vanish &; instead,f(T) has a shallow minimum  data in Fig. 3 show that consistent results were obtained for
approximately 15 mK abové,. In principle, we could have the Helmholtz frequency,(T) with ramp rates spanning a
fit f4(T) to a refined model that accounts for the actual crossactor of 10. At still faster ramp rates, the temperature of the
section of the resonant cavities. However, the result woul&kenon lags behind the thermometer installed in the side of
still be uncertain because of our limited knowledge of thethe resonator. At slower ramp rates, evidence of stratification
equation of state of xenon. Instead, we chose to stir the xewas found.
non to reduce the effect of gravity diy(T). We recognize We determined the precise location of the minima by fit-
that a fully stirred sample is not in thermal equilibrium. From ting f4(T) to a quadratic polynomial. For the polymer-coated
considerations in Ref.18], stirring replaces the isothermal resonator, we observed the minimum at 16.5833St@ndard
density profile with an adiabatic density profile. The isother-deviation 0.0001°¢with four ramp rates 0.1, 0.2, 0.5, and
mal profile is sigmoidal and spans the density radge 1.2 mK miri'. For the same range of ramp rates in the bare
~ +0.07p.. The adiabatic profile is nearly linear in tempera- steel resonator, the average location of the minima was
ture (dT/dz=-1 mK cni?l) and density and spans the very 16.5828°C(standard deviation 0.00049CBased on these
small density range\p~ +5x 10 °p.. In the adiabatically measurements, we cho3g=16.583°C for both resonators.
stratified xenonf,(T) has a much deeper minimum that is The uncertainty ofT, must be at least +1 mK due to the
within £1 mK of T, for our 23.5-mm high sample. adiabatic temperature gradient in the convectively stirred xe-

To stir the xenon, we ramped the temperature of the themon as discussed above. Although these valuds afe mu-
mostat downward. The ramping created small temperaturtially consistent, they might differ from each other by as
gradients in the xenon that drove convection. Before eacmuch as 2 mK; we have detected 2-mK changes when the
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TABLE II. Results for the second longitudinal mode in the bare  TABLE lll. Results for the fifth longitudinal mode in the bare
steel resonator. The resonance frequehaand half widthg, were  steel resonator. The resonance frequeficgnd half widthg, were
from fits of Eq.(24) to the acoustic data and corrected according tofrom fits of Eq.(24) to the acoustic data and corrected according to
Eqgs.(25) and(26) as discussed in the text. The speed of sognd  EQs.(25) and(26) as discussed in the text. The speed of sogrd
was determined from the acoustic ddtgfrom a calibration tacyg was determined from the acoustic dd¢gfrom a calibration tacyg
at one temperature, and E®@9). The fractional deviations o@r'l at one temperature, and E®9). The fractional deviations er'l

=2g,/f, from the model, wherdQ™*/Q*=(Q[*~ Q9 Qo =2g,/f, from the model, wheraQ™*/Q = (Q; "~ Q9 Qrog
T(°C) T fi(Hz2) g(H2) c(ms? AQ Q™ T(°C) T fi(Hz2) g(Hz) cs(ms? AQHQ™?
16.683 3.48x 10 1733.633 19.463 16.683 3.48x10* 4380.179 50.153
16.704 4.20x107* 1764.795 17.990 16.704 4.20x 1074 4455.946 42.840
16.73% 5.18x 1074 1799.779 16.721 16.732 5.18x 1074 4543.372 36.415
16.767 6.39x 1074 1836.791 15.649 16.767 6.39x 1074 4635.958 31.379
16.81G 7.88x 1074 1875.291 14.729 16.81G 7.88x 1074 4732.200 27.484
16.864 9.72x 1074 1915.326 13.890 16.864 9.72x 1074 4832.780 24.433
16.939 1.23x 1073 1962.158 12.999 16.939 1.23x 1073 4950.850 21.731
17.023 1.52x 1073 2005.206 12.237 17.023 1.52x 103 5060.094 19.785
17.128 1.88x 1073 2050.330 11.474 17.12% 1.88x10°° 5173.121 18.122
17.252 2.31x 1073 2097.320 10.723 17.252 2.31x10°% 5290.882 16.654
17.408 2.85x 1073 2146.184 9.995 17.408 2.85x10°° 5413.339 15.345
17.602 3.52x10°% 2197.195 9.289 17.602 3.52x10°° 5541.155 14.140

17.841 4.35¢ 1073 2250.418 8.617 109.547 -6.%68103  17.84F 4.35x 103 5674.598 13.043
18.135 5.36<1073 2306.108 7.979 112.217 -4.440°3 18.13% 5.36x10°% 5814.284 12.034
18.498 6.61x 103 2364.537 7.383 115.021 -2.5210°3 18.498 6.61x 10 5960.866 11.106
18.946 8.16<1073 2425.968 6.828 117.973 -1.2810°3 18.946 8.16x 10 6115.000 10.257
19.498 1.0 1072 2490.765 6.318 121.090 -3.85107* 19.498 1.01x1072 6277.669 9.481
20.179 1.24 1072 2559.332 5.851 124.393 8.68l0°° 20.179 1.24x1072 6449.880 8.775
21.020 1.5% 1072 2632.182 5.424 127.904 -1.%310* 21.020 1.5% 1072 6632.904 8.131 127.907 -1.%4073
22.057 1.8% 1072 2709.899 5.036 131.654 -6.84107* 22.057 1.8%1072 6828.219 7.547 131.658 -6.2810*
23.337 2.3% 102 2793.154 4.684 135.674 -1.8310°  23.337 2.3% 102 7037.521 7.019 135679 -6.6710*
24.915 2.8 102 2882.739 4.367 140.003 -3.4710° 24.915 2.8&% 1072 7262.794 6538 140.009 -1.81073
26.862 3.55 1072 2979.643 4.081 144.688 -5.¥0°3  26.862 3.5% 102 7506.531 6.103 144.695 -4.25073

4Point omitted from the analysis. 4Point omitted from the analysis.

thermistor was removed from one resonator and replaced at a

later time. Furthermore, both values Bf might differ from ) ) )

ITS-90 by as much as 15 mK, the uncertainty of the ther-Thus a total of eight independent parameters were adjusted

mometer used to calibrate the thermistor. for each resonance. From this fit, we obtain the resonance
We were concerned that the valueTof determined from  frequencyf,=Re(F,) and half widthg,=Im(F,). The con-

fy(T) in the stirred sample might depend upon the acoustigtantf is not adjusted, but it is fixed midway between the

frequency. However, we found precisely the same valug of maximum and minimum frequency of the data set.

by measuring the frequency of the first longitudinal mode  The fractional rms deviations from the fits with E@4)

fLa(T) in the stirred fluid using the procedure describedyere at most 0.001, corresponding to an uncertainty from

above.(Note: f;/f;=5.) random noise of 0.0@} for both f, andg,. After an initial
analysis, we discovered that fits with E@4) introduce sys-
IV. DATA ANALYSIS tematic errors that grow a® decreases. The errors arise

_ ) because the standard resonance formula ignores the fre-
We fit the in-phase and quadrature components of the dgyyency dependence of the dissipation mechanisms that con-

tector voltage with a standard acoustic resonance formulgip,ie to the half width(g, o f~V/2 for surface losses andf
(101, for volume losses In effect, the half width itself is fre-
Af _ quency dependent. We corrected these small systematic er-
utiv= 2o +B+C(f-f). (24 rors by fitting Eq.(24) to numerical data generated from a
r model that included the frequency dependent dissipation.
The complex parametet, B, C, andF, were adjusted to The errors in the fitted resonance frequencies Qisdwere
minimize the squared deviations of E@4) from the data. described by the empirical expressions
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frcor = Frit 1 ., 1 ., 1 ., ., 1 longitudinal modes at selected temperatures are presented in
— == 5Qunt 7 Qua t 5 QsirtQuol 5 Qsurts Tables I-VI. Tables -l contain the data for the bare stain-
8 4 8 8 :
less steel resonator. Tables IV=VI contain the data for the
(25) polymer-coated resonator.

1:r,fit

ot —Qit=- }Q_Z (026301 O + EQ—S A. Model of the Helmholtz mode
corr LT g resurt A surfevol = g esurt To relate the concepts developed in Sec. Il to measure-
(26) ments in our Helmholtz resonator, consider the detailed
acoustic model for the Greenspan viscomg®&r Equation
whereQg; andQ;, are the surface losségiscous and ther-  (25) in Ref.[2] gives the resonance condition for the Helm-
mal) and volume lossegulk viscosity, respectively, in the holtz mode when the fill duct is neglected. The sealed fill
vicinity of the resonance. Equatioi®5) and(26) were used, duct for our resonator was only 2 cm long with a 0.5-mm
with Qg and Q.2 estimated from our acoustic model, to diameter, so gas flow in or out of the tube was negligible.
correct the fitted resonance frequencies and half widths folumerical calculation$13] showed that the fill duct would
the measurements in xenon. The largest corrections were famcreaseqgy; by 0.7% and decrease the wave number by less
the Helmholtz mode at the lowest temperatufaf,/f,|  than 0.04% for the Helmholtz mode. These small constant
<0.04% andAQ Y/ QY <1.5%. effects were accounted for in the calibration.
Values of the corrected resonance frequencies and half The complex resonance frequency of the Helmholtz mode
widths for the Helmholtz mode and for the second and fifthis given to sufficient accuracy by

Ld
1+ [G(ikoLy/2) - 1]
Fru\? 1 Lg+ 26
— ] = X : (27
fo _ Qrér . Lg 5,
1+(1-i)(y-1 1+(1-i)g,s,+ [GT'Lg2)-1]) 1+(1-i)—
1+ Ld + 25| g
I
where fo=koc/(27) would be the resonance frequency if B. Derived xenon properties

there were no dissipationy is the duct radius, and, is the
duct length. The end correctiof), discussed in Ref2], is

on the order of 0.7 here. We have defined the function  we used the measurements from the Helmholtz mode in
G(x) =tanhx)/x. The propagation parametEris given by  the uncoated resonator to derive the properties of xenon be-
cause this mode was most affected by xenon’s thermal con-
_io [1+3+(y-DFy (28) ductivity and least affected by bulk viscosity. The valuegkgf
e 1+91-F) for the Helmholtz mode was calibrated with argon gas before
the resonator was filled with xenon. The calibrated value,
with Fr=~(1-i)d/ry and F,~(1-i)3,/r4. Equations(27)  12.314 m?, was within 0.4% of the value calculated numeri-
and(28) have been modified from the expressions in R&f.  cally for this geometry by Meh]13] and within 0.6% of an
by the factor(1+) to account for the effusivity of the solid. estimate based on analytic formulations given in R&f. We
From a calculated or calibrated value fq the speed of used this calibration in Eq29) to determine the speed of
sound can be determined from the measured resonance fresundcyg in xenon at its critical density. The results for

1. Speed of sound

quency and half width with the expression selected temperatures are plotted in Figg)4and listed in
Table I.
. 2m(f, + 9, — g 29 Kline and Caromg19] measured the speed of sound in
H

" k[Re(Fy/fo) + Im(Fy/fo)]’ near critical xenon at 6 kHz a small resonant cavity. Their
results are plotted in Fig.(d). Kline and Carome’s measure-

where the partial half width due to the bulk viscosly  ments have a larger uncertainty than ours because they did

=f,Q;*/2 must be calculated. The total dissipation predictechot calibrate their resonator with a well-known gas nor did

from the model is then they correct the measured resonance frequencies for bound-
ary layer perturbations. They report the uncertainty in their
Oil= 2 Im(Fy) +Ql (30) speed of sound to be 1% far> 102 and up to 2% for
H ReF) ¢ 7<10°3. Our measurements agree within the scatter of their
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TABLE IV. Results for the Helmholtz mode in the polymer-
coated resonator. The resonance frequépeynd half widthg, were

PHYSICAL REVIEW E 70, 021201(2004

TABLE V. Results for the second longitudinal mode in the
polymer-coated resonator. The resonance frequefncgind half

from fits of Eq.(24) to the acoustic data and corrected according towidth g, were from fits of Eq.(24) to the acoustic data and cor-

Eqgs.(25) and(26) as discussed in the text. The speed of sogpd
was determined from the acoustic ddtgfrom a calibration tacyg
at one temperature, and E®@9). The fractional deviations o@;l
=2g,/f, from the model, wher&dQ %/ Q= (Q;* - Qrt)/ Qg

rected according to Eq§25) and(26) as discussed in the text. The
speed of sound, , was determined from the acoustic ddtgfrom

a calibration tocyg at one temperature, and E89). The fractional
deviations of Qr‘1=29r/fr from the model, whereAQ1/Q™t

=(Q*~Qrod/ Aot

T(°C) T fi(Hz) g(Hz) cyms?hH AQH/Q™?
16.683 3.48x10% 159.779 1.015 e T i) (M2 cp(ms™ AQHQ™
16.704 4.20x10°% 162.669 1.009 16.68% 3.48x10* 1743.635 9.048
16.732 5.18x10% 165.994 1.005 16.704 4.20x10* 1774.991 7.524
16.767 6.39x 104 169.431 1.005 16.73% 5.18x10* 1811.048 6.246
16.81¢ 7.88x10°% 172.989 1.008 16.767 6.39x10* 1848.482 5.310
16.864 9.7X 1074 176.674 1.015 93.410 3.3910°* 16.81G 7.88<10* 1887.358 4.648
16.939 1.2% 1073 180.993 1.022 95.684 1.%6107* 16.864 9.72x10* 1927.542 4.180
17.023 15X%10°3% 184.959 1.029 97.773  4.4710°* 16.939 1.23x107% 1974.667 3.816
17.125 1.8& 1073 189.086 1.036 99.947  1.6810°* 17.023 1.52x10°% 2017.916 3.599
17.252 2.3x 1073 193.375 1.045 102.206 6.8310°* 17.125 1.88x10°% 2062.915 3.448
17.409 2.85%10°% 197.832 1.051 104552 -3.%410%  17.252 2.31x10° 2109.643 3.343
17.602 35X 107 202.480 1.059 106.999 -4.37104  17.40 2.85x10°% 2158.181 3.268
17.841 4.35%107° 207.329 1.065 109.552 -8.5710°4  17.60Z2 3.52x10°% 2208.805 3.215
18.135 5361073 212.408 1.071 112225 -6.8610%  17.84F 4.35x10° 2261.613 3.174
18.498 6.6 10°% 217.736 1.076 115.028 -9.30910%  18.135 5.36x107° 2316.890 3.141
18.946 8.1610°% 223.344 1.079 117.978 -1.0810°% 18498 6.61x107° 2374.871 3.110
19.498 1.0X 102 229.262 1.081 121.090 -9.7010%  18.946 8.16x10° 2435.866 3.079
20.179 1.24<102 235.532 1.082 124.387 -9.5010% 19.498 1.0 102 2500.238 3.046 121.090 3.4610°3
21.020 153102 242.199 1.081 127.891 -8.%10% 20.179 1.24 102 2568.417 3.010 124.387 4.6310°3
22057 1.8 102 249.316 1.079 131.631 -8.60107% 21.020 1.5% 102 2640.902 2.968 127.891 4.3510°3
23.337 2.3% 102 256.948 1.076 135.641 -7.30107% 22.057 1.8% 102 2718.275 2.922 131.632 4.3310°3
24915 2.88102 265.165 1.072 139.950 -3.6110% 23.337 2.3%102 2801.233 2.871 135.643 4.2810°3
26.862 355102 274.051 1.068 144.628 -5.83107% 24915 2.8% 102 2890.551 2.816 139.960 3.9510°3
: : _ 26.862 3.5% 1072 2987.156 2.758 144.631 3.x910°
4Point omitted from the analysis.
%Point omitted from the analysis.
data(0.2%) far from T.. Below 7=107%, Kline and Carome’s 5
values are 2% higher than ours. This level of disagreement is Co= CH_SXTCV’ (32)

not likely to be due to dispersion; it probably results from the

criterion that Kline and Carome used to determineThey
assumed that the speed of sound averaged over an isother

density profile has a minimum &..

We used our measured speed of soogg the isothermal
susceptibility y1 measured by Guttinger and CannglQ],
and (gP/4dT), from Swinney and Henry21], to determine

2. Heat capacity and thermal conductivity

Cy and Cp with the equations

rM\énerecp and C,, are per unit mass quantities. The isother-
mal susceptibilityy; is related to the isothermal compress-

ibility «1 by xt=p? k7. See Table VIl for the functions, co-

efficients, and exponents used to calculg¢e(dP/JT),, and

other quantities.
The largest uncertainty in our values @f, comes from

JP

T/,

( ) =Ci+(2- )Pl

+(3 - 20 = 2B)peHy| %%,

the derivative(dP/JT),,. From a scaled equation of state, the
dimensionless derivativeiP*/dT*) ,= (T./P.)(dP/dT), has
the form[21]

(33

(31) where C,, P7, and H; are constants, and the superscript +
distinguishes the constants fer-0(+) and 7<<0(-). In Ref.
[21] the valueC;=5.9253 was determined froPVT data in
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TABLE VI. Results for the fifth longitudinal mode in the
polymer-coated resonator. The resonance frequefpcgnd half
width g, were from fits of Eq.(24) to the acoustic data and cor-
rected according to Eqg25) and(26) as discussed in the text. The
speed of sound, s was determined from the acoustic ddigfrom
a calibration tocyg at one temperature, and E89). The fractional
deviations of Qr‘1=2@]r/fr from the model, whereAQ™Y/Q™!

= Q"= Qmod/ Qo

T(°C) T fiHz) g(H2) cis(ms? AQH/Q™

3.48x107*
4.20x 10°*
5.18x 1074
6.39x 1074
7.88x 1074
9.72x10°*
1.23x 1073
1.52x 1073
1.88x 1073
2.31x 1073
2.85x 1073
3.52x 1073
4.35x 1073
5.36x 1073
6.61x 1073
8.16x 1073
1.01x 1072
1.24x 1072
1.53x 1072
1.89x 1072
2.3% 1072
2.8 1072
3.55% 1072

16.683
16.704
16.73%
16.767
16.816
16.864
16.93¢
17.023
17.128
17.252
17.409
17.602
17.847
18.138
18.498
18.946
19.498
20.179
21.026
22.057
23.337
24.915
26.862

4400.463
4475.998
4564.867
4657.730
4755.087
4856.674
4974.099
5083.198
5196.312
5313.965
5436.229
5563.682
5696.592
5835.753
5981.701
6135.225
6297.234
6468.838
6651.293
6846.034
7054.846
7279.672
7522.841

37.632
30.068
23.267
18.140
14.323
11.554
9.367
7.986
7.057
6.379
5.908
5.551
5.294
5.098
4.944
4.818
4.701
4.607
4.511
4.423
4.330
4.236
4.142

-3.x110°3
-3.9510°3
-4.%610°3

135.642
139.961
144.632

4Point omitted from the analysis.

the critical region abovd, and in Ref.[22] the valueC,
=5.9368 was determined from vapor pressure data b&low
We used the values ¢bP/JT), from Ref.[21] and we took
the difference between the two values ©f(0.2%) as an
estimate of the uncertainty ¢6P/4T),. The uncertainties of
xt and cys are on the order of 0.1%; therefore the uncer-
tainty of our values ofC, is approximately 0.4%.

Kline and Caromg19] determinedC, for xenon in the

PHYSICAL REVIEW E70, 021201(2004)

We fit the scaled dat&\,=T.p.Cy/P. with the function
Cy=A*'741+C*9 + B, (34)

using «=0.110, to determine the amplitud. Our result

"=18.01+0.11 is 8% lower than the value from Edwaetls
al. as reported in Ref20]. The correlation length amplitude
& was determined from the principle of two-scale-factor uni-
versality [24],

a PcA+(§(J;)3
keTe

where kg is the Boltzmann constant. The valu&
=(0.1866+0.001pnm, which we obtained from Eq35),
agrees with the valug0.184+0.009 nm from Ref. [20]
within the combined uncertainties.

The thermal conductivity was deduced by comparing the
measurements of th® of the Helmholtz mode in the steel
resonator with the predictions of E¢B0). This comparison
required, as inputs, the effusivity of stainless steel, the diffu-
sivity of stainless steel, and the shear viscosity of xenon
measured in microgravity by Berg, Moldover, and Zimmerli
[15]. We represented the shear viscosity with a polynomial
function of log(7); the coefficients are listed in Table VII.

The thermal conductivity was expressed in the form
RigT
6mné’

(36)

where the parameteds, Ap1, Ap2, @NdAp3 Were adjusted to
fit the data and are listed in Table VIII. The last term in Eq.
(36) is the critical part of the thermal conductivity, whefe
=£&7Y(v=0.63 is the correlation length anB=1.05 [21].
The thermal diffusivity calculated from Eq&2) and(36) is
within 10% of the values reported by Swinney and Henry
[21] over the range of the fit.

An uncertainty in the ratio of the integrals in E(L9)
propagates into an uncertain scale factor for the thermal con-
ductivity. The ratio of integrals from the numerical modeling
was 147.80 m; it was adjusted to 149.45 Thto best fit the
data. This adjustmeritl.1%) is a systematic uncertainty in
the values of the thermal conductivity given by HG6).
After A+ was determined using the stainless steel cell(ise
of the longitudinal modes of the steel cell could be fit with-
out additional parameters. The same valuesoélso fit the

=0.0188+0.0001, (35

AT = Npo + Apa T+ Np 10G36(7) + Npall0Gso(7) ]2 + pCp

critical region from their sound speed measurements ag s ©f the Helmholtz mode of the polymer-coated resonator,

6 kHz. Since they too used tHeVT data of Habgood an
Schneidef21] to determine(dP/JT),, we estimate their un-
certainty inCy is 2%. Above r=3x 1072 Kline and Car-

ome’s values ofC, are about 1% higher than ours, whereas

below 7=3x 1073 their values are about 1% lower than ours.
In contrast, our values o, are much smalletby 11% at
=103, by 9% at7=10"2; and by 6% atr=0.035 than the
values ofC, measured by Edwards, Lipa, and Buckingham
using a calorimetef23]. Edwardset al. report a systematic
uncertainty that ranges from 6% at0.001 to 12% atr
=0.035. To summarize, we believe the present values,of
are the most accurate available in the range®$0r<10".

g Provided the effusivity of the polymer was adjusted to the

value 370 kg K! s2 As shown in Fig. 5, this value ac-
counts for theQ's of the Helmholtz mode of the polymer-
coated resonator to within +0.2% over the entire range of the
data. The same values ®f ande account for theQ’s of the
longitudinal modes of the polymer-coated resonator.

C. Model of the longitudinal modes

From a lumped-impedance analysis similar to the one in
Ref. [2], the complex frequency for thath longitudinal
mode of chamber 1 is given by
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TABLE VII. Thermodynamic and transport properties obtained from the literature.

Symbol Value Symbol Value
pe(kg m3) 1116.0+1.7 a 0.110+0.008
P.(MPa) 5.84 8 0.325+0.002
R 1.0%' v 0.630+0.002
Susceptibility xr=(p2/Px =T [L+a, A +a, +ag3h]
r* 0.0577+0.0001 a 1.29+0.03
A 0.496 a, -1.55+0.2
y 1.241+0.002 ag 1.940.5
(op/a1) =(Pe/T)(oP" /aT") | (9P*/T")  given by Eq.(33)
C, 5.9253 pcH3 -1.920f
P} 2.1128

. . 5
Shear V|soc03|fy n(uPa 9=hy+ = hflogy(D]"

n=1

ho 62.386 hs 1.9906
h, 15.300 h, 0.29167
h, 8.0579 hs 0.01797
3See Ref[26].
PSee Ref[27].
‘See Ref[28].
dSee Ref[21].

®See Ref[20].
"This function reproduces the shear viscosity from R&5] to +0.05uPa s. The experimental uncertainty was +0.2ha s[15].

Fin (1+N[L-(1-1)qy,5,] Orn=0rLc/ (Lc+2R,) from the cylindrical sides and a contri-
T (1+Ap) 1+9+(1-D(y- .5 (37 butiond,=dr,—df, from the end plates. The speed of sound
" ™ consistent with measurements with these modes is deter-
wherefg,=kg,C/(27), and A, is the solution of mined by
tar( kOnLcAn) _. [ (1 -i)(y =~ Defy,
2 1+9+(1-i)(y- 1)q1,'n5T = 27(f, + 9, - gp) (39)
Ln— ’
L Re(F/fon) + IM(F L/ fon)
Xko:]_ C(1+An)- (38) kOnl: Ln’'0n Ln On]

The geometric factogr, has been divided into a contribution and the total dissipation is

TABLE VIII. Critical amplitudes and thermal conductivity for xenon from this work. Also effusivities of stainless steel and the polymer
coating.

Symbol Value Symbol Value
T(°C) 16.583+0.015 &(nm) 0.1866+0.001
A* 18.015+0.27 Rs 0.0427

B* -18.04+0.27 esdkg K71 5757 6389

ct 0.42+0.1 epkg K™t s7572) 368.4

Thermal conductivity\ given by Eq.(36)
Ao KT m™Y 0.01851 App(J KT m™Y 0.005415
Np1(J KT m™) -0.005811 (I KT m™) 0.002067
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TABLE IX. Dimensions and mode parameters of the bare stain- o This work, 100 Hz
less steel resonator. % 140 o Kiine and Carome, 6 kHz
rg(m) 0.00200 ry(m) 0.00300 %
Lq(m) 0.01475 Li(m) 0.01176 3 120
Rey(m) 0.00800 Reo(m) 0.01175 5
Lea(m) 0.04800 Leo(m) 0.02220 § 100
Mode oM™ gmh  gm &
Helmholtz 12.314 470.07 149.45
1st long. 65.79 164.45 165.03
2nd long. 129.57 136.49 178.92
3rd long. 195.86 130.57 166.91 T .00 [
4th long. 260.98 123.13 171.67 E
5th long. 326.23 125.00 168.34 2
°><
2 Im(F oor ¢
R “0 oeed "
103 102
(T-THIT,

The results of these measurements are shown in Figs. 4-8.
The calculated viscous dissipation has been subtracted from g, 4. (a) The speed of soundys determined from the Helm-
the total measured dissipation and the difference has be&fpitz mode with bare stainless steel plotted versus the reduced tem-

plotted as a function of the reduced temperature for all thgerature. The speed of sound measured by Kline and Cajbghe
measured modes. The calculated thermal dissipation also i 6 kHz. (b) Deviations of the speed of sound determined from
plotted for comparison. The peaks in the deviation plots foreach mode frone,g shown in the upper graph. Note: the six modes
the first longitudinal modésee Fig. § are due to interfering for each resonator are mutually consistent at the level of +0.01% of
modes in the thermostat or the support structure. Chs:

The Helmholtz mode in the uncoated resonator was cali-

brated with argon as discussed above. The other modes wefgsonator agree to within 0.01%. Likewise, the sound-speed
calibrated atr=0.01 by a small adjustment db and the  measurements from all the modes in the bare steel resonator
polymer thickness such that the speed of sound equigled  agree to within 0.01%. However, the results from the two
The adjusted values df, differed from Mehl's numerical yegpnators disagree by as much as 0.1%. The disagreement
estimates by less than 1%. The adjusted polymer thicknesgould be explained if the xenon in the polymer-coated reso-
82 um was well within the error of the independent mea-pator had a 0.15% lower density and a 5-mK higher critical
surement(85+195 um. Figure 4b) shows the consistency temperature than the xenon in the bare steel resonator. Al-
with which the speed of sound was determined from eaclhough a 0.15% density difference and a 5-mK critical tem-
mode compared to the reference vatyg. The sound-speed perature difference are both small, we cannot account for
measurements from all the modes in the polymer-coatedither from the known, quantifiable experimental uncertain-
ties. It is possible that a small quantity of xenon leaked out of
TABLE X. Dimensions and mode parameters for the polymer-the polymer-coated resonator during the short time interval

coated resonator. in which we cut the crimped fill tube and soldered the tube
closed.

ra(m) 0.00192 ri(m) 0.00308

Lg(m) 0.01490 Li(m) 0.01184 _ _

Rey(M) 0.00792 Res(M) 0.01167 D. Bulk viscosity

Lea(m) 0.04780 Leo(m) 0.02204 In the low-frequency limit, the bulk viscosity is approxi-

Mode ko(m™) a,(m™) ar(m™) mately [25]

Helmholtz 11.952 509.65 149.26

1st long. 65.935 166.14 168.11 (= RepcC’ T 1)

2nd long. 129.89 137.90 183.16 1+0g

3rd long. 196.33 120.04 176.76

4th long. 261.69 113.20 181.80 o - . .

5th long. 326.99 114.92 178.27 where7, is the relaxation time for critical fluctuations, given
by
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3 107
Te= m, (42) [ Helmholtz Mode
kBTc [
andgg is the ratio of the background part €%, to the sin- -
gular part ofCy, S
C, C I
O = V,*background: N \/_a -1 (43)
CV,singular AT

From our determination ofC,, we found thatgg varied
smoothly from —0.6155 a+=0.035 to —0.4327 a+=0.006.
Theoretical values for the dimensionless cons®ntrange 0.005 e stool
from 0.0285(renormalization group theoyyto 0.086(mode - ©  polymer
coupling theory [25]. The value that was consistent with our
data wasRg=0.0427. The bulk viscosity is predict¢25] to - [
have the strongest temperature dependéree'®) of any '_Q 0.000
known property and becomes negligible outside the critical S,’
region.

The dissipation from bulk viscosit;* was calculated I
from Eq.(20) with the low-frequency limit of Onuki’s theory -0.005 | ()
[25] for bulk viscosity and used in Eq&9), (30), (39), and bttt ettt
(40). For the Helmholtz mode in the uncoated resonator, the
dissipation from bulk viscosity was less than 0.3% of the
total dissipation down to about=6x10"". Therefore the FIG. 5. Comparison of the measured thermal boundary dissipa-

plot in Fig. 5 is almost entirely the thermal dissipation at thetion with theory.(a) The measured thermal boundary dissipation

surface of the resonator. For the other modes, only data fQ}’ersus reduced temperature for the Helmholtz mode in bare steel

which the estimated dlss_|pqt|on from buII_< wscosﬂy was Iess(.) and polymer-coatetb) resonators. The bulk viscosity is negli-
than 0.8% of the total dissipation were included in the deipje for the Helmholtz mode in this temperature range. Theory for
viation plots in Figs. @) and 8. thermal boundary dissipatio@—). (b) The fractional deviations of

In the future, we plan to use the resonators described heffie measured dissipation from theory versus reduced temperature.
to measure the bulk viscosity very closeTg Using all the  we fitted the data for the steel resonator by adjusting the coeffi-
acoustic modes discussed here, we will measure the bullents of\; in Table VIII. The data for the polymer-coated resona-
viscosity over nearly two decades in frequency; with thetor were fitted by setting the effusivity of the polymer to the value
low-frequency Helmholtz mode, we will reaehr=1 closer 370 kg K* 57572,
to T, than any previous measurements. As we have shown
here, the polymer coating will reduce by the thermal bound-
ary dissipation up to a factor of 8 and thereby increase th
accuracy with which the volume dissipation from bulk vis-
cosity may be measured. The results closeiT¢cand the
determination of the bulk viscosity will be the subject of a
forthcoming paper.

(T-T)/ T,

oundary be continuous. The theory is valid both near to and
ar from the critical point; it includes volume and surface
dissipation from thermal conduction, shear viscosity, and
bulk viscosity.
We measured the speed of sound in xenon as a function of
reduced temperature in the range 0.0806<0.03. Using
the measured sound speed and attenuation, the isothermal
susceptibility from Ref[20], and (9P/dT), from Ref. [21],
we derivedC,, Cp, and the background terms for the thermal
The measured acoustic dissipation in near-critical xenoronductivity in Eq.(36). These derived properties were used
shows a prominent plateau for the Helmholtz m@Biy. 5  to determine the amplituds*=18.01 for the singular part of
and, to a lesser extent, for the longitudinal modEgys. Cy (with =0.110 and the correlation length amplitudg
6-8). These results are direct evidence of thermal boundarg0.1866 nm. Although the data do not extend far into the
dissipation being limited by the thermophysical properties ofasymptotic region, the agreement with other values is re-
the solid wall. markable.
We demonstrated an eight-fold reduction in the thermal The onset of bulk viscosity is evident from the excess
boundary dissipation after coating a stainless steel resonatdissipation(over the thermal and viscous dissipadiandi-
with a low-effusivity polymer(see Fig. 5. Such a reduction cated by the upturn at low of the measured dissipation
in thermal dissipation will be necessary in order to measurshown in Figs. 6-8. It is also evident that the dissipation
the low-frequency dissipation from bulk viscosity close to from the bulk viscosity increases as the frequency increases
the critical point in future experiments. in qualitative agreement with theory. The onset of bulk vis-
To analyze the data, we formulated a theory for acousticosity is more evident in the polymer-coated resonator be-
dissipation in a fluid that is bounded by a rigid wall with the cause the thermal dissipation is smaller than it is in the bare-
condition that the temperature and heat flux across theteel resonator.

V. CONCLUSIONS
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FIG. 6. Dissipation due to bulk viscosity and the thermal bound-  F|G. 7. Dissipation due to bulk viscosity and the thermal bound-
ary layer versus reduced temperature. Two longitudinal modes argry |ayer versus reduced temperature. Two longitudinal modes are
shown:(a) L1 for steel( 4 ) and polymer-coate(® ) resonators and  shown:(a) L3 for steel(A) and polymer-coated\) resonators and
(b) L2 for steel(M) and polymer-coated ]) resonators. Theory for  (p) |4 for steel(¥) and polymer-coate) resonators. Theory for
thermal boundary dissipatiof—). The small kink in the data for  thermal boundary dissipatiop—).
the L1 mode in the polymer-coated resonator n€bT.)/T,
=107?is caused by an accidental resonance in the thermostat. o _

T=Tat+ Tt, (Alb)
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The acoustic wave components of the fields are coupled to-
gether through Eqg$3)—(5) and a number of thermodynamic

In this Appendix, we extend the exact solutip8] for  relationships. The thermal wave components are similarly
linear acoustic waves in a dissipative fluid to include heatoupled together. The shear wave decouples from the equa-
conduction in a rigid wall bounding the fluid. The derived tions for the other waves. The amplitudes of the three types
relationships between the fiel@sT, p, 3, andt are valid for ~ of waves are related to each other only through the boundary
single-phase fluids, both near to and far from the criticalconditions Eqs(7a8—7d). B
point, bounded by rigid walls. The walls have finite heat We eliminate all the fields buT from Egs. (3)«5) to

APPENDIX

capacity and thermal conductivity. obtain the fourth-order differential equation,
Equations(3)«5) support three types of waves: a propa-

gating acoustic wave, a thermal wave, and a sheaticity) 5 w’q? 5 0’0 \~

wave. The thermal and shear waves are evanescent waves Ve c2 Ve c2 T=0, (A2)

and do not propagate. Each of the scalar fields is a sum of
two of these waves: an acoustic wave and a thermal wavgyare the full temperature oscillation is written &S T,

- +T_ such thatV2T,=—(wq./c)2T,. The dimensionless wave
P =Pact Pr: (Ala) numbersg, andg- are given by the expressions
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107 E2=(1+iA, —iyAq)2+4iA(y-1). (A6)
[ (The reader is cautioned not to confugewith the integral
i ratiosq, andgy that are discussed in the main t@xthe two
solutlonsT+ correspond tdi) the propagating acoustic wave
w Tac T_ characterized by the wave numblej.=wq-/c and
C 102 (i) the thermal wavéT T, characterized by the wave num-
s polymer, H ber kr=wq,/c. The other field$, p, s, andl; also satisfy
[ Xy Egs. (A2)(A6). These fields will be a superposition of
i Xy acoustic and thermal wave components as well. The relation-
i xxxx steel, L5 ships among the fields, which are consistent with Egs.
L ___polymer, L5 xXXXxx (3«(5) and(A2)—(Ab), are
10-3 12 el i i AR | _ EP . ~
= (iAW), (A7)
0.01 | Steel rT e
e Ps o P
& 0.00 j = _,; R p(: (A8)
3 " s His o
K - icC
Skl L R . S, = PATq T,, (A9)
0.05 [ pol
0.04} povme! and
%, 003
& - 1 1
g 0.02 Us=—7——"——>—Vp;:. (A10)
a 001} L1 L3 1-iA,0ilwp
0.00 Or :
" L2 = The quantity
0.01F ..., e L5
102 102 — T.f9 P)
(T-THT, a= —(— (Al11)
ee P\dT/,

FIG. 8. Dissipation due to bulk viscosity and the thermal bound-
ary layer versus reduced temperatui@. The lowest and highest
frequency modes are shown: the Helmholtz ma#esfor steel(®)
and polymer-coated) resonators and the fifth longitudinal modes . .
(L5) for steel(+) and polymer-coatedx) resonators. Theory for acoustic Wa_ve components, respectively.
thermal boundary dissipatiof—). (b) The fractional deviations of As an aside, we note thal, and(y-1)Ar are very small
the measured dissipation from theory versus reduced temperatut@ the dilute-gas limit. To lowest order the wave numbers are
for all the modes in the steel resonat@ Same agb) but for the 12
polymer-coated resonator. Only data for which the dissipation from ~(1- ,)( ) {1 + I—(y— 1)(Ar- Av):| (A12)
bulk viscosity was less than 0.8% of the total dissipation is shown. 2D+
The peaks in the data for the L1 mode are due to accidental reso-
nances of the thermostat. and

is a dimensionless parameter that remains finite at the liquid-
vapor critical point(a=6 for most substances at the critical
point). Here, the subscripts + and — refer to the thermal and

1) i [
o _1+id, +iyAr+ = kaczE|:1_§Av_§('y_1)AT:|- (A13)
o 2 : ) (A3)
IAT(l +1 ')’AU) . . . .
These approximations are consistent with the lowest order
where approximations published elsewh¢8. The parametek,.is
mostly real with a small imaginary part, consistent with an
attenuated propagating wave. In contrast, the paranketer
A, = 22(5 + 4Dv>! (A4) has a large imaginary part. Therefore the thermal wave is a
p 3 heavily damped evanescent wave whose amplitude is signifi-
cant only near the fluid’s boundary.
The shear wavé,,, completely decouples from the other
AT:%DTa (A5)  fields. In addition to being divergence freBy,, satisfies
c V2,0 =~KUyor With k,=(1-i)/8,. Like the thermal wave,
the shear wave is heavily damped and exists only near the
and boundary. Since the acoustic wave alone cannot always sat-
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isfy all the boundary conditions simultaneously, just enough [ 2D\? YA, 12
of the thermal and shear waves are present to satisfy these Sr= 1+ —— P (A21)
conditions @ 21 +ia,)

To proceed, we will zoom in on a small portion of the \yiih a magnitude approachings;|~1002D/w)? at 7
fluid/solid interface. The distance from the wall will be des- _ 1« 106 Further details of this phenomenon are beyond
ignated the coordinate. The coordinatey andz give the  he scope of this paper. A full discussion will be included in

distance parallel to the wall. The spatial dependence of thg torthcoming publication on the analysis of data very close
wave fields separates into two functions that describe wavg, +

motion perpendicular and parallel to the wall. For the acous-

o
. ¢ Similarly in the solid, we seek the solution to the diffusion
tic pressure, we write

equation
Pac=Paci POV (y,2)€" (A14) L
The functions®(x) and ¥(y,z) satisfy the separate wave VAT = — ki Ts= gTs (A22)
equations s
P that remains finite as— —o and satisfies the boundary con-
e k2., @ and V2 = - K2, W, (A15)  ditions(7c) and(7d). The desired solution has the form
whereks,, +Kig=K5, and Vi=(#/ ay?) + (21 32). If 6 is the To(r,t) = T W(y,20exf (1 +i)x cos prd Srde ™,
incident angle measured from the surface normal, thgn (A23)
=kac Sin 6.
Likewise, the thermal wave has the form where
T _ 5 i ot
Tr(r) =TnOX)¥(y,2)¢ (A16) SiN @re= 2(1+1)Srekae Sin 6 (A24)
such that ———
26 o) thatkT:Q, 1 =krs €OS o15= VKT~ Koy - o
=12 @ =-KA(co2 0 )O® A17 The divergence-fregtransversg velocity field u,,, that
dx® T r(cos” ) AL satisfies
and k% +kZ,=ki=(wg,/c)? in accordance with Eq(A2). i
Here, the angleor is given by Vlyor = = Klyor = Svor (A25)
Sin o= 5(1 +i) Srkqe SiN 6, (A18)

with V-T,,,=0 has the form
and the thermal penetration length in the fldig defined by

F=-21\&, is Tyor(r,t) =Ty1(y,z )exp - (1 +i)x(cos ¢,)/8,],

1/2 ; 12 A26
5T:<2_DT>[ 2(1+iyA,) } (A19) (A26)

@ LHiA, +iyAr+ = where sing,=3(1+i)8,ky sin 6 andk, cos ¢, =Vk2-K2.

On the scale o, and &y, the wall appears as an infinite flat ~ The boundary conditiongEgs.(7a—(7d)] on the total ve-
plane. If the solid wall occupies the half spake:0, the locity and temperature fields can be recast into a boundary
plane-wave form for the thermal wave in the fluid is condition on the acoustic wave,

@(X):exd— (1 +i)X COS(,DT/(ST]. (AZO) o (1_|)5v 5 (1+|)k321c5'|' coS @1
Far from the critical point,d; is indistinguishable from " Uad0) =5 coS @, Vi Tad0) + 20p  1-iA,Q
(2D+/ w)Y2. Indeed, for the data presented hetediffers
from (2D+1/ w)'? by less than 0.6%. As the critical point is

LA yA1q? 1 +tanetan o,

approached, the theory predicts that| at first decreases 1 -iyA7gZ cOS @rs+ ¥ COS @7
approximately as”* (effective exponent while Im (&) y ~ EEV AV

grows. The minimum value d#;| is expected to occur when [cos erPad0) = 3(1 ~) 981 - ¥, Bad0)]
yA,~=~0.5 corresponding tar=4x 107 for the Helmholtz (A27)

mode andr=1x 1072 for the L5 mode. As discussed in the
Introduction, we identify the location of this minimum as the Where

transition between the classical and viscous regimes, as de- ) ] — 12
fined by Carlés and ZappdB]. This coincides with the ap- 9=2 1+iAy+iyAr+E (A28)
pearance of a pressure gradient within the boundary layer. £ 2(1+iyAy)

The location of the minimum value for all the modes was
outside the range of data analyzed for this work. Closer tdn terms of the acoustic pressure alone, the boundary condi-
the critical point, Eq(A19) predicts that tion on the acoustic wave is
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s o= iKaddad 0) . ~ y-1T, J ( —iyAr?
A -V, Pad0) = 25| (coS @15+ O COS @7)sin 6 tan T=—== 1- k2 0
1Pad0) I |:( ¢T1s ®r) Py s ya Pcl—iAqu 21 —I‘}’ATQE ac‘s%' Pad0)
_(@+i)1-i YA} xexd (1 +i)x cos ¢rd 5rgl, (A35)
— (1 +tangrtang,)
2 1 =1 ')’ATq
~ _~ 1- iAqu .
XK, COS @7 COS (PTs:| , (A29) P=Pac~ 1- iATqE Pad0)exd — (1 +i)x cos ¢/ &),
(A36)
where
L = Ccosprs+ 9 COS @y B 1 kﬁc _ 1-iyAg?
= 2 ac™ 7~ 2KPad0)
i 1_|’y Tq+ vq— 1_IyATq—
X[1- Zﬁ(l +tan ey tan ¢,) CB% .
vAvE (A30) Xexg- (1 +i)x cos /8] [, (A37)
Equations(A27)—(A30), with Eq. (A10), lead to an expres-
sion for the effective acoustic admittance of the boundary ~ iNfTe y-1 - 5
layer per unit area, S= pwP.T ya 1-iAq {k ac~ krKPad0)
_ pch - Tpd0) Xexd - (1 +i)x cos 1/ 8rl}, (A38)
Bac=—" -
Pad0)
' —j 2 1 Vp
(1+|)kac c {@ sif 61 !yATq; T - ——— Pac (A39)
1-iA,%2w| cose, 1-iyAro? 1-iAqZlwp
X(1+taner tan ¢,)KCoy cos (PT:| ., (A3Y) L KSrl-iyAg K -
Ur= ; 2 2LV Pad0)
2pw 1-iyArqZ1-iA, Q"
where R L
. = N(1 +i)Pad0)cos ¢r]
K= Z(COS e1s— U Sin o tan @,). (A32) xexd - (1 +i)x cos ¢/ 5], (A40)
In the dilute gas limit, Eq(A31) reduces to and
w ~ 1 J+K ( I'yATq+ )
~(1+i)— i 0+ (y- U= |1~
Bac= (1+0)5 8, SIP 0+ (y=1)5]  (A33) o oo T A P\ LT 21 Cipa g et
in agreement with Morse and Ingaf8]. X[V, Pad0) + hik,Pad0)sin 0 tan ¢, ]
areln terms of the acoustic pressupg, the resultant fields xexd~ (1+i)x cose,/3,], (A41)
here
~ y-1 T 1 w
T= 2{bac @ac(o)
ya P 1-iAq2 3
J= —(1+tanes tan ¢,)cos A42
xexg- (1 +i)x cos e/}, (A34) J= o7 8N ¢,)COS gr. (A42)
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