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Velocity boundary condition at solid walls in rarefied gas calculations
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Maxwell’'s famous slip boundary condition is often misapplied in current rarefied gas flow calcul@igns
in hypersonics, microfluidigs For simulations of gas flows over curved or moving surfaces, this means crucial
physics can be lost. We give examples of such cases. We also propose a higher-order boundary condition based
on Maxwell’s general equation and the constitutive relations derived by Burnett. Unlike many other higher-
order slip conditions these are applicable to any form of surface geometry. It is shown that these “Maxwell-
Burnett” boundary conditions are in reasonable agreement with the limited experimental data available for
Poiseuille flow and can also predict Sone’s thermal-stress slip flow—a phenomenon which cannot be captured
by conventional slip boundary conditions.
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I. INTRODUCTION normal and away from the walll is the stress tensor at the

In 1879, Maxwell published a paper on the viscouswall, I is the identity tensor, an@ is the heat flux vector at
stresses arising in rarefied gagék At the time, a reviewer the wall.
commented that it also might be useful if Maxwell could use If the Navier-Stokes constitutive relations for stress and
his theoretical findings to derive a velocity boundary condi-heat flux are substituted into E(}), expressions for velocity
tion for rarefied gas flows at solid surfaces. Consequently, iglip in terms of flow gradients can be obtained. In his origi-
an appendix to the paper, Maxwell proposed his now-famougal paper, Maxwell used a one-dimensional expression for
velocity slip boundary condition. This boundary condition the shear stres@ppropriate for the typical case he was in-
was successful in predicting two prior experimental observaterested in which made his final result generally applicable
tions: (a) that a rarefied gas could slide over a surface@nd ©only to nonrotating planar wall.e., where the streamwise
that inequalities in temperature could give rise to a forcevariation in wall-normal velocity is negligible In scalar
tending to make the gas slide over a surface from colder téorm, Maxwell gave
hotter regiongwhich had been discovered by Reynolds and
was known as “thermal transpiration”—now more com- (2-0) au, 3udl
monly known as “thermal creep”What has subsequently Us= A —+—"——
been overlooked by many current researchers is the general
form of the slip expression derived by Maxwell, and this has
some substantial consequences for modern simulations dtheren is the coordinate normal to the wall,is the coor-
e.g., hypersonic aerodynamics and gas flows in microsysdinate tangential to the wally is thex component of the gas
tems. velocity, ug is thex component of the slip velocity, angdand

Maxwell related the tangential gas velocity slig, to the T are the density and temperature of the gas at the wall,
tangential shear stressand heat fluxd. Written in tensor ~respectively. _ S
form so that it is easily applicable to flows over three- Itis because of its relative simplicity, compared to B,
dimensional surfaces nontensorial expression can be foundthat Eq.(2) is remembered as Maxwell's main theoretical

: (2
o an  4pT X

in, e.g., Ref[2]) Maxwell's expression is result. However, for most surface gepmetries pf pr_aqticgl in-
terest, having curvature and/or rotational motion, it is inap-

Gup = — (2 _‘7))\;._ 3Nedy - 1)ﬁ (1) plicable because it neglects that the velocity normal to the

slip o 4 9y ’ wall can vary in the streamwise direction. Therefore a more

- e s - complete expression for the tangential shear stress is required
wherer=(i,-1I)-(1-iniy), g=Q-(1-i4in), an arrow denotes a iy Eq. (1). Calculations straightforwardly using ER) are
vector quantity,o is the momentum accommodation coeffi- jikely to miss important features of the rarefied flow behav-
cient (equal to 1 for surfaces that reflect all incident mol- jor.
ecules diffusely and 0 for purely specular reflecfiquis the In this paper we reassess Maxwell's general equatipn
gas viscosity at the wall is the molecular mean free path at to examine the effect of implementing the full form of the
the wall, N, is the Prandtl numbery is the specific heat tangential shear stress expression on the velocity slip. We
ratio, p is the gas pressure at the wall,is a unit vector then propose a form of higher-order condition which is more
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accurate at greater degrees of gas rarefaction and is able to

capture certain microflow phenomena. 025

II. WALL CURVATURE AND MOTION

o
[N

If the full Navier-Stokes stress tensor is adopted, for a
wall in two dimensions, Eqgl) reduces to

nondimensional tangential velocity

0.15 -« No slip
-=-C tional sli
2-0) (du, du,\ 3 udT — M::vweer:l’lsog?igTr:gl slip
Us= N—+— | +—-———, (3) - =+ Analytical solution
a on X 4pT ox 01} | © DSMC
i i i 0 05 1 125 . 2

whereug is the slip compo'n.ent tangential to the WaI'I, and radia) distance from inner cylinder, 1A
and u, are the gas velocities normal and tangential to the
wall, respectively. The additional term that features in €. FIG. 1. Nondimensional velocity profiles in cylindrical Couette

but not in Eq.(2) can have a significant influence on the fiow, Comparison of no slig - ), conventional slig- -), Maxwell’'s
overall velocity slip. For example, when there is rotationalgeneral slip(—) solutions, an analytical solutiofg] (- - 3, and
wall motion (i.e., wall motion in a direction normal to the psmc data[6] (O).

surface with a velocity that varies in the tangential diregtion

then even for flat surfacgg.g., a deflecting flgpthere will

be a finite tangential velocity slip. For stationary walls, sur-
face curvature will also give rise to a contribution from the

ad%“ﬁnal Lerhm. . licati ¢ Eq2 | behavior; however, Maxwell's general slip condition, [Eb),
Although the misapplication of Eq2) to general geom- ,.nq,ces just such a velocity. Close quantitative agreement
etries is widespread, it is not universal, and there are iNhatween the DSMC method and simulation is not expected

stances where curved boundaries have been treated approgils;e as the de P

. i ! , gree of gas rarefaction in this problem means
ater.[.3,4]. I_Elqzel, Panzer, and Li(b] denveq a boundary yhat continuum fluid models are at the limit of their applica-
condition similar to Eq.(3) for surfaces with curvature. bility.

However, their boundary condition was formulated such that
slip due to surface normal motion could not be accommo-
dated. Also, it did not include the contribution of thermal

creep to velocity slip and nor was the relationship to Max- Isothermal slip flow past an unconfined sphere at very low

method predicts an inverted velocity profile is strong cor-
roborative evidence that the phenomenon is real. The con-
ventional slip condition, Eq2), evidently cannot predict this

B. Drag on an unconfined sphere

well's general equation realized. Reynolds and Mach numbers was first analyzed by Basset
Two examples will show the importance of implementing [4] using Stokes’ creeping flow approximation. The effect of
the complete form of Maxwell’s general formulation. slip was incorporated into the analysis using a velocity

boundary condition for isothermal flows of an equivalent

form to Maxwell's general boundary condition, Ed). Bas-

set’s analysis showed that the skin friction drfag on an
Recent analytical and molecular dynamics stud&s,6 unconfined sphere of radiasin a flow stream of velocity,

suggest that the velocity profile in a rarefied cylindrical Cou-can be written as

ette flow can become inverted. In the case of a stationary

outer cyIindgr and rqtating inner cylinder, “inverted” means D.= 477,uUa2(

that the radial velocity of the gas becomes greater farther

away from the moving center. . . However, if the conventional form of Maxwell’s boundary
W_e ha_ve perform.ed a _S|mple isothermal palculatlon USING ondition Eq.(2), is used in the derivation, a different ex-
a finite-difference discretization of the Navier-Stokes equa- Lo '

tions to examine the influence of various boundary condiPresston for the skin friction drag is obtained:
ala+\)—2x )

A. Cylindrical Couette flow

o(@a=3\) + 6)\) ' @

tions on the velocity profile. The inner and outer cylinders

have radii of 3 and 5\, respectively, and the former has a Ds=47TMU3< o(a—2n) + 4

tangential velocity approximately a third of the speed of

sound. The gas is argon at STP conditions and the accom- The disparity between the two drag predictions is due to

modation coefficientr is 0.1. Figure 1 shows a comparison the exclusion of curvature effects from the conventional

of the velocity profilegnondimensionalized by the tangential boundary condition. In the limiting case of a perfectly

velocity of the inner cylinderpredicted using the standard smooth sphere, such that all incident molecules are reflected

no-slip condition, the conventional slip conditi¢iqg. (2)], specularly(o=0), there is no means by which the wall can

Maxwell's general slip conditiofiEg. (1)], direct simulation  transfer tangential momentum to or from the gas. Therefore,

Monte Carlo(DSMC) molecular dynamic$6], and the ana- the drag due to skin friction should be zero and, indeed, we

lytical method of Einzel, Panzer, and Lj&]. find that Basset’s drag equation predicts no skin friction.
The DSMC methodbeing a statistical molecular dynam- However, Eq.(5) predicts a finite value ohegativeskin

ics simulation is often used as an independent numerical tesfriction drag(i.e., a thrusk This nonphysical prediction dem-

in the absence of experimental dgf§. That the DSMC onstrates the importance of employing the general, as op-

(5
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posed to the conventional, form of Maxwell's boundary con- Ay LU,
dition for curved surfaces. UszAlx% ~ Ak on? (7)
IIl. HIGHER-ORDER BOUNDARY CONDITIONS As yet, no consensus has been reached on the correct value

In wall-dominated ﬂOWS, such as those typ|ca| of micro- of the CoefﬁCieanz Since, on the WhOle, theoretical prediC-
fluidics, the accuracy of the overall numerical solution istions have compared poorly to experimental observations. It
highly dependent on the accuracy of the boundary condils, in any case, likely that botA; and A, are geometry de-
tions. This sensitivity is such that several attempts have beegpendent. In our proposed Maxwell-Burnett boundary condi-
made to derive boundary conditions of second or higher spdion, Eq. (6), the value of the coefficient in the?3u,/Jn’
tial order[8—13. However, even for simple flows, there has term is in the range 0.145-0.19, depending on the Prandtl
been no general consensus as to the exact form these shotiidmber of the gas. Other theoretical predictions for this co-
take. efficient A, range from -0.5 to 1.489-13. Recent experi-

While there is no commitment made to the form of themental work by Maureret al. [16] indicates values of
shear stress tensor or heat flux vector in Maxwell's genera®-26+0.1 for nitrogen and 0.23+0.1 for helium, although
condition, Eq.(1), normally the Navier-Stokes constitutive older work by Sreekantfi17] indicated 0.14 for nitrogen
relations are assumed. This leads us to propose in this papdfom cylindrical Poiseuille flow experimentsCaution is re-
that, instead, higher-order constitutive relatigappropriate ~ quired in interpreting these experimental data, as the values
for high Knudsen number flowsre employed. These yield Of A; are derived from measurements of mass flow rates. Itis
higher-order boundary conditions that will also be applicablePossible that the effect of near-wall Knudsen layers has re-
to flows over three-dimensional nonstationary surfaces, unsulted in a significant underestimation of the experimental
like previous higher-order S||p boundary conditions. value OfAz—from the calculations of Hadjiconstantinou, by

One such higher-order set of constitutive relations is theds much as 0.89].
set of Burnett equations, derived from terms up to second
order in a series solution in Knudsen number to the Boltz- B. Thermal-stress slip flow
mann equatiorj14]. Although their complexity and nonlin-

earity makes them difficult to solve numericall¥5], their

assumed applicability to rarefied, high Knudsen numbelVas originally predicted by Sond8]. Using an asymptotic
flows can be exploited within Maxwell's boundary condition analysis of the Boltzmann equation, he showed that a tangen-

without having to solve the tensor expressions over the entirli@! variation in the wall-normal temperature gradient could
flow field. In flows dominated by gas-surface interactions,'”duce velocity slip. This is distinct from thermal creep and

there is also justification in adopting a more accurate modef2nnot be captured by either the conventional slip equation,
at the boundariesBurnety than the flow itself(Navier- E9: (2), or Maxwell's general boundary conditions using the
Stokes. Navier-Stokes expressions for the shear stress and heat flux

The complete two-dimensional form of this equation is€™MS: fauration i s itiall . b
lengthy, so attention is restricted here to the linear higher- S°N€'S configuration is a gamitially stationary between

order terms only, which makes our present analysis appIiEWO stationary noncoaxial cylinders of different un.iform tem-
cable only to weak variations in flow variablghe full non-  Peraturér; andT,. In the absence of thermal cregpe., the

linear forms of the Burnett stress tensor and heat flux Vectolgoun;:iary temperaturgijumrﬁ) is EOt con\;ide'red conven-
are given in Ref[14]). Substituting the Burnett constitutive tional boundary condition has the mechanism to predict a

relations into Eq(1), linearizing, and again examining flows slip flow. Sone, however, calculated the slip-flow field as

over general two-dimensional surfaces, we propose the “inSNoWn by the streamlines and directional arrows in Hg).2

earized Maxwell-Burnett boundary condition” The outer cylinder is held at a higher temperature and this
generates a steady clockwise circulation in the @asl an-

Thermal-stress slip flow is a rarefaction phenomenon that

U= (2 _U))\<% . %) L3mpdl (2-0) ticlockwise whenT;>T)).
s o an X 4 pT ox o For a similar cylindrical configuration and using a finite-
2 2 volume code to solve the Navier-Stokes equations with the
X)\<2ﬁ_P_£_T> +iw linearized Maxwell-Burnett boundary condition, E@6)
p>dxon  pTaxon) 16w vy (nonlinear effects are negligible as the temperature difference

is smal), we obtain the steady flow pattern shown in Fig.

2(b). It is clear that the phenomenon predicted by Sone is

captured in our simulation due to the inclusion of our form of
(6) the boundary condition. Independent experimental verifica-

which is formally second order in space. We now show thetion 's now needed.
y pace. For a stationary gas, E¢6) reduces to a single term

effect this form of the boundary condition has in two funda-
mental configurations. @ —o'))\( w T )
- pTaxon)”

S
A. Plane Poiseuille flow o

#u #u #u
X+ (45y— 49— — 12—

X\?| (45y- 61 :
{( Y )axz axon an?

(8

For plane Poiseuille flow, second-order slip boundarylt is this term that is responsible for initiating the thermal-
conditions have the general form stress slip flow in Fig. 2. Interestingly, Maxwell also pre-
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part of the conventional boundary condition, Eg). How-

ever, its presence has been forgotten over time, perhaps be-
lieved to be of negligible importance compared to first-order
slip effects.

IV. DISCUSSION

The conventional form of Maxwell’'s slip boundary con-
dition that has been passed down through successive re-
search generations is not generally applicable to the bound-
aries typical of rarefied gas flows in complex geometries. If
Maxwell’s boundary condition is to be used, then care should
be taken in adopting the full form of Maxwell’s general
equation(1), which relates tangential velocity slip to tangen-
tial shear stress and heat flux.

Compared to other higher-order boundary conditions de-
rived from kinetic theory, the Maxwell-Burnett boundary
condition we propose has the advantage of simplicity but
also shows reasonable agreement with the limited experi-
mental Poiseuille flow data available and can predict the phe-
nomenon of thermal-stress slip flow. This boundary condi-
tion is straightforwardly applicable to three-dimensional
moving surfaces and can also be used for diatomic gas mol-
ecules if appropriate changes are made to the Burnett coef-
ficients.

FIG. 2. Streamlines of thermal-stress slip flow between nonco-
axial cylinders(uniform temperature¥$,>T;): () solution of the
Boltzmann equation reproduced frgm9], (b) finite-volume solu-
tion using the Maxwell-Burnett boundary condition. The authors are grateful to the U.K.’s Leverhulme Trust

(Research Project Grant No. F/07049/énd the Medical
dicted a second-order thermal shear stress in the main part Besearch Council(MicroFAST programme, Grant. No.
his paper[1] and a term of this form originally featured as 57719 for supporting this research financially.
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