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Maxwell’s famous slip boundary condition is often misapplied in current rarefied gas flow calculations(e.g.,
in hypersonics, microfluidics). For simulations of gas flows over curved or moving surfaces, this means crucial
physics can be lost. We give examples of such cases. We also propose a higher-order boundary condition based
on Maxwell’s general equation and the constitutive relations derived by Burnett. Unlike many other higher-
order slip conditions these are applicable to any form of surface geometry. It is shown that these “Maxwell-
Burnett” boundary conditions are in reasonable agreement with the limited experimental data available for
Poiseuille flow and can also predict Sone’s thermal-stress slip flow—a phenomenon which cannot be captured
by conventional slip boundary conditions.
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I. INTRODUCTION

In 1879, Maxwell published a paper on the viscous
stresses arising in rarefied gases[1]. At the time, a reviewer
commented that it also might be useful if Maxwell could use
his theoretical findings to derive a velocity boundary condi-
tion for rarefied gas flows at solid surfaces. Consequently, in
an appendix to the paper, Maxwell proposed his now-famous
velocity slip boundary condition. This boundary condition
was successful in predicting two prior experimental observa-
tions:(a) that a rarefied gas could slide over a surface and(b)
that inequalities in temperature could give rise to a force
tending to make the gas slide over a surface from colder to
hotter regions(which had been discovered by Reynolds and
was known as “thermal transpiration”—now more com-
monly known as “thermal creep”). What has subsequently
been overlooked by many current researchers is the general
form of the slip expression derived by Maxwell, and this has
some substantial consequences for modern simulations of,
e.g., hypersonic aerodynamics and gas flows in microsys-
tems.

Maxwell related the tangential gas velocity slipuWslip to the
tangential shear stresstW and heat fluxqW. Written in tensor
form so that it is easily applicable to flows over three-
dimensional surfaces(a nontensorial expression can be found
in, e.g., Ref.[2]) Maxwell’s expression is

uWslip = −
s2 − sd

sm
ltW −

3

4

NPrsg − 1d
gp

qW , s1d

wheretW =siWn·Pd ·s1− iWniWnd, qW =QW ·s1− iWniWnd, an arrow denotes a
vector quantity,s is the momentum accommodation coeffi-
cient (equal to 1 for surfaces that reflect all incident mol-
ecules diffusely and 0 for purely specular reflection), m is the
gas viscosity at the wall,l is the molecular mean free path at
the wall, NPr is the Prandtl number,g is the specific heat

ratio, p is the gas pressure at the wall,iWn is a unit vector

normal and away from the wall,P is the stress tensor at the

wall, 1 is the identity tensor, andQW is the heat flux vector at
the wall.

If the Navier-Stokes constitutive relations for stress and
heat flux are substituted into Eq.(1), expressions for velocity
slip in terms of flow gradients can be obtained. In his origi-
nal paper, Maxwell used a one-dimensional expression for
the shear stress(appropriate for the typical case he was in-
terested in) which made his final result generally applicable
only to nonrotating planar walls(i.e., where the streamwise
variation in wall-normal velocity is negligible). In scalar
form, Maxwell gave

us =
s2 − sd
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l
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wheren is the coordinate normal to the wall,x is the coor-
dinate tangential to the wall,ux is thex component of the gas
velocity,us is thex component of the slip velocity, andr and
T are the density and temperature of the gas at the wall,
respectively.

It is because of its relative simplicity, compared to Eq.(1),
that Eq. (2) is remembered as Maxwell’s main theoretical
result. However, for most surface geometries of practical in-
terest, having curvature and/or rotational motion, it is inap-
plicable because it neglects that the velocity normal to the
wall can vary in the streamwise direction. Therefore a more
complete expression for the tangential shear stress is required
in Eq. (1). Calculations straightforwardly using Eq.(2) are
likely to miss important features of the rarefied flow behav-
ior.

In this paper we reassess Maxwell’s general equation(1)
to examine the effect of implementing the full form of the
tangential shear stress expression on the velocity slip. We
then propose a form of higher-order condition which is more
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accurate at greater degrees of gas rarefaction and is able to
capture certain microflow phenomena.

II. WALL CURVATURE AND MOTION

If the full Navier-Stokes stress tensor is adopted, for a
wall in two dimensions, Eq.(1) reduces to

us =
s2 − sd

s
lS ]ux

]n
+

]un

]x
D +

3

4

m

rT

]T

]x
, s3d

whereus is the slip component tangential to the wall, andun
and ux are the gas velocities normal and tangential to the
wall, respectively. The additional term that features in Eq.(3)
but not in Eq.(2) can have a significant influence on the
overall velocity slip. For example, when there is rotational
wall motion (i.e., wall motion in a direction normal to the
surface with a velocity that varies in the tangential direction),
then even for flat surfaces(e.g., a deflecting flap) there will
be a finite tangential velocity slip. For stationary walls, sur-
face curvature will also give rise to a contribution from the
additional term.

Although the misapplication of Eq.(2) to general geom-
etries is widespread, it is not universal, and there are in-
stances where curved boundaries have been treated appropri-
ately [3,4]. Einzel, Panzer, and Liu[5] derived a boundary
condition similar to Eq.(3) for surfaces with curvature.
However, their boundary condition was formulated such that
slip due to surface normal motion could not be accommo-
dated. Also, it did not include the contribution of thermal
creep to velocity slip and nor was the relationship to Max-
well’s general equation realized.

Two examples will show the importance of implementing
the complete form of Maxwell’s general formulation.

A. Cylindrical Couette flow

Recent analytical and molecular dynamics studies[3,5,6]
suggest that the velocity profile in a rarefied cylindrical Cou-
ette flow can become inverted. In the case of a stationary
outer cylinder and rotating inner cylinder, “inverted” means
that the radial velocity of the gas becomes greater farther
away from the moving center.

We have performed a simple isothermal calculation using
a finite-difference discretization of the Navier-Stokes equa-
tions to examine the influence of various boundary condi-
tions on the velocity profile. The inner and outer cylinders
have radii of 3l and 5l, respectively, and the former has a
tangential velocity approximately a third of the speed of
sound. The gas is argon at STP conditions and the accom-
modation coefficients is 0.1. Figure 1 shows a comparison
of the velocity profiles(nondimensionalized by the tangential
velocity of the inner cylinder) predicted using the standard
no-slip condition, the conventional slip condition[Eq. (2)],
Maxwell’s general slip condition[Eq. (1)], direct simulation
Monte Carlo(DSMC) molecular dynamics[6], and the ana-
lytical method of Einzel, Panzer, and Liu[5].

The DSMC method(being a statistical molecular dynam-
ics simulation) is often used as an independent numerical test
in the absence of experimental data[7]. That the DSMC

method predicts an inverted velocity profile is strong cor-
roborative evidence that the phenomenon is real. The con-
ventional slip condition, Eq.(2), evidently cannot predict this
behavior; however, Maxwell’s general slip condition, Eq.(1),
produces just such a velocity. Close quantitative agreement
between the DSMC method and simulation is not expected
here, as the degree of gas rarefaction in this problem means
that continuum fluid models are at the limit of their applica-
bility.

B. Drag on an unconfined sphere

Isothermal slip flow past an unconfined sphere at very low
Reynolds and Mach numbers was first analyzed by Basset
[4] using Stokes’ creeping flow approximation. The effect of
slip was incorporated into the analysis using a velocity
boundary condition for isothermal flows of an equivalent
form to Maxwell’s general boundary condition, Eq.(1). Bas-
set’s analysis showed that the skin friction dragDs on an
unconfined sphere of radiusa, in a flow stream of velocityU,
can be written as

Ds = 4pmUa2S s

ssa − 3ld + 6l
D . s4d

However, if the conventional form of Maxwell’s boundary
condition, Eq.(2), is used in the derivation, a different ex-
pression for the skin friction drag is obtained:

Ds = 4pmUaS ssa + ld − 2l

ssa − 2ld + 4l
D . s5d

The disparity between the two drag predictions is due to
the exclusion of curvature effects from the conventional
boundary condition. In the limiting case of a perfectly
smooth sphere, such that all incident molecules are reflected
specularlyss=0d, there is no means by which the wall can
transfer tangential momentum to or from the gas. Therefore,
the drag due to skin friction should be zero and, indeed, we
find that Basset’s drag equation predicts no skin friction.
However, Eq.(5) predicts a finite value ofnegativeskin
friction drag(i.e., a thrust). This nonphysical prediction dem-
onstrates the importance of employing the general, as op-

FIG. 1. Nondimensional velocity profiles in cylindrical Couette
flow. Comparison of no slip(¯), conventional slip(- -), Maxwell’s
general slip(—) solutions, an analytical solution[5] (· - ·), and
DSMC data[6] (s).
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posed to the conventional, form of Maxwell’s boundary con-
dition for curved surfaces.

III. HIGHER-ORDER BOUNDARY CONDITIONS

In wall-dominated flows, such as those typical of micro-
fluidics, the accuracy of the overall numerical solution is
highly dependent on the accuracy of the boundary condi-
tions. This sensitivity is such that several attempts have been
made to derive boundary conditions of second or higher spa-
tial order[8–13]. However, even for simple flows, there has
been no general consensus as to the exact form these should
take.

While there is no commitment made to the form of the
shear stress tensor or heat flux vector in Maxwell’s general
condition, Eq.(1), normally the Navier-Stokes constitutive
relations are assumed. This leads us to propose in this paper
that, instead, higher-order constitutive relations(appropriate
for high Knudsen number flows) are employed. These yield
higher-order boundary conditions that will also be applicable
to flows over three-dimensional nonstationary surfaces, un-
like previous higher-order slip boundary conditions.

One such higher-order set of constitutive relations is the
set of Burnett equations, derived from terms up to second
order in a series solution in Knudsen number to the Boltz-
mann equation[14]. Although their complexity and nonlin-
earity makes them difficult to solve numerically[15], their
assumed applicability to rarefied, high Knudsen number
flows can be exploited within Maxwell’s boundary condition
without having to solve the tensor expressions over the entire
flow field. In flows dominated by gas-surface interactions,
there is also justification in adopting a more accurate model
at the boundaries(Burnett) than the flow itself (Navier-
Stokes).

The complete two-dimensional form of this equation is
lengthy, so attention is restricted here to the linear higher-
order terms only, which makes our present analysis appli-
cable only to weak variations in flow variables(the full non-
linear forms of the Burnett stress tensor and heat flux vector
are given in Ref.[14]). Substituting the Burnett constitutive
relations into Eq.(1), linearizing, and again examining flows
over general two-dimensional surfaces, we propose the “lin-
earized Maxwell-Burnett boundary condition”
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which is formally second order in space. We now show the
effect this form of the boundary condition has in two funda-
mental configurations.

A. Plane Poiseuille flow

For plane Poiseuille flow, second-order slip boundary
conditions have the general form

us = A1l
]ux

]n
− A2l2]2ux

]n2 . s7d

As yet, no consensus has been reached on the correct value
of the coefficientA2 since, on the whole, theoretical predic-
tions have compared poorly to experimental observations. It
is, in any case, likely that bothA1 andA2 are geometry de-
pendent. In our proposed Maxwell-Burnett boundary condi-
tion, Eq. (6), the value of the coefficient in thel2]2ux/]n2

term is in the range 0.145–0.19, depending on the Prandtl
number of the gas. Other theoretical predictions for this co-
efficient A2 range from −0.5 to 1.43[9–13]. Recent experi-
mental work by Maureret al. [16] indicates values of
0.26±0.1 for nitrogen and 0.23±0.1 for helium, although
older work by Sreekanth[17] indicated 0.14 for nitrogen
(from cylindrical Poiseuille flow experiments). Caution is re-
quired in interpreting these experimental data, as the values
of A2 are derived from measurements of mass flow rates. It is
possible that the effect of near-wall Knudsen layers has re-
sulted in a significant underestimation of the experimental
value ofA2—from the calculations of Hadjiconstantinou, by
as much as 0.3[9].

B. Thermal-stress slip flow

Thermal-stress slip flow is a rarefaction phenomenon that
was originally predicted by Sone[18]. Using an asymptotic
analysis of the Boltzmann equation, he showed that a tangen-
tial variation in the wall-normal temperature gradient could
induce velocity slip. This is distinct from thermal creep and
cannot be captured by either the conventional slip equation,
Eq. (2), or Maxwell’s general boundary conditions using the
Navier-Stokes expressions for the shear stress and heat flux
terms.

Sone’s configuration is a gas(initially stationary) between
two stationary noncoaxial cylinders of different uniform tem-
peratureT1 andT2. In the absence of thermal creep(i.e., the
boundary temperature jump is not considered) no conven-
tional boundary condition has the mechanism to predict a
slip flow. Sone, however, calculated the slip-flow field as
shown by the streamlines and directional arrows in Fig. 2(a).
The outer cylinder is held at a higher temperature and this
generates a steady clockwise circulation in the gas(and an-
ticlockwise whenT1.T2).

For a similar cylindrical configuration and using a finite-
volume code to solve the Navier-Stokes equations with the
linearized Maxwell-Burnett boundary condition, Eq.(6)
(nonlinear effects are negligible as the temperature difference
is small), we obtain the steady flow pattern shown in Fig.
2(b). It is clear that the phenomenon predicted by Sone is
captured in our simulation due to the inclusion of our form of
the boundary condition. Independent experimental verifica-
tion is now needed.

For a stationary gas, Eq.(6) reduces to a single term

us = −
s2 − sd

s
lS m

rT

]2T

]x]n
D . s8d

It is this term that is responsible for initiating the thermal-
stress slip flow in Fig. 2. Interestingly, Maxwell also pre-
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dicted a second-order thermal shear stress in the main part of
his paper[1] and a term of this form originally featured as

part of the conventional boundary condition, Eq.(2). How-
ever, its presence has been forgotten over time, perhaps be-
lieved to be of negligible importance compared to first-order
slip effects.

IV. DISCUSSION

The conventional form of Maxwell’s slip boundary con-
dition that has been passed down through successive re-
search generations is not generally applicable to the bound-
aries typical of rarefied gas flows in complex geometries. If
Maxwell’s boundary condition is to be used, then care should
be taken in adopting the full form of Maxwell’s general
equation(1), which relates tangential velocity slip to tangen-
tial shear stress and heat flux.

Compared to other higher-order boundary conditions de-
rived from kinetic theory, the Maxwell-Burnett boundary
condition we propose has the advantage of simplicity but
also shows reasonable agreement with the limited experi-
mental Poiseuille flow data available and can predict the phe-
nomenon of thermal-stress slip flow. This boundary condi-
tion is straightforwardly applicable to three-dimensional
moving surfaces and can also be used for diatomic gas mol-
ecules if appropriate changes are made to the Burnett coef-
ficients.
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