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Third-order Lagrangian stochastic models for the evolution of fluid-particle hyperaccelerations(material
derivatives of Lagrangian accelerations) are shown to account naturally for the anisotropy of acceleration
variances in low-Reynolds-number turbulent flows and for their dependency upon the energy-containing scales
of motion. Model predictions are shown to be in close accord with the results of direct numerical simulations
for a turbulent channel flow and with previously acquired simulation data for a homogeneous turbulent shear
flow.
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I. INTRODUCTION

According to Kolmogorov’s similarity theory, at very
large Reynolds numbers the acceleration variance is isotropic
and prescribed bysA

2 =a0e3/2n−1/2, where a0 is a universal
constant,e is the mean rate of dissipation of turbulent kinetic
energy divided by the fluid density, andn is the kinematic
viscosity. The results of direct numerical simulations(DNSs)
of turbulent channel flow described here and laboratory-scale
experiments[1–4] indicate that acceleration variances are
dependent upon Reynolds number and are decidedly aniso-
tropic. Here, it is demonstrated that departures from univer-
sality and isotropy observed in low-Reynolds-number turbu-
lence can be attributed to the influence of hyperaccelerations
(the material derivative of the acceleration) and that compat-
ibility with Kolmogorov similarity scaling can be “restored”
when hyperaccelerations are accounted for explicitly. Infer-
ences about the observed anisotropy of acceleration vari-
ances in high-Reynolds-number turbulence are also made.
This is done within the context of a third-order Lagrangian
stochastic(LS) model [5]. In addition to the time scalesTL
and th introduced at second order and pertaining to the
“energy-containing” and “dissipative” scales of motion,
third-order models contain a third time scalet3. This addi-
tional time scale results in a finite hyperacceleration variance
sÅ

2 and renders simulated Lagrangian accelerations continu-
ous and differentiable. Hyperaccelerations are correlated ex-
ponentially on a time scalet3 whent3! th!TL. The findings
have important ramifications for more conventional Lagrang-
ian stochastic models based on first- and second-order trun-
cations because they illustrate that the apparent nonuniver-
sality of a0 attained in such models[6] is not an intrinsic
shortcoming of the approach in general but a consequence of
truncation. A prescription for effective model parameters that
accounts for neglected third-order processes follows directly
from the evaluation of third-order processes presented below.

II. THIRD-ORDER EFFECTS IN TURBULENT FLOWS
AT LOW REYNOLDS NUMBERS

The simplest third-order LS model for the evolution of
hyperaccelerationsÅ in homogeneous anisotropic turbulence
is prescribed by

dÅi = saij + cijdÅjdt + sbij − cikakjdAjdt − cikbkjujdt

+ Î− 2saij + cijdl jkdjk,

dAi = Åidt,

dui = Aidt, s1d

where

aij = − C0eti j −
2a0

C0
e1/2n−1/2di j ,

bij = − a0e3/2n−1/2ti j ,

cijsx jk + bjlslkd = − aijx jk.

A is the Lagrangian acceleration,u is the Lagrangian veloc-
ity, ti j =fs−1gi j , si j =kuiujl, xi j =kAiAjl, li j =kÅiÅjl, C0 is Kol-
mogorov’s constant for the Lagrangian velocity structure
function, anddji are increments of independent Weiner pro-
cesses with mean zero and variancedt [5]. By construction,
the velocity, acceleration, and hyperacceleration statistics are
jointly Gaussian, and when the inverse time scales associated
with the third-order processescij →`, the acceleration vari-
ances are prescribed by Kolmogorov similarity scaling;sA

2

=a0e3/2n−1/2. In the limit that the inverse time scalescij →`,
hyperaccelerations become uncorrelated, hyperacceleration
variancesli j →`, and Eq.(1) reduces to the second-order LS
model,

dAi = aijAjdt + bijujdt + Î− 2aijx jkdjk. s2d

The potential of the third-order modeling approach is now
illustrated by comparing model predictions with the results
of DNSs acquired for a turbulent channel flow withRl

,30 whereRl is the Reynolds number based upon the Tay-
lor microscalel=s15nsu

2/ed. This Eulerian Reynolds num-
ber corresponds to a Lagrangian Reynolds number Re*
=sTL/thd2,5. The turbulent channel flow was simulated us-
ing a spectral method incorporating Fourier expansions in
the homogeneous horizontal directions and Chebyshev ex-
pansions in the wall-normal directions. The computational
domain wass4p ,2 ,4p /3dh and contained 1283 grid cells,
whereh is the channel half-width. A third-order Runge-Kutta
scheme combined with the Crank-Nicolson scheme was used
to advance time. A particle tracking algorithm employing the
four-point Hermite interpolation in the horizontal directions
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and Chebyshev interpolation in the wall-normal direction
was used to obtain Lagrangian statistics along fluid particle
trajectories. Further details about the DNS and particle track-
ing algorithm can be found in the recent paper of Choiet al.
[7].

Estimates for the value ofa0 obtained from the DNS data
for the three components of acceleration(streamwise, cross
wind, and vertical), under the assumption thatsA

2

=a0e3/2n−1/2, range from about(0.29, 0.03, 0.15) at the top of
the viscous layer to about(1.67, 1.57, 1.05) at the center of
the channel. Figure 1 shows that estimates for the value ofC0
obtained from the Lagrangian velocity structure function
Dstdii =kfuist+td−uistdg2l (no summation) are also decidedly
anisotropic and nonuniversal. According to Kolmogorov
scaling, at very large Reynolds numbers and for inertial sub-
range times, a plot ofDstd«t should show a plateau at height
C0.

The maxima inDstd/et (denoted byC0
*) are seen in Fig. 1

to occur at times comparable with the dissipation time scale.
At these time scales, the influence of inhomogeneities in the
statistical properties of the flow is of secondary importance
in determining Lagrangian properties, i.e, changes in the sta-
tistical properties of the flow along trajectories of such short
duration are not significant. Of greater importance are the
statistics of the flow at the origin of the trajectories and the
temporal correlations. These key quantities are incorporated
into three-dimensional(3D) LS models for anisotropic ho-
mogeneous turbulence, like Eq.(1). The third-order model
(1) can therefore be utilized to assess the extent to which
hyperaccelerations account for the departures from Kolmog-
orov similarity scaling observed in a DNS.

The utilization of Eq.(1) in this manner requires estimates
for C0, a0, and t3. Here, in accordance with the only two
reliable estimates forC0 [8] and with recent experimental
estimates for the asymptotic value ofa0 [3–9], we choose
C0=6 and a0=5.5. The hyperacceleration variances were
subsequently chosen to guarantee consistency with the DNS
data for the acceleration variances. Model predictions for the
hyperaccelerations were anisotropic and consistent(to within
a factor of about 2 or less) with estimates for the hyperac-
celeration variance obtained from the DNS data for the La-
grangian acceleration autocorrelation functionr using the
kinematic relationsÅ

2 =−sA
2d2r /dt2ut=0. Just above the vis-

cous layer,t3.TL. th, while at the center of the channel
TL. t3. th. This lack of scale separation between second-
and third-order processes has important implications for the
correct parametrization of second-order LS models. This is
because the parametrization of second-order processes(ac-
celerations) in terms of Kolmogorov similarity theory for
high-Reynolds-number turbulence is strictly justifiable only
when th! t3. Justification for the adoption of third-order
models is dependent on there being a scale separation be-
tween third- and fourth-order processes. Although the ratio
t3/ th was found to decrease with increasing Reynolds num-
ber Rl, it is not possible with the current data to determine
whether or nott3/ th→0 as Rl→`. If t3/ th→0 as Rl→` then
Kolmogorov scaling of the acceleration variance is recovered
at high Reynolds number. Ift3/ tn tends to a finite value then
hyperacceleration statistics may account for the observed an-

FIG. 1. (Color online) DNS data for the approach of the La-
grangian velocity structure function to inertial subrange behavior in
a turbulent channel flow with nondimensional heighthu* /n;h†

=180, wheren is the kinematic viscosity andu* is the friction
velocity (dashed lines). The lines pass smoothly through data points
acquired at 0.032th

E intervals. Predictions obtained using a third-
order LS model withC0=6 anda0=5.5 are also shown(solid lines).
The nondimensional heighty+ of the origin of the trajectories is
indicated. The letter adjacent to the pairs of curves denotes the
velocity component.

FIG. 2. (Color online) DNS data for the approach of the La-
grangian velocity structure function to inertial subrange behavior in
a turbulent shear flow with nondimensional heighthu* /n;h†

=180, wheren is the kinematic viscosity andu* is the friction
velocity (dashed lines). The lines pass smoothly through data points
acquired at 0.032th

E intervals. Predictions obtained using a second-
order LS model withC0=6 and nonuniversal anisotropic values of
a0 calculated using the Kolmogorov similarity scaling relationa0

=sA
2e−3/2n1/2, and the results of DNS are also shown(lines: stream-

wise, solid line; vertical, dotted line; cross wind, dashed line). The
nondimensional heighty† of the origin of the trajectories is indi-
cated. The letter adjacent to the pairs of curves denotes the velocity
component.
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isotropy of acceleration variances in high-Reynolds-number
turbulence[3,9]. This is most evident for the case when ve-
locity and acceleration covariances vanish so that model(1)
reduces to three decoupled 1D models. The time scales in the
1 D models,TL=2su

2/C0e, th=sC0/2a0dsn /ed1/2, t3=c11
−1, etc.,

are related to the velocity, acceleration, and hyperaccelera-
tion variances by

sA
2 =

su
2

TLth + TLt3 + tht3
,

sÅ
2 = sA

2sTL
−1th

−1 + TL
−1t3

−1 + th
−1t3

−1d. s3d

It is apparent from Eq.(3) that whent3=0 (as it is in second-
order LS models), sA

2 =su
2/TLth=a0e3/2n−1/2, in accordance

with Kolmogorov’s similarity theory, and that consequently
anisotropy ofsA

2 implies anisotropy ofa0. This is not neces-
sarily the case whent3Þ0. Whent3Þ0, sA

2 will in general
be dependent uponsu

2 and so dependent upon the “energy-
containing” scales of motion.

Figure 1 illustrates that the third-order model(1) repro-
duces accurately the approach toward inertial subrange scal-
ing attained in the results of DNSs for locations well above a
viscous sublayer that extends to a nondimensional height
y†=yu* /n=5 whereu* is the friction velocity. The discrep-
ancy between the model predictions and the DNS data that is
evident just above the viscous sublayer may be due to the
effects of coherent flow structures which have not been in-
corporated into the model. The tendency of the model to
overpredict values ofC0 corresponding to the streamwise
component of velocity could be due to the neglect of the
influence of rotations of the Lagrangian velocity vector in-

duced by the mean shear. Figure 2 shows that the DNS data
are represented less satisfactorily by the second-order model
(2) with C0=6, despite the effective employment of nonuni-
versal anisotropic values fora0. Moreover, it is evident that
unrealistically large values ofC0

*sC0.6d are required to
match the peak values ofC0

* attained in the DNS. Figure 3
shows that, except for close to the viscous sublayer, predic-
tions for the Lagrangian acceleration autocorrelation func-
tion obtained using the third-order model are in close agree-
ment with DNS data. This is particularly evident at short
times, where model predictions and DNS data for the gradi-
ents in the Lagrangian acceleration autocorrelation function
(and consequently the hyperacceleration variances) are seen
to be very nearly coincident.

Pope[6,10] recently undertook a detailed analysis of first-
and second-order LS models for simulating fluid-particle tra-
jectories in homogeneous turbulent shear flow. He estab-
lished a one-to-one correspondence between model coeffi-
cients and primary flow statistics, such as the velocity
variances and integral Lagrangian times scales. The model
agreement with the results of DNSs[11,12] was excellent but

FIG. 3. DNS data(solid lines) and model predictions(second-
order model, dotted line; third-order model, dashed line) for the
Lagrangian acceleration autocorrelation functionr33=kA3s0dA3stdl
(lateral direction). For the second-order model, predictions are
shown forC0=6 and nonuniversal anisotropic values ofa0 calcu-
lated using the Kolmogorov similarity scaling relationa0

=sA
2e−3/2n1/2, and the results of DNS. For the third-order model,

predictions are shown forC0=6 anda0=5.5. Time has been nondi-
mensionalized using the friction velocityut and the height of the
boundary layerh. The nondimensional heighty† of the origin of the
trajectories is indicated.

FIG. 4. Normalized Lagrangian velocity autocorrelation func-
tions Rij =kuis0dujssdl / ssiis j j d1/2 (no summation; 1, streamwise di-
rection, 2, vertical direction) for homogeneous turbulent shear flow.
DNS data(symbols) and model predictions(lines) obtained using
first-, second-, and third-order models withC0=6 anda0=5.5.
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the supposed universality ofC0 and a0 was not respected.
Here, it is demonstrated that this deficiency is overcome in
third-order formulations.

The results of DNSs reveal that after an initial transient
homogeneous turbulent shear flow tends to an approximately
self-similar state in which quantities pertaining to the energy-
containing scales(velocity, velocity variances, dissipation)
are approximately constant, when normalized by the turbu-
lent kinetic energyk and e. Complete stationarity is not at-
tained because the Reynolds numberk2/ send increases with
time. Departures from nonstationarity are, however, small
and consequently homogeneous turbulent shear flow can, to
a good approximation, be treated as stationary anisotropic
turbulence. Indeed, over the time interval of the DNS, the
modulus ofA increases by approximately 10%, while the
Kolmogorov dissipation time scale decreases by about 20%
[6]. Sawford and Yeung[11,12] did not report onli j and here
our values are chosen to guarantee consistency with the DNS
data forxi j while retainingC0=6 anda0=5.5.

Figures 4 and 5 reveal that predictions for the Lagrangian
velocity autocorrelation functions and the Lagrangian accel-
eration autocorrelation functions obtained using the third-
order model are in excellent agreement with the DNS data
and significantly better than those obtained using first- and
second-order models. The small difference between the pre-

dictions of the third-order model and the DNS data for the
cross-velocity autocorrelation functionr12 may indicate that
on integral time scales the effect of rotation of trajectories
due to shear needs to be accounted for explicitly.[13] It is
worth emphasizing that the ability of the second-order model
to accurately predict Lagrangian velocity autocorrelation
functions is not mirrored by an ability to accurately predict
second-order quantities. This is evident from Fig. 5, which
shows that acceleration variances are overpredicted by a fac-
tor of about 2 by the second-order model while predictions
for the acceleration covariances have the wrong sign.

III. SUMMARY

In this paper, third-order processes have been shown to
account naturally for the anisotropy of Lagrangian accelera-
tions observed in DNS data for turbulence at low Reynolds
number. The apparent nonuniversality of parameters in con-
ventional Lagrangian stochastic models was shown to be a
consequence of truncation at either first or second order and
not an inherent deficiency of the approach in general. Analy-
sis of third-order processes provides a prescription
for a reparametrization of these more conventional
models and provides us with greater confidence in their
“correctness” and in truncation at second order, in
particular.

[1] S. Kurien and S. Sreenivasan, Phys. Rev. E62, 2206(2000).
[2] X. Shen and Z. Warhaft, Phys. Fluids12, 2976(2000).
[3] A. La Porta, G. A. Voth, A. M. Crawford, J. Alexander, and E.

Bodenschatz, Nature(London) 409, 1017(2001).
[4] G. A. Voth, A. La Porta, A. M. Crawford, J. Alexander, and E.

Bodenschatz, J. Fluid Mech.469, 121 (2002).
[5] A. M. Reynolds, Phys. Fluids15, 2773(2003).
[6] S. B. Pope, Phys. Fluids14, 2360(2002).

[7] J. I. Choi, K. Yeo, and C. Lee, Phys. Fluids16, 779 (2004).
[8] R-C. Lien and E. A. D’Asaro, Phys. Fluids14, 4456(2002).
[9] G. A. Voth, K. Satyanarayan, and E. Bodenschatz, Phys. Fluids

10, 2268(1998).
[10] S. B. Pope, Phys. Fluids14, 1696(2002).
[11] B. L. Sawford and P. K. Yeung, Phys. Fluids12, 2033(2000).
[12] B. L. Sawford and P. K. Yeung, Phys. Fluids13, 2627(2001).
[13] B. L. Sawford(private communication).

FIG. 5. Lagrangian acceleration autocorrelation functionsr22=kA2s0dA2stdl (1, streamwise direction; 2, vertical direction) for homoge-
neous turbulent shear flow. DNS data(symbols) and model predictions(lines) obtained using second-(upper) and third-(lower) order models
with C0=6 anda0=5.5.
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