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Anisotropy of acceleration in turbulent flows
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Third-order Lagrangian stochastic models for the evolution of fluid-particle hyperacceleréatiaerial
derivatives of Lagrangian acceleratiprewe shown to account naturally for the anisotropy of acceleration
variances in low-Reynolds-number turbulent flows and for their dependency upon the energy-containing scales
of motion. Model predictions are shown to be in close accord with the results of direct numerical simulations
for a turbulent channel flow and with previously acquired simulation data for a homogeneous turbulent shear
flow.
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I. INTRODUCTION dA = (a” + C”)A]dt + (b” = Clkak])A]dt— Cikbijjdt
According to Kolmogorov's similarity theory, at very
large Reynolds numbers the acceleration variance is isotropic
and prescribed by4=a,e¥%72 wherea, is a universal

+ \s’mdgk'

constantg is the mean rate of dissipation of turbulent kinetic dA = Adt,

energy divided by the fluid density, andis the kinematic

viscosity. The results of direct numerical simulatigBNSs du = Adt, (1)
of turbulent channel flow described here and laboratory-scale h

experiments[1-4] indicate that acceleration variances are"/"ere 23 115 _110

dependent upon Reynolds number and are decidedly aniso- 8y = = Coemj - C_E v oy,

tropic. Here, it is demonstrated that departures from univer- 0

sality and isotropy observed in low-Reynolds-number turbu- bjj=- a063/21/—1/27'ij,

lence can be attributed to the influence of hyperaccelerations GO + by o) = = a
(the material derivative of the acceleratjand that compat- 1 Xk D1 1k) = = 3 X

ibility with Kolmogorov similarity scaling can be “restored” A is the Lagrangian acceleration,is the Lagrangian veloc-
when hyperaccelerations are accounted for explicitly. Inferity, 7'”-:[0'_1]”-, oy =(uu), xi; =(AA), )\ij:<AiAj>, Co is Kol-
ences about the observed anisotropy of acceleration varinogorov’s constant for the Lagrangian velocity structure
ances in high-Reynolds-number turbulence are also madgynction, anddé, are increments of independent Weiner pro-
This is d_one within the context .qf a thlrd—orQer Lagrangian esses with mean zero and variauité5]. By construction,
stochastiaLS) model[S]. In addition to the time scal€s. 6 yelocity, acceleration, and hyperacceleration statistics are
and t,, introduced at second order and pertaining 10 th§;y, Gaussian, and when the inverse time scales associated
energy-containing® and ‘dissipative” scales of motion, with the third-order processeg;—~, the acceleration vari-

third-order models contain a third time scale This addi- nces are prescribed by Kolmogorov similarity scaliog?
tional time scale results in a finite hyperacceleration variancé P y 9 y '

/2. ~1/2 i ; H "
0'%\ and renders simulated Lagrangian accelerations contin £y In .the limit that the inverse time scaleg—.. .
ous and differentiable. Hyperaccelerations are correlated exlyPeraccelerations become uncorrelated, hyperacceleration

ponentially on a time scalg whents<t,<T, . The findings variances\;;—=, and Eq.(1) reduces to the second-order LS
have important ramifications for more conventional Lagrang model, —

ian stochastic models based on first- and second-order trun- dA =g Aidt+ by updt+ V= 28y xjdé 2
cations because they illustrate that the apparent nonuniver- the potential of the third-order modeling approach is now
sality of a, attained in such modelgf] is not an intrinsic  j,strated by comparing model predictions with the results
shortcoming of the approach in general but a consequence gf pnss acquired for a turbulent channel flow iR,
truncation. A prescription for effective model parameters that_ 3 whereR, is the Reynolds number based upon the Tay-
accounts for neglected third-order processes follows directly,, microscalex =(15v02/ ). This Eulerian Reynolds num-
from the evaluation of third-order processes presented beloyy,, corresponds to a” Lagrangian Reynolds number Re

Il. THIRD-ORDER EFFECTS IN TURBULENT FLOWS =(T./t,)?>~5. The turbulent channel flow was simulated us-
AT LOW REYNOLDS NUMBERS ing a spectral method incorporating Fourier expansions in
the homogeneous horizontal directions and Chebyshev ex-
pansions in the wall-normal directions. The computational
domain was(4,2,4mw/3)h and contained 128grid cells,
whereh is the channel half-width. A third-order Runge-Kutta
- scheme combined with the Crank-Nicolson scheme was used
*Author to whom correspondence should be addressed. FAXto advance time. A particle tracking algorithm employing the
+44 (0)1525 860156. Email address: andy.reynolds@bbsrc.ac.uk four-point Hermite interpolation in the horizontal directions

The simplest third-order LS model for the evolution of
hyperaccelerationd in homogeneous anisotropic turbulence
is prescribed by
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FIG. 1. (Color onling DNS data for the approach of the La- FIG. 2. (Color onling DNS data for the approach of the La-
grangian velocity structure function to inertial subrange behavior ingrangian velocity structure function to inertial subrange behavior in
a turbulent channel flow with nondimensional height./v=h' a turbulent shear flow with nondimensional heigt./v=h'
=180, wherev is the kinematic viscosity and- is the friction =180, wherev is the kinematic viscosity and. is the friction
velocity (dashed lines The lines pass smoothly through data points velocity (dashed lines The lines pass smoothly through data points
acquired at 0.032 intervals. Predictions obtained using a third- acquired at 0.03# intervals. Predictions obtained using a second-
order LS model withCy=6 anday="5.5 are also showsolid lines.  order LS model withCy=6 and nonuniversal anisotropic values of
The nondimensional height™ of the origin of the trajectories is a, calculated using the Kolmogorov similarity scaling relatiag
indicated. The letter adjacent to the pairs of curves denotes thegi€-3/2yl/2, and the results of DNS are also shogines: stream-
velocity component. wise, solid line; vertical, dotted line; cross wind, dashed)lifidne

. . . ) _nondimensional heighg' of the origin of the trajectories is indi-
and Chebyshev |_nterpolat|o_n In th? yvall-normal ,d'reCt',oncated. The letter adjacent to the pairs of curves denotes the velocity
was used to obtain Lagrangian statistics along fluid partmlecomponem

trajectories. Further details about the DNS and particle track-
ing algorithm can be found in the recent paper of Gétoal. The utilization of Eq(1) in this manner requires estimates
[7]. for Cy, @, andts. Here, in accordance with the only two
Estimates for the value @, obtained from the DNS data reliable estimates fo€, [8] and with recent experimental
for the three components of accelerati@treamwise, cross estimates for the asymptotic value af [3-9], we choose
wind, and vertical under the assumption thabi  C,=6 anda,=5.5. The hyperacceleration variances were
=aye”?y71/2, range from about0.29, 0.03, 0.1pat the top of  subsequently chosen to guarantee consistency with the DNS
the viscous layer to aboyt.67, 1.57, 1.0pat the center of data for the acceleration variances. Model predictions for the
the channel. Figure 1 shows that estimates for the val@ of hyperaccelerations were anisotropic and consigterwithin
obtained from the Lagrangian velocity structure functiong factor of about 2 or leyswith estimates for the hyperac-
D(t); =([uj(t+7) -u;(1)]? (no summatiopare also decidedly celeration variance obtained from the DNS data for the La-
anisotropic and nonuniversal. According to Kolmogorovgrangian acceleration autocorrelation functiprusing the
scaling, at very large Reynolds numbers and for inertial subkinematic re|ati0n0'2:—0'2Ad2p/dt2|t:0. Just above the vis-
range times, a plot dD(t)st should show a plateau at height cous layer,t;>T, >t,, while at the center of the channel
Co- T >t3>t,. This lack of scale separation between second-
The maxima inD(t)/et (denoted byCZ,) are seen in Fig. 1 and third-order processes has important implications for the
to occur at times comparable with the dissipation time scalecorrect parametrization of second-order LS models. This is
At these time scales, the influence of inhomogeneities in thbecause the parametrization of second-order procgases
statistical properties of the flow is of secondary importancecelerationy in terms of Kolmogorov similarity theory for
in determining Lagrangian properties, i.e, changes in the stahigh-Reynolds-number turbulence is strictly justifiable only
tistical properties of the flow along trajectories of such shortwhen t, <t;. Justification for the adoption of third-order
duration are not significant. Of greater importance are thenodels is dependent on there being a scale separation be-
statistics of the flow at the origin of the trajectories and thetween third- and fourth-order processes. Although the ratio
temporal correlations. These key quantities are incorporatetd/t,, was found to decrease with increasing Reynolds num-
into three-dimensional3D) LS models for anisotropic ho- berR,, it is not possible with the current data to determine
mogeneous turbulence, like E(l). The third-order model whether or notts/t, -0 as R,—=. If t3/t,~0 asR,-= then
(1) can therefore be utilized to assess the extent to whickKolmogorov scaling of the acceleration variance is recovered
hyperaccelerations account for the departures from Kolmogat high Reynolds number. t§/t, tends to a finite value then
orov similarity scaling observed in a DNS. hyperacceleration statistics may account for the observed an-
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FIG. 3. DNS datasolid lineg and model predictiongésecond-
order model, dotted line; third-order model, dashed)lifeg the
Lagrangian acceleration autocorrelation functiga=(A3(0)As(t)) ' ' ' '
(lateral direction. For the second-order model, predictions are ’ ' t ' '
shown forCy=6 and nonuniversal anisotropic valuesagfcalcu-

lated using the Kolmogorov similarity scaling relationg 2 ’
=gae 3212, and the results of DNS. For the third-order model, \Y
predictions are shown fd€y=6 anday=>5.5. Time has been nondi- 0541 \ %
mensionalized using the friction velocity, and the height of the & \
boundary layeh. The nondimensional heiglgt of the origin of the -..:::'u.
trajectories is indicated. 0.07 "
vvvv 3rd
isotropy of acceleration variances in high-Reynolds-number -0.51 [ . . .
turbulence[3,9]. This is most evident for the case when ve- 0.0 05 1.0 15 20
locity and acceleration covariances vanish so that m@del t
reduces to three decoupled 1D models. The time scales in the , ) , )
1D modeIsTL:202/Coe t, =(Col 280) (v/ &)*2 t3:cﬁ etc FIG. 4. Normalized Lagrangian velocity autocorrelation func-
’ u ’ ’ 1 "

E;Li_ons R =(ui(0)u;(s))/ (ay0j) 2 (no summation; 1, streamwise di-

are related 1o the velocity, acceleration, and hyperaccelerrection’ 2, vertical directionfor homogeneous turbulent shear flow.

tion variances by

2 DNS data(symbolg and model predictionglines) obtained using
- % first-, second-, and third-order models wifl=6 anday=5.5.
AT, + T+t
o4 = cri(T[]'t;]1+T[]1§1+tj]"tgl). (3)  duced by the mean shear. Figure 2 shows that the DNS data

are represented less satisfactorily by the second-order model
It is apparent from Eq3) that whent;=0 (as it is in second- (2) with Cy;=6, despite the effective employment of nonuni-
order LS models o4=0%/T t,=a,e? Y2 in accordance versal anisotropic values fay. Moreover, it is evident that
with Kolmogorov’s similarity theory, and that consequently unrealistically large values oCB(C0> 6) are required to
anisotropy ofaﬁ implies anisotropy ohy. This is not neces- match the peak values @f{) attained in the DNS. Figure 3
sarily the case whety# 0. Whent;#0, o2 will in general  shows that, except for close to the viscous sublayer, predic-
be dependent uponzu and so dependent upon the “energy-tions for the Lagrangian acceleration autocorrelation func-
containing” scales of motion. tion obtained using the third-order model are in close agree-

Figure 1 illustrates that the third-order mod&) repro- ment with DNS data. This is particularly evident at short

duces accurately the approach toward inertial subrange scalmes, where model predictions and DNS data for the gradi-
ing attained in the results of DNSs for locations well above ants in the Lagrangian acceleration autocorrelation function
viscous sublayer that extends to a nondimensional heightand consequently the hyperacceleration varianaes seen
y'=yu./v=5 whereu. is the friction velocity. The discrep- to be very nearly coincident.
ancy between the model predictions and the DNS data that is Pope[6,10 recently undertook a detailed analysis of first-
evident just above the viscous sublayer may be due to thand second-order LS models for simulating fluid-particle tra-
effects of coherent flow structures which have not been injectories in homogeneous turbulent shear flow. He estab-
corporated into the model. The tendency of the model tdished a one-to-one correspondence between model coeffi-
overpredict values ofC, corresponding to the streamwise cients and primary flow statistics, such as the velocity
component of velocity could be due to the neglect of thevariances and integral Lagrangian times scales. The model
influence of rotations of the Lagrangian velocity vector in-agreement with the results of DNgkL,12 was excellent but
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FIG. 5. Lagrangian acceleration autocorrelation functipss(A,(0)Ax(t)) (1, streamwise direction; 2, vertical directjofor homoge-
neous turbulent shear flow. DNS d@symbolg and model predictiondines) obtained using secondypped and third-(lower) order models
with Cy=6 anday=5.5.

the supposed universality @, and a; was not respected. dictions of the third-order model and the DNS data for the
Here, it is demonstrated that this deficiency is overcome ircross-velocity autocorrelation functign, may indicate that
third-order formulations. on integral time scales the effect of rotation of trajectories
The results of DNSs reveal that after an initial transientdue to shear needs to be accounted for expliciflg] It is
homogeneous turbulent shear flow tends to an approximatebyorth emphasizing that the ability of the second-order model
self-similar state in which quantities pertaining to the energyto accurately predict Lagrangian velocity autocorrelation
containing scalegvelocity, velocity variances, dissipatipn functions is not mirrored by an ability to accurately predict
are approximately constant, when normalized by the turbusecond-order quantities. This is evident from Fig. 5, which
lent kinetic energyk and e. Complete stationarity is not at- shows that acceleration variances are overpredicted by a fac-
tained because the Reynolds numk®i(ev) increases with tor of about 2 by the second-order model while predictions
time. Departures from nonstationarity are, however, smalfor the acceleration covariances have the wrong sign.
and consequently homogeneous turbulent shear flow can, to
a good approximation, be treated as stationary anisotropic
turbulence. Indeed, over the time interval of the DNS, the In this paper, third-order processes have been shown to
modulus of A increases by approximately 10%, while the account naturally for the anisotropy of Lagrangian accelera-
Kolmogorov dissipation time scale decreases by about 20%ons observed in DNS data for turbulence at low Reynolds
[6]. Sawford and Yeun@l1,12 did not report or\;; and here  number. The apparent nonuniversality of parameters in con-
our values are chosen to guarantee consistency with the DN&ntional Lagrangian stochastic models was shown to be a
data fory;; while retainingCy=6 anda;=>5.5. consequence of truncation at either first or second order and
Figures 4 and 5 reveal that predictions for the Lagrangiamot an inherent deficiency of the approach in general. Analy-
velocity autocorrelation functions and the Lagrangian accelsis of third-order processes provides a prescription
eration autocorrelation functions obtained using the thirdfor a reparametrization of these more conventional
order model are in excellent agreement with the DNS datanodels and provides us with greater confidence in their
and significantly better than those obtained using first- andcorrectness” and in truncation at second order, in
second-order models. The small difference between the prearticular.
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