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The integrated response function in phase-ordering systems with scalar, vector, conserved, and nonconserved
order parameter is studied at various space dimensionalities. Assuming scaling of the aging contribution
xagst ,twd= tw

−axx̂st / twd we obtain, by numerical simulations and analytical arguments, the phenomenological
formula describing the dimensionality dependence ofax in all cases considered. The primary result is thatax

vanishes continuously asd approaches the lower critical dimensionalitydL. This implies that(i) the existence
of a nontrivial fluctuation dissipation relation and(ii ) the failure of the connection between statics and dynam-
ics are generic features of phase ordering atdL.
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After the groundbreaking work of Cugliandolo and Kur-
chan[1] on mean-field spin glasses, the study of the out-of-
equilibrium linear response function has been gaining an in-
creasingly important role in the understanding of slow
relaxation phenomena. The key concept is that of the fluc-
tuation dissipation relation(FDR) [2]. In terms of the re-
sponse functionxst ,twd integrated over the time interval
stw,td, an FDR arises ifxst ,twd depends on time only through
the autocorrelation functionCst ,twd. If this happens, there
remains defined a functionx=SsCd which generalizes the
fluctuation dissipation theorem into the out-of-equilibrium
regime.

The existence of an FDR is important for several reasons
[2]. Here, we focus on a specific aspect: to what extent the
FDR shape is revealing of the mechanism of relaxation and
of the structure of the equilibrium state. In particular, we aim
at dispelling the common belief that relaxation by coarsening
and a simple equilibrium state donecessarilyimply a flat or
trivial FDR, i.e., SsCd=1−qEA when C falls below the
Edwards-Anderson order parameterqEA.

To appreciate the relevance of the problem, notice that, by
reversing the argument, a nonflat FDR would rule out coars-
ening. This is a statement of far-reaching consequences. For
instance, an argument of this type plays a role in the dis-
crimination between the mean field and the droplet picture of
the low-temperature phase of finite dimensional spin glasses
[3]. In that case, the final conclusion may well be right, but

for the argument to be sound, the behavior of the response
function, when relaxation proceeds by coarsening, needs to
be thoroughly understood.

As a contribution in this direction, we have undertaken a
large program of systematic investigation of the FDR in the
phase ordering systems[4], the workbench for the study of
all aspects of relaxation driven by coarsening. We have con-
sidered pure ferromagnetic systems quenched from above to
below the critical point. We have covered the whole spec-
trum of systems with nonconserved(NCOP), conserved
(COP), scalarsN=1d, and vectorsN.1d order parameter at
different space dimensionalitiesd, whereN is the number of
components of the order parameter. The manifold of the sys-
tems considered is displayed in Table I. Some of these
(marked by a dot) have been studied before. With the new
entries, the picture becomes rich enough to promote toge-
neric the behavior previously observed in the case of the
Ising model[5–8] and in the large-N model[9]. Namely, that
FDR is flat ford.dL and nonflat ford=dL [10], wheredL is
the lower critical dimensionality. The implication is that a
flat FDR is not a necessary condition for coarsening.

To explain, let us recall[2] that one can writexst ,twd
=xstst− twd+xagst ,twd. The first is the stationary contribution
due to the fast degrees of freedom which rapidly equilibrate
with the bath, while the second is the aging contribution
coming from the slow out-of-equilibrium degrees of free-
dom. One can also show, in general, that a flat FDR is ob-
tained if xagst ,twd vanishes asymptotically[2,6]. Now, in
phase ordering for largetw, one expects the scaling behavior

xagst,twd = tw
−axx̂st/twd, s1d

from which it follows that the FDR is or is not flat according
to ax.0 or ax=0. Therefore, investigating the FDR shape
requires the investigation ofax.
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Let us see the situation with this exponent. In the Ising
model [5–8] and in the large-N model [9], we have found
that ax depends on dimensionality according to

ax =5dS d − dL

dU − dL
D for d , dU,

d with log corrections ford = dU,

d for d . dU,

s2d

whered enters the time dependence of the density of defects
and dL, dU are the two special dimensionalities(with
dL,dU) whereax=0 and above whichax=d, respectively.
The density of defects goes likerstd,Lstd−n, t−d, where
Lstd, t1/z is the typical defect distance,z is the dynamic ex-
ponent, andn=1 or n=2 for scalar or vector order parameter
[4]. Hence,d=n/z. Here, we present strong evidence sup-
porting Eq.(2) as the generic pattern of behavior.

We have computedxst ,twd for systems quenched from
infinite to zero final temperature. In all cases we have used
the time-dependent Ginzburg-Landau equation[4], except
for NCOP with N.1 and d.2 where the Bray-Humayun
[11] algorithm has been used[12]. After computing xstst
− twd from equilibrium simulations, we have obtained
xagst ,twd=xst ,twd−xstst− twd. To getax, one ought to extract
the tw dependence ofxagst ,twd for fixed x= t / tw [8]. However,
this is computationally very demanding and would make it
impossible to get the vast overview we are aiming for. So,
we have measuredax from the large-t behavior for a fixedtw,
assumingxagst ,twd, t−ax. This holds ifx̂sxd,x−ax for x@1,
which has been verified in the NCOP scalar case[6,8], and it
is an exact result in the soluble models[5,9]. The assumption
is that it holds in general. The choice oftw is inessential
provided it is larger than some microscopic time necessary
for scaling to set in[8].

The time dependence ofxagst ,twd is depicted in Figs. 1–3.
We have extractedax from the asymptotic power-law decay
and we have collected all results, old and new, in Fig. 4. At
dL we have used the parametric plotxagsCd (insets of Figs.
1–3), showing more effectively the absence of asymptotic
decay, due toax=0. In Fig. 4, we have also displayed the
values ofax predicted by Eq.(2). The comparison with the
computed values is quite good. For convenience, we have
collected in Table II the values of all the parameters entering
Eq. (2). Figure 4 is the main result in the paper.

Let us now comment on the results. From Fig. 4 it is
evident that the pattern of behavior predicted by Eq.(2) is
obeyed with good accuracy in the scalar cases, withdL=1
and dU=3. In the vector cases, given the great numerical
effort needed, values ofN were chosen according to the cri-
terion of the best numerical efficiency, together with the re-
quirement to simulate both systems withsN,dd and without
sN.dd stable topological defects. The overall behavior of
the data in Fig. 4 shows that Eq.(2) represents the dimen-
sionality dependence ofax well also in the vector case with
dL=2 anddU=4. Finally, the insets in Fig. 1–3(together with
the analogous figures for thed=1 Ising model in Refs.[5,7]
and in the large-N model [9]) show quite clearly thatax=0
and a nonflat FDR are common features in phase ordering
kinetics atdL.

At this stage Eq.(2) is a phenomenological formula.
Apart from the exact solution of the large-N model[9], there
is no derivation of Eq.(2). Here, we propose an argument for
the dependence ofax on d in the scalar case. It is based on
two simple physical ingredients:(a) the aging response is

TABLE I. The manifold of systems considered. Entries with
dots correspond to systems studied in Refs.[5–8].

NCOP COP

d N=1 N.1 N=1 N.1

1 • •

2 • N=10 N=1 N=4

3 • N=2, N=5 N=1 N=5

4 • N=6 N=1

FIG. 1. xagst ,twd againstt− tw for N=1 with COP. Lattice sizes,
realizations, andtw: 5122, 41, and 30 ford=2; 1283, 39, and 40 for
d=3; 604, 6, and 31 ford=4. The dashed lines are the slopes from
Eq. (2). In the inset: parametric plot ford=1 from Ref.[7]

FIG. 2. xagst ,twd againstt− tw with COP. Lattice sizes, realiza-
tions, andtw: 963, 89, and 35 ford=3 andN=5; 504, 82, and 35 for
d=4 andN=2. The dashed lines are the slopes from Eq.(2). In the
inset: parametric plot ford=2,N=4. Lattice size, realizations, and
tw: 5122, 232, 500.
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given by the density of defectsrstd times the response of a
single defect[6] xagst ,twd=rstdxag

s st ,twd, and(b) each defect
responds to the perturbation by optimizing its position with
respect to the external field in a quasiequilibrium way. Ind
=1 this occurs via a displacement of the defect[6]. In higher
dimensions, since defects are spatially extended, the re-
sponse is produced by a deformation of the defect shape.

We develop the argument for a 2D system, the extension
to arbitraryd being straightforward. A defect is a sharp in-
terface separating two domains of opposite magnetization. In
order to analysexag

s st ,twd we consider configurations with a
single defect as depicted in Fig. 5. The corresponding inte-
grated response function reads [6] xag

s st ,twd
=1/sh2Ld−1dedx dykSsx,ydlhsx,yd, whereSsx,yd is the or-
der parameter field which saturates to ±1 in the bulk of do-
mains.hsx,yd is the external random field with expectations
hsx,yd=0, hsx,ydhsx8 ,y8d=h2dsx−x8ddsy−y8d, andL is the
linear system size. The overbar and angular brackets denote
averages over the random field and thermal histories, respec-
tively. With an interface of shapezwsyd at timetw (Fig. 5), we
can write xag

s st ,twd=−1/sh2Ld−1dehzjEhPhshzsydj ,td, where
Phshzsydj ,td is the probability that an interface profilehzsydj

occurs at time t and Eh=−e0
Ldyezwsyd

zsyd dx hsx,ydsignfzsyd
−zwsydg is the magnetic energy. We now introduce assump-
tion (b) making the ansatz for the correction to the unper-
turbed probabilityP0shzsydj ,td in the form of a Boltzmann
factor Phshzsydj ,td=P0shzsydj ,tdexps−bEhd. P0shzsydj ,tdf1
−bEhg. Then, xag

s st ,twd=
−1/sh2Ld−1dehzjEhs1−bEhdP0shzsydj ,td. Taking into account
that the linear term inEh vanishes by symmetry, and neglect-
ing zwsyd with respect tozsyd for t@ tw, we eventually find
b−1xag

s st ,twd=L1−dehzj e0
L dyuzsyduP0shzsydj ,td. This defines a

length which scales as the roughness of the interface[13]
given by Wstd=fL1−dehzjedy zsyd2P0shzsydj ,tdg1/2. The be-
havior ofWstd in the coarsening process can be inferred from
an argument due to Villain[14]. In the casedø3, when
interfaces are rough[15], for NCOP one hasWstd, ts3−dd/4,
while for COPWstd, ts3−dd/6, with logarithmic corrections in
both cases ford=3. For d.3 interfaces are flat andWstd
.const. Finally, multiplyingxag

s by rstd,Lstd−1 Eq. (2) is
recovered[16] and dU is identified with the roughening di-
mensionalitydR=3.

In summary, we have investigated the scaling properties
of the response function over a large variety of systems de-
signed to bring forward the generic features when relaxation
is driven by coarsening. The primary result is that the expo-
nent ax depends on dimensionality, and that it vanishes
smoothly asd→dL. This implies that a nontrivial FDR is not
exceptional; rather, it is the rule for coarsening systems atdL.
Another important consequence is that the failure of the con-
nection between statics and dynamics atdL [6] is also a ge-
neric feature of coarsening. The connection between the
FDR and the overlap probability function is derived[17]

TABLE II. Parameters entering Eq.(2).

N=1 N.1

NCOP COP NCOP COP

z 2 3 2 4

d 1/2 1/3 1 1/2

dL 1 2

dU 3 4

FIG. 4. Exponentax from Eq.(2) and from best fit of numerical
data.

FIG. 5. Configurations with a single interface at timetw (dashed
line) and at timet (continuous line).

FIG. 3. xagst ,twd againstt− tw with NCOP. Lattice sizes, realiza-
tions, andtw: 1803, 1445, and 2 ford=3 andN=2; 1403, 1486, and
0.3 for d=3 andN=5; 404, 486, and 0.3 ford=4 andN=6. In the
inset: parametric plot ford=2 andN=10. Lattice size, realizations,
and tw: 10242, 22, and 20.
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under the assumptions of stochastic stability and thatxst ,twd
goes to the equilibrium value ast→`. The latter assumption
does not hold atdL due to the existence of a nonflat FDR
(insets of Fig. 1–3), which makes the limiting value of
xst ,twd rise above the equilibrium value. Obviously, the im-
portant and, as of yet, unanswered question is why all this

happens atdL. The scaling behavior of the response function
reported in this paper adds to the many already existing chal-
lenges posed by a theory of phase ordering kinetics.

This work has been partially supported by MURST
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