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Generic features of the fluctuation dissipation relation in coarsening systems
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The integrated response function in phase-ordering systems with scalar, vector, conserved, and nonconserved
order parameter is studied at various space dimensionalities. Assuming scaling of the aging contribution
Xag(t,tw):t;vaXS((t/tW) we obtain, by numerical simulations and analytical arguments, the phenomenological
formula describing the dimensionality dependence,pin all cases considered. The primary result is tat
vanishes continuously asapproaches the lower critical dimensionality This implies thaf{i) the existence
of a nontrivial fluctuation dissipation relation agid) the failure of the connection between statics and dynam-
ics are generic features of phase ordering,at
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After the groundbreaking work of Cugliandolo and Kur- for the argument to be sound, the behavior of the response
chan[1] on mean-field spin glasses, the study of the out-offunction, when relaxation proceeds by coarsening, needs to
equilibrium linear response function has been gaining an inbe thoroughly understood.
creasingly important role in the understanding of slow As a contribution in this direction, we have undertaken a
relaxation phenomena. The key concept is that of the fluclarge program of systematic investigation of the FDR in the
tuation dissipation relatiofFDR) [2]. In terms of the re- phase ordering systenjd], the workbench for the study of
sponse functiony(t,t,) integrated over the time interval all aspects of relaxation driven by coarsening. We have con-
(t,,t), an FDR arises ik(t,t,) depends on time only through sidered pure ferromagnetic systems quenched from above to
the autocorrelation functiol(t,t,). If this happens, there below the critical point. We have covered the whole spec-
remains defined a functiog=S(C) which generalizes the trum of systems with nonconserve@NCOP), conserved
fluctuation dissipation theorem into the out-of-equilibrium (COP) scalar(N=1), and vector(N>1) order parameter at
regime. different space dimensionalitiek whereN is the number of

The existence of an FDR is important for several reason omponents of the_ord_er parameter. The manifold of the sys-
[2]. Here, we focus on a specific aspect: to what extent thi€MS considered is displayed in Table I. Some of these
; . ; . marked by a dgthave been studied before. With the new
FDR shape is revealing of the mechanism of relaxation an ntries, the picture becomes rich enough to promotgeto
of the structure of the equilibrium state. In particular, we aim !

. . . X . neric the behavior previously observed in the case of the
at dispelling the common belief that relaxation by coarseningsing model[5—8| and in the largeN model[9]. Namely, that

anql a simple _equilibrium state decessarilymply a flat or  FpR is flat ford>d, and nonflat fod=d, [10], whered, is
trivial FDR, i.e., SC)=1-qges When C falls below the ihe |ower critical dimensionality. The implication is that a
Edwards-Anderson order parametg. flat FDR is not a necessary condition for coarsening.

To appreciate the relevance of the problem, notice that, by To explain, let us recal[2] that one can writey(t,t,)
reversing the argument, a nonflat FDR would rule out coars=y(t-t,)+ Xag(t:tw). The first is the stationary contribution
ening. This is a statement of far-reaching consequences. Fge to the fast degrees of freedom which rapidly equilibrate
instance, an argument of this type plays a role in the diswith the bath, while the second is the aging contribution
crimination between the mean field and the droplet picture otoming from the slow out-of-equilibrium degrees of free-
the low-temperature phase of finite dimensional spin glassesom. One can also show, in general, that a flat FDR is ob-
[3]. In that case, the final conclusion may well be right, buttained if y,4(t,t,) vanishes asymptotically2,6]. Now, in

phase ordering for largg,, one expects the scaling behavior

—a
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TABLE |. The manifold of systems considered. Entries with 10 T T T T
dots correspond to systems studied in Rgfs.g]. COP scalar d=1
NCOP COP
d N=1 N>1 N=1 N>1
1 L] L]
2 . N=10 N=1 N=4
3 . N=2,N=5 N=1 N=5
4 . N=6 N=1
Let us see the situation with this exponent. In the Ising 10° 10' 10° 10° 10* 10°

model [5—-8] and in the largeN model [9], we have found H,

thata, depends on dimensionality according to FIG. 1. xa4(t,ty) againstt—t, for N=1 with COP. Lattice sizes,

realizations, and,: 512, 41, and 30 fod=2; 128&, 39, and 40 for
S d-d. ford<d d=3; 60, 6, and 31 ford=4. The dashed lines are the slopes from
dy—d, U Eqg. (2). In the inset: parametric plot fai=1 from Ref.[7]

a, =
) with log corrections fod=d,

Let us now comment on the results. From Fig. 4 it is

) ford>dy, evident that the pattern of behavior predicted by &).is

2) obeyed with good accuracy in the scalar cases, djthl
and dy=3. In the vector cases, given the great numerical

where § enters the time dependence of the density of defect ffort needed, values f were chosen according to the cri-

. . . AP erion of the best numerical efficiency, together with the re-

(&jmi g '-)' \Sﬁ eraerz :trg)e a;v(;/oabsc?veem\?vlhig;am inés I?ggggg%‘é?y quirement to simulate both systems with< d) and without
The dUensity of Yefects goes Iikp:(t)~|f(t)‘;1~t‘5 where (N>d) stable topological defects. The overall behavior of
L(t)~t¥%is the typical defect distance,is the dyn:amic ex- the da}ta in Fig. 4 shows that Ecz)'represents the dimen-
ponent, anch=1 orn=2 for scalar or vector order parameter sionality depende'nce af, W?” alsq n Fhe vector case \.N'th
[4]. Hence,d=n/z. Here, we present strong evidence sup—dL:2 anddU:4._F|naIIy, the insets n Fig. 1—@pgetherW|th
porting Eq.(2) as the generic pattern of behavior. the a_nalogous figures for tl=1 Ising _model in Refs[5,7]

We have computec(t,t,) for systems quenched from and in the largeN model[9]) show quite cIe_arIy thaa, =0 .
infinite to zero final temperature. In all cases we have use &itisng?élat FDR are common features in phase ordering
the time-dependent Ginzburg-Landau equatjdh except L

. At this stage Eq.(2) is a phenomenological formula.
for NCOP withN>1 andd>2 where the Bray-Humayun :
[11] algorithm has been used2]. After computing yx(t Apart from the exact solution of the largémodel[9], there

Tt ilibri imulati h btained is no derivation of Eq(2). Here, we propose an argument for

w) roin equiiibrium simufations, - we ak\(e obtaned e gependence @, ond in the scalar case. It is based on
Xaglt,tw) = x(t,tw) ~ xst-t,). To geta,, one ought to extract ., simple physical ingredientsa) the aging response is
thet,, dependence of.((t,t,) for fixedx=t/t,, [8]. However,

this is computationally very demanding and would make it
impossible to get the vast overview we are aiming for. So,
we have measuredl, from the larget behavior for a fixed,, Al |-- d=4.N=2 £
assumingy,q(t, t,) ~t™2x. This holds if y(x) ~x"% for x>1, 107 TS

F COP vector k|
— d=3,N=5

which has been verified in the NCOP scalar d&s8], and it P it T S, -2

is an exact result in the soluble modggs9]. The assumption g L Cat,) = 4

is that it holds in general. The choice tf is inessential 02 04 06 08 ,,

provided it is larger than some microscopic time necessary Jdos ]

for scaling to set ir8]. 10°E 10,2 .
The time dependence gf(t,t,) is depicted in Figs. 1-3. : 42 Ned . 1

We have extracted, from the asymptotic power-law decay Lo 0!

and we have collected all results, old and new, in Fig. 4. At T S

d. we have used the parametric pjpi,(C) (insets of Figs. 10 e 10 10
1-3), showing more effectively the absence of asymptotic "

decay, due ta,=0. In Fig. 4, we have also displayed the  FiG. 2. y,(t,t,) againstt-t, with COP. Lattice sizes, realiza-
values ofa, predicted by Eq(2). The comparison with the tions, and,,: 96%, 89, and 35 fod=3 andN=5; 5¢¢, 82, and 35 for
computed values is quite good. For convenience, we havg=4 andN=2. The dashed lines are the slopes from @g. In the
collected in Table Il the values of all the parameters enteringnset: parametric plot fod=2,N=4. Lattice size, realizations, and
Eq. (2). Figure 4 is the main result in the paper. t,: 512, 232, 500.
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| .
NCOP vector TABLE Il. Parameters entering E@2).

il N=1 N>1

NCOP COP NCOP COP
s z 2 3 2 4

- ) 1/2 1/3 1 1/2

d 1 2

0.01 dy 3 4

| 1 |

0.1 ! t}to 100 1000 occurs at timet and Eh:—fgdyf;(,vy()y)dx h(x,y)sign z(y)

-2z,(y)] is the magnetic energy. We now introduce assump-

FIG. 3. xag(t,t,,) against —t, with NCOP. Lattice sizes, realiza- 10N (b) making the ansatz for the correction to the unper-
tions, andt,: 1803, 1445, and 2 fod=3 andN=2; 14¢, 1486, and  turbed probabilityPy({z(y)},t) in the form of a Boltzmann
0.3 ford=3 andN=5; 4, 486, and 0.3 fod=4 andN=6. Inthe  factor P,({z(y)},t)=Po({z(y)},t)exp(-BEp) = Po({z(y)}, t)[1
inset: parametric plot fod=2 andN=10. Lattice size, realizations, - BE]. Then, ng(t,tw)=
andt,; 1024, 22, and 20. =1/(h?L%Y) [, En(1-BE,) Po({z(y)},t). Taking into account

, . . that the linear term ifg;, vanishes by symmetry, and neglect-
given by the density of defecis(t) times the response of a ing z,(y) with respect toz(y) for t>t,, we eventually find
single defec(6] xaq(t.t,) = ,?(t))(jg(t,tw?, z_md(b_) each _d_efect_ Bt )= LY, £ dylzty)|Po({z(y)},1). This defines a
responds tohthe perturlbfe_ltll?jn_ by opt|m_|2|ng|_|tt)s_ pos't'ond‘l"”thlength which scales as the roughness of the interfaG
respect to the external field in a quasiequilibrium waydin —[ - 2 112
:1Ft)his occurs via a displacemen?of theqdei[@t In higr{er glvgn by W(t)._[ﬁ df{z}fdy'z(y) Po({z(y)}, 0] .'The be-

: . . ) havior of W(t) in the coarsening process can be inferred from
dimensions, since defects are spatially extended, the "€ arqument due to Villaif14]. In the cased<3, when
sponse is produced by a deformation of the defect shape_. interfagces are rougf5], for NCOP one ha:W(t;~,t(3‘d)/4

We develop the argument for a 2D system, the extensioft ;i ¢ COPW(t)~t(3""’)’6 with logarithmic corrections in
to arbitraryd being straightforward. A defect is a sharp in- N » With log
terface separating two domains of opposite magnetization. IBOth cases f0”|d—3. IF.orlq>3S|nlt)erfaces are_fllat ana(t)
order to analysg;(t,t,) we consider configurations with a =const. Finally, multiplyingxz, by p(t) ~L(t)™" Eq. (2) is
single defect as depicted in Fig. 5. The corresponding intef€covered16] anddy is identified with the roughening di-
grated  response  function  reads[6]  x3(t.ty) mensionalityds=3. , _ _ ,
= 1/(h2L%Y) [dx dx—S(x,y»h(x,y), where S(x,y) is the or- In summary, we have investigated the scaling properties

der parameter field which saturates to £1 in the bulk of do-o.f the response function over a Iarge variety of systems _de-
. . ) : : signed to bring forward the generic features when relaxation
mains.h(x,y) is the external random field with expectations ;

_ O — 2 S I St . is driven by coarsening. The primary result is that the expo-
h(x,y)=0, h(x,y)h(x",y")=h"6(x-x")8(y-y"), and L is the o a, depends on dimensionality, and that it vanishes
linear system size. The overbar and angular brackets deno&‘?noothly asl—d,. This implies that a nontrivial FDR is not

averages over the random field and thermal histories, respegscentional: rather, it is the rule for coarsening systent at
tively. With an interface of Shgmvwg- 9, We  Another important consequence is that the failure of the con-
can write x34(t,ty)=—1/(W°L [, EPy({z(y)},1), where  nection between statics and dynamicslaf6] is also a ge-
Pr({z(y)},1) is the probability that an interface profi{e(y)}  neric feature of coarsening. The connection between the
FDR and the overlap probability function is derivéti7]

= NCOP N=1 Eq.2 ' '
1 - cop N=1Eg2 |  ________ |
—. NCOP N>1 Eq.2 A
0 — COP N>1 Eq.2 / O
8l @ Ncop N=1 Numerical 4 7]
COP N=1 Numerical V4 T
0.6 NCOP N>1 Numerical /7 -
<= v COP N>1 Numerical 6
04F i s & . ] + —
I/.‘.g.
021 . B
0 - -
. ] 1 1 ] 1
025 1 2 3 4 5 6
d
FIG. 4. Exponena, from Eq.(2) and from best fit of numerical FIG. 5. Configurations with a single interface at titggdashed
data. line) and at timet (continuous ling
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under the assumptions of stochastic stability and iligat,,) happens atl, . The scaling behavior of the response function
goes to the equilibrium value as-«. The latter assumption reported in this paper adds to the many already existing chal-
does not hold atl_ due to the existence of a nonflat FDR lenges posed by a theory of phase ordering kinetics.

(insets of Fig. 1-3 which makes the limiting value of

x(t,t,) rise above the equilibrium value. Obviously, the im- ~ This work has been partially supported by MURST
portant and, as of yet, unanswered question is why all thighrough PRIN-2002.
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