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We present a unified treatment of density of modes and tunneling times in finite, one-dimensional photonic
crystals. We exploit connections and differences between the various approaches used to calculate the density
of modes, which include the Green function, the Wigner phase time, and the electromagnetic energy density,
and conclude that the Green function is always the correct path to the true density of modes. We also find that
for an arbitrary structure the density of modes can always be found as the ratio between the power emitted by
a source located inside the structure and the power emitted by the same source in free space, regardless of
absorption or dispersion.
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I. INTRODUCTION implied connections to other physical or measurable quanti-

Structures in which scattering or diffracting elements are&ti' ?sugglli%re frp(;ﬁa%;g;r%nasri]ge?(r;()jugc\)/seé%clty to name just

arranged in such a way that their mutual distances are com- There are at least three different ways to calculate the
, , €DOM that are currently used in the literature. The first way
referred to as photonic crystalBC9, or photonic band gap  qnsists of calculating the local density of modeBOM) as
structureSPBG9. The field owes its birth to the pioneering fo|iows: p_(2)=(-2k,/c)IM[G,(z,2)], whereG,(z,2) is the
works of Yablonovitch[1] and John[2], both of which fo- ~ gjectromagnetic Green function of a source located=at
cused on the study of spontaneous emission control and lighiiside a 1D structure, and which oscillates with a harmonic
localization. These contributions paved the way to a periodime dependence of the type dxpwt) [11-13; c is the
of intense theoretical and experimental investigation of PBGspeed of light in vacuum, ankh=w/c is the vacuum wave
structures that continues today. Over the years researchejgctor. The DOM is then defined as the weighted average of
have pointed out that PBG principles can be exploited, anthe LDOM over the lengthL of the PC, i.e., po=
many applications are possible. Here we mention photoniq-zko/cL)fggﬁ(zﬂm[Gw(z,z)]dz [13], where 85(2) is the
crystals fiberg[3], photonic crystal circuitg4], transparent spatially dependent, linear, real, relative dielectric function
metal-dielectric stackg5], highly efficient micron-sized de- of the PC and plays the role of the weight function. The
vices for nonlinear frequency conversi¢6—8. An up to  second way consists of calculating the LD@BIOM) as the
date review of recent advancements in the field of PBGspatially averaged electromagnetic energy density stored in-
structures may be found in Ref®,10. side the crystal. This approach has been discussed at length
One-dimensional1D) PCs are made by arranging macro- jn Ref. [8], and we will return to it later. The third approach
scopic dielectric and/or metallic unit cells into a periodic or was first proposed in Refl14], where the DOM was defined
quasiperiodic array, in order to affect the properties of theys: p?=(1/L)(d¢/dw), where ¢(w) is the phase of the

light in essentially_ the same way that semit_:on_ductor crystalg ansmission functio, =[{ lexdi¢(w)]. In the literature
affect the properties of electrons. The periodic arrangemen

e — =p¢L is often ref to as the phase ti
results in allowed and forbidden frequency bands and gap, (de/dw)=pil is often referred to as the phase time

) ; . i : 5-17, “group delay,” and “Wigner time]18], and it gives
for the light, i.e., light can be either transmitted or reflectedthe time that the transmitted part of an incident, quasimono-

depending on its frequency, in analogy to energy bands anghromatic, unchirped pulse takes to traverse a 1D barrier

gaps of semiconductors. ; .
Although the number of experimental and theoretical re-‘[‘lD%qubgguﬁiggaﬁ;t?htehsv%gg ;ﬁllcéq,lated this way as the

ports on 1D PCs is already quite large, in our view the issue In this ; - ;
. ! paper we exploit connection and differences be-
of the density of mode€DOM), or density of state¢DOS), tween the approaches outlined above in order to give the

regarding what one means by it, and its true and OtherWISBOM a firmer theoretical footing when it comes to 1D crys-

tals. We will show that the DOM can be directly linked to the
energy emitted from the structure, which is clearly a measur-
*Electronic address: giuseppe.daguanno@timedomain.com able quantity, and we will clarify the links that have previ-
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FIG. 1. Schematic representation of a dipole sheet of su$ace
and dipole momenf(t)=p, exd —iwt] located along the plane
=¢ and parallel to the surfaces A of a 1D PC of lengithocated
betweenz=0 andz=L.
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in Refs.[21-23. In 1D, the Green function has the following
form (see Appendix A

()D&

. ) 2ikgt, e 4
(2,8 = w <z<¢ (4)
2k, o

where {(Df)} are the Ieft—to-right(LTR) and right-to-left
(RTL) light-modes,t,=nq 0= =ny, A*) is the transmission
function, ng ; , are the refractive indices of the materials sur-
rounding the structure(+) are the LTR and RTL transmission
functions(see Fig. 2, ko wl/c is the vacuum wave vector.
LTR and RTL modes can be calculated using a standard lin-
ear matrix transfer technique, assuming a unitary electric
field is incident on the structure from LTR for tl&k‘+ mode,

and from RTL for theCD( ) mode, as shown in Flg 2, and as

ously been established between the concept of DOM and thiést reported in Ref[24] For clarity, we report the details of

tunneling times of quasimonochromatic incident pulses.

II. DOM CALCULATED THROUGH THE GREEN'’s
FUNCTION: THE TRUE DOM

Let us suppose that a dipole sheet, of surf&eand
harmonically oscillating dipole moment: p(t)
=(1/2)[pg exp(—iwt)+c.c.] oriented alongx, is located in
the planez=¢ and it is positioned parallel to the surfackesf

a PBG of length L. This situation is sketched in Fig. 1, where

the structure is shown to occupy the space betvzedhand

z=L. Due to its planar symmetry, the problem reduces to a

1D one. As a consequence, the electric fieﬁg(z,g)
=E,(z,9% generated in the PC by the current density

J .(2,6=3,(z, &% that oscillates along the plane S can be;
calculated through the scalar Helmholtz equation as:

PES28) | 0’8, (DEZE) _
022 c? -

2p0

5(2 &, 1
wheree,(2)=1+x,(2)=e"(2) +ie! (2) is the spatially depen-
dent, complex dielectric functiory,,(2) is the linear complex
susceptibility of the medium, and(z-¢) is the Dirac delta
function. In Eq.(1) we suppose a nonmagnetic material, i.e.
m,=1. We seek solutions of Eql) that satisfy boundary

the calculations which lead to E¢4) in Appendix A[25].

Note that Eq(4) is valid for an arbitrary 1D, finite structure,
one that may also include material absorption and dispersion.
Now, using Eq(2) and the expression for the current density,
it can be shown that the mean electromagnetic power emitted
by the dipole sheet embedded within the PC is given by:

\\/(1D)
emitted in PC—

1 > %
--Re| J,-EdV
2 f w w

\

_ @ polPol°A

Yo ImIGu(& 8],

(5

Equation(5) tells us that the mean electromagnetic power
emitted by a dipole sheet locatedzat¢ is proportional to the
imaginary part of the scalar Green function calculated at
=¢. We use the superscript “1D” to remark the fact that our
approach is specific for electromagnetic problems that have
planar symmetry, and can therefore be reduced to 1D prob-
lems. The mean electromagnetic power emitted by the same
dipole sheet located in free space in the same volume
V=AL occupied by the PC is:

conditions of outgoing waves, i.e., the radiated energy from
the dipole sheet leaves the structure never to return, and rerom Eq.(5) and Eq.(6) we find:

energy is incident from outside, namely:

E(2.8) = - 00 26,20, B

whereG,(z,¢) is the scalar Green’s function that satisfies the

following equation:

#G,(z,£)
Fra

wzsw(Z)Gw(Z, 3]
2

=0z-9). ()

o 3 2A
\Ngrﬂ%ted in V,free spacg % (6)
\N(mltted in P(gf) —_ 2k0 |m[Gw(§, f)] (7)

\1A(1D)
emitted in V,free space

There are at least two physical conditions that our 1D
LDOM should meet, i.e., that) it account for the modifica-
tion of dipole sheet emission rates with respect to emission
rates in vacuumgii) it give the correct limiting value for the
DOM of free space when calculated for a 1D empty cavity

The way to construct the Green function for planar dielectricwhose dimensions go to infinity. The simplest way to satisfy
structures using the light-modes has been discussed at lengtiese two requirements is to write the LDOM as:

016612-2



DENSITY OF MODES AND TUNNELING TIMES IN.. PHYSICAL REVIEW E 70, 016612(2004)

LTR Light Mode

Mg, @
- -1
22 (z-1)

(b) 7= 7=

FIG. 2. Schematic representation of the boundary conditions imposed)&T:R and(b) RTL light modes: r“) are the LTR and the RTL
reflection coefficients, respectively, an(d are the corresponding transmission coefficienggandng , are the refractive indexes of the
materials surrounding the PC. Note thngtzt( )-no 1t( ) as a consequence of time reversal symmetry.

W &) 2k, source embedded within the PC and the mean power emitted
Po() = Piible space= le'“e" ne =- ?Im[Gw(g, o1, by the source in the free space:
emitted in V,free space
(8) Pw pg]ﬁ)ee spac(a e?r?%ted inP F)>/ emltted in V,free space
Wherepf?%e spacs =1/cis the 1D DOM of the free spad26]. :
The DOM is then the average of the LDOM over the volume n=1.2.3,
V.
(1D) - (2D) 2 (3D)
where Py free space’ 1/C Py free w/C P free space

=w?/(mc®) are, respectively, ‘the ISOM of the free space in
1D, 2D, and 3D. The reader interested in the extension of Eq.

(1D) W( emitted in PE2))

Pw = Puw,iree space— 1D)

emitted in V., free space (9) to the case of finite size, 3D structures can consult Ref.
[27]. It is worth noting that the DOM calculated #w aver-
=- —ko Im[G (z,2)]dz, (9)  ageof the LDOM over the volume V and the DOM calcu-
cL lated as theweighted averagavhere the weight function is

) ) ) the real part of the dielectric functior; (2), are related
where the integration variablghas been relabeled From  qygh the following equation:

Egs. (8) and (9), we note that the DOM is defined in an

unambiguous way because it is related to the power emitted o8 2 L
by a dipole sheet in a 1D PC. If the PC is com- Po="m t R 685(z)lm[Gw(z,z)]dz, (10
posed of nonabsorbing materials, the mean power emitted by () CcKeg)Jo

the dipole sheet is also equal to the mean power thath 5e5(2)=6R(2)~ () A o I
1D) wherede™(2)=£(2) —(e") represents the variation of the real
flows through the surfaces A of the PON(E”"“ed in PC art of the dielectric function with respect to its average
=Whoui So, we have arrived at an operational deﬁ-p €sp . 9
it f'OW'”?{*HO“%‘SM ' 4 LDOM that b d'p v linked t value. In the case of structures with low index contrast
nion ot the an at can be directly finked 1o é|5 sR(2)|<1) the two definitions are proportional to each

an experimental quantity, i.e., the emitted energy. As deflneother through a constant scale factgr:/p,) = <8R>. We will

in Eq.(9), the DOM maintains its generality when absorption
and dispersion are present. In fact, the idea can be generdliSCuss the physical meaning aff in Sec. lll.

ized to 2D and 3D structures of finite size. While in the 1D

case the source needs to have planar symnigtfinite di- ||, pom CALCULATED THROUGH THE WIGNER TIME
pOIe Sheet in 2D the source should have Cyllndrlcal sym- AND DOM CALCULATED THROUGH THE DWELL
metry (infinite wire), and in 3D the source should have point TIME

symmetry(point source In any case, the DOM can always
be defined as the DOM of free space multiplied by the ratio The DOM calculated using the the Wigner time for 1D,
between the spatial average of the mean power emitted by faite, structures is defined as follo$4]:
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. 1dg, ™ absorpt@on and no dis.persio(b).dispe_rsion and negligible
Po= o " L (11)  absorptionyc) absorption and dispersion.

where ¢(w) is the phase of the transmission function and
7°=(d¢y/dw) is the Wigner time[15-18 which gives the ) ]
time that the transmitted part of an incident, quasimonochro- [N this case, from Eqg17) and(lO) we obtain:
matic, unchirped pulse takes to traverse a 1D, bafti@)2Q. ko
Now, from Eq.(A3), another way of writing the transmission pf=pt=(eNp, -

for LTR propagation ist”’=®'"(L); taking the derivative

with respect to the frequencyit(+)/dw o(L)/ow, and  Equation(18) tells us that in the absence of absorption and
rewriting the transmission in terms of a phase and an amplidispersion the DOM calculated through the Wigner tinfe
tude, i.e. t(+)—|t +)Iexp[lgot(w)] [28], we obtain: is equal to the DOM calculated by averaging the Green func-
HD(L) tion over the real part of the dielectric function. However,
P, . (12 both p? andp? overestimate the true DOM by a factor that is
equal to the average value of the grau@) with the ad-

Using Egs(11) and(12), the DOM can be recast as follows: dition of a term that depends on the index contrast. In the
case of no absorptiom], can also be expressed in a form

A. No absorption and no dispersion

5sR(z)Im[G (z,2]dz. (18

|+)| de (+)
= expli) +i Gt lexpli) = -

(+) . . . . .
o = 1 Im{%aq)‘” (L)] 13) involving the dwell time(see Appendix Cas:
L1t o (+) 4 ()
*) - =00, Im(r? +r8)) (19
The termd® “(L)/dw can be calculated using the Green @ 2L 2ckoL w el

function of Eq.(4) (see Appendix R

“ . where rg)=(2L<US)>)/cn01 and T(D)=(2L<U£;)>)/Cn02, are
o, L) __k {2%(8 . wﬂsw(g)]ew(l_ HO(Dde. the LTR and RTL dwell times, respectively, and
dz

are the corresponding LTR and RTL time-averaged electro-

o 1 . c
(14) U= | es@Ied @+

From the expression for the Green function given in &g,

we have: magnetic energy densities stored in the PC, for incident fields
PHL)d(e) (9 that have a harmonic time dependence of the type
Gy(L,§=—" 2.k~w =2“an , (15  exp-iwt), and unitary amphtudele e ATP=1, gy is the
ol 0702 vacuum dielectric constanA *) are the amplitudes of inci-
and from Eqgs(13)—(15) we obtain: dent fields. The dwell time was first introduced for ballistic

L
pjfj=—ﬁ Im[ 1~ f (2%(2) +w(98‘°(z) quantum particle spends within a barrier, whether it is re-
cL 2ikot,, Jo dw flected and/or transmitted at the end of its §t2§,37. In the
case of electromagnetic radiation, the dwell time can be cal-
XCI)S)(Z)CD(L;)(Z)dz] (16) culated by resorting to the electromagnetic energy density
[31,33 as the ratio between the stored electromagnetic en-
ergy and the input power. Note that Wh|eﬁ)|=0 (i.e., at the
peaks of transmission

)

N _kow pt,=2—2-,
oL, «(2REG,(z,2)]dz oL 2L

) electrons, and was intended to measure the average time a

where the integration variablghas been relabeled Equa-
tion (16) can be rewritten as follows:

2k
pﬁ‘PZ——

<R ! that is to sayp? is exactly the average of the LTR and RTL
xf { ol ) m[G,(z,2)] + ( 2) R4G,(z2)]|d dwell times divided the length L of the PC. We point out that
0 in most case¥,L>1 (equivalent to saying that the typical
(17) structure is much longer than the incident wavelengaind
so the extra term
where we have identified

L i |m(r(+) + If( )
pe=(- 2k0/cL)f eX(2Im[G,(z,2)]dz 2ckol
0 nearly always gives a maximum correction of the order of
as the DOM calculated using the real part of the relativel02L/c inside the gag33]. As also noted in Refl31], this
dielectric function as the weight function. Equatid¥) pro-  extra term comes from the fact that in a finite structure the
vides an illuminating link between the different definitions of energy density is not equally shared between the electric and
DOM. For the sake of clarity we analyze three cagasno  magnetic components of the field. Feymmetric or suffi-
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FIG. 3. pg (solid line) and pf,=p? (dashed lingvs w/wg (wg=2mC/\g and \p=1 um) for PCs made byN=1, N=5, N=10, andN
=20 periods, respectively. The elementary cell is composed of two layers of refractive index respegthZzindn,=3. The thicknesses
of the layers ar@=125 nm anch=166 nm, respectively. The structure is surrounded by air.

ciently long structureembedded in symmetric environments a symmetric structure, anpf;zpwng. The small discrep-
[34] it is straightforward to verify tha(Uif)):(US)):(Uw), ancy inside the gap is mostly due to the extra term
and consequently’ takes the following simple form:

Irol _.
sin ¢,
Po= P o sin ey, (20) el
koCL and to a lesser degree to the small asymmetry built into the
where structure. Figure 4 compargsi=p°, po, and p,, for 20-
, 1 L{ R(Z)|q> o c_z P, 2:|dz— o g(la)rslozdpﬁtructure. Again the figure reflects the fact that
Po™ 2leng)y |77 T W2 dz L The first nontrivial implications of our results affect the

relation between the tunneling times. From E@dl), (18),

is the DOM as it was first defined in RgB] in terms of the and(19) we obtain:

electromagnetic energy density. Equati@®) provides new

insight into the profound link that effectively binds the DOM )4 70 -

calculated by averaging the Green'’s function over the grat- o= R + Zlm(rw +r,0). (21)

ing, and the electromagnetic energy density, at least for non-

absorbing structures. In addition, EQO) provides a theo- Equation(21) tells us that for a nonabsorbing, nondispersive

retical foundation for the numerical results reported in Ref.structure the Wigner time and the averg§dL and LTR

[8]. dwell time differ by an amount proportional to the average
Some observations are now in order. We have shown thamaginary part of the RTL and LTR reflection coefficient. We

for a PC embedded in symmetric environmeni§=p? is  note that this difference is zero at all transmission reso-

also approximately equal tpg. In Fig. 3 we compare?, nances, because there the energy density is equally shared by

=p; with pﬁj for PCs made by the same elementary cell,the electric and magnetic fields. Equati@1) is a result that

repeatedN=1, N=5, N=10, andN=20 times, respectively. clarifies the link between the Wigner time and the dwell

The details of the structures are given in the figure captiontime. In related work on tunneling timg¢32], a link between

We note that wheiN=20, the PC is practically equivalent to the Wigner time and the dwell time has also been pointed
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FIG. 4. p? (thin-solid line, p° =p¢ (dashed lingand p,, (thick- i _ _
solid line) vs w/ wg (wp=2mc/\g andXo=1 um) for a PC made of (_)FlG- 5. LTR dwell time7y,” (short-dashed Ilrig)RTI(__)dwell time
N=20 periods. The elementary cell is the same described in thép (long-dashed linpand average dwell timer, "+, )/2 (thick
caption of Fig. 3. The structure is surrounded by air. Inset: Magni-S0lid lin€) vs o/ wo (wo=2mc/\g andAo=1 um) for a PC made of

fication of DOM at the two transmission resonance near the firsN=5 periodsL/c in this case is 4.85 fs. The elementary cell is the
band gap. same described in the caption of Fig. 3. The figure contains also the

Wigner time 7% (thin solid ling) but on this scale it is practically

. . indistinguishable from the average dwell time. Inset: Magnification
out. H_owever, In Ref[SZ_] only the case of symmetric s_truc_- of the average dwell timéthick solid line and the Wigner time
ture_s in symmetric environments was addressed, _Wh'Ch IS &hin solid ling. The difference between the two times is of the
particular case of our more general Eg1). In fact, in the 5 qer of 102 fs.

case of a symmetric structure located in a symmetric envi-

ronment, 7o) =) =7, andr”=r")=r , and from Eq.(22)

o average dwell time and the Wigner time in this case. In sum-
we obtain:

mary, our results show that in most cases of interest, the
1 correction due to the self-interference delay is negligible in
=1+ —Im(r,) (22)  the optical regime, and that the Wigner time is for all intents
w and purposes approximately equal to the average of the LTR
. . : and RTL dwell times.
WTICh 'S _the result in R“ef. [3.2] There, the ter"mri . In Ref. [31] it was demonstrated that beginning with the
=, Im(r,) is referred to as “self-interference delay.” Again yefinition of energy velocity as the ratio between the spa-

\(/jve gtres(js th?]t Ecél22) is not valid in generall, bec%uge it was yially averaged Poynting vector and the spatially averaged
esigned to handle symmetric structures located in sYmmek ero. densit(2)= (S /(U it is possible to arrive at a

ric environments. As a consequence, it does not predict thgim le relation that links the energy velocity to the dwell
correct tunneling times for periodic structures having only & b gy Y

few periods time, namely,V(Ei)=|tif)|2(L/T(§)). Now, by using Eq.(21)
To better. clarify this point, in Fig. 5 we compare the and the connection of the dwell time with the energy veloc-
Wigner time and the dwell times, i.e., Eq81) and(22), for ', We arrive at the following equivalence:

a 5-period structure. In this case the LTR and RTL dwell LtV + [(O)2ve)
times differ from each other, and only their average value == E(+) = S+ —Im(r+r0)). (23
converges to the Wigner time, as predicted by our @4). 2 Ve Ve 2w

As calculated by Eq21), the “self-interference delay” is of From Eq.(23), once again for the case of a symmetric struc-
order 10°fs, a quantity that is hardly measurable in anyyre embedded in a symmetric environment, and neglecting
ehxperlrrl}ent. ?ur resuldtslalso sugljgglst fthat theku%pefr limit ofhe corrective tem,}l_ Im(r(+)+r(_)) on the right-hand side of
the “self interference delay” available for any kind of struc- SN 2y T - e
ture can in fact be estimated from our E@1), namely. Eq. (23), we obtain:Ve=|{[*V, [31], whereVy=L /7] is the

' ' group or tunneling velocity. Therefore, our E&3) confirms

1 H ~
|Tilmax<,» Which means|ri|m,<0.5 fs for h=1um, and 31 extends the results first reported in R&f].
|| max=<0.1 fs for A=0.2 um. In units of (L/c), the upper

limit of the available self-interference delay is(kdL). In the B. Case of dispersion with negligible absorption
optical regimeg(A =1-0.2 um) for PCs only a few microme-
ters in length, k,L=1072 the upper limit of the self-
interference delay available is of the order of A0 c. In the o_ & Koo Ll 0eR(2)
structure considered in Fig. 5,/c=4.85 fs, and the upper pw—pw—zf o Im[G,(z2)]|dz.  (24)
limit for the self interference delay in the range of frequency
shown in the inset is approximately 0.8 fs. This is compatibleUsing the explicit expression farf, Eq.(24) can be recast in
with the value of 107 fs that is the difference between the the following form:

In the case at hand, from E@L7) we obtain:

0
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FIG. 6. (a) p, (solid line) and p? (dashed lingvs w/ wg (wg=2mc/Ng and\g=1 um). The structure is made by 40 alternating layers of
a dielectric material and air. The dielectric material has a Lorentzian absorption line centered @afagr®.65 and an index of refraction
of approximately 1.42 in the visible range. The layers have thickness8S0 nm(dielectric materiglandb=250 nm(air) for a total length
L=12 um; (b) refractive index(n) (solid line) and extinction coefficientk) (dashed lingof the dielectric material v/ wo. By definition
the refractive index and the extinction coefficient are related to the dielectric function for a nonmagnetic mateviet byiK. The
extinction coefficient is magnified 50 times.

(C7) in Appendix g and using the following relation:

L R
= (- 2ky/cL) f { R(; )+ (Z)] IM[G,(2,2)]dz,
0 dw f eR(2)| ) Pdz= (Plw?) J |dp®)/dZ%dz
0

(25
®
where Eq.(25) suggests that the DOM is calculated by av- o+(l2)(98150) +(1/k0)n01,2Im_[rw ] .
eraging the imaginary part of the Green's function over the/Vé can writep,, in a form that involves again the
weight function: dwell times:
w3852 (+) 4 )
c@+ 2 o prroiacion) 20 2 7o, L Imr® +r0)), (27)

2L 2ckyL
In analogy with the definition op?, we can define

ps+(w/2)(ﬁs/r7w) where T+)_(2L<U +)>)/cr101 and TD)_(2L<U )>)/Crlo2, are
the LTR and RTL dwell times, respectively, and

R
=(- 2ko/cL)f [ R(z)+ w(?sa())]lm[G (z.2)]dz

1 d<I>(+) z
_ _ . uy'=7 —[wsR<z>]|<D g+ S| L2 }
and we can rewrite Eq25) in a more concise form as: 4 dz
pw pz+ (wl2) (ds/z?w) (26)

are the corresponding time-averaged electromagnetic ener-
Now, using the explicit expression of the imaginary part ofgies calculated taking into account the dispersion of the me-
the Green’s function in terms of the light modgsee Eq. dium[35]. Therefore all the connections between the Wigner
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FIG. 7. (a) Transit time(solid circleg and Wigner timgsolid line) vs w/ wg (wp=2mc/\g and\y=1 um) wherew is the carrier frequency
of the input pulse. The structure is the same as that described in Fig. 7. Input putseks(at0 is the location of the input surface of the
PC) have the following formA(z=0,t) =ex{{ - (t?/27y?) —i wt] where7,=0.5 ps. The transit time has been calculated as the time the peak of
the transmitted part of the input pulse needs to exit the structure, and the referen¢e=tinis the time when the peak of the input pulse

reaches the input surface of the R®) transit time(solid triangle$ and Wigner time(solid line) in the case of a Gaussian pulse with
=0.1 ps.

time and the dwell time and their relationships with theendowed with a Lorentzian absorption line centered around
DOM that were demonstrated for the case of no absorptiom/wy=0.65, and a refractive index approximately of 1.42 in
and no dispersion are still valid in the case of dispersion ang¢he visible range. The refraction indém) and the extinction
negligible absorption, provided the energy density is calcucoefficient(K) of the high index layer are shown in Figi®.
lated taking into account the dispersion of the medium. ~ The figure shows that the DOM calculated via the Wigner
time attains negative values near the center of the absorption
line of the dielectric materialp?=-2/c at w/wy=0.66),
while Eq.(9) always gives a positive DOM. While this short-
coming clearly implies that the DOM defined in terms of the
When the absorption of the material comes into play thewigner time fails to maintain its physical meaning, neverthe-
DOM calculated using the Wigner time can become negativéess the Wigner time continues to be a good indicator of the
near the absorption line of the material. Therefore, it can naunneling time imparted to the peak of the transmitted part of
longer be interpreted as a DOM in the true sense of the wordcan input, quasimonochromatic, unchirped pulse as it
On the other hand, the DOM defined through E3).contin-  traverses a 1D barrier. In fact, it is well known that the transit
ues to be a positive quantity, and maintains the physicafime of pulses tuned near the absorption line of a dielectric
meaning of a quantity proportional to the mean power emitmaterial can become superluminal or even negative as in our
ted by a source located inside the PC, as outlined at length icase [36—-3§. Of course, superluminal or negative transit
Sec. Il. In Fig. §a) we compare the DOM calculated using times are not an indication that causality or relativity some-
the Wigner time(dashed lingand the DOM calculated using how breakdown, because the fact is that signal velocity al-
Eq. (9) (solid line) for a PC structure whose details are ways remains sublumin@B9], and the peak of the transmit-
described in the figure caption. The high index layer isted pulse can always be found under the envelope of a

C. Case of absorption and dispersion

016612-8
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similar input pulse propagating for the same length of freds then approximately equal to the DOM calculated using the
spacg20]. In Fig. 7@ we compare the Wigner time and the energy densityEq. (20) and Fig. 3, as first proposed in Ref.
transit time of a Gaussian pulse of unitary amplitude thaf8] using heuristic arguments. In the presence of absorption,
traverses the structure. Input pulsezad (z=0 is the loca- the Wigner DOM can become negatigsz=e Fig. §, while the
tion of the input surface of the B®ave the following form:  true DOM remains always positive. In that case, the Wigner
A(z=0,t)=exd—(t?/27,>) —iwt] where 7,=0.5 ps andw is DOM ceases to be a valid representation of DOM, but can
the carrier frequency. The transit time has been numericallgtill be interpreted and is still a good measure of group ve-
calculated as the time the peak of the transmitted part of theocity of unchirped, quasimonochromatic pulses. We con-
input pulse needs to exit the structure, and the reference tin@ude that the DOM in 1D barriers should always be calcu-
(t=0) is the time at which the peak of the input pulse reachedated using our Eq(9), and plenty of caution should be
the input surface of the PC. The figure shows that the transgxercised when one makes connections between the DOM
time is well described by the Wigner time, even when strongand tunneling times. Such a connection sometimes yields
absorption and dispersion come into play. In this case theseful information about the system, such as group velocity,
spectral bandwidth of the input pulse-is6 THz, which cor-  for example, but if the true DOM is sought the approach
responds to~0.83 ps FWHM of the pulse intensity, and the suggested by our Eq9) should always be preferred.
guasimonochromatic limit is approachedhis limit is Finally, we point out that while the DOM defined through
quickly reached because the spatial extension of a typicdEg. (9) can be straightforwardly generalized to multidimen-
pulse is always much larger than the typical structure, whictsional cases, the other definitions based on the tunneling
is only a few microns in lengdh The transmitted pulses times find a direct link with the DOM only in one dimension,
come out only slightly distorted with respect to the inputand then only when there is no absorption.
pulses, and attenuated by a factor that depends on the trans-
mission properties of the PC. ACKNOWLEDGMENTS

If shorter pulses were used, as in Figb)/ where the ) .
pulses have a duration in time of approximately 0.16 ps Giuseppe D’Aguanno wishes to thank the U.S. Army and
FWHM of the pulse intensity, the transit time then begins tothe Army European Research Office for partial financial sup-
differ significantly from the Wigner time. In this case higher POrt.
order terms of the geometrical dispersion of the structure that
are not accounted by the Wigner time come into play, and as APPENDIX A
a consequence pulses that tunnel through the structure un- L )
dergo appreciable distortion. We begin with Eq(3):

IV. CONCLUSIONS PG, (z2,€) .\ w’e(2)G,(2,6) _
- =

In conclusion, we have highlighted the connections that a7
exist between the DOM ar_ld tunneling times for 1D ba'rriersv\,hen G, (2,8 exists, it follows thatG,(z,¢) satisfies the
In_the ab_senc_e of abso_rptlon, the DOM calculated using thﬂomogeneous equation:

Wigner time is approximately equal to the average of the

LTR and RTL dwell times, divided the length L of the struc-

ture. We have shown that the self-interference delay is gen- PG, (26) 0%, (2G, (28

erally negligible[Egs. (19) and (20), and Fig. 5. Both the 97 + 2 =0, (A2)
Wigner and dwell-time DOM%verestimatehe true DOM

defined in our Eq(9) by a factor roughly proportional to the at all points of the interval &z<L except at the poing
average index of the barri¢Eq. (18), and Fig. 4. Structures =§. As discussed at length in Ref24], the light-modes
embedded in symmetric environments composed of a sufﬁ{d)fj)} are a fundamental set of solutions of Eé2) and
cient number of periods acquire the properties of symmetri¢hey are subject to the following boundary conditions for a
structures, and the DOM calculated through the Wigner timenonmagnetic materiagkee Fig. 2

z-§), (A1)

D) =1+r)) ®0(0) =t
dI(L) =t POy =1+r)
[dD'"/dZ],.g = ikono (1 = 1), [dDP/dZ],- =ikgng AL
[d)/dZ],-0= ~ koot [d(/dZ]—y = ikono A = 1)

(A3)
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Consequently, we can express the most general solution of
Eqg. (Al) as:

G (262 CLOPP () + Dy (O (2) L=z>¢
(78 DO (2) + CAED(2) 0=<z<&.
(A4)

The four constants must now be determined. First, we im-
pose the condition ofdutgoing wave$ This condition re-

quires that the radiated energy from the point source located
at z=¢ leaves the structure, and no energy is incoming into
the structure. This means that the coefficieDisof the in-
coming RTL wave and the coefficiem, of the incoming
LTR wave must be zero. The constadf and C, must be
determined by imposing the continuity &(z,¢) at z=¢,

J
Euronl?) = €,(2) + 8{9‘“(2) dw+0(sw?), (B2.3
w
where Fw(z):[ﬂCDif)(z)/&w]. By substituting Eqs.(B2.1),

(B2.2), and(B2.3) in Eg. (B1) we obtain:

PO | o, 200D [aZr W2 | o2,
P c? 972 c?

I',(2

+—cp<+><z>(z S+ 2D )}5w+oww2>:o.

(B3)

From Eq.(B3), equating to zero the terms of the same order
in dw we obtain the following equations:

while its derivative has a jump of magnitude of#5]. Fol- PPN (2w, (20M(2)
lowing the above procedure we find: Pa 2 =0, (B4.1)
s
C = ® 7
T W@ o) L@ o ) Lt >[2 S+ 2D }
_ v
< D,;=0
oo (AS) =0. (B4.2)
Coé) = (W), &), Equation(B4.1) is the Helmholtz equation for the fietd,,*)
D.=0 and the solution is known, while E¢B4.2) is a second-order
\ 2- differential equation for the functiod’,(z) and it can be
where written in the following form:
-) +) EZN 9
WO ot = | Lo P, o2 | o' Dp (5=- q>gj>(z)[2sw(z)+iz)w].
@70 T dobdz dpdz 4 c? Jo

is the Wronskian of the fundamental set of solutions. In our (BS)
case the Wronskian is a conserved quantity, i.e.The solution of second order linear differential equations of
d\/\/(d)w ,CI>(+))/dz—0 and it can be calculated by resorting to the same type as that in EB5) can be written using the
the boundary conditions in E@gA3). The result is method of the Green'’s functidi25]. In our case, the solution
©) ) B ©) ) s o of Eg. (B5) with the boundary conditions corresponding to
[W(D,,", @) =g = [W(D,,", ;") =0 = 2iKoho it “outgoing waves” can be expressed in terms of the Green
- [W((b -) q)(+ )]t = 2ikgno 2'[ function calculated in Appendix A as follows:

from which one also derives thaﬂoyltfu):no,zti)):tw. The
Wronskian calculated at the point¢ can be consequently
expressed as:

I, (2=-5 f G(z§>®<+>(§)[2 S+ 2 (5) }df,

(B6)

by calculating Eq(B6) for z=L we obtain Eq.(14) in the
main text.

We remark that the approach we have followed to arrive
to Eq.(B6) is valid under general conditions. In fa¢#) both
absorbtion and dispersion of the medium are taken into ac-
count because we consider the dielectric respensse as a

We start by writing the Helmholtz equation for the field complex function of the frequencyb) no perturbative ap-

W), 0 = (W), 0], = 2k,  (A6)
Equation(4) in the main text follows from EqgA4)—(A6).

APPENDIX B

+5 (2): proach is used to arrive to E@B6), but only the hypothesis
P that the functions can be expanded in Taylor series.
&2¢w+5m(z) ((l) + 6(1))2 a)+§u)(z)q)m+5w )
5 =0. (BY) APPENDIX C
07 c o
Let us expand the functions in Taylor series: Let us start from the d(ifmltlon %o
o) =0 (2 +T (260 +0(50?), (B2.1) = (= 2kg/cL) f en(2IM[G,(z,2)]dz. (CD
0
(0 + 6w)? = w? + 2wdw + O(Sw?), (B2.2)  Equation(C1) can be rewritten in the following form:
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; fL R + - + - 1 : R + -
c=——— | k@000 |cod el + ¢! - ¢ldz, c=———| eR@InyJOL?+ny )| Adz,
p oL, | Jo | I | ¢ ¢ ¢t p 2cLrg 10 2 0. | 04 |

(C2 (CH)

where we have used the expression of the Green’s functiog,q from Eqs(C6) and (C1) we also arrive to a useful ex-
glven(+E)y Eq(ﬁ)), we ha_ve(+\)/vr|tten the LTR ar_1d _RTL modes pression of the imaginary part of the Green’s function in
as:® . (2)=|®,(2)|explie,’), and the transmission function terms of the LTR and RTL light modes:

of the PC ast,,=[t,|exdi¢(w)]. Now, equating the real and

imaginary parts of Eq(A6), we obtain: 1 | ng @2+ ng | dO)|2
g yp+ ac z Im[Gw(z,z)]=——[ 02 P, |2+ N 1P| .7
) d|¢)fu)| +) d|q)£u)| LWL () 4ko No,1Mo,2
= TIPS, = 2ellulsinle,” + ¢, - ¢,
z z Now, using the relation:
(C3.)
- R (+)|2 2y 2 L| (%) 2‘2
do™  do fsw(z)kbw— dz:(c/w)f dd*/dZ<dz
|<I>£:>||q>5;>|{—‘§; -t [ = 2l oog el + ¢ - ol 0 0
(€32 + (1kg)ngy Am(r,;’]
Using Eq.(C3.2, we can recast EqC2) in the following ~ [8:31. Ed.(C6) can be recast in the following form:
form: 1|1 (* c? | dp™) |2 1
1 [t del?  dgl) = —f (85|‘1>5§)|2+—2 >d2+—
Po= f ei(2)|@5A@)2 = - =< |dz. 4cL| no1Jo w Mo
2koCLfEs[*Jo dz dz ] 2lgp0 |2y 2
c
(C4) xf <a;'§|q>gj>|2+—2 — )dz+—|m(r§j>+r§;>)]
0 w dZ ko

For a nonabsorbing PC, i.es'w(z):o, it can be shown that
|<IJff)(z)|2 (dgof)/dz) is a conserved quantity31] and it can
be calculated by resorting to the boundary conditions im-The dwell time is defined as the average electromagnetic
posed on the LTR and RTL modes, i.e., EG83), giving the  energy density stored in the structure divided by the input
following results: power[31,32. In our case the expression for the dwell times

(CY

(+) for a LTR and RTL input are, respectively,
opLfe -, Sog (5.2 P PeEEY
dz No2 1 (t c? [ dpW |?
i 5= <¢>J <85|c1><;>|2+ - )dz, (C9)
o del) ko 2cn™ Jg o | d
R e P 8 (C5.2
oz No1 where n®=ny; and n”)=n, ,. Equation(19) is from Egs.

From Egs.(C5) and(C4) we obtain: (C8) and(C9).
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