
Density of modes and tunneling times in finite one-dimensional photonic crystals:
A comprehensive analysis

G. D’Aguanno,1,2,3,* N. Mattiucci,1,2,4 M. Scalora,2 M. J. Bloemer,2 and A. M. Zheltikov5
1Time Domain Corporation, Cummings Research Park, 7057 Old Madison Pike, Huntsville, Alabama 35806, USA

2Weapons Sciences Directorate, Research Development and Engineering Center, U.S. Army Aviation and Missile Command,
Building 7804, Redstone Arsenal, Alabama 35898-5000, USA

3INFM at Dipartimento di Energetica, Università di Roma “La Sapienza,” Via A. Scarpa 16, I-00161 Rome, Italy
4Dipartimento di Fisica “E. Amaldi,” Università “Roma Tre,” Via Della Vasca Navale, 84, I-00146 Rome, Italy

5Department of Physics and International Laser Center, M. V. Lomonosov Moscow State University, Vorob’evy Gory, 119899 Moscow,
Russian Federation

(Received 28 January 2004; revised manuscript received 1 April 2004; published 29 July 2004)

We present a unified treatment of density of modes and tunneling times in finite, one-dimensional photonic
crystals. We exploit connections and differences between the various approaches used to calculate the density
of modes, which include the Green function, the Wigner phase time, and the electromagnetic energy density,
and conclude that the Green function is always the correct path to the true density of modes. We also find that
for an arbitrary structure the density of modes can always be found as the ratio between the power emitted by
a source located inside the structure and the power emitted by the same source in free space, regardless of
absorption or dispersion.
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I. INTRODUCTION

Structures in which scattering or diffracting elements are
arranged in such a way that their mutual distances are com-
parable with the wavelength of the incident wave are often
referred to as photonic crystals(PCs), or photonic band gap
structures(PBGs). The field owes its birth to the pioneering
works of Yablonovitch[1] and John[2], both of which fo-
cused on the study of spontaneous emission control and light
localization. These contributions paved the way to a period
of intense theoretical and experimental investigation of PBG
structures that continues today. Over the years researchers
have pointed out that PBG principles can be exploited, and
many applications are possible. Here we mention photonic
crystals fibers[3], photonic crystal circuits[4], transparent
metal-dielectric stacks[5], highly efficient micron-sized de-
vices for nonlinear frequency conversion[6–8]. An up to
date review of recent advancements in the field of PBG
structures may be found in Refs.[9,10].

One-dimensional(1D) PCs are made by arranging macro-
scopic dielectric and/or metallic unit cells into a periodic or
quasiperiodic array, in order to affect the properties of the
light in essentially the same way that semiconductor crystals
affect the properties of electrons. The periodic arrangement
results in allowed and forbidden frequency bands and gaps
for the light, i.e., light can be either transmitted or reflected
depending on its frequency, in analogy to energy bands and
gaps of semiconductors.

Although the number of experimental and theoretical re-
ports on 1D PCs is already quite large, in our view the issue
of the density of modes(DOM), or density of states(DOS),
regarding what one means by it, and its true and otherwise

implied connections to other physical or measurable quanti-
ties, such as emitted energy and group velocity to name just
two, is still far from being considered closed.

There are at least three different ways to calculate the
DOM that are currently used in the literature. The first way
consists of calculating the local density of modes(LDOM) as
follows: rvszd=s−2k0/cdImfGvsz,zdg, whereGvsz,zd is the
electromagnetic Green function of a source located atj=z
inside a 1D structure, and which oscillates with a harmonic
time dependence of the type exps−ivtd [11–13]; c is the
speed of light in vacuum, andk0=v /c is the vacuum wave
vector. The DOM is then defined as the weighted average of
the LDOM over the lengthL of the PC, i.e., rv

« =
s−2k0/cLde0

L«v
RszdImfGvsz,zdgdz [13], where «v

Rszd is the
spatially dependent, linear, real, relative dielectric function
of the PC and plays the role of the weight function. The
second way consists of calculating the LDOM(DOM) as the
spatially averaged electromagnetic energy density stored in-
side the crystal. This approach has been discussed at length
in Ref. [8], and we will return to it later. The third approach
was first proposed in Ref.[14], where the DOM was defined
as: rv

w =s1/Ldsdwt /dvd, where ftsvd is the phase of the
transmission functiont̃v= ut̃vuexpfiwtsvdg. In the literature
tv

w =sdwt /dvd=rv
wL is often referred to as the phase time

[15–17], “group delay,” and “Wigner time”[18], and it gives
the time that the transmitted part of an incident, quasimono-
chromatic, unchirped pulse takes to traverse a 1D barrier
[19,20]. We will refer to the DOM calculated this way as the
“DOM calculated via the Wigner time.”

In this paper we exploit connection and differences be-
tween the approaches outlined above in order to give the
DOM a firmer theoretical footing when it comes to 1D crys-
tals. We will show that the DOM can be directly linked to the
energy emitted from the structure, which is clearly a measur-
able quantity, and we will clarify the links that have previ-*Electronic address: giuseppe.daguanno@timedomain.com
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ously been established between the concept of DOM and the
tunneling times of quasimonochromatic incident pulses.

II. DOM CALCULATED THROUGH THE GREEN’s
FUNCTION: THE TRUE DOM

Let us suppose that a dipole sheet, of surfaceS and
harmonically oscillating dipole moment: pWstd
=s1/2dfpW0 exps−ivtd+c.c.g oriented alongx̂, is located in
the planez=j and it is positioned parallel to the surfacesA of
a PBG of length L. This situation is sketched in Fig. 1, where
the structure is shown to occupy the space betweenz=0 and
z=L. Due to its planar symmetry, the problem reduces to a

1D one. As a consequence, the electric fieldEW vsz,jd
=Evsz,jdx̂ generated in the PC by the current density

JWvsz,jd=Jvsz,jdx̂ that oscillates along the plane S can be
calculated through the scalar Helmholtz equation as:

]2Evsz,jd
]z2 +

v2«vszdEvsz,jd
c2 = − m0v2p0

S
dsz− jd, s1d

where«vszd=1+xvszd=«v
Rszd+ i«v

I szd is the spatially depen-
dent, complex dielectric function,xvszd is the linear complex
susceptibility of the medium, anddsz-jd is the Dirac delta
function. In Eq.(1) we suppose a nonmagnetic material, i.e.
mv=1. We seek solutions of Eq.(1) that satisfy boundary
conditions of outgoing waves, i.e., the radiated energy from
the dipole sheet leaves the structure never to return, and no
energy is incident from outside, namely:

Evsz,jd = − v2m0
p0

S
Gvsz,jd, s2d

whereGvsz,jd is the scalar Green’s function that satisfies the
following equation:

]2Gvsz,jd
]z2 +

v2«vszdGvsz,jd
c2 = dsz− jd. s3d

The way to construct the Green function for planar dielectric
structures using the light-modes has been discussed at length

in Refs.[21–23]. In 1D, the Green function has the following
form (see Appendix A):

Gvsz,jd =5
Fv

s+dszdFv
s−dsjd

2ik0t̃v

L ù zù j

Fv
s+dsjdFv

s−dszd

2ik0t̃v

0 ø zø j ,

s4d

where hFv
s±dj are the left-to-right(LTR) and right-to-left

(RTL) light-modes, t̃v=n0,1t
s−d=n0,2t

s+d is the transmission
function,n0,1-2 are the refractive indices of the materials sur-
rounding the structure,tv

s±d are the LTR and RTL transmission
functions (see Fig. 2), k0=v /c is the vacuum wave vector.
LTR and RTL modes can be calculated using a standard lin-
ear matrix transfer technique, assuming a unitary electric
field is incident on the structure from LTR for theFv

s+d mode,
and from RTL for theFv

s−d mode, as shown in Fig. 2, and as
first reported in Ref.[24]. For clarity, we report the details of
the calculations which lead to Eq.(4) in Appendix A [25].
Note that Eq.(4) is valid for an arbitrary 1D, finite structure,
one that may also include material absorption and dispersion.
Now, using Eq.(2) and the expression for the current density,
it can be shown that the mean electromagnetic power emitted
by the dipole sheet embedded within the PC is given by:

W̄emitted in PC
s1Dd ; −

1

2
ReE

V

JWv ·EW v
* dV

= −
v3m0up0u2A

2S2 ImfGvsj,jdg. s5d

Equation (5) tells us that the mean electromagnetic power
emitted by a dipole sheet located atz=j is proportional to the
imaginary part of the scalar Green function calculated atz
=j. We use the superscript “1D” to remark the fact that our
approach is specific for electromagnetic problems that have
planar symmetry, and can therefore be reduced to 1D prob-
lems. The mean electromagnetic power emitted by the same
dipole sheet located in free space in the same volume
V=AL occupied by the PC is:

W̄emitted in V,free space
s1Dd =

v3m0up0u2A
4S2k0

. s6d

From Eq.(5) and Eq.(6) we find:

W̄emitted in PC
s1Dd sjd

W̄emitted in V,free space
s1Dd

= − 2k0 ImfGvsj,jdg. s7d

There are at least two physical conditions that our 1D
LDOM should meet, i.e., that(i) it account for the modifica-
tion of dipole sheet emission rates with respect to emission
rates in vacuum;(ii ) it give the correct limiting value for the
DOM of free space when calculated for a 1D empty cavity
whose dimensions go to infinity. The simplest way to satisfy
these two requirements is to write the LDOM as:

FIG. 1. Schematic representation of a dipole sheet of surfaceS
and dipole momentpWstd=pW0 expf−ivtg located along the planez
=j and parallel to the surfaces A of a 1D PC of lengthL located
betweenz=0 andz=L.
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rvsjd ; rv,free space
s1Dd W̄emitted in PC

s1Dd sjd

W̄emitted in V,free space
s1Dd

= −
2k0

c
ImfGvsj,jdg,

s8d

whererv,free space
s1Dd =1/c is the 1D DOM of the free space[26].

The DOM is then the average of the LDOM over the volume
V:

rv ; rv,free space
s1Dd kW̄emitted in PC

s1Dd szdl

W̄emitted in V,free space
s1Dd

= −
2k0

cL
E

0

L

ImfGvsz,zdgdz, s9d

where the integration variablej has been relabeledz. From
Eqs. (8) and (9), we note that the DOM is defined in an
unambiguous way because it is related to the power emitted
by a dipole sheet in a 1D PC. If the PC is com-
posed of nonabsorbing materials, the mean power emitted by
the dipole sheet is also equal to the mean power that

flows through the surfaces A of the PC:W̄emitted in PC
s1Dd

=W̄flowing through A. So, we have arrived at an operational defi-
nition of the DOM and LDOM that can be directly linked to
an experimental quantity, i.e., the emitted energy. As defined
in Eq. (9), the DOM maintains its generality when absorption
and dispersion are present. In fact, the idea can be general-
ized to 2D and 3D structures of finite size. While in the 1D
case the source needs to have planar symmetry(infinite di-
pole sheet), in 2D the source should have cylindrical sym-
metry (infinite wire), and in 3D the source should have point
symmetry(point source). In any case, the DOM can always
be defined as the DOM of free space multiplied by the ratio
between the spatial average of the mean power emitted by a

source embedded within the PC and the mean power emitted
by the source in the free space:

rv ; rv,free space
snDd kW̄emitted in PC

snDd srWdl/W̄emitted in V,free space
snDd,

n = 1,2,3,

where rv,free space
s1Dd =1/c, rv,free space

s2Dd =v /c2, rv,free space
s3Dd

=v2/ spc3d are, respectively, the DOM of the free space in
1D, 2D, and 3D. The reader interested in the extension of Eq.
(9) to the case of finite size, 3D structures can consult Ref.
[27]. It is worth noting that the DOM calculated asthe aver-
age of the LDOM over the volume V and the DOM calcu-
lated as theweighted averagewhere the weight function is
the real part of the dielectric function,«v

Rszd, are related
through the following equation:

rv =
rv

«

k«v
Rl

+
2k0

cLk«v
Rl
E

0

L

d«v
RszdImfGvsz,zdgdz, s10d

whered«v
Rszd=«v

Rszd−k«v
Rl represents the variation of the real

part of the dielectric function with respect to its average
value. In the case of structures with low index contrast
sud«v

Rszdu!1d the two definitions are proportional to each
other through a constant scale factor:srv

« /rvd>k«v
Rl. We will

discuss the physical meaning ofrv
« in Sec. III.

III. DOM CALCULATED THROUGH THE WIGNER TIME
AND DOM CALCULATED THROUGH THE DWELL

TIME

The DOM calculated using the the Wigner time for 1D,
finite, structures is defined as follows[14]:

FIG. 2. Schematic representation of the boundary conditions imposed on:(a) LTR and(b) RTL light modes:rv
s±d are the LTR and the RTL

reflection coefficients, respectively, andtv
s±d are the corresponding transmission coefficients.n0,1and n0,2 are the refractive indexes of the

materials surrounding the PC. Note thatn0,2tv
s+d=n0,1tv

s−d as a consequence of time reversal symmetry.
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rv
w =

1

L

dwt

dv
=

tv
w

L
s11d

where ftsvd is the phase of the transmission function and
tv

w =sdwt /dvd is the Wigner time[15–18] which gives the
time that the transmitted part of an incident, quasimonochro-
matic, unchirped pulse takes to traverse a 1D, barrier[19,20].
Now, from Eq.(A3), another way of writing the transmission
for LTR propagation istv

s+d=Fv
s+dsLd; taking the derivative

with respect to the frequency,dtv
s+d /dv=]Fv

s+dsLd /]v, and
rewriting the transmission in terms of a phase and an ampli-
tude, i.e.,tv

s+d= utv
s+duexpfiwtsvdg [28], we obtain:

dutv
s+du

dv
expsiwtd + i

dwt

dv
utv

s+duexpsiwtd =
]Fv

s+dsLd
]v

. s12d

Using Eqs.(11) and(12), the DOM can be recast as follows:

rv
w =

1

L
ImF 1

tv
s+d

]Fv
s+dsLd
]v

G . s13d

The term ]Fv
s+dsLd /]v can be calculated using the Green

function of Eq.(4) (see Appendix B):

]Fv
s+dsLd
]v

= −
k0

c
E

0

L F2«vsjd + v
]«vsjd

]v
GGvsL,jdFv

s+dsjddj.

s14d

From the expression for the Green function given in Eq.(4),
we have:

GvsL,jd =
Fv

s+dsLdFv
s−dsjd

2ik0t̃v

=
Fv

s−dsjd
2ik0n0,2

, s15d

and from Eqs.(13)–(15) we obtain:

rv
w = −

k0

cL
ImF 1

2ik0t̃v

E
0

L S2«vszd + v
]«vszd

]v
D

3Fv
s+dszdFv

s−dszddzG , s16d

where the integration variablej has been relabeledz. Equa-
tion (16) can be rewritten as follows:

rv
w = rv

« −
2k0

cL
E

0

L

«v
I szdRefGvsz,zdgdz−

k0v

cL

3E
0

L F ]«v
Rszd
]v

ImfGvsz,zdg +
]«v

I szd
]v

RefGvsz,zdgGdz,

s17d

where we have identified

rv
« = s− 2k0/cLdE

0

L

«v
RszdImfGvsz,zdgdz

as the DOM calculated using the real part of the relative
dielectric function as the weight function. Equation(17) pro-
vides an illuminating link between the different definitions of
DOM. For the sake of clarity we analyze three cases:(a) no

absorption and no dispersion;(b) dispersion and negligible
absorption;(c) absorption and dispersion.

A. No absorption and no dispersion

In this case, from Eqs.(17) and (10) we obtain:

rv
w = rv

« = k«v
Rlrv −

2k0

cL
E

0

L

d«v
RszdImfGvsz,zdgdz. s18d

Equation(18) tells us that in the absence of absorption and
dispersion the DOM calculated through the Wigner timerv

w

is equal to the DOM calculated by averaging the Green func-
tion over the real part of the dielectric function. However,
bothrv

« andrv
w overestimate the true DOM by a factor that is

equal to the average value of the grating,k«v
Rl, with the ad-

dition of a term that depends on the index contrast. In the
case of no absorption,rv

« can also be expressed in a form
involving the dwell time(see Appendix C) as:

rv
« =

tD
s+d + tD

s−d

2L
+

1

2ck0L
Imsrv

s+d + rv
s−dd, s19d

where tD
s+d=s2LkUv

s+dld /cn01 and tD
s−d=s2LkUv

s−dld /cn02, are
the LTR and RTL dwell times, respectively, and

Uv
s±d =

1

4
F«v

RszduFv
s±dszdu2 +

c2

v2UdFv
s±dszd
dz

U2G
are the corresponding LTR and RTL time-averaged electro-
magnetic energy densities stored in the PC, for incident fields
that have a harmonic time dependence of the type
exps−ivtd, and unitary amplitude(i.e., «0uAv

s±du2=1, «0 is the
vacuum dielectric constant,Av

s±d are the amplitudes of inci-
dent fields). The dwell time was first introduced for ballistic
electrons, and was intended to measure the average time a
quantum particle spends within a barrier, whether it is re-
flected and/or transmitted at the end of its stay[29,30]. In the
case of electromagnetic radiation, the dwell time can be cal-
culated by resorting to the electromagnetic energy density
[31,32] as the ratio between the stored electromagnetic en-
ergy and the input power. Note that whenurv

s±du=0 (i.e., at the
peaks of transmission),

rv
« =

tD
s+d + tD

s−d

2L
,

that is to say,rv
« is exactly the average of the LTR and RTL

dwell times divided the length L of the PC. We point out that
in most casesk0L@1 (equivalent to saying that the typical
structure is much longer than the incident wavelength), and
so the extra term

1

2ck0L
Imsrv

s+d + rv
s−dd

nearly always gives a maximum correction of the order of
10−2L /c inside the gap[33]. As also noted in Ref.[31], this
extra term comes from the fact that in a finite structure the
energy density is not equally shared between the electric and
magnetic components of the field. Forsymmetric or suffi-
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ciently long structuresembedded in symmetric environments
[34] it is straightforward to verify thatkUv

s+dl=kUv
s−dl=kUvl,

and consequentlyrv
« takes the following simple form:

rv
« = rv

U +
urvu
k0cL

sinwr , s20d

where

rv
U ;

1

2Lcn0
E

0

L F«v
RszduFvu2 +

c2

v2UdFv

dz
U2Gdz=

tD

L

is the DOM as it was first defined in Ref.[8] in terms of the
electromagnetic energy density. Equation(20) provides new
insight into the profound link that effectively binds the DOM
calculated by averaging the Green’s function over the grat-
ing, and the electromagnetic energy density, at least for non-
absorbing structures. In addition, Eq.(20) provides a theo-
retical foundation for the numerical results reported in Ref.
[8].

Some observations are now in order. We have shown that
for a PC embedded in symmetric environments,rv

w =rv
« is

also approximately equal torv
U. In Fig. 3 we comparerv

w

=rv
« with rv

U for PCs made by the same elementary cell,
repeatedN=1, N=5, N=10, andN=20 times, respectively.
The details of the structures are given in the figure caption.
We note that whenN=20, the PC is practically equivalent to

a symmetric structure, andrv
w =rv

« >rv
U. The small discrep-

ancy inside the gap is mostly due to the extra term

urvu
k0cL

sinwr ,

and to a lesser degree to the small asymmetry built into the
structure. Figure 4 comparesrv

w =rv
« , rv

U, and rv for 20-
period structure. Again the figure reflects the fact thatrv

w

=rv
« >rv

U.
The first nontrivial implications of our results affect the

relation between the tunneling times. From Eqs.(11), (18),
and (19) we obtain:

tv
w =

tD
s+d + tD

s−d

2
+

1

2v
Imsrv

s+d + rv
s−dd. s21d

Equation(21) tells us that for a nonabsorbing, nondispersive
structure the Wigner time and the average(RTL and LTR)
dwell time differ by an amount proportional to the average
imaginary part of the RTL and LTR reflection coefficient. We
note that this difference is zero at all transmission reso-
nances, because there the energy density is equally shared by
the electric and magnetic fields. Equation(21) is a result that
clarifies the link between the Wigner time and the dwell
time. In related work on tunneling times[32], a link between
the Wigner time and the dwell time has also been pointed

FIG. 3. rv
U (solid line) and rv

« =rv
w (dashed line) vs v /v0 (v0=2pc/l0 and l0=1 mm) for PCs made byN=1, N=5, N=10, andN

=20 periods, respectively. The elementary cell is composed of two layers of refractive index respectivelyna=2 andnb=3. The thicknesses
of the layers area=125 nm andb=166 nm, respectively. The structure is surrounded by air.
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out. However, in Ref.[32] only the case of symmetric struc-
tures in symmetric environments was addressed, which is a
particular case of our more general Eq.(21). In fact, in the
case of a symmetric structure located in a symmetric envi-
ronment,tD

s+d=tD
s−d=tD and rv

s+d=rv
s−d=rv, and from Eq.(21)

we obtain:

tv
w = tD +

1

v
Imsrvd s22d

which is the result in Ref.[32] There, the termti

= 1
v Imsrvd is referred to as “self-interference delay.” Again

we stress that Eq.(22) is not valid in general, because it was
designed to handle symmetric structures located in symmet-
ric environments. As a consequence, it does not predict the
correct tunneling times for periodic structures having only a
few periods.

To better clarify this point, in Fig. 5 we compare the
Wigner time and the dwell times, i.e., Eqs.(21) and(22), for
a 5-period structure. In this case the LTR and RTL dwell
times differ from each other, and only their average value
converges to the Wigner time, as predicted by our Eq.(21).
As calculated by Eq.(21), the “self-interference delay” is of
order 10−2 fs, a quantity that is hardly measurable in any
experiment. Our results also suggest that the upper limit of
the “self interference delay” available for any kind of struc-
ture can in fact be estimated from our Eq.(21), namely,
utiumaxø

1
v , which meansutiumaxø0.5 fs for l>1 mm, and

utiumaxø0.1 fs for l=0.2 mm. In units of sL /cd, the upper
limit of the available self-interference delay is 1/sk0Ld. In the
optical regimesl>1–0.2mmd for PCs only a few microme-
ters in length, k0L<10−2, the upper limit of the self-
interference delay available is of the order of 10−2L /c. In the
structure considered in Fig. 5,L /c=4.85 fs, and the upper
limit for the self interference delay in the range of frequency
shown in the inset is approximately 0.8 fs. This is compatible
with the value of 10−2 fs that is the difference between the

average dwell time and the Wigner time in this case. In sum-
mary, our results show that in most cases of interest, the
correction due to the self-interference delay is negligible in
the optical regime, and that the Wigner time is for all intents
and purposes approximately equal to the average of the LTR
and RTL dwell times.

In Ref. [31] it was demonstrated that beginning with the
definition of energy velocity as the ratio between the spa-
tially averaged Poynting vector and the spatially averaged
energy density,VE

s±d=kSv
s±dl / kUv

s±dl, it is possible to arrive at a
simple relation that links the energy velocity to the dwell
time, namely,VE

s±d= utv
s±du2sL /tD

s±dd. Now, by using Eq.(21)
and the connection of the dwell time with the energy veloc-
ity, we arrive at the following equivalence:

tv
w =

L

2

utv
s+du2VE

s−d + utv
s−du2VE

s+d

VE
s+dVE

s−d +
1

2v
Imsrv

s+d + rv
s−dd. s23d

From Eq.(23), once again for the case of a symmetric struc-
ture embedded in a symmetric environment, and neglecting
the corrective term1

2v Imsrv
s+d+rv

s−dd on the right-hand side of
Eq. (23), we obtain:VE>utu2Vg [31], whereVg=L /tv

w is the
group or tunneling velocity. Therefore, our Eq.(23) confirms
and extends the results first reported in Ref.[31].

B. Case of dispersion with negligible absorption

In the case at hand, from Eq.(17) we obtain:

rv
w = rv

« −
k0v

cL
E

0

L F ]«v
Rszd
]v

ImfGvsz,zdgGdz. s24d

Using the explicit expression forrv
« , Eq.(24) can be recast in

the following form:

FIG. 4. rv
U (thin-solid line), rv

« =rv
w (dashed line) andrv (thick-

solid line) vs v /v0 (v0=2pc/l0 andl0=1 mm) for a PC made of
N=20 periods. The elementary cell is the same described in the
caption of Fig. 3. The structure is surrounded by air. Inset: Magni-
fication of DOM at the two transmission resonance near the first
band gap.

FIG. 5. LTR dwell timetD
s+d (short-dashed line), RTL dwell time

tD
s−d (long-dashed line) and average dwell timestD

s+d+tD
s−dd /2 (thick

solid line) vs v /v0 (v0=2pc/l0 andl0=1 mm) for a PC made of
N=5 periods.L /c in this case is 4.85 fs. The elementary cell is the
same described in the caption of Fig. 3. The figure contains also the
Wigner timetv

w (thin solid line) but on this scale it is practically
indistinguishable from the average dwell time. Inset: Magnification
of the average dwell time(thick solid line) and the Wigner time
(thin solid line). The difference between the two times is of the
order of 10−2 fs.
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rv
w = s− 2k0/cLdE

0

L F«v
Rszd +

v

2

]«v
Rszd
]v

G ImfGvsz,zdgdz,

s25d

where Eq.(25) suggests that the DOM is calculated by av-
eraging the imaginary part of the Green’s function over the
weight function:

«v
Rszd +

v

2

]«v
Rszd
]v

.

In analogy with the definition ofrv
« , we can define

rv
«+sv/2ds]«/]vd

; s− 2k0/cLdE
0

L F«v
Rszd +

v

2

]«v
Rszd
]v

G ImfGvsz,zdgdz

and we can rewrite Eq.(25) in a more concise form as:

rv
w = rv

«+sv/2ds]«/]vd. s26d

Now, using the explicit expression of the imaginary part of
the Green’s function in terms of the light modes[see Eq.

(C7) in Appendix C] and using the following relation:

E
0

L

«v
RszduFv

s±du2dz= sc2/v2dE
0

L

udFs±d/dzu2dz

+ s1/k0dn01,2Imfrv
s±dg

we can writerv
«+sv/2ds]«/]vd in a form that involves again the

dwell times:

rv
«+sv/2ds]«/]vd =

tD
s+d + tD

s−d

2L
+

1

2ck0L
Imsrv

s+d + rv
s−dd, s27d

where tD
s+d=s2LkUv

s+dld /cn01 and tD
s−d=s2LkUv

s−dld /cn02, are
the LTR and RTL dwell times, respectively, and

Uv
s±d =

1

4
F ]

]v
fv«v

RszdguFv
s±dszdu2 +

c2

v2UdFv
s±dszd
dz

U2G
are the corresponding time-averaged electromagnetic ener-
gies calculated taking into account the dispersion of the me-
dium [35]. Therefore all the connections between the Wigner

FIG. 6. (a) rv (solid line) andrv
w (dashed line) vs v /v0 (v0=2pc/l0 andl0=1 mm). The structure is made by 40 alternating layers of

a dielectric material and air. The dielectric material has a Lorentzian absorption line centered aroundv /v0=0.65 and an index of refraction
of approximately 1.42 in the visible range. The layers have thicknessesa=350 nm(dielectric material) andb=250 nm(air) for a total length
L=12 mm; (b) refractive indexsnd (solid line) and extinction coefficientsKd (dashed line) of the dielectric material vsv /v0. By definition
the refractive index and the extinction coefficient are related to the dielectric function for a nonmagnetic material by:Î«=n+ iK. The
extinction coefficient is magnified 50 times.
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time and the dwell time and their relationships with the
DOM that were demonstrated for the case of no absorption
and no dispersion are still valid in the case of dispersion and
negligible absorption, provided the energy density is calcu-
lated taking into account the dispersion of the medium.

C. Case of absorption and dispersion

When the absorption of the material comes into play the
DOM calculated using the Wigner time can become negative
near the absorption line of the material. Therefore, it can no
longer be interpreted as a DOM in the true sense of the word.
On the other hand, the DOM defined through Eq.(9) contin-
ues to be a positive quantity, and maintains the physical
meaning of a quantity proportional to the mean power emit-
ted by a source located inside the PC, as outlined at length in
Sec. II. In Fig. 6(a) we compare the DOM calculated using
the Wigner time,(dashed line) and the DOM calculated using
Eq. (9) (solid line) for a PC structure whose details are
described in the figure caption. The high index layer is

endowed with a Lorentzian absorption line centered around
v /v0=0.65, and a refractive index approximately of 1.42 in
the visible range. The refraction indexsnd and the extinction
coefficientsKd of the high index layer are shown in Fig. 6(b).
The figure shows that the DOM calculated via the Wigner
time attains negative values near the center of the absorption
line of the dielectric material(rv

w >−2/c at v /v0>0.66),
while Eq.(9) always gives a positive DOM. While this short-
coming clearly implies that the DOM defined in terms of the
Wigner time fails to maintain its physical meaning, neverthe-
less the Wigner time continues to be a good indicator of the
tunneling time imparted to the peak of the transmitted part of
an input, quasimonochromatic, unchirped pulse as it
traverses a 1D barrier. In fact, it is well known that the transit
time of pulses tuned near the absorption line of a dielectric
material can become superluminal or even negative as in our
case [36–38]. Of course, superluminal or negative transit
times are not an indication that causality or relativity some-
how breakdown, because the fact is that signal velocity al-
ways remains subluminal[39], and the peak of the transmit-
ted pulse can always be found under the envelope of a

FIG. 7. (a) Transit time(solid circles) and Wigner time(solid line) vs v /v0 (v0=2pc/l0 andl0=1 mm) wherev is the carrier frequency
of the input pulse. The structure is the same as that described in Fig. 7. Input pulses atz=0 (z=0 is the location of the input surface of the
PC) have the following form:Asz=0,td=expf−st2/2t0

2d− ivtg wheret0=0.5 ps. The transit time has been calculated as the time the peak of
the transmitted part of the input pulse needs to exit the structure, and the reference timest=0d is the time when the peak of the input pulse
reaches the input surface of the PC;(b) transit time(solid triangles) and Wigner time(solid line) in the case of a Gaussian pulse witht0

=0.1 ps.
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similar input pulse propagating for the same length of free
space[20]. In Fig. 7(a) we compare the Wigner time and the
transit time of a Gaussian pulse of unitary amplitude that
traverses the structure. Input pulses atz=0 (z=0 is the loca-
tion of the input surface of the PC) have the following form:
Asz=0,td=expf−st2/2t0

2d− ivtg where t0=0.5 ps andv is
the carrier frequency. The transit time has been numerically
calculated as the time the peak of the transmitted part of the
input pulse needs to exit the structure, and the reference time
st=0d is the time at which the peak of the input pulse reaches
the input surface of the PC. The figure shows that the transit
time is well described by the Wigner time, even when strong
absorption and dispersion come into play. In this case the
spectral bandwidth of the input pulse is,6 THz, which cor-
responds to,0.83 ps FWHM of the pulse intensity, and the
quasimonochromatic limit is approached(this limit is
quickly reached because the spatial extension of a typical
pulse is always much larger than the typical structure, which
is only a few microns in length). The transmitted pulses
come out only slightly distorted with respect to the input
pulses, and attenuated by a factor that depends on the trans-
mission properties of the PC.

If shorter pulses were used, as in Fig. 7(b), where the
pulses have a duration in time of approximately 0.16 ps
FWHM of the pulse intensity, the transit time then begins to
differ significantly from the Wigner time. In this case higher
order terms of the geometrical dispersion of the structure that
are not accounted by the Wigner time come into play, and as
a consequence pulses that tunnel through the structure un-
dergo appreciable distortion.

IV. CONCLUSIONS

In conclusion, we have highlighted the connections that
exist between the DOM and tunneling times for 1D barriers.
In the absence of absorption, the DOM calculated using the
Wigner time is approximately equal to the average of the
LTR and RTL dwell times, divided the length L of the struc-
ture. We have shown that the self-interference delay is gen-
erally negligible[Eqs. (19) and (20), and Fig. 5]. Both the
Wigner and dwell-time DOMsoverestimatethe true DOM
defined in our Eq.(9) by a factor roughly proportional to the
average index of the barrier[Eq. (18), and Fig. 4]. Structures
embedded in symmetric environments composed of a suffi-
cient number of periods acquire the properties of symmetric
structures, and the DOM calculated through the Wigner time

is then approximately equal to the DOM calculated using the
energy density[Eq. (20) and Fig. 3], as first proposed in Ref.
[8] using heuristic arguments. In the presence of absorption,
the Wigner DOM can become negative(see Fig. 6), while the
true DOM remains always positive. In that case, the Wigner
DOM ceases to be a valid representation of DOM, but can
still be interpreted and is still a good measure of group ve-
locity of unchirped, quasimonochromatic pulses. We con-
clude that the DOM in 1D barriers should always be calcu-
lated using our Eq.(9), and plenty of caution should be
exercised when one makes connections between the DOM
and tunneling times. Such a connection sometimes yields
useful information about the system, such as group velocity,
for example, but if the true DOM is sought the approach
suggested by our Eq.(9) should always be preferred.

Finally, we point out that while the DOM defined through
Eq. (9) can be straightforwardly generalized to multidimen-
sional cases, the other definitions based on the tunneling
times find a direct link with the DOM only in one dimension,
and then only when there is no absorption.
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APPENDIX A

We begin with Eq.(3):

]2Gvsz,jd
]z2 +

v2«vszdGvsz,jd
c2 = dsz− jd, sA1d

when Gvsz,jd exists, it follows thatGvsz,jd satisfies the
homogeneous equation:

]2Gvsz,jd
]z2 +

v2«vszdGvsz,jd
c2 = 0, sA2d

at all points of the interval 0øzøL except at the pointz
=j. As discussed at length in Ref.[24], the light-modes
hFv

s±dj are a fundamental set of solutions of Eq.(A2) and
they are subject to the following boundary conditions for a
nonmagnetic material(see Fig. 2):

Fv
s+ds0d = 1 + rv

s+d Fv
s−ds0d = tv

s−d

Fv
s+dsLd = tv

s+d Fv
s−dsLd = 1 + rv

s−d

fdFv
s+d/dzgz=0 = ik0n0,1s1 − rv

s+dd, fdFv
s+d/dzgz=L = ik0n0,2tv

s+d

fdFv
s−d/dzgz=0 = − ik0n0,1tv

s−d fdFv
s−d/dzgz=L = ik0n0,2srv

s−d − 1d

. sA3d
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Consequently, we can express the most general solution of
Eq. (A1) as:

Gvsz,jd = HC1sjdFv
s+dszd + D1sjdFv

s−dszd L ù z. j

D2sjdFv
s+dszd + C2sjdFv

s−dszd 0 ø z, j.

sA4d

The four constants must now be determined. First, we im-
pose the condition of “outgoing waves.” This condition re-
quires that the radiated energy from the point source located
at z=j leaves the structure, and no energy is incoming into
the structure. This means that the coefficientsD1 of the in-
coming RTL wave and the coefficientD2 of the incoming
LTR wave must be zero. The constantC1 and C2 must be
determined by imposing the continuity ofGvsz,jd at z=j,
while its derivative has a jump of magnitude one[25]. Fol-
lowing the above procedure we find:

5
C1sjd =

Fv
s−dsjd

fWsFv
s−d,Fv

s+ddgz=j

,

D1 = 0

C2sjd =
Fv

s+dsjd
fWsFv

s−d,Fv
s+ddgz=j

,

D2 = 0

sA5d

where

WsFv
s−d,Fv

s+dd ; U Fv
s−d Fv

s+d

dFv
s−d/dz dFv

s+d/dz
U

is the Wronskian of the fundamental set of solutions. In our
case the Wronskian is a conserved quantity, i.e.,
dWsFv

s−d ,Fv
s+dd /dz=0 and it can be calculated by resorting to

the boundary conditions in Eq.(A3). The result is

fWsFv
s−d,Fv

s+ddgz=j = fWsFv
s−d,Fv

s+ddgz=0 = 2ik0n0,1tv
s−d

= fWsFv
s−d,Fv

s+ddgz=L = 2ik0n0,2tv
s+d,

from which one also derives thatn0,1tv
s−d=n0,2tv

s+d= t̃v. The
Wronskian calculated at the pointz=j can be consequently
expressed as:

WsFv
s−d,Fv

s+dd = fWsFv
s−d,Fv

s+ddgz=j = 2ik0t̃v. sA6d

Equation(4) in the main text follows from Eqs.(A4)–(A6).

APPENDIX B

We start by writing the Helmholtz equation for the field
Fv+dv

s+d szd:

]2Fv+dv
s+d szd
]z2 +

sv + dvd2«v+dvszdFv+dv
s+d szd

c2 = 0. sB1d

Let us expand the functions in Taylor series:

Fv+dv
s+d szd = Fv

s+dszd + Gvszddv + Osdv2d, sB2.1d

sv + dvd2 = v2 + 2vdv + Osdv2d, sB2.2d

«v+dvszd = «vszd +
]«vszd

]v
dv + Osdv2d, sB2.3d

where Gvszd=f]Fv
s+dszd /]vg. By substituting Eqs.(B2.1),

(B2.2), and(B2.3) in Eq. (B1) we obtain:

]2Fv
s+dszd

]z2 +
v2«vszdFv

s+dszd
c2 + F ]2Gvszd

]z2 +
v2«vszd

c2 Gvszd

+
v

c2Fv
s+dszdS2«vszd +

]«vszd
]v

vDGdv + Osdv2d = 0.

sB3d

From Eq.(B3), equating to zero the terms of the same order
in dv we obtain the following equations:

]2Fv
s+dszd

]z2 +
v2«vszdFv

s+dszd
c2 = 0, sB4.1d

]2Gvszd
]z2 +

v2«vszd
c2 Gvszd +

v

c2Fv
s+dszdF2«vszd +

]«vszd
]v

vG
= 0. sB4.2d

Equation(B4.1) is the Helmholtz equation for the fieldFv
s+d

and the solution is known, while Eq.(B4.2) is a second-order
differential equation for the functionGvszd and it can be
written in the following form:

]2Gvszd
]z2 +

v2«vszd
c2 Gvszd = −

v

c2Fv
s+dszdF2«vszd +

]«vszd
]v

vG .

sB5d

The solution of second order linear differential equations of
the same type as that in Eq.(B5) can be written using the
method of the Green’s function[25]. In our case, the solution
of Eq. (B5) with the boundary conditions corresponding to
“outgoing waves” can be expressed in terms of the Green
function calculated in Appendix A as follows:

Gvszd = −
v

c2E
0

L

Gvsz,jdFv
s+dsjdF2«vsjd +

]«vsjd
]v

vGdj,

sB6d

by calculating Eq.(B6) for z=L we obtain Eq.(14) in the
main text.

We remark that the approach we have followed to arrive
to Eq.(B6) is valid under general conditions. In fact:(a) both
absorbtion and dispersion of the medium are taken into ac-
count because we consider the dielectric response«vszd as a
complex function of the frequency;(b) no perturbative ap-
proach is used to arrive to Eq.(B6), but only the hypothesis
that the functions can be expanded in Taylor series.

APPENDIX C

Let us start from the definition ofrv
« :

rv
« = s− 2k0/cLdE

0

L

«v
RszdImfGvsz,zdgdz. sC1d

Equation(C1) can be rewritten in the following form:
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rv
« =

1

cLut̃vu
E

0

L

«v
RszduFv

s+duuFv
s−ducosfwv

s+d + wv
s−d − wtgdz,

sC2d

where we have used the expression of the Green’s function
given by Eq.(4), we have written the LTR and RTL modes
as:Fv

s±dszd= uFv
s±dszduexpsiwv

s±dd, and the transmission function
of the PC as:t̃v= ut̃vuexpfiwtsvdg. Now, equating the real and
imaginary parts of Eq.(A6), we obtain:

uFv
s−du

duFv
s+du

dz
− uFv

s+du
duFv

s−du
dz

= 2k0ut̃vusinfwv
s+d + wv

s−d − wtg,

sC3.1d

uFv
s+duuFv

s−duFdwv
s+d

dz
−

dwv
s−d

dz
G = 2k0ut̃vucosfwv

s+d + wv
s−d − wtg.

sC3.2d

Using Eq.(C3.2), we can recast Eq.(C2) in the following
form:

rv
« =

1

2k0cLut̃vu2
E

0

L

«v
RszduFv

s+du2uFv
s−du2Fdwv

s+d

dz
−

dwv
s−d

dz
Gdz.

sC4d

For a nonabsorbing PC, i.e.,«v
I szd=0, it can be shown that

uFv
s±dszdu2 sdwv

s±d /dzd is a conserved quantity[31] and it can
be calculated by resorting to the boundary conditions im-
posed on the LTR and RTL modes, i.e., Eqs.(A3), giving the
following results:

uFv
s+du2

dwv
s+d

dz
= +

k0

n02
ut̃vu2, sC5.1d

uFv
s−du2

dwv
s−d

dz
= −

k0

n01
ut̃vu2. sC5.2d

From Eqs.(C5) and (C4) we obtain:

rv
« =

1

2cLn0,1n0,2
E

0

L

«v
Rszdfn0,2uFv

s+du2 + n0,1uFv
s−du2gdz,

sC6d

and from Eqs.(C6) and (C1) we also arrive to a useful ex-
pression of the imaginary part of the Green’s function in
terms of the LTR and RTL light modes:

ImfGvsz,zdg = −
1

4k0
Fn0,2uFv

s+du2 + n0,1uFv
s−du2

n0,1n0,2
G . sC7d

Now, using the relation:

E
0

L

«v
RszduFv

s±du2dz= sc2/v2dE
0

L

udFs±d/dzu2dz

+ s1/k0dn01,2Imfrv
s±dg

[8,31], Eq. (C6) can be recast in the following form:

rv
« =

1

4cLF 1

n0,1
E

0

L S«v
RuFv

s+du2 +
c2

v2UdFs+d

dz
U2Ddz+

1

n0,2

3E
0

L S«v
RuFv

s−du2 +
c2

v2UdFs−d

dz
U2Ddz+

2

k0
Imsrv

s+d + rv
s−ddG .

sC8d

The dwell time is defined as the average electromagnetic
energy density stored in the structure divided by the input
power[31,32]. In our case the expression for the dwell times
for a LTR and RTL input are, respectively,

tD
s±d =

1

2cns±dE
0

L S«v
RuFv

s±du2 +
c2

v2UdFs±d

dz
U2Ddz, sC9d

where ns+d=n0,1 and ns−d=n0,2. Equation(19) is from Eqs.
(C8) and (C9).
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