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Modulational instability of zone boundary mode in nonlinear lattices: Rigorous results
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We study the modulational instability of the zone boundary mode in nonlinear lattices with generic polyno-
mial potentials. We present an exact expression of the instability growth rate in the high energy limit. The
unstable wave number range and the most unstable wave number are obtained. Relevance of the present results
on an energy localization state, which appears after growth of the modulational instability, is also discussed.
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I. INTRODUCTION metric equation and then review some known results on a
) _ monodromy matrix of the Gauss hypergeometric equation. In
Fermi, Pasta, and UlartFPU) were the first to study the gec. |11, we describe the nonlinear lattice model, the normal
relaxation to equilibrium of one-dimensional nonlinear lat- mode coordinates, and the ZBM solution. In Sec. IV, we
tices[1]. They numerically integrated the equations of mo-.g|culate the instability growth rate in the high energy limit.
tion with an initial condition far from equilibrium, giving all' Moreover, we discuss relevance of the present results on the
energy to the lowest wave number normal mode. It is wellenergy localization state consisting of the discrete breathers,

known that they observed the recurrence phenomenon iRghich appears after growth of the modulational instability.
stead of the relaxation to the equilibrium state. For historicalcgnclusions are offered in Sec. V.

reasons, the relaxation toward equilibrium has been usually

studied with an initial condition where a small number of Il. GAUSS HYPERGEOMETRIC EQUATION AND

low wave number modes were excited. Recently, several MONODROMY MATRIX

works have been devoted to the relaxation from an initial

excitation of thezone boundary mod&BM), which is the Consider the linear differential equation

highest wave number mod2-4]. These investigations dem- d?y

onstrated that localized modes calldi$crete breathers or pres +g(t)y=0, (1)

intrinsic localized modeswhich were discovered by Takeno

etal.[5], emerge and play an important role in the relaxationyhere g(t) is a periodic function with the period. Let
process. In addition, it was shown in RE] that the discrete  fy v\ he a system of fundamental solutions of Ef. Ac-
breathers emerge also from an initial excitation of a highcording to the Floquet theory, solutions of E) att=t and

wave number mode other than the ZBM. t+T are related via a 2 2 monodromy matriM as
The modulational instability is the fundamental mecha-
nism for spontaneous generation of the discrete breathers out (y1(t+T),yo(t +T)) = (yy(t),yo(t)) - M. (2

of a small initial perturbation on the initially excited mode. It The eigenvalues ol are called theharacteristic multipli-

is important to clarify the nature of the modulational insta- ger : 1 P

bility for better understanding of the discrete breather genSars and given _m_the form{p, p} becguse oM e SL_(iZ’C)'

eration and the relaxation process in nonlinear lattices. Th he CharaCte”St'C exponentare def!ned by‘.T: T I_n_|p|.

modulational instability is studied for the FPU lattice quation(1) has unstablg solutions if therg IS a posittvee

[4,7-14 and the nonlinear Klein-Gordon latti¢#5,1§. The . The mono_dromy matriM can be analytically _calqulgted

modulational instability of an arbitrary wave number mode i/l Some particular cases although the calculation is impos-

studied in Refs[12,15,16 while that of the ZBM is studied sible in gener_al. One of such cases Is the case of a homoge-
neous potential system. We review some known results on

in the other references. In Rdfl4], stability of some other q trix for the h tential
low-dimensional invariant subsets of modes is also studied € Monedromy matrix for the homogeneous potential Sys-
em[17,18. Consider the set of equations

for the FPU lattice besides that of the ZBM. However, thes
works are numerical or approximate analytical analyses and e .
no rigorous result on the modulational instability has yet F"'aZm(P =0 3
been obtained. In the present paper, we study the modula-
tional instability in nonlinear lattices with generic polyno- and
mial potentials and present exact results on the instability
. . . d2§
growth rate in the high energy limit. el £)2m2¢= 0 4
. . 2 ,82m(P( § ’ ( )
The present paper is organized as follows. In Sec. I, we dt
describe a correspondence between the variational equat'c\)/vr}]erem is a positive integeru,, and B, are real constants,

of a homogeneous potential system and the Gauss hypergeé)ﬁd we assumey,>0. We define a parametas,, as

_ :82m
* . A . . )\Zm - 1 (5)
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which we call thestability parameter Equation(3) has the  y;y{'y;1y4 stands for the circuit consisting o, 3, y;, and

integral Yo' in this order. Therefore the monodromy mathkikcan be
1/de)\? a obtained by the produci (y;)M (o)™ (y)M(yy)™ for a
—(—) + 2Mpamo (6)  certain system of fundamental solutions. After some calcula-
2\ dt 2m tion, we can obtain the explicit expression Mf as follows

whereh e R is a constant corresponding the energy. The leffor details, see Re{.17]):
hand side of Eq(6) can be regarded as the Hamiltonian of a

nonlinear oscillator with the homogeneous potential of the m=(~ 1 -BC \? (13
order 2n. From Eq.(6), a periodic solutionp(t) of Eq. (3) is "\ A ABC-1/"
determined as the inverse function of the integral

® where

t= J dw/VP(w), )

@0 A=1 _e—iﬂ-(2a+1/m) B=1 _e—iﬂ-(2b+1/m)

with _ (14
C=2/(1-¢'™m),
P(W)ZZ[h— (%) Zm], ®) . .
2m A simple computation shows that

where g, is a constant corresponding to the initial condition, B
i.e., ¢(0)=¢q. If we consider integra(7) in the complex trM = 2F 5m(Aam) (19
domain, then there exist branch poir§isof the Riemann where

surface defined by=+/P(w), which are located at

R th 1/2m 7Tk
Sk: —_— ex IF s k=0,1,...,2n—1. (9) F2m(7\2m):

w5 .
cog| —(m= 212+ 4m\,, | - 1.
dom 2m\( ) 2m

2
sir’(ar/2m)
Two points $,=(2mHh ay,,) Y™ and $,,=—-(2mh/ a,,)Y?" are (16)
on the real axis. Lety be a counterclockwise circuit encir-
cling these two branch poinfs, and§,, in the complexw  The eigenvalueéphom,p;gm} of M can be obtained from the
plane. The real period of solutiop(t) is given by the inte- equationp?—(tr M)p+1=0. Solving this equation and using
gral the definition oyom= ThaN|phonl, We can obtain the char-
acteristic exponents as follows:

Thomzé dw/\p(w). (10
y 1 —_—
. L . Ohom= * IN|F2m(Aam) + {Fam(Aom)}? = 1], (17)
The monodromy matriM for the real period is determined hom
from analytical continuation of a system of fundamental so-
lutions of Eq.(4) alongy. This shows that there is a positive characteristic exponent if

It is shown in Ref[17] that Eq.(4) is transformed into the and only if F5p (A o) > 1(trtM>2). It can be easily shown
Gauss hypergeometric equation by the change of the indéhatF,,(\yy) > 1 holds when,, is in the regiorsS,,, defined
pendent variable frorhto z={¢(t)}*™. This fact enables us to by
obtain an explicit expression for the monodromy malfixof
Eq. (4) corresponding to the real period. If we make this S,,;={\ e R\ <0,1<\A<2m-1,2m+2<\ <6m

change of variable in Eq4) then we have L . . .
g a4) -2, j-Dm+j<ra<j(j+Dm-j,...}.

z(1—z)£§+[c—(a+b+ 1)z]d—§—ab§=0, (11) (18)
dZ dz
where
I1l. NONLINEAR LATTICE AND ZBM
11 _ Aom _ 1
at+b= 2 om’ ab=- am 7 1 “om’ (12 Our investigation is of the nonlinear lattice model de-

) . . ) scribed by the Hamiltonian
Equation(11) has two singular points a=0 and 1 in the

finite z plane. Lety, and y; be counterclockwise circuits 1 N N

encirclingz=0 andz=1 with a common base poigg on the H==> pZ+ > U(g) + V(g = g-1)] (19)
real axis(0<zy<1), respectively. Explicit expressions of the 250 i=1

monodromy matrices of E@l1) corresponding tay, andy;,

which we denote byM(y,) and M(y,), respectively, are with the periodic boundary condition, i.egg=qy. The on-
known (e.g., Ref[19]). The pathy in thew plane is mapped site potentiall and the nearest neighbor interaction potential
into y195'y174 in the z plane by the mapping=w", where V are of the forms
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ux =3 %xm, v =S %xzn (20) T(h) = 35 dw/\P(w). (26)
r=1 4f r=1 4l r

We note that the period@i(h) depends orh.
whereu,, € R and k,, € R are the constants. We assume that
Mom=0 and k,,,>0. The equations of motion derived from
the Hamiltonian(19) are IV. STABILITY ANALYSIS OF ZBM
d?q; m Let us consider the variational equations along the ZBM
?"’I +> [,L/quizr‘1 + 1, 0(0 — )P+ (g - g 1] =0, solution. Linearizing Eq(21), we can obtain the variational

r=1 equations in the vector form

@ L
—§+[ > (@ = Dyt -1

wherei=1,2,... N. dt? =
The transformationq=(qy, ... ,0n)—Q=(Qg, ---,Qn-1) m
defined by - {E (2r - 1>K2r(2<p(t>)2f-2} -A] 0, @)
r=1

q = i_ Q{sin(ﬂ(i) +Co<ﬂ(i>:|, i=1,2,...N, where §=(&,, ... ,&) and eachs;,i=1,... N represents the
N N variation ing;. In Eq.(27), | is theN x N identity matrix and
(22) A is theN X N matrix defined by

2 -1 -1

gives the normal modes of the corresponding linear system. 1 2 _1

Here,Qy is the amplitude okth normal mode. The conjugate

momentumP, is defined byP,=Q,. The ZBM is the normal A= T ' (28)
mode ofk=N/2, which corresponds to the displacement pat- -1 2 -1
terng;=(-1)'Qn2/ VN. It is easy to check that E¢21) has a -1 -1 2

particular solution of the formg;(t)=(-1)'¢(t). Thus the

ZBM of the corresponding linear system still gives an exactVhere the vanishing components are zero. To obtain the de-
periodic solution for the nonlinear lattiqd9). By the sub- coupled form of the variational equations, we introduce new

stitution q () =(-1) e(t) in Eq. (22), we have the equation Vvariabless defined by

for ¢(t) as 1N (2mk 27k _
gi:/—_z 7 sinl——i|+cod —i ||, i=1,2,...N.
d? m VN k=0 N N
d_tf + 2 (uar + 2 k) ? =0, (23) (29
r=1

The variabler, is the variation in thekth normal mode co-
with the integral ordinateQy. If we change variables frorg to 7, Eq.(27) is
rewritten in the form

}(d_(P>2 + § i( + 2 ) 2 =h (24) d277k . 2r-2 2 2r=2
2\ dt < or Mor ko) =T a2 + r;l (2r = 1)(por + 27 “wickor) (1) =0,
. . . (30)
whereh e R is the energy density defined by=E/N, where k=0,1,...N—-1,
E is the total energy of the lattice. Using this integral, the 5 .
solution ¢(t) is obtained in the forn{7) with where wj,k=0,1,... N-1 are the eigenvalues o& and
given by
m
1 2 2r 2 _ . ’7Tk
Pw)=2[ h-2, E(“Z’ + 2% o)W | (25) wg = 4 sir? N/ (31)
r=1

. ~ The monodromy matrix of Eq(30) for the real period is
Let s(h),k=0,1,...,2n-1 be solutions of the algebraic determined from analytical continuation of a system of fun-
equationP(w)=0. They are the branch points of the Riemanndamental solutions of Eq30) alongT.
surface defined by= VW- Since uom+ 2°Mkom> 0, there We consider Eq(30) with EQ. (23) in the limith— . As
exist two real branch pointg(h) ands,(h) for h>h,, where  pointed out in Ref[18], in this limit, the highest order terms
hg is a sufficiently large positive constant. We define a counbecome dominant in Eqg23) and (30). Thus the mono-
terclockwise circuitI’ encircling these two real branch dromy matrix for the real period of E¢30) converges to that
points. The real period@(h) of ¢(t) is given by of the equation
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d? 7k

g2+ m= Do 22202 ko) (D)2 27 = 0,

(32)

with

2
%+ (som* 22" 2T =0,

T (33

for which we can calculate an explicit expression of the
monodromy matrix. This fact can be confirmed by making

the change of scale— h'?"p t—h1"™2m in Egs. (23)
and(30). From Eqgs(32) and(33), the stability parameter for
the kth variational equation reads

Oom + sir?(mkIN)
ok =(2m-1)———, 34
anfl = (2m = 1) =0 (34)
where
M2m
Oo = . 35
2m 22mK2m ( )

Let {prom Pram D€ the characteristic multipliers of the mono-
dromy matrix of Eq.(32), where we assumeépn,=1
=|ppa]- We can obtairp,on as

prom= Famam(K) + {Fonom(K)}2 -1, (36)

whereF,,, is the function defined by Eq16). It should be
noted thatpy,,, depends ork but not onh.

Let denote one of the characteristic multipliers of E2f)
by p(h) and assumép(h)|=1. The characteristic multiplier
p(h) converges t@omin the limit h—o: i.e., p(h) is of the
form p(h)=ppomte(h), wheree(h) is a function such that
e(h)—0 for h— . The exponential growth rate(k,h) of
the solutiony, of Eq.(30) is a function ofk andh and given
by a(k,h)=T(h)"n|p(h)|. Thus we can obtain(k,h) as fol-
lows:

1 [
o(k,h) = T—|n|F2m(>\zm(k)) + V{Fomam(K)}? = L +e(h)],

(h)
(37)

where T(h) is the period given by Eq(26). Equation(37)
indicates that thén dependence oé(k,h) is essentially de-
termined by that off(h) for largeh. If we make the change
of variablew=h"?"w’ in Eq. (26), then we have

T(h) = h'<1’2-1/2“>5£ AW/ /N2{1 = [(pom + 2 om)/2m]w' 2™}
F,

(38)

for largeh, wherel’ is a counterclockwise circuit encircling
the two real branch pointsv’ = £{2m/ (uym+ 22 kom) HH/2M.
Since the integral in Eq38) is independent dfi, we can find
the scaling law ofT(h) ~h=12=Ya for |arge h. Therefore
the scaling law for the exponential growth raték,h) is

PHYSICAL REVIEW E 70, 016611(2004

0'(k, h) — hl/2—l/211 (39)
in the high energy density region. This scaling law is also
found in Refs[10,1] based on an approximate analysis.

Let us consider thek dependence of the exponential
growth rate in the limih— 0. Since there exists the maximal
value maxo(k,h) of o(k,h) for fixed h, we can define a
normalized exponential growth rate by

— a(k,h)
o) = im e xatkh)

= Coln|FomMam(K)) + V{FamNom(K)}2 = 1,
(40)

where we regardk as a continuous parameter in the range
ke[0,N-1] and C, is a constant such that the maximal
value of'a(k) may be unity. Thek dependence of the expo-
nential growth rate given by E@40) is exact in the limith

— 0,

We proceed to determine a rangekdbr unstable pertur-
bations. Equatiori40) indicates thafr(k) >0 if and only if
Fom(A\om(K)) > 1. As mentioned in Sec. IE,,(Aon(K))>1 is
equivalent to the condition that,,(k) is in the regionS,,,
defined by Eq.(18). It follows from Eq. (34) that O
<Ny (k) <2m-1 when#6,,,= 0. Therefore, we have the con-
dition 1<\, (k) <2m-1 for the unstable perturbations. Us-
ing this condition and Eq34), we can determine a critical
wave numberk. such that perturbations fdt, <k<<N-k.
(k# N/2) are unstable as follows:

N \/ 1 2(m-1)
=—arc - . 41
k= S'{ 2m-1_ 2m-1 o2n (41)
If the term inside the root sign is negative, i.e.,

6om>1/2(m-1), then perturbations of any wave number are
unstable. Equatiot41) shows thak, decreases with increas-
ing 6, That is, the unstable wave number range extends as
the contribution of the on-site potentibl relative toV be-
comes large. Whem,,,, exceeds the threshold value 12
-1), all wave numbers are in the unstable range. Let us con-
sider the case 0,,=0, i.e., u,,=0. For this case, we have
k.=(N/m)arcsinl/y2m-1]. This indicates that the unstable
wave number range extends akdapproaches zero as the
order of the potential increases. In a particular casmoR,
which corresponds to the FPB-lattice, we havek,
=(N/m)arcsii1/y3]=0.196\ and this result coincides with
an estimation obtained in Reff@,11].

Using Eq. (40) we determine the most unstable wave
numberKk,.x€ [0,N/2), which has the largest exponential
growth rate. Equatiorg40) indicates thafr(k) is a monoto-
nous increasing function &f,,, whenF,,,> 1. It follows that
(2m-1)/ (1 +6,0) <Ak <2m-1 from Eq. (34). There-
fore, we can obtairk,,,, by determining the valua® of \
that maximizesF,,(\) in the range ma§d,(2m-1)/(1
+0H)}<\A<2m-1 and then solving the equatiapy(k)
=\" with respect tk. The k., iS obtained as follows:
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Let us briefly discuss the relevance of our results on the
] spontaneous energy localization process. It has been already
shown that the modulational instability is the fundamental
mechanism for spontaneous generation of the discrete
breathers out of a small initial perturbation on the ZBM
[3,4,8,14. As pointed out in Ref{4], more strongly localized
breathers appear for smallky,,, becauseN/2 -k, can be
regarded as an average wave number of amplitude modula-
_ tion of the ZBM. Therefore, according to the above results, it
is expected that in the high energy region more strongly lo-
calized breathers emerge for larggy, if the order of poten-
tial is fixed. In addition, it is expected that more strongly
3 localized breathers emerge for largarcase in the high en-
0 : g s s : s : s ergy region, provided that,,=0. These predictions are con-
oootm o eme e P 2 %% % firmed by numerical experiments. We note that in general the
localization features, which are expected from our stability
FIG. 1. Examples ob plotted againsk/N for three casesm  analysis considering only the highest order terms in the po-
=2,60,,=0 (solid ling), m=5,6,,=0 (dashed ling andm=2,6,,,  tential, hold only in the high energy region. When the energy

=15 (dash-dotted ling is not sufficiently large, the effect of lower order terms in the
potential might appear and significantly modify the above
( N { 3+ 2m—1 5nf—6m+ 1 expected localization features. For instance, it is shown in
—arcsi \/ - bom Ref. [8] that a cubic power correction to the quartic FPU
™ 4m2m-1)  4m(2m-1) potential weakens localization.
t o - 3m?+2m-1
2m ’
Kinax= 5m’ -~ 6m+ 1 V. CONCLUSIONS
0 o1 We studieq the .modulationgl instapility of the ZBM in
it o= nonlinear lattices with polynomial on-site and interaction po-
\ 5m-6m+1 tentials. We obtained an exact expression for the normalized

(42) instability growth ratea(k) in the high energy limit. The
] ) _ critical wave numbelk; for unstable perturbations and the
Equation(42) shows thaky, decreases an, increases, in most unstable wave numbky,,, were determined. In addi-
other v_vprds, as the contribution bf relative toV increases. tjgn, the energy scaling law of the instability growth rate, Eq.
In addition, Eq.(42) shows that th&=0 mode, the transla- (39) was derived. Relevance of the present results on the
tional mode, becomes most unstable whigp is not less  energy localization state induced by the modulational insta-
than the threshold valuém?+2m-1)/(5n?-6m+1). For bility was also discussed.
the casef,,,=0, we have In the present paper, for simplicity, we assumed that both
_ | of the on-site potential and the interaction potenti in-
Kmax= (N/7r)arcsif \(3m? + 2m— 1)/4m(2m - 1)]. clude only even order terms. Finally, we remark that the
Thus the most unstable wave numbes,, converges to present results hold also for an interaction poteniaiclud-
(N/)arcsify3/8]=0.21N in the limit m—oo. If we con-  ing odd order terms, provided that the highest order term of
sider the casem=2, we have ky.,=(N/marcsif\5/8]  V is of an even order.
=0.29(N. A close estimatiork,,=(N/m)arcsiriy8/y3—-4]

=0.288\ has been obtained in Rei[gO,l]}. _ ACKNOWLEDGMENTS
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