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We have previously presented evidence for the formation of breathers in doped alkali halides subjected to a
flash of UV light. Properties of these breathers, their phase space structure, robustness, decay, and propensity
for formation, are studied here. Under a wide range of parameters and interionic potentials they form two-
dimensional Kolmogorov-Arnold-Moser tori(less than generic) in phase space. Strobed views of these tori,
useful in quantization, are shown. All features support the thesis of breather formation as the explanation for
the luminescence decay anomaly that first motivated our breather proposal.
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I. INTRODUCTION

Breathers are known to exist in a number of natural sys-
tems [1–3] (although nomenclature varies). In a series of
studies of luminescence decay in doped alkali halides[4–11]
it was found that the data could be explained by postulating
extremely long relaxation times in the crystals. This factor-
109 slowdown was in turn attributed to the formation of
breathers in a lattice that is highly distorted by virtue of the
Jahn-Teller effect[12]. In the present article we undertake a
more general study of breathers in a nontranslationally in-
variant system, examining the effects of using different in-
teratomic potentials, different atomic species(in particular
different mass ratios for diatomic chains), and, finally, study-
ing the effects of breather decay on the surrounding lattice.
We confine attention to the zero-temperature case. An inter-
esting result is that, at least for the parameter values we
study, the phase space classical motion of the atoms lives on
a two-dimensional Kolmogorov-Arnold-Moser(KAM ) torus.
That is, beyond the already particular property of regular,
torus-confined motion, that torus only has two nonzero “ra-
dii,” i.e., nonzero action variables. These studies were moti-
vated by the results of Ref.[12], where the basic physical
conclusions were established. The present work significantly
firms up those conclusions, both physically and mathemati-
cally, by including material necessarily omitted in that brief
article and by using techniques not employed there. The most
illuminating of these is a stroboscopic method developed in
Ref. [13] for viewing the KAM torus.

The study of nonlinear localized(in phase space) excita-
tions has a long history, going back to Fermi, Pasta, and

Ulam [14] and Kolmogorov(see Ref.[15]). In recent work
(Refs. [16–28], as well as other sources to be cited in the
sequel), much of it directed toward condensed matter appli-
cations, a variety of names has been employed for the exci-
tations, including “soliton,” and the more specific terms,
“breather,” “nonlinear localized excitations,” and “intrinsic
localized mode.” We will use the term “breather.”

Reference[12] was based on the analysis of a particular
interionic interaction potential and drew its conclusions on
the presence of breathers indirectly, for example from short-
time approximate recurrences in the phonon excitation dis-
tribution. This followed the ideas in the classic Ref.[14].
While our recurrence was weaker than theirs in momentum
space, we found substantial localization in coordinate space.
We now have far more direct evidence of what is transpiring
dynamically in the form of images of KAM tori and subsets
of such tori, all of which confirm the original statements.
Beyond this, the range of potentials for which breathers oc-
cur has been extended, so that the simple polynomial ex-
ample of Ref. [12] is clearly not an exception; rather,
breather formation is robust and generic. As indicated, even
breathers that at first appeared to be quite messy, when ana-
lyzed stroboscopically turned out to live on two-dimensional
KAM tori. This feature was present even when substantially
more than the first two atoms on our chain(to be described
below) were involved in the breather. Clearly this dimension-
ality is not related to the number of significantly participating
atoms, and we now believe it to be a reflection of thedi-
atomicnature of the solid. The stroboscopic analysis reveals
loop subsets of the torus(easily understandable in an action-
angle context). These loops play a vital role in the quantiza-
tion of breathers[13], and the two-dimensionality augers
well for the ability to calculate quantum levels in these sys-
tems.

Another thesis of Ref.[12] concerned therelaxation of*Electronic address: mihokova@fzu.cz
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the breather. However significant the slowdown of crystal
relaxation, from picoseconds to milliseconds, it is neverthe-
less not a complete freezing of the lattice, so the gradual
changes that do occur need to be explained within the
breather context, a context that does not, in its pristine form,
allow relaxation, except perhaps through Arnold diffusion.
The lattice, however, is far from a pristine environment, and
as discussed in Ref.[12] a breakdown in the Born-
Oppenheimer adiabatic approximation can explain the ulti-
mate relaxation. These matters will be studied in detail be-
low.

A topic that did not come up in Ref.[12], but arises natu-
rally from an overview of our observations, is the tantalizing
issue of when one should expect anomalous decay. Some
doped alkali halides show this effect, some do not. A full
answer necessarily depends on subtleties of the Jahn-Teller
effect as well as consideration of the sizes of lattice ions and
impurities, but our breather work does add insight regarding
one significant aspect: there appears to be a systematic de-
pendence on the anion/cation mass ratio, and indeed this will
be shown to be a consequence of the breather phenomenon.

In Sec. II we go into detail on the physical background.
Section III describes how we go from the physical system to
our model Hamiltonian. In Sec. IV the appearance of breath-
ers in a variety of potentials is established and the dynamical
structures associated with them explored. Issues of direct
physical interest are covered in Secs. V and VI, the first
devoted to a systematic discussion of implications of
breather involvement on the appearance—or not—of a decay
anomaly, the second to the connection between dissipative
breather decay and the crystal relaxation pattern demanded
by our decay-fitting articles[9–11]. In a final section we give
an overview of our results.

II. PHYSICAL BACKGROUND

In Ref. [4] we reported anomalous decay in the slow-
emission component of isolated centers in alkali halide crys-
tals. For up to several milliseconds one sees much enhanced
and nonexponential decay, going over finally to an exponen-
tial. This pattern was observed for Tl+ and Pb2+ centers in
various alkali halide hosts, with both fcc[5–7] and bcc[8]
structure. The pressing question became: Is this intrinsic or is
it a consequence of crystal defects or other irregularities of
the luminescent center environment? Nonintrinsic explana-
tions were systematically excluded through improved crystal
preparation, sample annealing, impurity dilution, and other
cautionary measures described in Ref.[9] (in particular cases
other explanations may apply[29], but not for the full range
of observed phenomena).

Optical properties of isolated Tl or Pb centers in alkali
halide crystals can be described by considering the impurity
and its six nearest neighbors(in the fcc lattice) to be a qua-
simolecule[30,31]. When excited, the molecule distorts ac-
cording to the Jahn-Teller(JT) effect and its lowest excited
state consists of two levels—aradiative level, displaying ex-
ponential nanosecond decay, and ametastablelevel, with a
millisecond time scale. The latter is the level for which the
anomaly is observed. To explain the anomaly we proposed

that the lattice took a long time to yield to the strain, thereby
introducing a coupling between the idealized PbBr6 levels.
Systems in the metastable level then transited to the radiative
level from which they rapidly decayed. This assumption al-
lowed successful fitting of liquid He temperature KBr:Pb
data[9], provided that the ultimate relaxation of the lattice is
on the same time scale as that of the slow emission decay
(ms). The model was extended to the entire collection of Pb-
and Tl-doped alkali halides both at liquid He temperature
[10] and at higher temperatures[11], enabling us to give an
accounting of the entire range of phenomena, including the
gradual extinction of the anomaly as the crystal warms.

Having related the decay anomaly to slow-lattice relax-
ation, the next issue was the origin of the slowdown. One
candidate was tunneling, a phenomenon that often spans a
wide range of scales(i.e., for which large or small dimen-
sionless numbers can occur). Such barrier penetration could
be involved in the following way. Due to the JT deformation
the nearest neighbors of the Pb(or Tl) ion after excitation are
forced to significantly change their previous equilibrium po-
sitions. A rigid lattice could resist this push until random
thermal motions allowed a breakthrough. This sudden-
change hypothesis could be tested, because the temporal pat-
tern of decays is different from that associated with continu-
ous lattice deformation. It was found[11] that the data fits
were less satisfactory than those obtained from the exponen-
tial or power law relaxation function used[9–11] in most of
our work.

We came to the explanation that we now consider most
likely through modeling the dynamics of the lattice[12]. We
found that under classical dynamics the energy of the ex-
tended quasimolecule was confined to a small neighborhood
of the Pb-excitation-induced perturbation, a perturbation sig-
nificant enough to make nonlinear effects important. This
confinement in turn led to a slowdown in relaxation, in par-
ticular with the pattern needed to account for the experimen-
tal data.

III. MODEL

We focus on a particular substance, KBr:Pb2+. For this
crystal and this impurity the excitation-decay scenario begins
with a flash of UV light that excites the Pb and leads to a JT
symmetry-breaking distortion. The PbBr6 quasimolecule
goes from octahedral symmetry to a lower tetragonal sym-
metry, stretching[32] along one of its axes. We assume that
the Br immediately next to the Pb and along the axis of
deformation is under tremendous pressure to move away
from the Pb. We further assume that in studying the effect of
this force we can confine attention to the line of atoms on
this axis, effectively a chain, with the influence of the rest of
the crystal expressed through a “holding force.” We intro-
duce this substrate-defining force through a potential felt by
each ion on the chain; it defines the equilibrium position of
the ion in the crystal in theabsenceof the specific pressure
from the displaced Br. Note that the nonisotropic stresses
imply lesser deformation for off-axis atoms.

It should be clear that we do not look upon this as anab
initio calculation of the mechanism of slow crystal relax-
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ation, or even as a prediction that such relaxationmustoccur.
Rather we begin from the experimentally observed decay
anomalies and their systematic explanation for a range of
crystals, impurities, and temperatures, using the hypothesis
of slow crystal relaxation. Such relaxation,slowed by a fac-
tor of a billion, demands explanation. The breather occurring
in our model system provides such an explanation.

We assume an interionic potentialVsud with u the dis-
placement from the ion’s equilibrium position. For the simu-
lations reported in Ref.[12] we used Vsud=Mv0

2su2

+lu4d /2. A quadratic potential would not be adequate be-
cause the JT distortion is known to induce a displacement of
up to 15 or 20% of the ionic spacing[33]. The Hamiltonian
is

H = o
n=1

N H Pn
2

2M
+

rpn
2

2M
+ Vsqn − Qnd + VsQn − qn−1d

+ nfVsQnd + VsqndgJ . s1d

Q1 is the Br ion to the right of the Pb, followed byq1 (a K
ion), Q2, etc. TheQ particles have massM, theq’s, M / r. The
“holding force” arises from the potentials multiplyingn, so
thatn can be interpreted as an effective number of neighbors.

In some simulations(but not in this article) we usedṼsud
;VsÎu2+a2−ad for this holding force, witha the lattice
constant. For KBr,r <2. This Hamiltonian, describing only
Br and K, includes the effect of the highly distorted Pb wave
function through the nondynamic variableq0. By setting this
to specific positive values we can provide a push on the
entire chain, inducing intense oscillation, possible breather
formation, and possible wave propagation, depending on the
model parameters.

In Ref. [12] the system was solved numerically for the
indicated potential, using units such thatM =1 andv0=1. In
the present article we study a more general class of poten-
tials, introduced below. The significant phenomenon de-
scribed in Ref.[12] is that with l=1, r =2, and n=4 the
energy deposited by the nonzeroq0 [in practice,q0 was O(1)]
remained substantially confined to a small neighborhood
consisting of the first two ions. This property will concern us
for the other potentials as well.

Throughout this article we assume that the system is at
zero temperature. This means that except for the stresses
induced by the JT distortion the atoms are initially at rest. In
practice we have found that introducing a bit of noise(cor-
responding, say, to the actual experimental value of 4 K) into
the system doesnot destroy the breather—in fact it hardly
disturbs it. A related issue is our takingq0 to be a nondy-
namic quantity. Essentially this means ignoring the motion of
the expanded Pb atom, and is justified by the symmetry of
the Jahn-Teller distortion(expansion or contraction). In ef-
fect our work is a study of symmetric excitations of a chain
extending in both directions. Other excitations, induced per-
haps thermally, could be considered for the finite-
temperature case.

Interatomic potentials

There are a number of potentials that are popularly used
for the description of interatomic forces. We mostly use the
notation of Ref. [23], an article that also addresses
nonlinearity-induced localization[34].

Polynomial interatomic potential:

VPsxd = Mv0
2F1

2
x2 +

k

3
x3 +

l

2
x4G; s2d

M andv0 are taken to be 1 in our work.
Morse interatomic potential:

VMsxd = Pse−ax − 1d2. s3d

Born-Mayer-Coulomb interatomic potential:

VBMCsxd =
aMq2

d2 F−
d2

x + d
+ re−x/r + d − rG; s4d

aM is the Madelung constant,q is the effective charge,d
is the distance between adjacent particles, andr describes
the repulsion between atoms.
The Toda potential fVsxd=sa/bde−bx+ax−a/bg and

Lennard-Jones potential(Vsxd=ehfd/ sx+ddg12−2fd/ sx+ddg6

+1j) are also often used, but we did not examine their
breather-formation properties.

IV. THE BREATHER IN A VARIETY OF POTENTIALS

In this section we report lattice dynamics simulations us-
ing the potentials of Eqs.(2)–(4). Figure 1(a) presents the
results of a simulation using our original polynomial inter-
atomic potential, Eq.(2). The kinetic energy as a function of
time and atomic number provides a nice illustration of what
we call confinement. Together with the time dependence of
the atomic position coordinate(in the inset) it shows that the
energy is substantially confined within the first two atoms of
the chain. The energy deposited in the chain by the JT de-
formation does not propagate but becomes bound in vibra-
tions of the first atoms of the chain, i.e., the breather. This
lack of energy propagation lies behind the significant slow-
down in crystal relaxation and is the origin of the decay
anomaly, as discussed in Ref.[12] and elaborated below.

The frequency spectrum of the first four atoms, obtained
by fast Fourier transform(FFT) of Q1std, q1std, Q2std, q2std,
is displayed in Fig. 1(b). Because we use finite-interval FFT,
a sharp line in the true spectrum becomes widely spread, and
finding maxima in the FFT spectrum is not sufficient to ex-
tract true single frequencies. Takatsuka[35] has studied this
problem and for a single pure frequency the extraction pro-
cedure is straightforward(see Ref.[13] for the precise imple-
mentation of the method in our case). Later in studying the
Born-Mayer-Coulomb(BMC) potential we will discuss im-
provements. In any case, in Fig. 1(b), the spectrum shows
two dominant frequencies falling above and below the opti-
cal phonon band. These frequencies characterize the oscilla-
tions of the breather. The position of the phonon bands rela-
tive to the rest of the spectrum is marked by a sequence of
horizontal lines. It is important, with respect to the localiza-
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tion of the excitation, that the breather frequencies do indeed
fall outside the phonon bands. Note too that because our
model imposes a holding force to simulate atoms not in-
cluded in the model, important phonon modes are missing. In
particular, low frequency modes, allowed in a true crystal, do
not occur in the model. As a consequence, the acoustic pho-
non band does not start from zero frequency.

In Fig. 1(c) we show a projection of the KAM torus which
is the classical phase space orbit of the breather. Superim-
posed is a pair of loops, which result from a stroboscopic
image of the torus. As developed in Ref.[13], the ability to
produce such a figure takes advantage of the existence of a
transformation(à la KAM), albeit a singular and unknown
one, to action-angle variables such that the Hamiltonian is a
function of the action variables only. WithhJ1,u1, . . .j the
variables, the torus is given by the equationsuk=vkt+uk0
(with vk=]H /]Jk), k=1, . . . ,N andN the number of coordi-
nate degrees of freedom of the system. If one knows one of
the vk’s, then by viewing the full orbit only at multiples of
2p /vk a torus of one lower dimension is generated. These
are the loops of Fig. 1(c), one for each of the dominant
frequencies. The fact that these are clean, one-dimensional
loops implies that the KAM torus for our simulations is only
a two-dimensional structure[36]. This is of course consistent
with the presence of only two dominant frequencies outside
the phonon bands in the frequency spectrum although there
is no requirement that only two frequencies appear. The
original momenta and positions are nonlinear functions of
the action-angle variables, so that in analyzingQ1 and other
functions, one can certainly obtain beats and multiples of the
“true” v’s (even with only two nonzero action variables).

The addition of a relatively strong cubic term to the poly-
nomial interatomic potential Eq.(2) again provides strong
kinetic energy confinement[Fig. 2(a)]. The frequency spec-
trum [Fig. 2(b)] appears to be somewhat richer but a fre-
quency analysis show that again only two dominant frequen-
cies are present and all other intense frequencies are merely
resonances or beat frequencies of these two. The result is
confirmed by a view of the corresponding KAM torus with
two clean loops when viewed stroboscopically[Fig. 2(c)].

For simulations of chain dynamics with Morse and Born-
Mayer-Coulomb(BMC) interatomic potentials, Eqs.(3) and
(4), the parameters entering potentials were chosen in such a
way that the potentials are somewhat “softer” than the poly-
nomial potential. Nevertheless, as Figs. 3(a) and 4(a) show,
they too provide substantial kinetic energy confinement ex-
tended to the region of the first five to six atoms of the chain.
Frequency spectra in Figs. 3(b) and 4(b) appear to have sev-
eral dominant frequencies, but there still turn out to be only
two truly independent frequencies, corresponding to two de-
grees of freedom of the system represented by two-
dimensional KAM tori in multidimensional phase space
[Figs. 3(c), 4(c), and 4(d)].

The two-dimensional Morse and BMC tori eliminate one
argument that might have seemed reasonable to justify the
low KAM torus dimension in the other cases. For the quartic
polynomial potential, for most of the parameter values we
analyzed in detail, hardly more than two atoms were substan-
tially involved. Atoms number 3 and 4 do have a small per-
centage of the energy, but you might have argued that with

FIG. 1. Quartic polynomial interatomic potential.(a) Kinetic
energy of the system as a function of time and atom number. The
inset shows the positions of the atoms vs time.(b) Fourier trans-
forms (intensity) of the functions fQ1std ,q1std ,Q2std ,q2stdg in
curves 1 – 4. Thecurves corresponding to successive atoms are
vertically shifted(downward by 4) for better display. The superim-
posed horizontal lines indicate where the phonon frequency bands
are. Arrows point to the principal frequencies of the spectrum out-
side the phonon bands. All other intense frequencies are resonances
or beat frequencies of these two.(c) The KAM torus, projected on
a plane within the four-dimensional spacehQ1,P1,q1,p1j. Each fig-
ure contains 100 000 points, with 100 points taken per system time
unit. The abscissa is position and the ordinate momentum in the
units described in the Appendix. Loops in the torus represent pro-
jections on theQ1-P1 and q1-p1 planes of the stroboscopically
viewed KAM torus, substantiating the assertion that the torus is two
dimensional(only has two significant nonzero radii). The param-
eters used in the simulation areN=20, q0=1, r =2, n=4, andl=1.
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most of the energy localized on only two coordinates the
KAM torus would be similarly confined in phase space. But
for BMC and Morse, four or five atoms move appreciably.

Determination of the dominant frequencies of the breather
with high accuracy(five digits) is the most important issue
for establishing the number of degrees of freedom of the
breather, or the dimension of the KAM torus. For the BMC
potential we needed to apply a special “cleaning mechanism”

to the frequency spectrum. Two problems were at work. First
there is a finite size effect: although most energy(due to
nonzeroq0) remains in the breather, a small amount is typi-
cally radiated away. When this bounces off the far boundary
(at the 40th atom in our simulations) it will return to disturb
the breather. This reflection(which is artificial anyway) dam-
ages the breather in no significant way(the breather is ro-
bust, as observed earlier in connection with noise), but the
perturbation does disturb the delicate estimates of frequency
that are necessary for stroboscopic analysis.

FIG. 2. Polynomial interatomic potential, including a cubic
term. (a), (b), and (c) as in Fig. 1. Parameters used in the simula-
tion: N=20, q0=1, r =2, n=4, l=1, andk=−1.

FIG. 3. Morse interatomic potential.(a), (b), and(c) as in Fig. 1.
Parameters used in the simulation:N=20, q0=1, r =2, n=4, P=4,
anda=0.5.
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Second, and more fundamental, is that quite a few addi-
tional frequencies show up in the BMC spectrum. As it later
turned out this wasnot because the dimension of the torus
was greater than 2, but(we believe) is the result of the trans-
formation from action-angle variables being more nonlinear
than for the other cases. The first problem was dealt with by
putting a damping force on the last atoms of the chain so that
the energy that reached the boundary was dissipated and did
not reflect. This does clean up the spectrum a bit. As indi-
cated, our determination of frequency used a method of
Takatsuka[35] (as implemented in Ref.[13]). In fact Ref.
[35] is particularly devoted to determining frequencies when
two frequencies are close to one another. The BMC spectrum
was more complicated yet, with a background of what ap-
pear to be many frequencies. We dealt with this by using the
single frequency method of Ref.[35] and then using proper-
ties of classical mechanics to improve upon it. A strobo-
scopic view with the raw initially derived frequency gives a
rather fragmented image, but by searching nearby frequency
values lovely loops emerged, and in fact onlytwo of them
(for the two principal raw frequencies). In Ref. [13] the
sharpness of the strobed loops served as a check on fre-
quency; now it becomes a yet finer tool for ascertaining the
true underlying classical values.

Study of the chain dynamics with the foregoing collection
of interatomic potentials confirms that the confinement phe-
nomenon, which in our situation means breather formation,
is not a property of a specific choice of interatomic potential.
Rather it is a characteristic feature of the dynamics.

V. PREDICTIONS OF THE MODEL WITH RESPECT TO
ANOMALIES IN A RANGE OF SUBSTANCES

The decay anomaly has been observed in a variety of
doped alkali halides. Our experimental work reported in Ref.
[10] shows systematic behavior of the anomaly when the
host lattice is changed. Namely, for potassium halides doped
either with Tl+ or Pb2+ the anomaly grows(the nonexponen-
tial part of the decay is steeper and/or survives to longer
times) with increasing size and mass of the lattice anion.
This occurs in the sequence of lattices KCl→KBr→KI. For
the KCl lattice the anomaly is smallsTl+d or nonexistent
sPb2+d; for KBr it is big, for the KI lattice very big. The
objective of our decay model was the phenomenological de-
scription of these data based on the assumption of slow lat-
tice relaxation, an assumption whose detailed implementa-
tion is expressed through a number of parameters that

FIG. 4. Born-Mayer-Coulomb potential.(a), (b), and(c) as in Fig. 1.(d) The KAM torus projected on a different plane. Parameters used
in the simulation:N=20, q0=1, r =2, n=4, aMq2/d=10, r=0.3, andd=3.3.
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entered the theory. Experimental data in Ref.[10] were suc-
cessfully fit and the parameters of the model showed system-
atic trends. Our preliminary experimental results with
Pb2+-doped NaBr and RbBr crystals show that similar behav-
ior is observed in the sequence of lattices RbBr→KBr
→NaBr where the lattice cation is successively made smaller
and lighter. Namely, for the RbBr crystal a weak anomaly is
observed while there is a significant anomaly for Pb-doped
KBr and NaBr crystals. To summarize, a quantity that cer-
tainly affects the character of the decay anomaly is,r, the
ratio of the mass of the lattice anion to that of the lattice
cation. In the sequence of potassium halidessKCl→KBr
→KI d the corresponding mass ratio changes asr ,1 to r
,2 to r ,3.3. In the sequence of alkali bromidessRbBr
→KBr→NaBrd the mass ratio goes fromr ,1 to r ,2 to
r ,4. Systematically comparing the anion-cation mass ratio
with the character of the decay anomaly one sees that from
the experimental point of view a very slight anomaly is
observed—or none at all—for mass ratios close to 1, while
for ratios of 2 or more the anomaly is large. How is this
observation consistent with our breather model?

To study this we used our standard polynomial potential,
that which produced our original breather. We performed
lattice-dynamics simulations changing the atomic mass ratio
entering the chain model. It turns that different mass ratios
can be more or less favorable for forming the breather. The
simulations were made for a chain of 40 atoms. As a measure
of how “good” the breather is, which is to say, how good is
the confinement of the energy to the region of the impurity,
we calculated a kinetic energy-weighted position. That is, let
k be the atom number,k=1 for the immediate neighbor of
the impurity, and counting outward. LetwKEskd be the aver-
age kinetic energy of thekth atom. Then

kKE ; kkl =

o
k

k wKEskd

o
k

wKEskd
. s5d

The smaller this quantity is, the more the energy is concen-
trated in the breather, and therefore the bigger the expected
decay anomaly. We chose this measure of confinement be-
cause of the usefulness of the kinetic energy plot[see part(a)
of Figs. 1–4] for immediate recognition of the confinement
phenomenon. The result of a systematic study ofkKE as a
function of r is shown in Fig. 5. Note that for the parameters
used, asr →1, there is a kind of phase transition, namely
kKE→`, where “̀ ” for this finite lattice means halfway to
the boundary, i.e., a delocalized excitation. We have not de-
termined whether there is any sharp transition in a phase
transition sense; this also seems irrelevant for the physical
system at hand, because of the ultimate need to quantize.

In any case, a mass ratio higher than 2 is favorable for
forming a breather and most of the kinetic energy is trapped
in first atoms of the chain. For mass ratios near one most of
kinetic energy travels away. This is completely and satisfy-
ingly consistentwith the experimental observations.

Additional support for the breather mechanism comes
from studies of thesamesubstance, undergoing JT deforma-

tion alongdifferentaxes. This will be reported in detail else-
where, but we mention at this point that when the JT axis
does not provide a chain of nearest neighbors, there is essen-
tially no anomaly. It is known that the quasimolecule associ-
ated with an isolated impurity and its nearest neighbors in
alkali halide crystals under excitation undergoes JT distortion
either along tetragonal or trigonal axes. Some substances
show two emission bands: one is called theAT emission and
is related to a tetragonal distortion, the other,AX emission, is
related to a trigonal distortion. With respect to potential
breather formation these distortions are quite different. In
one case(AT, tetragonal) there is a line of nearest-neighbor
atoms, allowing the physical picture described throughout
this article. In the other(AX, trigonal) direction there is no
chain of nearest neighbor atoms. Experimentally we have
observed both emissions for KBr:Tl and NaBr:Pb crystals.
In both crystals the anomaly was observed only for the slow
component of theAT emission, whileAX emission decay
showed no anomaly. Decay anomalies previously reported by
us(including a large variety of substances) havealwaysbeen
associated with theAT band[37].

VI. BREATHER DECAY AND LATTICE RELAXATION

Breathers are a two-edged sword: they can indeed inhibit
lattice relaxation, but on the face of it, it would seem they
should stop the process, not slow it. This is because once
formed, they should last forever. In principle, they can
morph into other excitations by the process of Arnold diffu-
sion (although it has been suggested[38] that the number of
effectivedegrees of freedom here precludes Arnold diffu-
sion). However, the time scale for that process is a delicate
function of the dynamical parameters and should be subject
to significant variation from substance to substance. Instead
we find crystal relaxation(and presumably breather decay)
always to be on the same time scale as that of the metastable
level, too much of a coincidence.

FIG. 5. Kinetic energy-weighted position(in atomic spacing
units) as a function of anion-cation mass ratio. For details see the
text. The parameters used in the simulation areN=20, q0=0.5, n
=4, andl=0.25.
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For this reason we considered whether the mechanism of
metastable-level decay could operate as well on the breather.
Now the decay of theA1u metastable level[39] to the A1g
ground state in say, KBr:Pb, is electromagnetically forbid-
den. This leaves vibronic interactions as a decay mechanism,
and it is believed that decay occurs via a mode possessing
T1g symmetry[40,41]. In practice this means that ions in the
neighborhood of the quasimolecule interact with, and carry
energy away from, the quasimolecule wave function. We
postulate that the Br at the head of our chain, which is in fact
part of the quasimolecule, interacts dissipatively(violating
the assumptions of the Born-Oppenheimer approximation)
with the electronic wave function, allowing energy to pass
via this nonclassical route to other—nonchain—degrees of
freedom. As remarked in Ref.[12] the similarity of the ma-
trix elements for the two processes brings them to the same
time scale. The way we modeled this additional interaction
classically was to add a dissipative force acting on the dy-
namical variableQ1. We took this to have the simple form

−gQ̇1.
Physically, the value ofg should be on the order of 10−9,

taking one from the natural picosecond scale of ionic vibra-
tions (in our unitsvDebye,v0=1) to that of metastable de-
cay, milliseconds. By the way, this also implies that the
Born-Oppenheimer approximation, which underlies our use
of effective interatomic potentials, is perfectly valid on its
intended scalefOs10−3dg. With the dissipative term the mo-
tion of Q1 continues its usual oscillations, with a slow, sys-
tematic movement of its center of motion. It is this move-
ment that represents the crystal relaxation. For this reason, to
see the effect ofg we had to average the motion. This was
done by finding the values of successive maxima and minima
of Q1 and averaging in pairs. Small oscillatory motion(still
on the ps scale) remained and three or four more successive-
pair averages were performed. In Fig. 6 we show the posi-
tions of the oscillation extremes as well as the result of a few
averages. Since the scale of oscillation greatly exceeds the
gradual movement ofQ1’s center, a separate plot of the cen-
tral line in Fig. 6 is shown in Fig. 7. Superimposed on the
points is a fit by a function of the formr0+Drf1

−exps−Gtdg, with parametersr0, Dr andG. This is precisely
the form we used in Ref.[9] and subsequent articles for the
gradual relaxation of the effective crystal coordinates. The
value ofr0+Dr was not varied(i.e., it was not a free param-
eter, and was taken equal to the equilibrium value ofQ1 in
the presence of nonzeroq0), but G and r0 were adjusted to
minimize mean square error. In the simulationg was taken of
order 10−3, since running the simulation for 109 time units
was out of the question, and in any case was irrelevant for
establishing the matter of principle. The value ofG resulting
from the fit was typically(for a variety of other run param-
eters) about 30–40% ofg, in line with simple dynamical
models of dissipation.

VII. DISCUSSION

For doped alkali halides, the existence of breather modes
provides an answer to a long-standing puzzle that arose in
the decay of luminescence, where such crystals were illumi-
nated with a UV flash and the “slow” component emission
took place much more rapidly than expected, moreover, with
a decidedly nonexponential temporal pattern. We first made
the case for this in Ref.[12], and in the present article have
marshalled additional evidence in support. In Ref.[12] we
found that breathers formed when the interatomic potential
was a quartic. In the present paper breather formation occurs
when the potential has cubic terms, when the potential has
the Morse form[Eq. (3)] and when it has the Born-Mayer-
Coulomb form[Eq. (4)]. From this we conclude that breather
formation is a robust feature. A different perspective on this
robustness arises when random noise intrudes. Although we
have here focused on zero-temperature phenomena, we men-
tion that the introduction of noisy initial conditions at about
the level of 4 K (at which temperature the experiments of
Refs. 9 and 10 took place) hardly affects the essential
breather features.

FIG. 6. Relaxation ofQ1. Points represent maxima and minima
of Q1’s oscillations. The curve in the middle is obtained by
averaging.

FIG. 7. Relaxation of the average ofQ1. Points represent aver-
aged values ofQ1 (detail of the curve in Fig. 6). The solid curve is
a fit to the data by the functionr0+Drf1−exps−Gtdg. Parameters
used in the simulation are as in Fig. 1; the damping imposed on the
first atom isg=0.005, and the lattice relaxation resulting from the
fit is G=0.0019.
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We have systematically studied the breathers associated
with the various nonlinear, but nevertheless quite different,
potentials, and have found that their similarities went beyond
the fact of confinement(by which we mean that the vast
majority of the energy of the external blow does not radiate
away). A compelling demonstration of breather formation is
the mapping of the KAM torus, which is the orbit in phase
space of the classical motion. We used a stroboscopic
method of viewing this torus(developed for quantization
purposes[13]) which allowed the further observation that
there were only two nonzero radii(or action variables) for
the torus. The clean loops, by the way, also demonstrate that
the torus is hollow. From the two-dimensional projections
alone this is not evident, and a gradual extinction of the
excitation could be taking place, but apparently this is not the
case.

This observation has further implications for the semiclas-
sical quantization process; in particular, it means an easier
task. The main difficulty in that quantization(as imple-
mented in Ref.[13]) is the evaluation of action integrals,
whose (numerical) difficulty would increase with an addi-
tional torus dimension.

A proposthe two-frequency observation, there is interest-
ing work by Flach, Willis, and Olbrich[42] in which insta-
bilities in localized excitations are observed when more than
one frequency is present(basically because of the overlap of
sums of frequency multiples with phonon frequencies). On
the time scale of our(numerical) observations this effect is
not seen, but our integrations do not extend as far as theirs.
With respect to our fundamental physical phenomenon, even
if one breather mode disappeared we would still expect slow
crystal relaxation. This is because for what seem the physical
conditions for our experiments, the actual breather is domi-
nated (on a scale of about 5 to 1) by a single one of the
breather modes[13], and it alone could provide the relax-
ation inhibition.

Other physically significant aspects of the breather were
checked. Systematic physical observations suggest that alkali
halides for which the anion-cation mass ratio is close to 1
have little or no anomaly in their luminescence decay. We
find here that breather formation exhibits a similar effect: as
this ratio approaches unity the breather gets more and more
delocalized, and for appropriate parameters disappears com-
pletely.

An important adjunct to our breather work is its specific
effect on lattice relaxation. A study of this effect was offered

here (improving on the demonstration in Ref.[12]) and
shows how breather relaxation can provide precisely the pat-
tern of lattice movement used in our data fitting schemes
[9–11].

ACKNOWLEDGMENTS

We thank S. Flach, J. Fleischer, V. Fleurov, B. Gaveau,
and M. Nikl for useful discussions and suggestions. This
work was supported by NSF Grant Nos. PHY 97 21459 and
PHY 00 99471 and by Czech Grants No. ME587 and ASCR
No. A1010210.

APPENDIX: UNITS AND PARAMETERS

The units used in our simulations are as follows.
(a) Angstroms for distance.
(b) The mass of Br is unity and the ratio “r” is 2,

which is the approximate Br to K mass ratio. The factor “M”
in Vsud [see its definition, following Eq.(1)] is thus unity.

(c) The Debye temperature of KBr is taken to be
173 K.

(d) The time unit is 1/v0, with v0 the frequency in
Vsud. Thusv0 also becomes unity. The relation betweenv0

and vDebye was discussed in Ref.[13] and in the present
notation is given byv0=vDebyeÎ2s1+1/rd / fs6p2d1/3g.

In these units" is approximately 0.007 897, one unit of
energy is about 0.839 eV and the time unit close to 0.1 ps.
Note that these values are sensitive to the way in whichv0
was fixed. If one instead sets its value by matching the bulk
speed of sound in KBr, the time unit increases by a factor
1.7, with a corresponding decrease in the energy scale.

For the various nonlinearity parameters,l, etc., we took
values in the same range that other authors have used[16].
The push from the expanded quasimolecule is expressed
through the nondynamicq0 which was taken to be 1. With
this value the equilibrium position of the Br is displaced by
about 8% of the ion separation distance and the instanta-
neous push somewhat more.

The “holding” parametern was taken to be 4, reflecting
the number of off-chain nearest neighbors each ion has.

For the runs reported in this article we used 40 ions, al-
though in many previous numerical integrations other num-
bers were used, with little change unless there were fewer
than 10. Similar remarks apply to most of the other param-
eters.
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