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Two-dimensional dispersion-managed light bullets in Kerr media
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We propose a scheme for stabilizing spatiotemporal soli{@¥%S9 in media with cubic self-focusing
nonlinearity and “dispersion management,” i.e., a layered structure inducing periodically alternating normal
and anomalous group-velocity dispersion. We develop a variational approximation for the STS, and verify
results by direct simulations. A stability region for the two-dimensig2al) STS (corresponding to a planar
waveguide is identified. At the borders between this region and that of decay of the solitons, a more sophis-
ticated stable object, in the form of a periodically oscillating bound state of two subpulses, is also found. In the
3D case(bulk medium, all the spatiotemporal pulses spread out or collapse.
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I. INTRODUCTION alternative settings where “light bullets” may be expected. A

Spatiotemporal solitongSTSS in optics, dubbed “light possibiljsty to support s_table STS in the case of the ordinary
bullets” [1], have attracted a great deal of attention, as they<eIT (x'*) nonlinearity is to use a layered structure that does
are promising objects for both fundamenfal-6] and ap- not affect the nonlinearityin fact, it is very difficult to invert
plied [7,8] research. While stationary solutions for STSs inthe sign of the Kerr coefficientbut rather gives rise to pe-
the corresponding mathematical models, such as the multidiiodic reversal of the sign of local group-velocity dispersion
mensional cubic nonlinear Schroding®LS) equation, can (GVD). This is a common setting in fiber optics, known as
be easily found1], the real challenge is posed by their sta- “dispersion managementDM), see, e.g., Ref415,16; in
bility. In particular, all the solitons in the spatially uniform particular, the world’s first commercial fiber optic telecom-
NLS (or x'¥) model are unstable because of the occurrencenunication link operating on solitons uses the DM technique
collapse[9]. A way around this problem is the use of a [17]. As a straightforward multidimensional generalization,
weaker nonlinearity, such as saturapig cubic-quintic[10], one can consider a layered medigbulk or planar wave-
quadratic(y?) [2—6], or that induced by the self-induced guide of the same type, uniform in the transverse direc-
transparencyl1]. tion(s). The main result of this work is that STS atablein

To date, neither three-dimension@D) STSs in a bulk this setting in the 2Qplanay case, but they cannot be stabi-
medium nor their 2D counterparts in a planar waveguiddized in the 3D(bulk) case. In the 2D case, in addition to the
have been observed in experiment. The only experimentairdinary stable single-peaked solitons, we will also demon-
finding reported thus far was in the form of stable quasi-2Dstrate the existence of stable double-peaked oscillatory states,
solitons in 3D crystals with thg® nonlinearity(i.e., solitons ~ which are bound states of two subpulses generated by the
which fail to confine themselves in one transversal direcsplitting of an initial pulse.
tion). In fact, even this soliton, if created farther from the  The model outlined above is based on the normalized
threshold, may be subject to a different instability, viz., equation describing the evolution of the local amplitudef
modulational instability developing along its uniform direc- the electromagnetic wave propagating alangn suitably
tion [12]. On the other hand, it was predict¢s] that a 2D  defined dimensionless unijts
spatial cylindrical soliton can be quite effectively stabilized )
in a bulk layered medium, with opposite signs o{‘ the Kerr iu, + (1/2)[V3 u+D(2u,] +[u?u=0, (1)
coefficient in adje_lcent Iayers,_ corresp(_)n(_jing to self-focusingyhere the diffraction operatcﬁ‘i acts on the transverse co-
and self-defocusing, respectively. A similar effect was thenyginates) x andy (in the 3D casg 7 is the ordinary reduced

predicted for what may be regarded as 2D STSs in Boseemporal variable, an®(z) is the same local GVD coeffi-
Einstein condensatg®8ECs, with the sign in front of the jent as in the usual DM modef45,16

cubic nonlinear term subject to periodic sinusoidal modula-

tion in time via the Feshbach resonarid&]. However, no D,>0, O<z<L,,

stable 3D s_oliton could be found in eit.her. sgtt'(rm]ptical or D(2) = D.<0, L,<z<L,+L.=L,

BEC) of this type. As to they® media, it is relevant to

mention that stable STSs can be readily predicted in a mewhich repeats periodically with the peridd Note that Eq.

dium of “tandem” type, composed of alternating linear and(1) has a manifest property of Galilean invariance: if

guadratically nonlinear layerd.4]. Ug(X,z,7) is a solution, a two-parametric family of “boosted”
Serious difficulties encountered in the experimental(moving) solutions can be generated from it in the following

search for STS i@ optical crystals suggest looking for form:

(2
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2
ux,z, 7 = exp{i (qx— oT- %qzz— %wzf D(z)dz)} u= A(z)exp{iq&(z) - %{\l\lzx_(z) + %}
Xuo(x -qzz, 7+ wJ D(z)dz) , (3) + iE[b(Z)X2 +B(2) TZ]} : ©)

whereA and ¢ are the amplitude and phase of the solitdh,

and T are its transverse and temporal widiftke latter is

bo?.ztsgést the model into a normalized form. we set byrelated to the abovementioned full width at half maximum as
' " “Tfollows: Tepywum=2vIn 2T), andb and B are the spatial and

means of obvious rescaling®, =1,L. =2. The ratiol /L. temporal chirps. The Lagrangian from which the 2D version
remains an irreducible parameter, but it is well known that,Of Eq. (2) is derived is L=(1/2)[" [i(ug’ —uiu)—|u,?

in the usual DM mode({for optical fiber$, the results do not . :
depend on this ratio, nor separately on the soliton’s temporaTD|“T|2+,|u|4]quT' Substitution of the ansai) into the
width Trywpw, but rather on the comt;ination known as the -@grangian yields an effective Lagrangian

DM strength[15], S=(D,L,+D_L_)/Tgyum- Therefore, in — A2 W2 — B'T2 W2 — T2+ A2
this paper we report results obtained far=L_=1 (we have (4L = AWTLAG" — 'WE = BT2 W2 - DT %+ A
checked that the results are indeed very close for other values - b°W2 - D(2) 8°T], (6)
of L,/L_). Then, the only remaining free parameter of the
DM map (2) is the path-average dispersi@PAD)

whereq and w are two arbitrary real parametef$alilean

where the prime stands fal/dz
The variational equatioalL/64=0, applied to the expres-
sion (6), yields the energy-conservation relatidi/dz=0,

D=(D,L,+D_L)/L=(1+D.)/2, (4 where
with regard toD,=1,L,=1. The remaining parameté_ E=A°WT. (7)
can be expressed in terms Bf as it follows from Eq.(4),  gquation(7) is used to eliminaté? in favor of the constant
D_=2D-1. E. Then, the term~¢’ in the Lagrangian may be dropped,

It is relevant to mention that a 2D model somewhat simi-and it takes the form
lar to the one defined above was recently introduced in Ref.
[18]; it differs by sinusoidal modulation dD(z), instead of Aletr _ _ b'W2 - B8'T2 - 1 _b@ + E b2WR
the piecewise constant mode adopted in &).and, most aE B W2 T2 WT
importantly, by the fact thatin the present notatignit has P
the same modulated coefficieBt(z) multiplying both the -D@AT (8)
GVD termu,; and the diffraction one. In fact, the model  varying the latter expression with respect\tT and b,3
introduced in Ref[18] was motivated by a Continuum I|m|t y|e|ds the fo”owing System Of equations:
of some discrete models; in the present context, it would be

quite difficult to introduce the periodic reversal of the sign of b=W/W, B=D7T/T, (9
the transverse diffraction. From the standpoint of the model

proper, there is a great difference between &. which is 1 E

strongly anisotropic in the planéx,7), and the isotropic " :W_M’ (10

equation introduced in Ref18].

The rest of the paper is organized as follows. In Sec. Il we
report results for the 2D case. By means of both the varia- T D_’T, _ D_2 _ DE
tional approximation(VA) and direct simulations, we dem- D T 2WT
onstrate the existence of stable 2D STSs; stable double- . i ) ,
peaked oscillatory states are also reported in this section. The Ve note in passing th{:\t, asis weII' kno\®], in the case
3D case is considered in Sec. Ill, with the opposite®f D=const>0, fixed-point(FP) solutions to the VA equa-
conclusion—no stable solitons can be found in that ¢&se tions (9)«11) are degenerate: the FP exists at a single value

which we propose a simple explanatiorSection Ill con-  Of the energye=2\D and, at this special value &, there is
cludes the paper. a family of FPs withT=vVDW (W is arbitrary. These results

exactly correspond to the existence of a special stationary
soliton solution to the 2D isotropic NLS equatioithe
[l. THE TWO-DIMENSIONAL CASE Townes soliton[9]), which exists at a single value of the
energy, but with arbitrary width. All the abovementioned FPs
are stable against small perturbations in the linear approxi-
In the case of the planar-waveguide mod&],in Eq.(1)  mation, but feature a slowlglinearly, rather than exponen-
is replaced by?/dx%. First, we aim to apply the variational tially) growing nonlinear instability.

11

A. Variational approximation

approximation to a search for STS solutigagreview of this In the case of the piecewise constant modulation corre-
method can be found in Reff16]). To this end, we adopt a sponding to Eq(2), the variablesV, W', T, and 8 at junc-
straightforward Gaussian ansatz tions between the segments wiii=D. must be continuous.
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FIG. 1. The energyupper curvg and peak powefsquared am-
plitude) at the beginning of each cyc{ewer curvg vs z, as found
from direct simulations of the 2D equatidil), starting with the X x
Gaussian puls€13). Continuous lines in two insets display the
evolution of the amplitude through a few cycles at early and later FIG. 2. Evolution the intensity distribution in the 2D soliton
stages of the propagation. For comparison, the dotted lines show tf{Brough the 40th cycle. Snapshots are taken at points corresponding
same as found from the variational approximation. The system pal© the start, 1/4, 1/2, and 3/4 of the cycle. Parameters are the same
rameters ar®,=-D_=1,L,=L_=1, and the parameters of the ini- as in Fig. 1.
tial pulse areTy=1.35,Wy=1.35,E=1, andB,=-1.85.

as a “product” of the temporal DM soliton in thedirection,
and ordinary spatial soliton localized in(see Ref[3]). We
stress that no leakage from the established soliton is ob-
served, up to the accuracy of the numerical simulations. This
implies that a small amount of radiation, emitted from the
(T)pep. = (D+/D)(T)pep - (12)  bulse when it passes the normal-dispersion slice, is absorbed
* B back into it in the slice with anomalous dispersion.
In some other cases, a periodic evolution occurs in a dras-
B. Numerical results tically different fashion: the initial pulse splits into two,

. L . which, however, do not fully separate, but rather form an
We simulated both the variational equatiq®%—11), us- ; ; ;

. ; oscillatory bound state, examples of which are shown in
ing the Runge-Kutta method, and the underlying NLS equas ! y bou xamp wh wn

tion(1). In the latter case, the initial state was taken as per thgg;’ e4sglri]tccj)r? mlntht Qio(i?nsifog E:r%gli égi;?aztl”vvari?edliitsthae
ansatz(5), with zero spatial chirp(obviously, a point at '

which it vanishes can always be found, so this choice does 3 . ; . :
not imply any special restriction L

U = Agexp{— (L/2)[(IWo)? + (7 To)* =i Bo™ T} (13) r

Numerical results are displayed in Figs. 1-7.

Figure 1 shows the evolution of the soliton’s energy and
peak power. Very slow decay of energy is due to transient,
emission of radiation from the pulse adjusting itself to the & 0
solitonic shape, the radiation being absorbed at boundaries ¢
the simulation domain. The insets in Fig. 1 demonstrate how -
accurately the VA predicts results of the simulations. Further,
Fig. 2 shows a sequence of the soliton’s intensity distribu-
tions through ong40th) cycle of the evolution. The latter L
picture is very stable, remaining identically the sather 3 , | , . , .
instance at the 80th cycle, thus the 2D soliton is truly stable 0 0.5 1 L5
in the DM model. We stress that the actual shape of the pulse
remains very close to a Gaussian, which helps to understand ;5 3 A cycle of the soliton’s evolution in thel’,T) plane
why the VA provides for good accuracy in this case. Theyceording to the variational approximation, in the same case as
evolution of the temporal widtfT(z) for the same case, as ghown in Figs. 1 and 2. The jump i occurs at the junction
predicted by the VA, is displayed in Fig. 3. On the contrary,petweenL, and L_, according to Eq(12). Unlike the temporal
the spatial widthW(z) remains nearly constant, suggestingwidth T, its spatial counterpaiV remains almost constant within
that the stable 2D soliton may be construed, in loose termshe cycle.

As it follows from Eg. (9), the continuity of the temporal
chirp B(z) implies a jump ofT’” when passing frond_ to D,,
or vice versa:

,_
I
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FIG. 4. The same as in Fig. 2, but for different parameters of the 0 '1 ." 16

input pulse:Ty=1, Wo=1, E=2, andB,=0. In this case, although E
the variational approximation predicts a stable single-peaked solu-
tion, the pulse splits up into an oscillatory bound state of two FIG. 6. The stability diagram in the plari&, W) of the energy
subpulses. and width of the initial pulse, witW,=Ty and8,=0. Predictions of
the variational approximation are marked as follows: the stability

case of Fig. 5, VA predicts that the Gaussian-shaped solitofggion is unshaded, while ones where the pulse is unstable due to
cannot self-trap(the initial width was the same in both spreading out or collap_se are shaded, respectiyely, gray ar_1d dark
cases The actual behavior is similar in both cases: an initial9"ay- The numbered points are those at which direct simulations of
Gaussian with zero chirp splits into two subpulses withEd- (1) were performed, to verify the predictions, as explained in
chirps of opposite signs. After the establishment of stabldne text
oscillations, a recurring pattern is observed: while passin
the layer withD=D,, the subpulses approach each other an
nearly merge; then, passing to the layer widlxD_, they
separate again and revert to the positions that they occupi
at the beginning of the cycle.

The VA makes wrong predictions in these cases, as th
simple Gaussian ansat) is obviously irrelevant to describe

ghe split pulses. It is relevant to mention that the splitting of
an initial Gaussian is one of possible generic outcomes of the
eed/olution in the ordinary1D) DM model[16,2Q. However,

a cardinal difference is that no stable oscillatory bound states
Eesulting from the splitting have been reported in the 1D

2_
1
1i4 cycle

7 8
Bo -11

9 10, (11
-4 -

T T T
0.1 1 10

E
FIG. 5. The same as in Fig. 2, but f@;=0. In this case, the

variational approximation predicts single pulse decay, but, in fact, it FIG. 7. The stability diagram in the plartg, 3y) of the energy
evolves into two stable oscillatory bound states, as in the case aind temporal chirp of the initial pulse. Shading has the same mean-
Fig. 4. ing as in Fig. 6. The numbered points are explained in the text.
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model. In this connection, it may be relevant to mention that
a drastic difference of the splitting of 1@empora) pulses

and their spatiotemporal counterparts was observed in a re-
cent experimental worf22], which was dealing with the
propagation of ultrashort spatiotemporal pulses in water. In
this work, it was found that, while the pulse suffers on-axis
splitting, its spatially integrated temporal profile remaims

split.

The results outlined above are summarized in the form of < 2
stability diagrams for the 2D solitons, which are displayed in §°
Figs. 6 and 7. The diagrams are generated on the basis of
simulations of the variational equatio®)—(11), which are
verified by direct simulations of Eq1) at sampling points
indicated in the diagrams by digits. At points 1, 2, 3, 6, 9,
and 10 the behavior predicted by the VA is confirmed by the
simulations. At points 7 and 8, a periodic split-pulse evolu-
tion is observed. It is similar to that shown above in Figs. 4 0.2
and 5. Note that this behavior, which may be interpreted as T T T

20

an intermediate case between the stability and decay of a 9.1 E 1 19
single-peaked soliton, is indeed observed close to VA-
predicted borders between stable and decaying solitons. FIG. 8. Theinstability diagram for the solitons in théE, W)

At point 4, which is close to the VA-predicted border parameter plane, as predicted by the variational approximation in
between decay and collapse, direct simulations initially demthe 3D case. Shading has the same meaning as in Fig. 6.
onstrate strong emission of radiation and broadening of the
pulse, which eventually cease, being changed by seemingly=const>0, the FP of Eqgs(15) and (16), which is W
chaotic oscillations of the localized pulse. There is no tan=g/(2\2D), T=E/(2,2), is subject to a lineaexponentially
gible energy loss. At point 5, essentially the same chaotigrowing) instability, on the contrary to the weak nonlinear
regime sets in, which is preceded, however, by a selfinstapility of the degenerate family of the FPs in the 2D case,
compression of the initial pulse, rather than by broadeningsee above. This difference corresponds to the fact that the 3D
LaStIy, at pOint 11, a Stl’ong transient emission of radiation 'SNLS equation gives rise to strong Co||apse, unlike the weak
observed, similar to point 4, but the pulse keeps its Gaussiagpllapse in the 2D NLS equatidi9)].
shape all the time, and regular periodic oscillations of the Systematic simulations of Eqél5) and (16) havenever
soliton finally set in. It may happen that, at an extremely longproduced a stable regime. Instead, they always give rise to
time scale, unaccessible for current simulations, chaotically;ouapse or decay of any initial pulse, as is shown in some
oscillating solitons(observed at points 4 and) gradually  detail in the “instability diagram,” which is displayed in Fig.
relax towards a pel’iodically OSCiIlating SOliton, thrOUgh verysg (See F|gs 6 and 7 for the 2D Casm Comp|ete agreement
weak continuing radiation loss. with this prediction, direct simulations of the full 3D equa-

Il THE THREE-DIMENSIONAL CASE ti(_)n (1) could generate only either (_)f these two outcomes,
without revealing any stable solitonlike state. We also tried

In three dimensions, we adopt the same ansatz for themodulating both the dispersion as above and the nonlinearity,
soliton as in Eq(5), with x replaced by the radial variable  but the 3D soliton was still unstable. In fact, the absence of
in the (x,y) plane. The respective effective Lagrangian isstable 3D solitons can easily be understood, as, in the trans-
[see Eq(8)] verse plane, the 3D equatiqi) seems similar to the 2D
NLS equation in a uniform medium, which may produce

2lett _ el 1 1D@ E 2 only theunstableTownes solitor{9
g = PW AT 2 T2 T 2VaweT bW Y "l
_ }D(Z),Bsz, (14) IV. CONCLUSIONS

2 In this work, we have proposed a scheme for stabilizing

and the variational equations digee Eqs(10) and(11)] spatiotemporal solitons in Kerr media with a layered struc-

ture. Unlike several recent works, which relied upon periodic

W' = 1 _E (15) alternation of the sign of the Kerr coefficient, we consider a

We 2\2WRT’ more experimentally realistic possibility, viz., periodic rever-

sal of the GVD sign, which resembles known dispersion-

. _[D@* D(@E managemen{DM) schemes in fiber optics. First, we have

T=—5 - P 2WPT2 (16)  developed the variational approximatiowA) based on the

Gaussian ansatz for 2D and 3D STSs. In the 2D case, simu-
[the expressions for the chirpsand 8 have the same form as lations of the resulting systems of coupled variational equa-
in Eq. (9)]. It is well known[19] that, in the 3D case with tions, which govern the evolution of the spatial and temporal
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widths of the STS, reveal well-defined stability regions in theof 3D STSs may be achieved if the DM in the longitudinal
relevant parameter space. However, no stable states are preempora) direction is combined with a periodic spatial

dicted by the VA in the 3D case. Direct simulations of the modulation of the refractive index in both, or maybe just
full NLS equation produce quite similar results: no stableone, transverse direction in the bulk medium. This possibility
soliton in the 3D case, while in the 2D model the existences suggested by recent results for stabilization of BEC soli-

of the VA-predicted stability region is confirmed. Addition- tons in 3D optical lattice§21], and will be considered in
ally, close to the borders between regions of stability an@yetail elsewhere.

decay of the 2D STS, a more sophisticated stable state, in the
form of a periodically oscillating bound state of two sub-
pulses, is found. , . ACKNOWLEDGMENTS
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