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It is demonstrated that a Bragg waveguide consisting of a series of dielectric layers may form an excellent
optical acceleration structure. Confinement of the accelerating fields is achieved, for both planar and cylindrical
configurations by adjusting the first dielectric layer width. A typical structure made of silica and zirconia may
support gradients of the order of 1 GV/m with an interaction impedance of a few hundreds of ohms and with
an energy velocity of less than 0.5c. An interaction impedance of about 1000V may be obtained by replacing
the Zirconia with a(fictitious) material of«=25. Special attention is paid to the wake field developing in such
a structure. In the case of a relatively small number of layers, it is shown that the total electromagnetic power
emitted is proportional to the square of the number of electrons in the macrobunch and inversely proportional
to the number of microbunches; this power is also inversely proportional to the square of the internal radius of
the structure for a cylindrical structure, and to the width of the vacuum core in a planar structure. Quantitative
results are given for a higher number of dielectric layers, showing that in comparison to a structure bounded by
metallic walls, the emitted power is significantly smaller due to propagation bands allowing electromagnetic
energy to escape.
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I. INTRODUCTION

Indications that solid-state lasers will reach wall-plug to
light efficiencies of 30% or more, make a laser-driven
vacuum-accelerator increasingly appealing. Since at the
wavelength of relevant lasers, dielectrics may sustain a sig-
nificantly higher electric field and transmit power with re-
duced loss comparing to metals, the basic assumption is that
laser acceleration structures will be made of dielectrics.
Closed optical structures and near-field accelerators with di-
mensions comparable to the wavelength are both being con-
sidered. Examples of these two are(a) the LEAP[1] crossed
laser beam accelerator where the interaction between the
crossed laser beams and the particles is limited by slits to
satisfy the Lawson-Woodward theorem[2,3] and(b) the two-
dimensionalphotonic band-gap(PBG) concept where a laser
pulse is guided in a vacuum tunnel bored in the center of a
two-dimensional transverse periodic structure[4].

Motivated by the low-loss of Bragg dielectricplanar mir-
rors used in high-power lasers, it is suggested that this con-
cept be harnessed in order to confine the laser-field in an
optical one-dimensional PBG acceleration structure. Its es-
sence is to form a hollow optical waveguide, either planar or
cylindrical, consisting of an almost perfect reflector com-
prised out of an array of dielectric layers. Lithography, which
would result in planar structures, and optical fiber drawing
are manufacturing techniques that seem well suited for such
laser driven structures that have typical dimensions of a few
microns.

The theory of Bragg reflection waveguides was developed
by Yeh et al. [5,6], and recently there has been a growing
interest in using such cylindrical structures as low-loss opti-
cal fibers in long distance communications. Asymptotic
analysis of these so called “hollow Bragg fibers” shows that
for large radii the cylindrical structure is strongly analogous
to a planar structure[7,8]. Investigation of the propagating
modes was also performed[9,10], and fabrication of Bragg

fibers was demonstrated[11,12]. In the aforementioned pa-
pers the configuration considered is of a vacuum tunnel bor-
dering a Bragg mirror, i.e., quarter-wavelength alternating
dielectric layers. Hence, the resulting propagation modes re-
semble those of a hollow metallic waveguide. A basic re-
quirement for an acceleration structure is that it will support
the propagation of a mode with longitudinal wave number
skz=v /cd, which will accelerate ultrarelativistic particles. It
is one of the purposes of this study to adapt the design pro-
cedure so that this unique mode is confined for a given laser
wavelengthl0.

Further insight into the nature of such future acceleration
structures is gained by analysis of the electromagnetic wake
field generated by a macrobunch traversing the device. The
wake field, as a side effect of having charged particles in
high velocity motion, may cause undesirable results. A sig-
nificant effort has been directed in recent years to the analy-
sis of wakes generated by electron bunches in the vicinity of
dielectric structures. However, these studies focus on
dielectric-loaded structures withmetallic boundaries such as
the partially dielectric loaded planar transmission line
[13,14], the partially dielectric loaded rectangular waveguide
[15,16] and the partially dielectric loaded cylindrical wave-
guide[17,18] (and more recently Ref.[19]), which are illus-
trated in Fig. 1. Pure dielectric structures were investigated
in Ref. [20], where a vacuum tunnel inside a homogeneous
dielectric material was considered, and in Ref.[21] a general
method for treating cylindrical structures with a vacuum tun-
nel and arbitrary surrounding geometry was presented.

The organization of the paper is as follows. The first part
of this paper treats thehomogeneoussolutions of the wave
equation within the Bragg reflection waveguide, required for
ensuring adequate propagation of the accelerating electro-
magnetic wave injected from an external source. In Sec. II
the acceleration structures are described in detail, and the
homogeneous electromagnetic problem is formulated under
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the constraint of longitudinal wave numberkz=v /c; this sec-
tion provides us with basicanalysistools of such a structure.
Relying on this formulation. we develop in Sec. IIIdesign
criteria of the structure, so that the required etectromagnetic
field is confined, and characteristics of the confinement are
discussed. In Sec. IV an analysis of the behavior of the pro-
posed structures as accelerators is presented in terms of the
accelerator parameters(interaction impedance, group veloc-
ity, and maximum electric field), and some tradeoffs are dis-
cussed. In addition to the general analysis, a specific example
of a typical structure made out of silicas«=2.1d and zirconia
s«=4d is given. The second part of this study deals with
nonhomogeneoussolutions of the wave equations corre-
sponding to the wake field generated by charges traversing
the device. In Sec. V the wake field generated by a single
bunch as well as a train of microbunches is examined for
both the planar and cylindrical cases. For the case of a line
charge in a planar structure, formulation is provided, and
additional insight is gained by comparing the result of the
Bragg structure with those of the dielectric loaded planar
metallic or perfect magnetic conductor transmission lines. A
qualitative approach is given for the estimation of the emit-
ted power in the case of a weak mirror, i.e., a small number
of Bragg layers, and quantitative results are given for differ-
ent numbers of Bragg layers.

II. DESCRIPTION OF THE SYSTEM

As indicated in the introduction, two types of devices are
investigated in this work, one is a planar and the other is a
cylindrical dielectric waveguide. Both devices consist of di-
electric layers surrounding a vacuum region. The planar
structure is symmetric relative to the central plane, and the
cylindrical structure is azimuthally symmetric. A detailed de-
scription of each device is given next, the electromagnetic
field in each region is formulated, and the relations between
the field components in the different layers are established
using a matrix formulation.

A. Planar structure

Consider a planar symmetric dielectric waveguides] /]y
=0d, as illustrated in Fig. 2, which will be referred to as the
planar Bragg acceleratorsPBAd. The PBA has a vacuum
inner region of width 2Dint and surrounding alternating peri-
odic layers. The interfaces between the dielectrics are at con-
stantx planes, and they extend to infinity inz and y direc-
tions. The layers are made of two lossless materials«I and

«II , the first layer having a relative dielectric coefficient«I.
The vacuum region is labeledn=0, and the outermost region
extends to infinity inx and is labeledn=N+1. In the frame-
work of this notation the thickness of each dielectric layer is
denoted byDn, whereas the dielectric coefficient is denoted
by «n. The distance from the center of the structure to the
middle of thevth layer is denoted byDn. Assuming a steady-
state regimesejvtd we focus on the mode having a phase
velocity equal to the speed of light, or explicitly in the
vacuum region the required electromagnetic field reads

Ez = E0e
−jsv/cdz,

Ex = j
v

c
xE0e

−jsv/cdz,

Hy =
j

h0

v

c
xE0e

−jsv/cdz. s1d

In a specific dielectric layern, a wave propagating with
phase velocityc has the following field components:

Ez = sAn e−jknx + Bn e+jkn xde−jsv/cdz,

Ex =
− 1

Î«n − 1
sAn e−jkn x − Bne

+jkn xde−jsv/cdz,

Hy =
− 1

Zn

sAn e−jkn x − Bne
+jkn xde−jsv/cdz, s2d

wherein

Zn, h0
Î«n − 1/«n s3d

is the transverse wave impedance andh0<377V is the
vacuum impedance. Note that as a function of«n this imped-
ance has a maximum for«n=2, a fact which as we shall see
subsequently, is of great significance. Finally,

kn,
v

c
Î«n − 1 s4d

is the transverse wave number.
In order to establish the relation between the amplitudes

of the various layers, we next definexn
s±d,knsDn±Dn /2d and

impose the continuity ofEz andHy at each interface between
layer nsÞ0d and layern+1; the resulting equations are

An e−jxn
s+d

+ Bn e+jxn
s+d

= An +1e
−jxn+1

s−d
+ Bn +1e

+jxn+1
s−d

, s5d

FIG. 1. Typical closed structure configurations considered in the literature. Left: Partially dielectric loaded planar transmission line.
Middle: Partially dielectric loaded rectangular waveguide. Right: Partially dielectric loaded cylindrical waveguide.
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1

Zn

sAn e−jxn
s+d

− Bn e+jxn
s+d

d =
1

Zn+1
sAn +1e

−jxn+1
s−d

− Bn +1e
+jxn+1

s−d
d

s6d

Further defining the matrices

Dn
s±d, 1 e−jxn

s±d
e+jxn

s±d

h0

Zn

e−jxn
s±d

−
h0

Zn

e+jxn
s±d 2 , s7d

Eqs.(5) and (6) can be expressed as

Dn
s+dSAn

Bn
D = Dn +1

s−d SAn+1

Bn+1
D . s8d

Consequently, it is now possible to write the amplitudes in
layer n+1 in terms of the amplitudes in layern

SAn +1

Bn +1
D = fDn +1

s−d g−1Dn
s+dSAn

Bn
D ; T n +1,nSAn

Bn
D; s9d

T n+1,n being thetransition matrix from layer n to layer n
+1. For the transition from the vacuum regionn=0 to layer
n=1, the continuity equation ofEz andHy is

1 E0

− j
v

c
DintE02 = D1

s−dSA1

B1
D . s10d

In the outermost layersN+1d there is no inward wave
sBN+1=0d, and the amplitudes are therefore

SAN+1

0
D = T N+1,NT N,N−1

¯ T 3,2T 2,1fD 1
s−dg−11 E0

− j
v

c
DintE02 .

s11d

Further defining

Q, SQ11 Q12

Q21 Q22
D = hT N+1,NT N,N−1

¯ T 3,2T 2,1fD1
s−dg−1j−1,

s12d

we find that for an eigenmode to exist, the following condi-
tion ought to be satisfied, rewriting Eq.(11) utilizing defini-
tion (12):

1 1 − Q11

− j
v

c
Dint − Q212S E0

AN+1
D = 0. s13d

The determinant of the matrix is not zero, but as will be
shown in what follows, it can be made arbitrarily small sub-
ject to a design procedure and according to the number of
layers being used. Moreover, it can readily be shown that the
ratio of the two amplitudes is

AN+1

E0
=

1

Q11
= − j

v

c
Dint

1

Q21
. s14d

Next, we shall repeat this analysis for a cylindrically sym-
metric structure.

B. Cylindrical structure

The cylindrical Bragg accelerator(CBA) consists of a se-
ries of alternating concentric dielectric layers surrounding a
vacuum region of radiusRint, as depicted in Fig. 3. Each
layer n is of thicknessDn and the average of its internal and
external radii isRn; the dielectric coefficient of each layer is
denoted by«n similarly to the PBA. An analysis analogous to
the one presented in the previous section is performed in
cylindrical coordinates. In the vacuum coresn=0d the re-
quired field components are

Ez = E0e
−jsv/cdz,

Er =
j

2

v

c
rE0e

−jsv/cdz,

Hf =
j

2h0

v

c
rE0e

−jsv/cdz. s15d

It is now worth mentioning that these expressions for the
transverse electric and magnetic fields include a factor of 1/2
that does not appear in the PBA case(1), implying that for a
given gradient on axis, and for the same aperture, the total
electric field is larger at the vacuum-dielectric interface than
in the PBA. This issue will be further discussed subse-
quently. In some layern, the field components read

Ez = fAn H0
s2dskn rd + Bn H0

s1dskn rdge−jsv/cdz,

Er =
j

Î«n − 1
fAn H1

s2dskn rd + Bn H1
s1dskn rdge−jsv/cdz,

Hf =
j

Zn

fAn H1
s2dskn rd + Bn H1

s1dskn rdge−jsv/cdz. s16d

FIG. 2. Schematic drawing of the planar Bragg accelerator
(PBA).
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Defining xn
s±d, knsRn±Dn /2d, the matrices(7) take the

form

Dn
s±d, 1 H0

s2dsxn
s±dd H0

s1dsxn
s±dd

h0

Zn

H1
s2dsxn

s±dd
h0

Zn

H1
s1dsxn

s±dd 2 . s17d

On the boundary of the vacuum core the continuity condi-
tions are

1 E0

1

2

v

c
RintE02 = D1

s−dSA1

B1
D , s18d

and finally, the relation between the amplitude in the outer-
most layer to the amplitude in the vacuum core is given by

AN+1

E0
=

1

Q11
=

1

2

v

c
Rint

1

Q21
, s19d

wherein the matrixQ is defined similarly to Eq.(12).

III. FIELD CONFINEMENT

In order for the proposed structures to support the accel-
erating fields for a particular wavelengthl0, transverse con-
finement is required. In Sec. II we have developed the nec-
essary tools for theanalysisof a multilayered structure. It is
our purpose in this section to develop adesignprocedure that
ensures the confinement of the required electromagnetic field

at the specific wavelengthl0. Its outcome will be a set of
geometric parameters, namely, the thicknesses of the various
dielectric layers, given the available dielectric coefficients of
the materials. Here we extend an approach introduced by Yeh
et al. both for the PBA[5] and for the CBA[6], so that the
specific field distribution prescribed by Eqs.(1) and(15) are
eigenmodes of the structure. Particularly, the significance of
the role played by the width of the first layer is emphasized.

A. PBA design procedure

1. Infinite periodic structure analysis

With the aim of understanding the confinement process,
we examine the propagation in the transverse direction in a
planar structure. For now, we shall assume that the structure
is periodic and infinitein both directions ofx. The vacuum
core and the first layersn=1d will be taken into account in
the following subsection. One period of the structure consists
of two layers of widthsD2 andD3, and dielectric coefficients
«2 and«3 respectively, in consistency with the definitions of
Sec. II.

The propagation in the periodic structure can be described
by its transition matrix through one period. Transition
through one unit cell of the periodic structure can be de-
scribed by traversing one discontinuity from material 3 to
material 2, propagating the widthD2, traversing a disconti-
nuity from material 2 to material 3, and propagating the
width D3. Explicitly this is given by

T, ST11 T12

T21 T22
D = Se−jC3 0

0 ejC3
DS r2

s+d − r2
s−d

− r2
s−d r2

s+d D
3Se−jC2 0

0 ejC2
DSr3

s+d r3
s−d

r3
s−d r3

s+d D , s20d

whereinCn,knDn, rn
s±d, sZ3±Z2d / s2Znd, andn=2 or 3; the

wave impedancesZn and the wave numberskn are defined in
Eqs. (3) and (4) respectively. The matrixT is unimodular
sT11T22−T12T21=1d for lossless dielectrics, and sincek2,k3

are real (propagating rather than evanescent waves), then
T11=T22

* and T12=T21
* . Propagation characteristics of

the system are determined via the Floquet theorem[22] by
its eigenvalues derived from the conditionuT−e−jKLI u=0,
whereK is the Bloch wave number,L=D2+D3 is the period-
icity, and KL is the phase advance per cell. Utilizing the
above mentioned qualities of the transition matrix, the eigen-
values are found to be

e−jKL = k1,2= ST11 + T22

2
D ±ÎST11 + T22

2
D2

− 1, s21d

and the corresponding eigenvectors are

V1,2= 1 1

k1,2− T11

T12
2 . s22d

By adding the two eigenvalues we get the dispersion relation

FIG. 3. Schematic drawing of the cylindrical Bragg accelerator
(CBA).
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cossKLd =
1

2
sT11 + T22d, s23d

implying that field confinement is ensured when the absolute
value of the right hand side is larger than unity

ST11 + T22

2
D2

. 1. s24d

Plugging the explicit expressions for the elements of the
matrix T given by Eq. (20) into Eq. (24), we obtain the
condition

ST11 + T22

2
D2

= S sZ3 + Z2d2

4Z3Z2
cossC3 + C2d

−
sZ3 − Z2d2

4Z3Z2
cossC3 − C2dD2

. 1. s25d

It is evident that for a given set of dielectric coefficients and
a given frequencyv0, extremum occurs forC3+C2= lp,
C3−C2=sp, where l and s are integers andul −su must be
odd. For example, taking each layer to be a quarter of trans-
verse wavelength thickfDn=l0/ s4Î«n−1d ,n=2,3g or, in
other words, assumingC3+C2=p andC3−C2=0, we get

UT11 + T22

2
U

max
=

1

2
SZ3

Z2
+

Z2

Z3
D . s26d

Consequently, the attenuation aftern periods is

ue−jKLun =5S
Z3

Z2
Dn

, Z3 , Z2

SZ2

Z3
Dn

, Z3 . Z2.

s27d

The above choice entails that in addition to the frequencyv0,
band gaps of the structure will be created aroundv=3v0,
5v0,¯, and so on. This formulation is valid regardless of
the angle of incidence of the wave relative to the dielectric
discontinuity. In case of a wave impinging perpendicularly
upon a planar interface, the impedance isZ=h0/Î«, whereas
if the wave has a phase velocityc in thez direction, then the
impedance is as given in Eq.(3) Z=h0

Î«−1/«.

2. Achieving confinement in the PBA

As already indicated, the above description of the con-
finement process is of aninfinite Bragg reflector. In case of a
semi-infinitestructure, as in the PBA, the design constraints
on the first layer are different. For the perfect reflection to
occur, the amplitudes of the outgoing and incoming waves at
the entrance to the semi-infinite periodic structure should be
in one of the corresponding eigenvectors[Eq. (22)]

V1 = S 1

− 1
D, V2 = S1

1
D . s28d

If Z3,Z2 the first eigenvector is obtained, andEz achieves
an extremum at the entrance to the structure, and ifZ3.Z2
then Ez is zero. In both cases the eigenvalue is the same.
Thus, depending on which dielectric material is thefirst in

the unit cell of the periodic structure, the longitudinal electric
field Ez should either peak or vanish at the entrance to the
structure. Moreover, since any discontinuity can be regarded
as an entrance to a semi-infinite periodic structure, the afore-
mentioned condition is satisfied atanyboundary between the
two dielectrics. A general condition on the boundary between
layernÞ0 and layern+1 can therefore be stated as follows:

5 Ezsx = Dn + Dn /2d = 0 if Zn . Zn +1,

] Ez

] x
sx = Dn + Dn /2d = 0 if Zn , Zn +1,

s29d

and for the discontinuity between the first and the second
layers we have

5 Ezsx = Dint + D1d = 0 if Z1 . Z2,

] Ez

] x
sx = Dint + D1d = 0 if Z1 , Z2.

s30d

That is to say that the first layer should be of such width that
at the interface with the next layer, the perfect reflection
condition is met. In the first layer the amplitudes are com-
pletely determined byDint /l0 and «I according to Eq.(10),
or explicitly

A1/E0 = sB1/E0d* =
1

2
ejk1Dint − j

1

2

v0

c
Dint

Z1

h0
ejk1Dint. s31d

Given the amplitudes, as required by Eq.(30), it is now
straightforward to determine the points whereEz peaks or
vanishes according to its expression[Eq. (2)]. The resulting
expression for the first layer width reads

D1 =5
1

k1
arctan1 1

Z1

h0

v0

c
Dint2, Z1 . Z2,

1

k1
arctanS−

Z1

h0

v0

c
DintD, Z1 , Z2,

s32d

where the smallest positive value of the arctan function is
chosen. With this regard, the first layer may be conceived as
a matching layerbetween the vacuum region and the subse-
quent periodic structure, as it rotates the amplitude vector
dictated by the vacuum mode, to overlap the eigenvector of
the periodic structure. In the first case of Eq.(32) the result-
ing electromagnetic field would be identical foruxuøDint
+D1 if there were metallic walls atx= ± sDint+D1d, and the
second case is equivalent to perfect magnetic conducting
boundaries.

3. Confinement features

Confinement entails vanishingreal part of the transverse
component of the complex Poynting vector, meaning that in
each dielectric layer there is a standing wave. TakingE0 to
be real without loss of generality, we getAn=Bn

* . It is there-
fore evident that for the structure to truly support the desired
mode, there must be an infinite number of layers, otherwise
energy would “leak out” and there would be no confinement.
In a practical structure, the number of layers should be suf-
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ficient so that the outward power flow is negligible. There
are a few methods for estimating the losses in Bragg reflec-
tion waveguides[6,23,9]. Generally, the overall influence of
the transverse finiteness of the structure can be expressed by
an imaginary part of the longitudinal wave numberkz.

Figure 4 illustrates a typical spatial distribution of the
longitudinal electric field as well as the total electric field for
a PBA made of silicas«I =2.1d and zirconias«II =4d, and
Dint=0.3l0. It shows thatEz is uniform in the vacuum layer
while oscillating and decaying exponentially in the Bragg
layers. Another feature is thatEz vanishes and achieves a
maximum alternately at the discontinuities, as discussed pre-
viously. Accordingly, the transverse electric fieldEx, derived
from Ez with respect tox, is maximal and discontinuous
wheneverEz is zero, and zero wheneverEz peaks. The total
electric field in turn, undergoes a discontinuity every second
interface.

Figure 5 illustrates the confinement for two quantities, the
longitudinal electric fieldsEzd and the longitudinal Poynting
vector sSzd for Dint=0.3l0 at instantt=0; the longitudinal
component of the electric field is shown in the left frame
being normalized to its maximum value on axis, and the
longitudinal component of the Poynting vector normalized
by uE0u2/h0 is depicted in the right frame. While the former
peaks in the vacuum and is gradually decaying in the trans-
verse direction, the Poynting vector is zero on axis, it in-
creases monotonically to(almost) a peak value at the
vacuum-dielectric interface and then decays gradually with
oscillations.

In order to illustrate the confinement process in more de-
tail, Fig. 6 presents the variation of the normalizedenergy
densityin space for the PBA configuration analyzed above.
Thus, the magnitude of the electric field vector increases
from a local minimum on axis, to a larger value

Emax

E0
=Î1 +S2pDint

l0
D2

s33d

at the vacuum-dielectric discontinuity; for most practical
purposes this may also be considered the maximum electric
field—a fact revealed also by the bottom frame of Fig. 4.
From this value, the field decays exponentially according to
the expression in Eq.(27). Assuming, without loss of gener-
ality, that the characteristic impedance in the first region is
lower than in the secondsZ1,Z2d and for a layer sufficiently
away from the center we may approximate the location of
the layer in terms of the number of periodsx.nL, the ex-
ponential decay of the electromagnetic energy density is pro-
portional tosZ1/Z2d2n.sZ1/Z2d2x/L=e−2x/xc while, in general,

xc =
l0

4 S 1
Î«1 − 1

+
1

Î«2 − 1
DUlnS«1

Î«2 − 1

«2
Î«1 − 1

DU−1

. s34d

Further insight on the field confinement is revealed by the
top frames of Fig. 7 illustrating the electric, magnetic and the
total energy density across the PBA. While the top-left frame
illustrates the exponential decay of the average normalized
electromagnetic energy densityfWEMsxd /WEMs0dg over the
cross section of the structure, the top-right one shows a mag-
nified region including the electric as well as the magnetic

average energy densities. It is evident that the electric energy
has a maximum in the first layer, the magnetic energy density
vanishes every second discontinuity(since]Ez/]x=0), and it
peaks in between where it is also much larger than the elec-
tric energy density. When the magnetic field vanishes, the
transverse electric field is also zero, and therefore all the
energy density is stored in the longitudinal electric field. This
picture is even better illustrated by the two bottom frames
showing the normalized Poynting vectorSzsxd /Szsx=Dintd. It
starts from a zero value on axis, it peaks in the first layer, and
then it decays exponentially while dropping to zero in each
period of the structure; the bottom-right is a magnification of
the left frame.

B. CBA Design procedure

A straightforward periodic structure analysis is unsuitable
for the case of the CBA, where the curvature of the layers
(cylindrical coordinates) changes with the distance from the
axis. Nevertheless, some of the results obtained for the PBA
presented in the previous section apply to the CBA case as
well.

We adopt here an approach given in Ref.[6], and imple-
ment it for the design of the CBA. As a starting point con-
sider Eq.(9) which, assuming a given gradient, entail that the
amplitudes are determined from the inside out. Let us now
assume that the amplitudes in some layern are known, and
we need to determine the location of the boundary between
this layer and the following onesn+1d such that the average
energy density in the second layer isminimal. Keeping in
mind that the confinement entails that the amplitudes of the
outgoing and incoming waves in each layer are complex con-
jugates of each other, minimizing the average energy density
is equivalent to minimizing the absolute value of the ampli-
tude in layern+1. Performing mathematically this optimiza-
tion process results in the condition

FIG. 4. A typical distribution of the longitudinal electric field
(top) and the total electric field(bottom), Dint=0.3l0,«I =2.1,«II

=4.
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5 Ezsr = Rn + Dn /2d = 0 if Zn . Zn+1,

] Ez

] r
sr = Rn + Dn /2d = 0 if Zn , Zn+1,

s35d

which is the same as Eq.(29) obtained for the PBA. Hence,
it is possible to design the CBA from the inside out. For a
given set of the three parameters, the gradient on axis, the
internal radius, and the dielectric coefficient of the first layer,
the field distribution is completely determined by Eq.(18).
The boundary between the first and the second layer is set to
satisty Eq.(35), and then the amplitudes in the second layer
are determined, and so forth. The layers are placed sequen-
tially optimally in the sense that confinement is achieved
after a minimum number of layers. Apart from the first layer,
the above condition is asymptotically equivalent to the

“quarter wavelength” condition discussed above since for
large arguments the points where the longitudinal electric
field reaches maximum or zero are a quarter of wavelength
apart. Another manifestation of this condition is that it im-
plies that the radial component of the Poynting vector van-
ishes at each discontinuity. The design procedure of the CBA
is therefore simply a generalization of the one given for the
PBA.

An illustration of the distribution of the two quantitiesSz
andEz in two casesRint=0.3l0 (top) and 0.8l0 (bottom), is
given in Fig. 8; the longitudinal component of the electric
field is shown in the left frames being normalized to its value

FIG. 5. (Color) Contours of
the normalized longitudinal elec-
tric field (left) and the Poynting
vector (right) at instantt=0 sDint

=0.3l0,«I =2.1,«II =4d. The di-
electric layers are depicted at the
top of each frame.

FIG. 6. Normalized energy as a function of the distance from
axis x for various values ofDint. The dashed line illustrates the
analytic expression for the confinement parameter Eq.(34).

FIG. 7. Normalized energy and normalized longitudinal Poyn-
ting vector decay across the structuresDint=0.3l0,«I =2.1,«II =4d.
Top left: Normalized total energy. Top right: enlarged interval of the
normalized energies, electric, magnetic, and total. Bottom left: nor-
malized longitudinal Poynting vector. Bottom right: enlarged inter-
val of the normalized longitudinal Poynting vector.
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on axis and the longitudinal component of the Poynting vec-
tor normalized to its value at the vacuum-dielectric interface
is depicted in the right frames. Although the general behavior
of the fields across the CBA resembles that of the PBA, there
are two differences between the two cases, which are respon-
sible for a stronger confinement in the CBA. The first differ-
ence is that in the CBA the decay of the energy across the
fiber is not purely exponential, but there is also a factor of
1/r because of the Hankel functions. The second difference
is that forRint=Dint, the maximum electric field for a given
gradient is given by

Emax

E0
=Î1 +Sp

Rint

l
D2

, s36d

which is smaller than in the PBA for the same half-width; the
difference is that the radial electric field is smaller by a factor
of 2 than the transverse electric field in the PBA, as was
already pointed out above.

IV. ACCELERATOR PARAMETERS

From the perspective of an acceleration structure there are
three significant quantities to be determined: the interaction
impedance, the group velocity, and the maximum electric
field experienced by the structure.

A. Interaction impedance

The interaction impedance is a measure of the accelerat-
ing gradient experienced by the electrons for a given amount

of power injected into the system, and it is defined by

Zint,
ul0E0u2

P
. s37d

For the PBA,P denotes the flowing power in thez direction
per unit length ofy, and the interaction impedance has units
of V m, whereas for the CBA,P denotes the total power
flowing across the fiber, and the interaction impedance is in
V. Assuming that the materials’ characteristics are known
s«=2.1,4.0d and so is the laser wavelengthsl0d, the only
free parameter left is the dimension of the vacuum region. In
order to have a rough estimate of its impact, it is possible to
obtain an upper limit on the interaction impedance, by con-
sidering an idealized situation in which the energy flux out-
side the vacuum region is negligible. The quantity obtained
depends only on the form of the fields in the vacuum core,
and on its size. Evaluation of these two upper bounds on the
interaction impedance results in

Zint
smaxdfV mg,

ul0E0u2

PV
=

h0l0

4

3p
Sp

Dint

l0
D3 s38d

for the PBA, and the CBA expression reads

Zint
smaxdfVg,

ul0E0u2

PV
=

h0

1

4p
Sp

Rint

l0
D4 . s39d

In both expressionsPV is the power flowing in the vacuum,
evaluated by integration over the cross section of the longi-

FIG. 8. (Color) CBA s «I

=2.1,«II =4d contours of normal-
ized longitudinal electric field
(left) and Poynting vector(right)
in two cases:Rint=0.3l0 (top) and
0.8l0 (bottom).
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tudinal Poynting vector of the fields given by Eq.(1) for the
PBA and Eq.(15) for the CBA. The two above expressions
are depicted in Fig. 9 and are the top curves in the left(PBA)
and the right(CBA) frames. The bottom two curves in each
frame show the exact interaction impedance for two cases:
the lowest curve represents the case where thefirst layer is
made of a material of higher dielectric coefficients«I =4.0d.
A similar interaction impedance is achieved if the first layer
is made of the material of lower dielectric coefficients«I

=2.1d. Best fit curves are given for 0.3øDint /l0ø0.8

Zint

h0l0
s«I = 2.1,«II = 4d . 1.124 − 3.561SDint

l0
D

+ 4.258SDint

l0
D2

− 1.823SDint

l0
D3

,

Zint

h0l0
s«I = 4,«II = 2.1d . 1.020 − 3.073SDint

l0
D

+ 3.502SDint

l0
D2

− 1.436SDint

l0
D3

,

s40d

for the PBA and for the CBAs0.3øRint /l0ø0.8d the best fit
is

Zints«I = 2.1,«II = 4d .
1.66h0

1 +S3.648
Rint

l0
D2

+ S2.07
Rint

l0
D4 ,

Zints«I = 4,«II = 2.1d .
1.48h0

1 +S3.7
Rint

l0
D2

+ S1.95
Rint

l0
D4 .

s41d

Although the two bottom curves of the PBA seem to coin-
cide, there is a slight advantage to a lower dielectric coeffi-
cient in the first layer up toDint.0.5l0, starting from which
the relation is reversed. In the CBA case there is an obvious
advantage to the lower dielectric coefficient in the first layer.
Higher contrast between the two materials can significantly

increase the interaction impedance, as seen in the third curve
from the bottom of Fig. 9 for«=2.1,25. For comparison, a
partially dielectric loaded waveguides«=2.1d has an interac-
tion impedance which is almost one order of magnitude
larger than that of the silica-zirconia Bragg reflection wave-
guide (both PBA and CBA), and slightly greater than the«
=2.1,25 structure—still its value is significantly smaller than
the value of the upper boundZint

smaxd.
The importance of using materials withhigh dielectric

coefficientsis also shown in Fig. 10, which presents the con-
tours of constant interaction impedance for the PBA in the
plane of«I and «II . Since no confinement may be expected
when the medium is uniforms«I =«IId, this impedance is vir-
tually zero on the diagonal. Similarly, when either one of the
dielectrics is close to unity, the thickness of the layer being
proportional to 1/Î«−1, implies thick layers, large confine-
ment space, and therefore, low interaction impedance. In be-
tween these three minima there are twoasymmetricregions
of maximum interaction impedance. As indicated above, the
asymmetry is due to the choice of which material consists
the first layer. According to this figure, the general trend is
that larger impedance may be obtained when the first layer is
of lower value. For example, taking for the CBA caseRint
=0.3l0 we getZints«I =10,«II =30d~2500V, whereasZints«I

=30,«II =10d~2000V. However, this trend changes for a
different value ofRint (or Dint).

Designing the structure for confinement in a minimum
number of layers, does not achieve maximum interaction im-
pedance. The attenuation per unit cell of the transverse peri-
odic structure is given in Eq.(27) as a ratio between the two
materials’ transverse impedances. Maximum attenuation is
therefore obtained when choosing one of the dielectric ma-
terials to have«=2, since, as already indicated, the trans-
verse impedance[Eq. (3)] has a maximum for this value. The
other dielectric should be as large as possible, or as close as
possible to unity. This will indeed create maximum attenua-
tion per unit cell, however, the interaction impedance de-
pends on the total flowing power outside the vacuum layer,
which tends to grow when low dielectric coefficient materi-
als are used and the layers become thicker. For instance,
choosing one dielectric material to have«=2 and the other as
small as possible would result in high attenuation per period,
but very low interaction impedance(see Fig. 10). Conse-

FIG. 9. Interaction impedance as a function of the vacuum core dimension for the PBA(left) and for the CBA(right).
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quently, there exists a tradeoff between creating high contrast
between the two materials, and using low dielectric coeffi-
cient materials. This tradeoff is responsible for the pattern
seen in Fig. 10, in which for a certain«I there could he
several values of«II for which the interaction impedance has
the same value.

B. Energy velocity

A similar approach may be adopted for the analysis of the
energy velocity, which generally equals the group velocity
[24], and in this case it is of the first TM mode in the struc-
ture atkz=v0/c.

Defining for the PBA the time average energy per unit
area asWEM, e−`

` dx wEMsxd, wherewEM is the energy den-
sity, or for the CBAWEM,2pe0

` dr rwEMsrd per unit length,
the energy velocity reads

vEN

c
, P

cWEM
. s42d

The energy velocity illustrated in Fig. 11 may be approxi-
mated by a best fit for the PBA ,

vEN

c
s«I = 2.1,«II = 4d . 0.342 + 0.290SDint

l0
D − 0.061SDint

l0
D2

,

vEN

c
s«I = 4,«II = 2.1d . 0.305 + 0.326SDint

l0
D − 0.068SDint

l0
D2

.

s43d

A best fit for the CBA energy velocity is given by

vEN

c
s«I = 2.1,«II = 4d . 0.379 + 0.0079SRint

l0
D

+ 0.065SRint

l0
D2

,

s44d
vEN

c
s«I = 4,«II = 2.1d . 0.350 + 0.0060SRint

l0
D + 0.09SRint

l0
D2

,

and clearly, the choice of the dielectric in the first layer has
some effect although not significant.

Before we proceed it is instructive to point out the relation
of a parameter frequently quoted in(microwave) accelera-
tors’ literature, namely, theR/Q of the structure(R being the
shunt impedance andQ the quality factor) to the parameters
presented above. Specifically, in case of a standing wave
structure it is shown in Appendix A thatR/Q
.b ENZint / s2pl0d.

C. Maximum electric field

The last parameter of interest is the maximum field sus-
tained by the structure before breakdown. For avoiding
breakdown it is assumed that the fluence threshold of the
material given by[25]

FfJ/cm2g = 51.44t p
1/2, tp fpsecg . 10,

2.51t p
1/4, 0.4, tp fpsecg , 10,

2, tp fpsecg , 0.4,

wheretp is the pulse duration, limits the maximum field to
about 2 GV/m. For example, taking«I =4,vEN=0.6c and
tp,0.4 psec, the maximal field is given by[26] Emax
=ÎF / s0.5«0«IvENtpd.2.5 GV/m. Therefore, bearing in

FIG. 10. (Color) Contours of
constant interaction impedance
Zint /l0fVg in the s«I ,«IId plane,
with Dint=0.3l0.
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mind that the gradient of interest is of the order of 1 GV/m
[26], then according to Eq.(33) the half-width of the vacuum
core in the PBA needs to be no larger than

Emax

E0
= 2 ⇒ Dint . 0.28l0 s45d

and according to Eq.(36) for the CBA

Emax

E0
= 2 ⇒ Rint . 0.55l0. s46d

As already discussed, the CBA is less vulnerable to break-
down, and the maximum internal radius allowed is twice as
much the internal half-widthDint for the same gradient. In
Table I (PBA) and Table II(CBA) a few typical values of
interest are presented for«I =2.1 and«II =4 implying that
xc.2.68l0 andL=0.38l0.

V. WAKE-FIELD ANALYSIS

The last topic that needs to be considered in the present
study is an estimate of the wake field generated by a train of
microbunches in such a dielectric structure. In a recent study
[21] a general formulation of the wake field for an arbitrary
dielectric structure with a cylindrical vacuum tunnel was
given. Based on this formulation, we next determine the
(symmetric) wake field of a line charge moving in a general
planar structure, and obtain analytical results for some
simple cases. Results for the Bragg structures, both the PBA
and the CBA are given.

A. Wake field in the PBA

The current density of a line charge in free space, infinite
in y and moving in thez direction with a constant velocityv
is given by

Jzsx,z,td = − q8vdsxddsz− vtd, s47d

whereins−q8d is the charge per unit length. The electromag-
netic field can be derived from the nonhomogeneous wave
equation of the magnetic vector potential(Lorentz gauge)

F¹2 −
1

c2

] 2

] t2
GAzsx,z,td = − m0 Jzsx,z,td. s48d

In Appendix B the solution of the wave equation is formu-
lated dividing the electromagnetic field into two contribu-
tions. The field generated by the line charge in free space is
called the primary field, and the remainder, which is due to
the effect of the surrounding structure, is called the second-
ary field. Assuming that the material adjacent to the vacuum
region has a dielectric coefficient«I, it is convenient to de-
fine the relation between the outgoing and incoming waves
just outside the vacuum tunnel as a function of frequency
Rsvd. This reflection coefficient is directly dependent on the
surrounding layers and their dielectric constants.

For the caseR;0, i.e., a vacuum tunnel within a homo-
geneous material with«I, the secondary field is evaluated to
obtain the decelerating field on the moving line charge

Ei, Ez
ssdsx = 0,z= vt,td =

− q8

2p«0Dint

3ReH j lnS1 + j
gÎb2«I − 1

«I DJ . s49d

It is evident that below the Cerenkov velocitysv=c/Î«Id, the
decelerating force is zero. It increases monotonically with
the velocity, and for the ultrarelativistic regimesg→`d the
decelerating field

TABLE I. Exact parameters of the PBA for several internal half-widths of the vacuum; the materials are
«I =2.1 and«II =4 implying thatxc.2.68l0 and a structure periodicityL=0.38l0.

Dint=0.3l0 Dint=0.4l0 Dint=0.45l0 Dint=0.5l0 Dint=0.55l0

Zint /l0fVg 147.13 99.230 81.87 67.94 56.77

bEN 0.424 0.448 0.460 0.471 0.483

Emax/E0 2.134 2.705 2.999 3.297 3.598

FIG. 11. Energy velocity as a function of the vacuum core dimension for the PBA(left) and for the CBA(right).
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Ei =
q8

2p«0Dint

p

2
, s50d

is p /2 times the radial field of a static line charge at distance
Dint. Although this expression was calculated for a simple
structure consisting of a vacuum core in an otherwise uni-
form dielectric, in case of an ultrarelativistic line charge it is
valid also if the structure has surrounding layers[21]. Cau-
sality arguments may be shown to lead to the conclusion that
reflections caused by such layers reach the axis only after the
original source has moved away. In other words, the reacting
(decelerating) field on an ultrarelativistic particle itself isin-
dependentof the details of the structure layers, and it de-
pends only on the charge and the size of the vacuum core.

From here on we shall focus on the ultrarelativistic re-
gime, and it is demonstrated in Appendix B that the expres-
sion for the longitudinal electric field within the vacuum tun-
nel is independent ofx and is given by the inverse Fourier
transform integral

Ez
ssdst̄d =

q8

2p«0 Dint

1

2
E

−`

`

dv̄ejv̄t̄
1 +R

s1 + jv̄d − s1 − jv̄dR
,

s51d

where v̄,vÎ«I −1Dint / s«Icd is the normalized frequency
and t̄ is the normalized space-time such thatv̄t̄=vst−z/vd.
Moreover, the fields outside the vacuum tunnel within the
first dielectric layer are similarly given by

Ez
ssdsx,t̄d =

q8

2p«0 Dint

1

2
E

−`

`

dv̄e jv̄t̄ 1

s1 + jv̄d − s1 − jv̄dR

3fe−jLsx−Dintd + RejLsx−Dintdg, s52d

whereL, uv̄u«I /Dint.
Describing explicitly the electromagnetic field reflected

from the layers of the PBA, it is necessary to resort to the
transition matrix formulation developed in Sec. II[Eq. (20)]
subject to similar constraints of wave number[Eq. (4)] and
transverse impedance[Eq. (3)], since an ultrarelativistic par-
ticle imposeskz.v /c. If we assume a finite PBA structure
comprised ofn periods(N=2n layers), using the eigenvalues
and eigenvectors of the transition matrix, the total transition
is found to be

L, Tn = 1 1

k1 − T 11

T12

1

k2 − T11

T12
2Sk 1

n

0

0

k 2
nD

31
k2 − T11

T12
− 1

T11 − k1

T12
1 2 T12

k2 − k1
. s53d

Taking into account the effect of the first layer, which as
explained above is not part of the periodic structure, the re-
flection coefficient reads

R = −
L21

L22
e−2jsv/cdÎ«I−1 D1

=
1

T12

sk1
n − k2

ndsk1 − T11dsk2 − T11d
k1

nsk1 − T11d − k2
nsk2 − T11d

e−2jsv/cdÎ«I−1 D1.

s54d

Given the reflection coefficient as a function of frequency,
the wake field can be computed numerically according to Eq.
(51). For a specific geometry,N=50 layers,Dint=0.3l0, «I

=2.1, and«II =4, the reflection coefficient is depicted in Fig.
12.

Analytic expressions for the ultrarelativistic wake field
can be obtained for some simple cases. For the caseR;0
the wake field in the vacuum tunnel(51) is easily evaluated
to show exponential decay behind the moving charge, or
explicitly

Ez
ssd =

q8

2p«0 Dint
pe−st−z/cd«Ic/sDint

Î«I−1dust − z/cd, s55d

whereustd is the unit step function defined by

ustd, 50, t , 0,

0.5, t = 0,

1, t . 0.

s56d

Hence, fort=z/c we obtain once again Eq.(50). For com-
parison with the PBA we shall also consider a partiallydi-
electric loadedplanar transmission line with either metallic
ss→`d or perfect magneticsmr →`d boundaries. The
vacuum tunnel will have the same width as the PBA, and the
dielectric layer width is set so that the structure supports the
fundamental mode for the laser frequencyv0. This condition
is equivalent to determining the first layer in the PBA, ex-
pressed explicitly in Eq.(32), where the caseZ1.Z2 is
analogous to the metallic case, andZ1,Z2 to the magnetic

TABLE II. Exact parameters of the CBA for several internal radii of the vacuum tunnel; the materials are
«I =2.1 and«II =4 implying thatrc.2.68l0 and for a(“planar”) structure periodL=0.38l0.

Rint=0.3l0 Rint=0.4l0 Rint=0.45l0 Rint=0.5l0 Rint=0.55l0

ZintfVg 267.46 173.73 140.62 114.27 93.29

bEN 0.410 0.420 0.427 0.434 0.442

Emax/E0 1.374 1.606 1.732 1.862 1.996
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walls case. Evaluation of the longitudinal wake field for the
metallic transmission line is given in Ref.[14]. In Appendix
C it is shown that the formulation presented here results in
the same expression given by

Ez
ssd =

q8

2p«0 Dint
o

i

p

1 +
a

2
sin−2Sav̄i

2
D cosfvist − z/cdg

3ust − z/cd, s57d

whereina,2«ID1/Dint, and the frequenciesv̄i are solutions
of cotsav̄ /2d=v̄. A similar expression is given in Appendix
C for the magnetic wall case.

In Fig. 13 a snapshot of the wake field att=0 (the charge
is at z=0) is given for theR;0 case, the PBA case with
N=10, and the partially dielectric loaded metallic and mag-
netic transmission lines. In all cases the material surrounding
the vacuum tunnel has«I =2.1, and in the PBA the second
material has«II =4. Due to this choice, the width of the me-
tallic transmission line is the same as that of the PBA, and
different than that of the perfect magnetic transmission line.

Governed by causality, the reflections from the transverse
discontinuities contribute, each in its turn, to the wake field
observed within the vacuum tunnel. All four curvescoincide
for some distance behind the moving charge, starting from
the decelerating field value(50) for z=0, jumping to twice
that value forz=0− and then decaying exponentially. Since
the transverse wave number for all waves iskx

=sv /cdÎ«−1, it is evident that the transverse group velocity
is c/Î«−1 in each material. Therefore, taking into account
the charge velocityv>c, the first reflection in the PBA or
the metallic transmission line is observable in the vacuum
layer at a distance 2D1

Î«I −1 behind the charge, and both of
these curves become separated at this point from the other
two. Contributions from farther layers in the PBA are then
seen to affect the vacuum wake field everyl0/2, and reflec-
tions from the metallic walls affect the wake field in this case
every 2D1

Î«I −1. Similarly, the curve for the magnetic wall
transmission line is separated from theR;0 case according
to its first layer width, which is larger than that of the metal-
lic wall and the PBA, and therefore occurs behind them.
From the above discussion it can be concluded that due to

causality, for example, the wake field of a PBA withN.10
is exactly the same as theN=10 wake field for the interval
shown, as the more distant layers do notyet influence the
field in the vacuum core. An interpretation of the the wake-
field as a sum of lossy modes in the PBA is given in Appen-
dix C. Comparison between the metallic wall transmission
line and the PBA can also be seen in Fig. 14, where a picture
in the x-z plane of the two longitudinal wake fields is given.

B. Emitted power in the PBA

It was discussed above that the decelerating force on a
single ultrarelativistic charge does not depend on the sur-
rounding structure. In practice themacrobunchof a future
optical acceleration structure may consist of a train of
Ms~1000d microbunches separated by a wavelengthsl0d of
the driving laser field. On pure acceleration grounds, in order
to maintain a reasonable energy spread, the typical bunch
length ought to be smaller thanl0/12. Typically, the first
discontinuity has no effect on the leading microbunch since
referring to the previous causality discussion, the first effect
occurs only after a distance 2D1

Î«I −1 behind the front of the
microbunch. The expression for the first layer width[Eq.
(32)] implies thatD1øl0/ s4Î«I −1d, so that the first reflec-
tion reaches the axis at a distance smaller thanl0/2 behind
the charge. Although the total power in case of a single mi-
crobunch is not affected by the PBA, the field spatial distri-
bution trailing the particle is obviously strongly affected, and
so is the power emitted by the train of micro-bunches, as will
be discussed next.

Let us considerNLC ultrarelativistic line charges, each
having charge per unit lengthqLC8 , divided into M mi-
crobunches, as shown in Fig. 15. An estimate for the emitted
power per unit length assuming that all the charge is located
in a single microbunchsM =1d is given by Eq.(50)

P1 =
v

2p«0 Dint

p

2
sNLCqLC8 d2. s58d

On the other hand, if theNLC line charges are randomly
distributed such that the average field they generate is zero,

FIG. 12. Absolute value of the reflection coefficient as a func-
tion of the frequency. FIG. 13. A snapshot of the longitudinal wake fieldEz normal-

ized by q8 / s2p«0Dintd at time t=0 of a vacuum tunnelsR;0d,
PBA, and partially dielectric loaded metallic as well as perfect mag-
netic transmission lines. In all cases«I =2.1, and the PBA has«II

=4. For the first region all four curves coincide.
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then the total emitted power isNLC times the power emitted
by a single line charge, i.e.,

PNLC
= F v

2p«0 Dint

p

2
sqLC8 d2GNLC. s59d

A qualitative expression forM ù1 may be evaluated for the
case of a “weak mirror”sR~0d, by neglecting the effects of
the microbunches on each other. In this case the total power
is M times the power of one microbunch of charge
NLCqLC8 /M, which results in

P = F v
2p«0 Dint

p

2
SNLCqLC8

M
D2GM =

P1

M
. s60d

With the exception ofDint, the last expression is virtually
independent of the parameters of the structure, and it de-
scribes best the case where the vacuum core is surrounded
with homogeneous material, i.e., there are no dielectric lay-
ers. The expression in Eq.(60) exhibits two limiting cases,
bearing in mind that 1øM øNLC: for a single microbunch
sM =1d the emitted powerP=P1 is maximal, and if M
=NLC the emitted powerP=P1/NLC is minimal. The last
expression is valid also in the case when the line charges are
randomlydistributed, and the mutual average effect is zero,
as discussed before. Clearly Eq.(60) represents both the re-
gimes of “spontaneous” as well as the “stimulated” emission
of radiation ofNLC line charges.

In Appendix D it is shown that the electromagnetic power
generated by a microbunch of total charge per unit lengthq8
distributed toM microbunches, each one beingl0sa /2pd
long, is given by

P =
vsq8d2

2p«0Dint

1

2
E

−`

`

dv̄
1 +R

s1 + jv̄d − s1 − jv̄dR

35sincFa

2

v̄

v̄0
GsincFp

v̄

v̄0

MG
sincFp

v̄

v̄0
G 6

2

, s61d

where sincsxd;sinsxd /x andv̄ is as defined before. Simula-
tions indicate that if 0øa,p /2 the power is virtually inde-
pendent ofa and within a good approximation it is inversely
proportional toM. Figure 16(left) illustrates the normalized

power P̄,PsvsqLC8 d2NLC
2 /2p«0Dintd−1 for a PBA with N

=10, 20, 30, 40, and for the no-reflections case. It shows that
for a stronger confinement(large N) the power emitted is
higher, but is more moderately dependent on the number of
bunches. For a small number of bunches, it is seen that the
general behavior is ~1/M in correspondence to Eq.(60).
Similarly to the wake-field curves previously discussed, the
power curve coincide for smallM ’ s, and split one at a time,
the curves of less layers first. The point where a curve splits

FIG. 14. (Color) A snapshot of
the longitudinal wake fieldEz nor-
malized byq8 / s2p«0Dintd at time
t=0 of the PBA(left), and a par-
tially dielectric loaded metallic
transmission line (right). Both
cases have«I =2.1, and the PBA
has«II =4.

FIG. 15. A macrobunch consisting of a train of microbunches.
NLC line charges, each havingqLC8 amount of charge are arranged in
M microbunches.
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from the higherN curves is the point behind the first mi-
crobunch where the transverse finiteness of the structure is
first felt. Following the transverse path of the waves emitted
from the particle, we find that the time it takes for the waves
to be reflected from theN+1 discontinuity(not including the
vacuum-dielectric interface) assumingN is even, is

DtN =
2D1

vx
I +

N

2
S2D2

vx
II +

2D3

vx
I D =

2D1
Î«I − 1

c
+

N

2

l0

c
,

s62d

whereinvx
I,c/Î«I −1 andvx

II,c/Î«II −1 are the transverse
group velocities in each material. It is sufficient to consider
only the widths of the second and third layerssD2,3d since the
rest of the layers are periodic with the same quarter of trans-
verse wavelength thicknessl0/ s4Î«−1d. As the particle
moves, for all practical purposes, at the speed of lightc, the
distance this reflection occurs behind it isDtNc. Keeping in
mind that the microbunches are one wavelength apart, the
number of microbunches for which a curve splits from the
higherN curves is therefore given by rounding upDtNc di-
vided byl0, or explicitly

MN = d2D1

l0

Î«I − 1 +N/2e + 1. s63d

A significant difference between the PBA andclosed
structures is seen in Fig. 17, where the curves forN
=50,80,120, as well as the curves for the metallic and the
magnetic wall structures are plotted. The curves ofN=80
andN=120 almost coincide, indicating that this is the limit-
ing curve when the number of layers is increased. In the
closed structure case, the emitted power is of the form(see
Appendix D)

P =
sq8d2v

2p«0 Dint

p

2 o
i

Wi sinc2Sa

2

v̄i

v̄0
Dsinc2Fp

v̄i

v̄0

MG
sinc2Sp

v̄i

v̄0
D .

s64d

Unlike the two top curves of the magnetic and metallic cases,
the PBA allows for energy to escape out of the structure

through the propagation bands(see reflection coefficient in
Fig. 12), the trailing bunches are less affected by the wake
field, and hence the emitted power is smaller. This clearly
reveals the significant advantage of a PBA over any other
closed structure.

C. Wake field and emitted power in the CBA

Analysis of the wake field in the CBA is quite similar to
the analysis presented above for the PBA with a few minor
differences. For the CBA the secondary force on axis for an
ultrarelativistic charges−qd is [21]

Ez
ssd =

q

4p«0Rint
2 F 2

p
E

−`

`

dv̄
1 +Rsv̄d

c + jv̄ − sc* − jv̄dRsv̄d
ejv̄t̄G ,

s65d

the angular frequency being normalized according tov̄
=svRint /cdÎ«−1/s2«d unlike the PBA case, the normalized
delay is t̄=st−z/cdsc/Rintds2«d /Î«−1; csv̄d
;−jH1

s2ds2v̄«d /H0
2s2v̄«d and for large argumentscsv̄@1d

.1. The power emitted by a single point charge is

P =
vq2

4p«0Rint
2 3 2, s66d

and the qualitative analysis detailed above for the case of a
“weak mirror” applies here as well. Similarly to Eq.(61), the
emitted power expression is given by

P =
vq2

4p«0Rint
2

2

p
E

−`

`

dv̄,
1 +Rsv̄d

c + jv̄ − sc* − jv̄dRsv̄d

3sinc2Sa

2

v̄

v̄0
Dsinc2FpM

v̄

v̄0
G

sinc2Sp
v̄

v̄0
D , s67d

and it is illustrated in the right hand frame of Fig. 16 reveal-
ing great resemblance to the PBA; in this case the power is
normalized toP,Psvqel

2Nel
2 /4p«0Rint

2 d−1, where Nel is the
number of electrons andqel is the electron charge. As op-
posed to the PBA case, where an analytic expression for the

FIG. 16. Normalized power generated by a train ofM microbunchessDint=0.3l0,«I =2.1,«II =4d for the PBA(left) and for the CBA with
Rint=0.3l0 (right).
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reflection coefficient is available, computation of the refec-
tion coefficient is performed by utilizing the matrix formula-
tion presented in Sec. II B

VI. DISCUSSION

In the present study we have designed and analyzed a
hollow-fiber acceleration structure based on a Bragg reflector
consisting of a series of lossless dielectric layers. It is antici-
pated that their inherent symmetry provides a significant ad-
vantage, in what regards emittance growth, over the two-
dimensional photonic band gap structure that supports a
nonsymmetric field in the axis region or planar metallic
structures with similar properties[26]. Conceptually, by
analogy to an optical fiber, for confining an electromagnetic
wave around a vacuum tunnels«=1d, it is necessary to en-
sure that at the operating frequency the effective dielectric
coefficient of the surrounding material is smaller than unity
s«,1d. In fact, it is convenient to distinguish between three
main regions: the vacuum tunnel, on the one hand, and the
“periodic mirror”, on the other, are the two straightforward
regions consistent with the optical fiber view. However, we
have found that the third important region is the first layer
which does not have to be of the same dimensions as either
one of the other layers. Its role is actually to match(electro-
magnetically) between the “vacuum region mode” and the
eigenmode of the periodic structure. The resulting mode is
equivalent to having either metallic or perfect magnetic
boundaries around the first layer at the operating frequency.
In this study it was indeed shown that a Bragg structure can
support a mode with longitudinal wave numberkz=v /c, as
required for acceleration purposes. Extending this approach
to cylindrical layers [Eq. (35)], a better confinement was
found relative to the PBA because of the additional 1/r
transverse energy decay, and because the total field is smaller
at the vacuum-dielectric interface. In either the CBA or the
PBA structure, if the wave impinges upon the mirror perpen-
dicularly each layer must be a quarter of wavelength thick
l0/ s4Î«d, whereas in our case the wave has a significant
component parallel to the reflection planeskz=v /cd, and
therefore, the thickness of each layer has to bel0/ s4Î«−1d.
From the manufacturing perspective this leads to the conclu-
sion that the effectively lower dielectric coefficientss«−1d

entail a larger number of layers for achieving good reflection
in comparison to the case of a perpendicularly impinging
wave.

Relevant acceleration parameters have been investigated
and it was found that for parameters, corresponding to zirco-
nia s«=4d and silicas«=2.1d, the interaction impedance var-
ies [Eqs.(40) and(41)] between 20 and about 265V for the
CBA, according to the internal radius of the vacuum tunnel.
In case of the PBA, the interaction impedance per wave-
length varies between 25 and 150V. It was shown that with
regards to confinement in a minimum number of layers, best
results are achieved by choosing one layer with«=2 and the
other as high as possible. However, the interaction imped-
ance is not maximal for this choice as seen in Fig. 10. Most
importantly, it was demonstrated that if the other dielectric is
as high as«.25, the interaction impedance reaches values
of about 1000V for the CBA; clearly this material needs to
sustain intense electric fields and facilitate construction of
the submicron dielectric layers in good contact with silica.

Another parameter of interest is the energy velocity[Eqs.
(43) and (44)]. For the parameters mentioned aboves«
=2.1,4d the energy velocity varies between 0.38c and 0.48c
for the CBA according to the internal radius—Fig. 11. For
the PBA the variation is between 0.42c to 0.53c. A third
parameter of interest is the maximum field sustained by the
structure before the probability of breakdown becomes sig-
nificant. Since for most practical purposes the maximum
field may be assumed to occur at the vacuum-dielectric in-
terface, this quantity may be evaluated analytically—Eqs.
(33) and(36). Moreover, if we assume a gradient of 1 GV/m
and that the fluence[25] imposes a maximum electric field of
2 GV/m, then the maximum internal radius allowed is
0.55l0 for the CBA, and 0.28l0 for the PBA.

Within the framework of the mode propagation analysis,
two additional important analytic results have been shown
explicitly: first an explicit expression for the necessarythick-
nessof the first layer in the PBA,D1, was established[Eq.
(32)] in terms of the size of the vacuum tunnel and the op-
erating frequency. Secondly, theconfinement parameter[Eq.
(34)] describing the exponential decay of the field in the
periodic structure has been established in terms of the dielec-
tric coefficients and the operating wavelength.

In the second part of this study, we examined the electro-
magnetic wake field and the power generated by a train of
microbunches in both the PBA as well as the CBA case. The
total emitted power was demonstrated to be limited by two
extreme cases. Thelower limit is set by the power emitted by
a train of bunches moving along a vacuum tunnel bored in a
dielectric medium that extends to infinity. In this case any
radiation generated by a given bunch is emitted outwards,
and it practically does not affect trailing bunches. Although
there is a nonzero wake on axis, its influence on trailing
bunches is negligible, as the wake decays exponentially. In
this configuration(or for a small number of layers) the emit-
ted power was found to be proportional to the square of the
number of electrons in the macrobunchsNeld, and inversely
proportional to the number of microbunchessM ,Neld. This
power is also inversely proportional to the square of the in-
ternal radius of the structure for the CBA, and to the width of

FIG. 17. Normalized power generated by a train ofM mi-
crobunchessDint=0.3l0,«I =2.1,«II =4d for the PBA.
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the vacuum core in thc PBA. Theupper limitcorresponds to
a closed structure, namely, a dielectric loaded waveguide
where the size of the tunnel is identical to the previous case,
and the dielectric layer is set so that at the operating wave-
length the mode has phase velocityc. The ideal metal(or
perfect magnetic wall) at the boundary, causes all the Ceren-
kov radiation emitted by the particles to be reflected back to
the axis, and as a result there is a significant impact on trail-
ing microbunches. The power emitted by the Bragg structure
is between these two limits since there are frequency ranges
in which the radiation is confined, whereas for others, the
electromagnetic energy leaks out without affecting trailing
bunches.

In addition to the pass-band structure of the Bragg layers,
the power generated by a macrobunch is determined by the
macrobunch’s length, the radial extent of the structure, and
the causality of the reflections reaching the axis. For ex-
ample, if there are only a few microbunches(say 5) but many
layers, radiation reflected by all the layers which are beyond
say 10 layers(beyondr ~2l0 for the silica-zirconia structure)
will not affect the trailing microbunches. As a result of this
causality threshold[Eq. (63)], the power emitted by a mac-
robunch in a Bragg structure was shown to be significantly
different than that emitted in a closed structure. Systemati-
cally, the former is lower than the latter.
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APPENDIX A: THE RELATION OF R/Q TO Zint AND vEN

For deriving the relation betweenR/Q andZint, vEN, it is
assumed that the relative dielectric coefficient where the
wave propagates is of the form«=«r − j«i, and the loss tan-
gent is given by

tan d, «i

«r
=

s

v«0«r
, sA1d

wheres is the effective conductivity. The dissipated power
density is

pD =
1

2
sE*W ·EW =

2v0«i

«r
wE = 2v0 tand wE, sA2d

wherewE is the time average electric energy density. Further
assuming that the loss tangent is approximately identical in
all the dielectric materials comprising the structure, the dis-
sipated power per unit length ofz is given by

PD = 2v0 tandE E da wE = 2v0 tand WE sA3d

whereWE is the time average energy per unit length. Next,
Eq. (A3) is substituted in the definition of the shunt imped-
ance to obtain

Zshunt,
uE0u2

− dP/dz
=

uE0u2

PD
=

uE0u2

2v0 tand WE
, sA4d

whereinP is the flowing power in thez direction. In a similar
way, the quality factor reads

Q, v0WEM

PD
=

WEM

2 tand WE
sA5d

whereWEM is the time average energy per unit length. Fi-
nally, using the definitions of the interaction impedance(37)
and the energy velocity(42), the ratio between the shunt
impedance(denoted byR) and the quality factor takes the
form

R/Q =
uE0u2

v0WEM
=

bENZint

2pl0
, sA6d

wherebEN=vEN/c.

APPENDIX B: FORMULATION OF THE WAKE FIELD IN
A PLANAR STRUCTURE

The starting point in establishing the wake-field in a pla-
nar structure is to realize that the electromagnetic field gen-
erated by the current density(47) in free space, namely the
primary field, is given by

Az
spdsx,z,td = −

q8m0

4p
E

−`

`

dv ejvst−z/vd 1

G
e−Guxu, sB1d

where G, uvu /cgb. Since the line charge is moving in a
vacuum core of a dielectric structure where the material ad-
jacent to the vacuum region has a dielectric coefficient«I, the
effect of the surrounding structure is referred to as the sec-
ondary field, and its form is dictated by the primary field to
be

Az
ssdsx,z,td = −

q8m0

4p
E

−`

`

dv e jvst−z/vd 1

G

3 5A0 coshsGxd, uxu , Dint,

−
«I

g2b2«̄
sC0e

−jLx + D0e
jLxd, x . Dint,

sB2d

whereL, suv u /cdÎ«I −b−2 and «̄,«I −b−2. This solution of
the wave equation is assumed to hold only in the first layer
adjacent to the vacuum region, and due to the symmetry, it is
sufficient to consider only one side of the dielectric structure.
The reflections from the surrounding structure are repre-
sented by the amplitudeD0.

Based on Eq.(B1) it is possible to establish the electric
scalar potentialF using the Lortenz gauge. Derived from
both potentials we obtain the primary fields in the vacuum
region uxu,Dint

Ez
spdsx,z,td = −

q8m0

4p
E

−`

`

dv e jvst−z/vdS jv

g2b2D 1

G
e−Guxu,
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Hy
spdsx,z,td = −

q8m0

4p
E

−`

`

dv e jvst−z/vd 1

m0
e−Guxusgnsxd.

sB3d

In a similar way, the secondary fields within the vacuum core
are

Ez
ssdsx,z,td = −

q8m0

4p
E

−`

`

dv e jvst−z/vdS jv

g2b2G
DA0 coshsGxd,

sB4d

Hy
ssdsx,z,td = −

q8m0

4p
E

−`

`

dv e jvst−z/vd s− 1d
m0

A0 sinhsGxd,

and the secondary fields foruxu.Dint are

Ez
ssdsx,z,td = −

q8m0

4p
E

−`

`

dv e jvst−z/vdS jv

g 2b2G
D

3sC0e
−jLx + D0e

jLxd,

Hy
ssdsx,z,td = −

q8m0

4p
E

−`

`

dv e jvst−z/vdS−
j«IL

m0g 2b2«̄G
D

3sC0e
−jLx + D0e

jLxd. sB5d

It is possible to establish a relation between the outgoing and
incoming waves in the first dielectric layer in terms of the
geometry of the rest of the structure. Explicitly, this is de-
scribed by

R, D0

C0
e2jLDint, sB6d

implying thatR is the reflection coefficient just outside the
vacuum tunnel, and it depends on the layers arbitrary con-
figuration. Imposing the continuity ofEz and Hy on the
vacuum-dielectric interface, the solution for the amplitudes
in the vacuum region is

A0 =
2s1 − zrd

e2GDints1 + zrd − s1 − zrd
, sB7d

wherez,− j«1/gbÎ«̄ andr, 1−R/1+R .
For the caseR;0, i.e., a vacuum tunnel within a homo-

geneous material with«I, the secondary field is next evalu-
ated to obtain the decelerating field on the moving line
charge. Beginning with the expression Eq.(B4) and substi-
tuting into it Eq.(B7) and t−z/c=0 we get

Ei, Ez
ssdsx = 0,z= vt,td

=
− q8m0

2p

c

gb
2 Re5 jE

0

`

dv
1

S1 + zr

1 − zr
De2GDint − 16 .

sB8d

SinceR;0, we haver=1, and using the relation

E
0

`

dx
1

aebx − 1
=

1

b
ln

a

a − 1
, sB9d

Eq. (49) is obtained. An expression for the longitudinal elec-
tric field in the ultrarelativistic regime can be derived from
the secondary field Eqs.(B4) and (B7) by replacinge2GDint

with the two leading terms in the Taylor series and then
taking the limitg→`, resulting in Eqs.(51) and (52).

APPENDIX C: WAKE FIELD IN TERMS OF THE
STRUCTURE EIGEN MODES

The expression of the ultrarelativistic wake field into the
accelerating structure eigenmodes is discussed in what fol-
lows. It is first instructive to rewrite Eq.(51) as

Ez
ssd =

q8

2p«0Dint

1

2
E

−`

`

dv̄ejv̄t̄ 1

1 −Rsv̄d
1 +Rsv̄d

+ jv̄

sC1d

The denominator in the integrand is denoted by

Fsv̄d,
1 −Rsv̄d
1 +Rsv̄d

+ jv̄. sC2d

This is in fact the dispersion function forkz=v /c, such that
zeros of this function(poles of the integrand) are eigenfre-
quencies of the structure. Should this function satisfy the
conditions for the residue theorem to hold, it is possible to
write the above integral as a sum of the eigenmodes or, ex-
plicitly,

Ez
ssd =

q8

2p«0Dint

1

2 o
i

2p j
1

F8sv̄id
ejv̄it̄, sC3d

where the prime denotes derivative with respect tov̄ andv̄i
are the zeros ofFsv̄d.

In case of a metallic partially loaded transmission line, the
reflection coefficient isR=−e−jav̄ wherea,2«ID1/Dint, and
the dispersion function is

Fsv̄d = − j cotsav̄/2d + jv̄. sC4d

All poles of the integrand are on the Imhv̄j=0 axis on the
complex v̄ plane. Based on the causality requirement, for
t̄.0 the integration is carried out in a path enclosing the
upper half complex plane, including the poles, whereas for
t̄,0 the result is zero. On the moving charge itselft̄=0, the
integral is therefore the average of these two values. Exploit-
ing the complex conjugate symmetry of the dispersion func-
tion, the resulting wake field is of the form

Ez
ssd =

q8

2p«0 Dint
p o

i

Wi cossv̄it̄dust̄d, sC5d

whereWi are weights given by

Wi =
2

1 +
a

2
sin−2Sav̄i

2
D sC6d

and

A. MIZRAHI AND L. SCHÄCHTER PHYSICAL REVIEW E 70, 016505(2004)

016505-18



o
i

Wi = 1. sC7d

In the dielectric layersuxu.Dintd of the metallic wall trans-
mission line it can be shown in a similar manner that the
longitudinal wake field reads

Ez
ssd =

q8

2p«0Dint
po

i

Wi
sinfLisDext − xdg

sinfLisDext − Dintdg
cossv̄it̄d ust̄d,

sC8d

whereDext,Dint+D1. Implementing the same method to the
magnetic wall transmission line we get for the dispersion
function

Fsv̄d = j tansav̄/2d + jv̄ sC9d

and the wake field inside the vacuum core has the expression

Ez
ssd =

q8

2p«0 Dint
p3 2

1 +
a

2

+ o
i

1

1 +
a

2
cos−2Sav̄i

2
D cossv̄it̄d 4

3ust̄d. sC10d

When the structure is not bounded by metallic or perfect
magnetic walls, energy can escape. In the simplest caseR
;0, the dispersion function has one zero inv̄= j , which
results in an exponential decay[see Eq.(55)], which is con-
sistent with the above formulation. In Fig. 18 the function
log10uFsvdu is plotted in the complex plane showing that for a
structure that has a Bragg reflector of one periodsn=1d there
are poles that have an imaginary part, indicated by the dark
spots(zeros of the dispersion function). Adding more periods
to the structuresn=2,3,4d, it is seen that more poles are
added, representing the additional reflections. It is therefore
possible to represent the wake field in a Bragg structure as a
sum of the residues, meaning that the wake field is given by
an infinite sum of lossy modes. An analytic expression for
the residues is easily obtained by substituting the Bragg re-
flection coefficient Eq.(54) into the dispersion function, and
performing the derivative.

APPENDIX D: POWER EMITTED BY A TRAIN
OF MICROBUNCHES

Our goal here is to determine the power generated by a
train of M microbunches of a relative lengthsa/2pdl0. In the
case of a single particle the wake on axis is given by Eq.
(51), and this may be extended to include the effect of many
particles

Est̄d =
1

2p«0 Dint

3F1

2
E

−`

`

dv̄
1 +Rsv̄d

1 + jv̄ − s1 − jv̄dRsv̄doi

qi8e
jv̄st̄−t̄idG .

sD1d

qi8 stands for the charge of theith particle andt̄i represents
its “delay” in the macrobunch relative to some arbitrary ref-

erence, e.g., the macrobunch front. Consequently, the power
emitted by the macrobunch is

P = vo
i

qi8Est̄ − t̄id=
v

2p«0 Dint

3F1

2
E

−`

`

dv̄
1 +Rsv̄d

1 + jv̄ − s1 − jv̄dRsv̄dUoi

qi8e
jv̄t̄iU2G .

sD2d

The last term may be simplified subject to two assumptions:
(i) there areM microbunches and(ii ) each microbunch has a
relative lengthsa/2pdl0, thus

o
i

qi8e
jv̄t̄i =

q8

M
o
n=0

M−1
1

a
E

2pn−a/2

2pn+a/2

dxej
v̄
v̄0

x

=
q8

M
sincSa

2

v̄

v̄0
Do

n=0

M−1

e2pn j
v̄
v̄0

=q8 sincSa

2

v̄

v̄0
DsincFpM

v̄

v̄0
G

sincSp
v̄

v̄0
D ejpsM−1d v̄

v̄0 ,

sD3d

where q8 is the total charge. Substituting in Eq.(D2) we
finally obtain

FIG. 18. The dispersion function log10uFsvdu for number of pe-
riodsn=1,2,3,4sN=2nd. The dark areas indicate zeros of the func-
tion which are poles of the wake-field integrand.
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P =
vsq8d2

2p«0 Dint51

2
E

−`

`

dv̄
1 +Rsv̄d

1 + jv̄ − s1 − jv̄dRsv̄d

3 sinc2Sa

2

v̄

v̄0
Dsinc2FpM

v̄

v̄0
G

sinc2Sp
v̄

v̄0
D 6 sD4d

for the power emitted byM microbunches separated by one
wavelength of the fundamental frequency.

If the structure under consideration is closed such that the
wake field of a single line charge is given as a sum of propa-
gating modes(C5), then the previous expression has poles on
the integration path. In this case the total power will be for-
mulated slightly differently, beginning with a sum over all
charges and all the contributing modes, given by

P =
v

2p«0 Dint
o
m

qm8o
n

qn8p o
i

Wi

3cosfv̄ist̄n − t̄mdgust̄n − t̄md, sD5d

which can be reformulated in terms of average contributions

P =
sq8d2v

2p«0 Dint
p o

i

Wi

3KKcosF v̄i

v̄0

sxm − xndGusxm − xndL
n
L

m

, sD6d

whereinx is the relative phase on the scale of the fundamen-
tal angular frequency. In what follows it will be demon-
strated that

KKcosF v̄i

v̄0

sxm − xndG usxm − xndL
n
L

m

=
1

2
sinc2Sa

2

v̄i

v̄0
Dsinc2Fp

v̄i

v̄0

MG
sinc2Sp

v̄i

v̄0
D , sD7d

implying

P =
sq8d2v

2p«0 Dint

p

2 o
i

Wi sinc2Sa

2

v̄i

v̄0
Dsinc2Fp

v̄i

v̄0

MG
sinc2Sp

v̄i

v̄0
D ,

sD8d

a being the length of one microbunch, normalized as a phase
relative to the fundamental wavelength. In order to demon-
strate Eq.(D7) we assumeM microbunches each one of a
phasea

KKcosF v̄i

v̄0

sxm − xndG usxm − xndL
n
L

m

=
1

M
o
n=0

M−1
1

M
o
m=0

M−1
1

a
E

2pn−a/2

2pn+a/2

dx
1

a
E

2pn−a/2

2pn+a/2

dy cosF v̄i

v̄0

sx − ydG usx − yd

=
1

M2 o
n=0

m=0

M−1
1

a
E

−a/2

+a/2

dy cosH v̄i

v̄0

f2psn − md + x − ygJ uf2psn − md + x − yg

=
1

M2 Re5 o
n=0

m=0

M−1

usu . md
1

a
E

−a/2

a/2

dx
1

a
E

−a/2

a/2

dyejsv̄i/v̄0df2psn−md+x−yg

+ o
n=0

M−1
1

a
E

−a/2

a/2

dx
1

a
E

−a/2

a/2

dyejsv̄i/v̄0dsx−ydusx − yd6 . sD9d

In this last step we took advantage of the fact a charge in one of the microbunches affects all the trailing bunches. The
integration overx andy is straightforward leading to

KKcosF v̄i

v̄0

sxm − xndG usxm − xndL
n
L

m

=sinc2Sa

2

v̄i

v̄0
D5 1

M2Re3 o
n=0

m=0

M−1

usn . mdej2psv̄i/v̄0dsn−md4 +
1

2M6 . sD10d

The term in the square brackets may be shown(using geometric series) to equal
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Re3 o
n=0

m=0

M−1

usn . mdej2psv̄i/v̄0dsn−md4 =
1

2
M2

sinc2Fp
v̄i

v̄0

MG
sinc2Sp

v̄i

v̄0
D −

1

2
M sD11d

leading to Eq.(D7) and consequently to Eq.(D8).
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