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Analytical theory and control of the longitudinal dynamics of a storage-ring free-electron laser
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A comprehensive analytical description is given of the longitudinal dynamics of a storage-ring free-electron
laser in the presence of a finite light-electron beam temporal detuning. Closed analytical expressions for the
main statistical parameters of the syst@rm., beam energy spread, intensity, centroid position, and r.m.s. value
of the laser distributionas a function of the detuning are provided. The transition between the stable “cw”
regime and the unstable steady state is shown to be a Hopf bifurcation. This allows us to introduce a feedback
procedure which suppresses the bifurcation and significantly improves the system stability. The critical value of
the detuning above which the bifurcation occurs is analytically derived as a function of the electron energy and
of the beam optics parameters. Results are compared to experiments and display good agreement. Comparisons
with other theoretical models are also drawn.
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I. INTRODUCTION ticles in the ring. The electron-beam energy is maintained
A free-electron lase(FEL) is very closely related to the Constant by means of a devictne radio frequengywhich
undulator insertion devices familiar to all third generation SUPPlies, turn by turn, the energy lost due to synchrotron and
light source users. A relativistic electron beam interacts witf EL radiation to the electrons. The amplification is obtained
an electromagnetic field as it passes through a periodic mag- the detriment of the elt_actron—b_eam energy spread which
netic structure forcing particles to move along sin-like trajec-2€COMes larger when the intracavity power grows. The heat-
tories and, consequently, to emit radiation. Depending oing of the electron bunch due to the laser onset leads to the

their initial phases, electrons gain or lose energy after th eduction of the amplification gain until the latter reaches the

interaction and this leads to a clustering further downstreal _evel_ of the cavity lossegaser saturation .
Since it originates from the synchrotron radiation, the la-

Egcsanr;"ggi% l:ir;?]hgr%ilsss:icl)?] tuTrrTé t&?rﬁogéiea(gtfggaggsgrs aser is naturally pulsed at the gllectron beam revolution period
: i . - . ; (hundred of ng On a largermillisecond temporal scale the
wide variety of cor]flguratlons. FEL osullato(mnplememgd FEL dynamics depends strongly on the longitudinal overlap
both on storage rings and on LINALChave been the first hepyeen the electron bun@s and the laser pulses at each
ones to be operate,2] and are still by far the common a4 inside the optical cavity. A given temporal detuning, i.e.,
ones. They provide intense, tunable, monochromatic, ang gifference between the electron beam revolution period and
fu"y coherent radiation in the I’ange from the infrared to thethe photons round tnp inside the optica| Cavity, |eads to a
UV/VUV. The quality of the optical cavity mirrors is pres- cumulative delay between the electrons and the laser pulses:
ently the limiting factor for the performance of such devices.the laser intensity may then appear “cufor a weak or
In particular, it appears clear that the ambitious goal of ob-strong detuningor show a pulsed behavigfor an interme-
taining laser light in the x-ray region rests on the successfutliate detuning amoun{7,8]. The temporal detuning can be
evolution of other kinds of FELs not employing mirrors, experimentally controlled either modifying the electron-
such as self-amplified spontaneous emissSiSBASE) (see  beam revolution periodvia the variation of the radio fre-
Ref. [3] for a complete list of referencegsr high gain har- quency or by changing the distance between the mirrors of
monic generatiofHGHG) [4]. Nevertheless, in the spectral the optical cavity. Due to a better sensitivity, the former
regions where high reflectivity mirrors are available, FEL method is generally preferred. The central, narrow, “cw”
oscillators represent excellent light sources for scientific rezone of the detuning curvgew fs around the perfect syn-
search[5,6] because they can reach a spectral purity and &hronisn) is generally the most interesting for user applica-
temporal stability which at present does not seem to beions: in this zone, the laser is indeed characterized by the
achievable with other techniques. Among oscillators,maximum average power and the signal is the closest to
storage-ring FELESRFELSs, whose layout is schematically the Fourier limit [9]. However, it is worth mentioning
shown in Fig. 1, present by far the more complex dynamicsthat the “ideal” dynamics, namely, the existence of a stable
Such complexity origins from the fact that, unlike LINAC- regime around the perfect tuning, is a peculiar characteris-
based FELs, where the electron beam is renewed after eatic of second-generation SRFELs, such as Super-ACO and
passage inside the interaction region, electrons are recircldVSOR. Last-generation SRFELs, such as DUKE and
lated. ELETTRA, do not seem, at present, to display a similar be-
As a result, at every light-beam energy exchange the sydiavior [10,11]. In fact, the existence of a reproducible,
tem keeps memory of previous interactions. In a SRFEL thestable, regime has not yet been experimentally observed. The
light produced by the electron beam is stored in an opticateason for that can be mainly traced back to the increased
cavity and amplified during the successive turns of the parsensitivity to electron-beam instabilities, which is proper to
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FIG. 2. Schematic layout of the pass-to-pass laser-electron beam
FIG. 1. Schematic layout of a SRFEL. interaction.AT stands for the period between two successive inter-
actions, 7" is the position of the laser centroid with respect to the
eak of the electron density, ardaccounts for the laser-electron
eam detuning at each pass.

“high-gain” SRFELs with respect to lower-gain devices of
previous generation. In order to keep the laser-electron beal
synchronism and avoid jittering, which could determine a
migration towards one of the unstable, pulsed zones of the

detuning curve, the Super-ACO and UVSOR SRFELs havéheory. In Sec. VII the study of the stability of the fixed
implemented dedicated feedback systefi®,13. These points is performed. The transition between the “cw” and the
kind of devices assume the existence of a stable “cw” regim@ulsed regimes is shown to be a Hopf bifurcation. This result
and, for this reason, cannot be straightforwardly installed onis exploited in Sec. VIl where a feedback procedure is in-
last-generation SRFELSs. troduced and shown to enlarge the FEL stability domain.

The longitudinal dynamics of a SRFEL in the central Finally, in Sec. IX an explicit analytical expression of the
“cw” zone of the detuning curve has been discussed in aritical detuning is derived and compared with experiments
number of papers. The most significant analytical result@and with the super-mode theory predictions. In order to re-
have been obtained in Refil4,15. Here the laser electric lieve the main text, the details of the calculations are re-
field, assumed to be centered around the maximum of thported in the Appendixes.
temporal electron-bunch distribution, is decomposed on a ba-
sis of longitudinal modeg&he so-called “super modesself-
reproducing in form after each round trip. After many beam Il. THE ORIGINAL MODEL
revolutions, the system spontaneously evolves towards the
fundamental super mode, which is characterized by a GausE—
ian profile. In most cases, this result has been found to be i y
a good agreement with experimefit$,17.

Up to now, due to the high mathematical complexity of
the problem, the longitudinal FEL dynamics in presence of
significant laser-electron beam detuning has been studi
only numerically. Two different kinds of models have been Yoea(7) = Ry (7= ©[1 +gy(D] +id(7), (1)
developed. In the first, the single-particle motion inside the
electron bunch and the dynamics of the field amplitude andvherer is the temporal position of the electron bunch distri-
phase have been explicitly taken into acco[k8—20. The  bution with respect to the centroi® is the mirror reflectiv-
others, consider only the evolution of the statistical paramity, the detuning parameter is the difference between the
eters of the electron bundfie., the bunch length and the e€lectrons revolution perioddivided by the number of
energy spreadand of the laser distributiofi.e., intensity, ~bunchegand the period of the photons inside the cavily;)
centroid position, and r.m.s. valug1-24.

The model presented in RgR21,23 belongs to the sec- 1.80
ond category and is the starting point of this study. This G, /0,
paper represents a natural complement to &5} and it is
organized as follows. In Sec. Il the starting model is briefly
reviewed. In Sec. Il an explicit four-dimensional discrete
map is introduced, based on the assumption of a Gaussian
profile for the laser distribution. In Sec. IV, the formulation is
further simplified: by means of a Taylor development four
rate equations are obtained and shown to be particularly suit-
able for an analytical investigation. Section V is devoted to
the study of the fixed points of the system as a function of
the detuning parameter. Closed analytical expressions are , ‘
provided and compared to results from numerical simula- 1.3 25 59 g,/P 45
tions. In Sec. VI, these theoretical predictions are compared,
for the case of the perfect tuning, to experiments carried FIG. 3. o,/ 0y is plotted versus the ratig,/P. The circles rep-
out on the Super-ACO and ELETTRA FELs and with the resent the numerical solution of E&) while the solid line refers to
estimate obtained in the framework of the super-modehe theoretical estimat@). The difference keeps smaller than 2%.

The longitudinal dynamics of a SRFEL can be described
a system of rate equations accounting for the coupled
evolution of the electromagnetic field and of the longitudinal
parameters of the electron bun2i]. The temporal profile

f the laser intensity, is updated at each passinside the
e(aptical cavity according to

1.40
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accounts for the profile of the spontaneous emission of the 19
optical klystron[26,27. Figure 2 shows a schematic layout
of the light-electron beam interaction in the presence of a
finite detuninge.
The FEL gaing,(7) is given by 0 ‘ ‘
o o2~ o 2 10
] N B M
On 203 2027,n 2
[0
whereg; and oy are the initial(laser-off peak gain and beam 'E
energy spread, while,, and o, are the energy spread and 0 K ‘
the bunch length after thath light-electron beam interaction. 3 ) '
The first exponential on the right-hand side of E&) ac-
counts for the modulation rate of the optical-klystron spec-
trum [28], while the second one reproduces the temporal
profile of the electron bunch distribution. The latter is there-
fore assumed to keep its “natural” Gaussian profile under the . , ‘ ‘
action of the laser onset. This hypothesis also entails that th 5 10 15 20 25 30
interaction of the electron beam with the ring environment Time (ms)
[29-37] is neglected. This point will be further discussed in

FIG. 4. Numerical simulation performed for the case of Super-
ACO SRFEL. The results reproduce different “natural” regimes of
the (normalized laser intensity.

the following.
Defining g, as the peak gain after thath interaction
0n(7) can be written in the form

7.2
gn(T):go,neXF{_;zn] (3 In<E> +h:_%[(1+h)2_1]:_h (8)

The evolution of the laser-induced energy spread is ruled bynd thus
the following equation: L
Oe Ji
2AT — = 1+—In<—>. (9
0'2n+1:0'§+7(')’|n+0%_0ﬁ)1 (4) ) 2 \P

® This estimate is displayed in Fig. 3 and compared to a direct

where y=o05- 0. Hereo, is the equilibrium valudi.e., that  numerical solution of Eq(5).

reached at the laser saturafjosf the energy spread at the  Finally, let us note that neglecting the interaction of the
perfect tuning andAT is the bouncing period of the laser electron beam with the ring environment allows one to use,
inside the optical cavityt,=[Z.yn(7)d7 is the laser intensity  at any current, the relation of proportionality

normalized to its equilibrium valu@.e., the saturation value

for e=0) and 7, stands for the synchrotron damping time. _a (10)
Assuming that the saturation is achieved when the peak gain

Eze]gual to the cavity losse®, the following relation holds where(} is the synchrotron frequency ardthe momentum

compaction factor.
o 0% - ol The model presented in this section is shown to reproduce
P:gi;ex - ? ' (5) guantitatively the experimental results obtained on the
€ 0 Super-ACO FEL. This point was extensively addressed in
By inserting Eq.(5) into Eq.(3) a closed expression for the Ref. [33]. As an example, in Fig. 4 the laser intensity is
peak gain is obtained: plotted as function of time: distinct dynamical regimes are
5 o found corresponding to different values of the detuning pa-
ay| Pa |70 rametere.
(6)
dioo

Relation (5) sets the equilibrium value of the beam energy Ill. THE EVOLUTION OF THE STATISTICAL
spread as function of the quantitigs and P, regarded as PARAMETERS OF THE LASER DISTRIBUTION:
independent variables. An approximate closed expression for AN EXPLICIT FORMULATION

the ratio o/ o is also obtained by means of a perturbative
analysis. Assume

Jon=Ui

On

Equation(1) governs the evolution of the statistical pa-
rameters of laser distribution, i.e., the laser intengiigro-

oo order momeny the laser centroidfirst-order moment and

—=1+h (7)  the standard deviatiofsecond-order momentBy assuming

70 a specific form of the laser distribution, it is in principle
with h small. From Eq(5) one gets possible to characterize explicitly the dynamics of each
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quantity. The choice of a Gaussian profile enables one to [ oﬁ—oﬁ] oo
write xexp - 202 f T
O'O —%
In (7- Tn)2:| - )
7) = ———exp| - : 11 (1-7m—¢)
O™ B, 201, " e }
wherel, is the laser intensitys, the position of the laser [ 2 +o0
centroid, ando; , the r.m.s. width of the distribution. Note Xexp > }dr+f 7g(7r)dr. (15
that the Gaussian hypothesis can be regarded as an extension L 40:n -0

of the result obtained in the framework of the super- mOOIel’he last integral is equal to zero since the spontaneous emis-
theory[34] for a perfect laser-electron beam overlapping, to

ion i m mmetri Il sh function cen-
the case of a detuned FEL. Starting from this ansatz, the raf%(r)ed?naffg :Srttr?e?enacx beesthgvxt/)r? thsataped unction ce
equations for the main statistical parameters are derived in

the following. The details of the calculation are given in Ref. R, J““ (r—m—€) ]d R (. +¢)
TeXP ———— —— |d7= TmWte
[3@. V/ZTO'Ln . 20'|2,n n\’/n
(16)
A. Laser intensity and[36]
The rate equation for the evolution of the laser intensity + ) 2

can be obtained by computing the zero-order moment of the rex (T_ o~ €) } xp{— —]dr
laser distribution 207, 207,

+o° e \r’ iy ThtE€E o+ €)?

f Yner(DAT= 114 = sz Yo(7— €[1+gn(7)]d7 L ( A ) Zexf{_ (Zn—):| .
e . \/ ( ) ( a, n) 2(‘TI,n + r,n)
Tn

N f i (ndr. (12 (17

Making use of the assumptiqil), one gets Combining together, one gets

o 1+J,

T1=(m+ € (18)
I3 = Riln+ RZL Yo(m- do(Ddr+l,  (13) e 1+Jo{l+<%>2J
Orn
wherel, is the intensity of the spontaneous emission normal- ith
ized to the saturation valuat e=0) of the laser intensity. By
inserting Eq.(11) in Eq. (13), and computing the integral as p{ - aﬁ} p[ (7,+ €)? }
; i i ; expl - -
in Ref. [36], one obtains the final equation L o 20(2) 202, + 02,) 10
2_ 2 2 0=0i 2732 - (19
I 0 (T + € On (Uln)
exp| - exp—-——S 5 1+ —
| =R {1+g20 203 201+ 0%p) Orn
nrl " o \/1 o[ i 2 Note that in deriving Eq(18) we made explicit use of Eq.
oo (14) and neglected the contribution associatedsto
+1s. (14 C. Standard deviation
The evolution of the r.m.s. value of the laser distribution
results from the calculation of its second-order moment
B. Laser centroid +o0
_ 2
The rate equation for the evolution of the centroid of the f_w (7= Te1) Ynea(1)7
laser distribution results from the calculation of its first-order
moment =410t et
+o0 R2|n +0o0 )
f_m Yned(AT= 10117y = V’ETO] nJ—oc (7= The1)
2 4 - 2
- R f . = - ) ]dfr+ K20
w27‘ra'| nd - n V270 On
_ ol-
Xexp{ (7= Tﬂ €) ] Rl g Xexp{— > (7= Ted)?
\'27TO'| n On
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(71— 1,— € _ i
o
+J oo(7'— Toe1)is(DAT. (20)

Solving the integralgsee Ref[35] for detaily in the right-
hand side of the previous equation, one gets

1 +00 _ _ 2
Jj=—— f (- Tn+1)zexp{—w]dr
V270 nJ =0 201,
zo-lz,n+(7'n+€_7'n+1)2, (21
J ! g croexp{ gﬁ—aé]f“( )?
== i - T— T
2 \‘" 2'7TO'| n i o, 2 0’% i n+1

=€) 2
xexg| - Tn 9 ]exp{— 5 ]dr
201, 207,

exp[— (Tn + 6)2 :|
O'Oexp|:_ Oﬁ B 0%:| 2(0-En + r,n)

=0 20%

On

J3= Jﬁc (7= me)AdNdT= 107, + ), (23)

and Eq.(20) can be rewritten in the final compact form

R21,(J;+Jp) +J
0|2,n+1 — n\v1 2 3 ] (24)

In+1
Summing up, Eq(l) is replaced by Eqg14), (18), and(24).
The model needs still to be completed by E4), which

governs the evolution of the laser-induced energy spread.
An exhaustive campaign of simulations has been per
formed in order to asses the validity of this new formulation. £
Systematic comparisons have been drawn with the originaﬂ
model using the case of the Super-ACO FEL as a reference

(see Table)l A satisfactory agreement has been foliaf],

PHYSICAL REVIEW E 70, 016503(2004)

TABLE |. Characteristics of the Super-ACO and ELETTRA SR-
FELsfor a given experimental setting. The analytical dependence of
Is versusg; and P (together with the numerical estimate reported
here has been obtained as in REB5].

Super ACO Elettra
Beam energyMeV) 800 900
a 1.4x 1072 1.4x 1073
Q (KHz) 14 16
75 (M) 8.5 87
oy 5.4x 1074 1.5x107°
ol o =15 =15
Nas (NM) 350 250
0i(%) 2 15
P(%) 0.8 7
AT (ns) 120 864
I =1.4x1078 =4.3x107"7

tween the stable and unstable regimes. A concise survey of
part of these results has been presented in [R&f.

IV. A SIMPLIFIED FORMULATION

The previous formulation can be further simplified by re-
stricting the analysis to relatively small values of the detun-
ing e. We are in particular interested in the region of stable
(“cw”) signal and we aim to characterize the transition to the
unstable zone. Within this range, the quantities

2
x:(ﬂﬂ), (25)
1 1+ €\?
Y—§< o ) (26)

are asymptotically small. These assumptions are supported
by a numerical study based on the original mof&s] and

are also confirmed by experiments. Hence, a Taylor develop-
ment can be performed in Eqd4), (18), and(24) derived
above. In the following the analysis will be limited to the
rst order in bothx andy. Mixed terms are also neglected.

A. Laser intensity

hence validating a posteriori the Gaussian hypothesis utilized With go defined as in Eq(6), the rate equation for the

in deriving Eqs.(14), (18), and(24).

laser intensity takes the form

-

Making the dynamics of the FEL parameters explicit of-
fers some important advantages. First of all, a faster numeri-
cal implementation is now possible, thus enhancing the sta-
tistics over previous investigations. Moreover, and this is the

main topic addressed in this paper, the new formulatior{hus

opens up the perspective of a full analytical study, which
allows us to characterize the functional dependence of the
electron-beam energy spread, intensity, centroid position,
and r.m.s. value of the laser distribution versus the light-
electron beam detuning. In particular, it will be possible,

through a stability analysis, to determine the critical value of
the detuning parametet corresponding to the transition be-
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B. Laser centroid

Equation(18) can be written in the form
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p[ -y ] Ter = (7 + €[ 1 = o], (30)
exp ——
1+ i
%on (1 +x)%7? where use has been made of the fact that<1.
1= (T + € =y (29 ’
exp ——
p[ 1+ XJ -
1 +go’”W C. Standard deviation
Developing up to the first order in andy, one gets Equation(24) becomes
|
-y
go,neXP[_] 2 2
oyt L+ &= P+ o { T ( - 1) } ot 2
) g .
Ot = ; L (3D)
- n+1
oo ]
+ _—
(1 +X)1/2
|
Developing up to the first order inandy gives 5 5 ol | s o )
O ni1=0n| 1=Oopaz—5 |+ 7| — *+7), (34
' ' T o Ih\ as
(2. + ) where
0'7' 7
0-|2,n+1: 0'Iz,n[]- _go,nx] +-2 ln . y (32) 2AT Oé_ 0% ( QO )2 PO’e
n alz s a2: > , a3: e , a4:—
Ts ay [oge1e4 dioo
(35
where we operated the following additional simplification: 5
2
Oi [ P(Te]((’”_l)/az 9 (2-Dlay
Jon=""| - =—ay," . (36)
on onl Gioo n 4

£(0'27-n + 7'ﬁ+1) = :_S(Ug-n + 7'2n)

|n+1

(33

D. The simplified 4D map

On the basis of the above, and recalling the definitior of
and y introduced, respectively, in Eq$25) and (26), the

simplified model accounting for the coupled evolution of the

statistical longitudinal parameters of a SRFEL can be cast i
the final form

0ﬁ+1=0§+a’1[a'2|n+1_0ﬁ],

0_2

3000 _

_ %(Tn"' 5)2
2 2
20, 2 9o,

o

Ine1= R2|n|:1 "'90,n<:L

9in

n

Tha1 = (Tt €) [ 1- gO,n“S?
n

Note the redefinition o&,, which is from hereon normalized
to ap-

Although approximated, the modé34) still captures the
main features of the longitudinal FEL dynamics. In particu-
lar, the transition from the “cw” regime to the unstable
(pulsed steady state occurs for a temporal detuning which is
close to the one found in the framework of the exact formu-
lation and, hence, to the experimental value. However, due to

the approximations involved in the derivation, syste3d)

breaks down for large values of the detuning amount, i.e.,
when the lateral “cw” zones of the detuning curve are ap-
proachedsee Fig. 4.

Consider now the phase space portrafts,,(z,1
-z,)/ AT], wherez stands forl ,o, 7, or ;. For small values
of € (i.e., when the laser spans the central “cw” zone of the
detuning curvg the system tends asymptotically towards a
stable fixed point, see Fig. 5. Beyond the transition to the
unstable steady state, limit cycles are clearly displayed, see
Fig. 6. This observation suggests the existence of a bifurca-
tion occurring for a critical value, of the detuning param-
eter. This issue will be extensively addressed in the following
sections.
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gl Laser intensity ao Electrons' energy spread ar Laser intensity do Electrons' energy spread
o at at —
/\/—\ \
«
| o |
at Laser centroid a0, Laser rms ot 4o,
a at at dat
T [+] T ) (o]
FIG. 5. Phase-space portraits fe~0.1fs. Top left panel: FIG. 6. Phase-space portraits fer2 fs. Top left panel{(l
(Inv1=1n) /AT versusly,. Top right panel{oy.,—on)/AT versusoy. — —1)/AT versusl,,. Top right panel{oy.1—o,) /AT versusa,. Bot-
Bottom left panel:(7,.1—7,)/AT versus7,. Bottom right panel:  tom left panel: (7.1~ 7,)/AT versus 7,. Bottom right panel:
(01,n41=01,0) | AT versuso . (01 ne1—010) | AT versuso .
V. CALCULATION OF THE FIXED POINTS ﬂ _ d_a' _ %_ % o (39
By approximating finite differences with differentials, i.e., dt dt dt dt
After some algebraic calculations, detailed in Appendix A,
d_ M do _ o1~ 9n dr _ T ™ T doy one can expresks 7,0] as a function ofo:
dt AT dt AT dt AT dt
[ (40)
O - O] - ,
- Zlntl I,n (37) ap

AT

. . . 1 EZ Ez 2 12
one can replace the single-turn m@d) with the continuous 7= =L 4, /(_) + 4E2A (41)
system 2 a3 az '
d—a—ﬂi[al+l—02]=f (o1, 7,09) =l s a-Pa Ca |:52+\/(?>2+462Ai| v
- - 11y U1), = _ N
dt AT 20 2 ' 7 29| a3a4 0[2? -1 a3 ag '

(42)
ﬂ:52{_E+%a(02—1>/az<1—@ﬁ_%(7+ 6)2)} where
dt AT | R 4 202 2 o? 2
—3 ? -1 (1-0%)/ay
+% = (ol na) A= TR (43
At dalna), aols gias
The equilibrium value of the energy spreadis found by
solving the following implicit equation:
%:—i+ A E)[l—91%36!(02_1)/“Zﬁ = f3(a,l,7,09) ’ o i
dt AT AT e S 9 (-1 1as P
7 —a V1D (el (= (44)
doy 1 g ((,z_l),azaf’ 1141 [o? whereg; andr are, respectively, given by Eqel2) and(41).
dt T AT o W% P + E’Tz_m ;3 +7 Equation(44) can be solved numerically, for any given value
of the detuninge. The estimate ofr is then inserted in Egs.
= fy(ol,7,09). (38) iy

(40<(42), to compute the corresponding valued of, gy. In

) i Fig. 7 the asymptotic values of the main statistical param-
Assume from hereoe>0, being the scenario far<0 com-  eters are plotted as a function afThe symbols refer to the
pletely equivalent. The fixed pointd,o,7,07) of system simulations, while the solid line represents the above analytic
(38) are found by imposing solution. The agreement is remarkably good.
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3 Laser intensity e Electrons’ energy spread b ooy [g(fe B 1) . 0_.(29 B In a40_.(23<0_.28 B 1):|
2 2 J

= 2
Oilspazay| 2\ of

+daé?, (50)

0.7l 1.3
0 € (fs) 1 0 € (fs) 1

Laser centroid -2 Laser rms 2
0.7 a5° __0odoo {(E—l o

 gilsaasay o5 0_'20] - v

This solution is plotted in Fig. 7 with a long-dashed line,
displaying satisfactory agreement with the results of the
simulations. To our knowledge this study represents the very
first attempt to characterize the analytic dependence of the
0 43 equilibrium statistical parameters of the SRFEL versus the
0 € (fs) 1 0 € (fs) 1 . ) -

temporal detuning, over the whole central region of “cw

FIG. 7. The fixed points are plotted as function of the detuningP€havior. In the next section attention is focused on the case
parametere. Top left panel: Normalized laser intensity. Top right Of perfect tuning(i.e., e=0) and comparisons are drawn be-
panel: Normalized electron-beam energy spread. Bottom left panefWeen the theoretical results derived above and analogous
Laser centroid. Bottom right panel: r.m.s. value of the laser distri;oredictions obtained in the framework of the super-mode
bution. The symbols refer to the simulations, the solid line stand$¢heory. Comparison with experiments are also outlined.
for the analytic approach based on the numerical solution of Eq.
(44), while the long-dashed lines represent the closed analyticaj\/I
expressions.

THE CASE OF PERFECT TUNING: COMPARISON
WITH EXPERIMENTS AND WITH THE THEORY

o _ _ _ OF SUPERMODES
Furthermore, it is possible to derive a closed analytical

expression foir as a function ok, and consequently for the ~ When the light and the electron beam are perfectly syn-
whole bunch of variables involved, given the explicit rela- chronized at each pass inside the interaction regien, e
tions (40)42). The details of the quite cumbersome calcu-=0), Eq. (42) reduces to Ref37]:

lation are enclosed in Appendix A. Here, attention is focused 1 1/4
on the final result. Assume that the equilibrium value of the o= {—5—254] , (52)
energy spread foe# 0 remains close to that reached at the Pa;

perfect tuning where use has been made of the second and fourth of rela-

o2 tions (35). Using Eqgs(9) and(10) and the third of relations
o= 0—; +0 (45) (35), the expression foo; takes the form
| o | _ 15\ 1 (g
with §<1. By inserting this ansatz in E¢44) and solving a=\5 1 +§In YAGE (53
the system one gets
5 The expressiorn53) for g can be compared both with ex-
LP_“_EQSEH perimental results and with the estimate),, obtained
5 ,QiooR? 2 702 within the framework of the super-mode thedBA]:
M }0_% 1 1 0_%1'* 1 ﬂ% r 1‘2)1" _ 11 Ng\ —
a,  202)\7 292 ) T oM 22T 2t (01)sm= EE(l +7X 10-3ﬁ)v'AokoT,o, (54)
(46)

where Ay =2A[1+0.913Ny4/N)], A=N\j,s and 5 stands
with for the laser wavelength.
In Table Il the theoretical predictions; and (o)), are
I = (_ + \/E> 47) Iiste_d together with the experimental values obtained, for the
179 agoﬁ ' settings of Table I, in the case of the Super-ACO and
ELETTRA FELs.
The theoretical estimates based on E&f) show to be

2
20 + 4D closer by a factor 2 to the experimental values with respect to
I 21 _i+}a50% (48) the results obtained in the framework of the super-mode
279 a2 Je ' theory. In addition, it is worth stressing that while relation
(54) has been obtained in Rgf34] by means of a semiana-
and Iytical approach, relationi53) is fully analytical and allows
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TABLE II. Theoretical widths of the laser pulgebtained using ¢, = J,,3,,J35 — 331 1J02J33 + 335112033 = Japdpalas — 2311353
relations(53) and (54)] compared to experimental values for the

case of the Super-ACO and ELETTRA FELs. The experimental = J31310353 = 2300055+ D110a2doa — Jardi2dra + Jopdaadas
settings are those specified in Table I.
9 P +J11934943 = 332112033,
Super ACO Elettra

— Co =~ J1daxdoadss = Jardindaadza = 2001012055+ 2331012020333
ay (P9 5 2 2
_ +2J;1J +J44d Jaz+Jq4Jd -JiJ J
@)em (09 25 1 11922033+ 34112024933 + J11d42023034 ] 11922334343
Experimental valuegps) =9 =5 + 321312334343 = 31312324343 = — 2321312035 (59

Equation(57) is solved numerically. The real and imaginary
. . arts of the eigenvalues are reported in Fig. 8. The system is
us to relate the pulse width to the values of the mdependerﬁy definition stable when all the real parts of the eigenvalues

var_:_a;\bles ofltthe moqteg. Table Il also indicate that the th are negative. The transition to an unstable regime occurs
€ resutts reported in 1abie 1l aiso indicate that tn€ ey, o 4t 1east one out of those becomes positive. In general,

oretical predictions underestimate in both cases the EXPelihe loss of stability takes place according to different modali-
mental value. The reason for that can be traced back to thﬁ

) es. Consider, for instance, a Jacobian matrix with a pair of
fa_ct that bqth thgqrencal r_nodels neglect the effect 9f thecomplex conjugate eigenvalues and assume the real parts of
microwave instability resulting from the electron beam inter-

i ith the ri : e th all Il of all the eigenvalues to be negative. A Hopf bifurcation occurs
?hc lon wi eh r|n% enzvgl)ror;m?rr]( 9., e fmlgLaE'IIEI'\IIQVX tﬁ when the real part of the two complex eigenvalues become
siti ;[%Cnu?;n e?/eimm)f)?e l.omnplic?itgzsiyothe presence ?)f ositive, provided the other keep their sign unchaniisi.
“kick-like” instability (having a characteristic frequency of his situation is clearly displayed in Fig. 8, thus allowing us

50 H hich iodicall itch # the | . to conclude that the transition between the “cw” and the
2) which periodically SW' ¢ ,?S off the laser preventing pulsed regime in a SRFEL is a Hopf bifurcation. These re-
the attainment of a stable “cw” regime. A rigorous, self-

. sults allow the possibility of stabilizing the laser signal in the

consistent, ?n?lyt;cal Lreatmt_anttog_lt_?e S.RFE.IH (Idynlf_lmlcs '%Sgion where it displays a natural pulsed regime. This issue
presence of electron-beam Instabiiities 15 sl lacking and,; e shortly addressed in the next sectisee also Ref.
will be addressed in a forthcoming analysis. [25])

Finally, note that, in principle, the analytical characteriza-
tion of X given in Sec. V, allows us to directly estimate the
eigenvalues. Hence, it should be possible to derive an ap-

The  stability of the fixed point X  Proximate relation for the critical detuning This crucial
point will be addressed in the following.

VII. STABILITY OF THE FIXED POINTS

:[I_(e),F(e) ,7€),01(e)] can be determined by studying the

eigenvalues of the Jacobian matrix associated to the system
(38), namely, VIIl. STABILIZATION OF THE UNSTABLE

STEADY STATE

Jor Jor Jow ] Having characterized the transition from the stable to the
J=| % "2 v v (55)  unstable steady state in term of Hopf bifurcation opens up

Ja1 Jzz Jzz Ja interesting perspectives for the improvement of the system
performance. The procedure consists in introducing a spe-
cific self-controlled(closed loop feedback to suppress lo-

where cally the Hopf bifurcation and enlarge the zone of stable
ot signal. This technique has been applied successfully in the
Jj= ((9_XI> _ ((1,j=1,2,3,9, (56) past to stabilize the chaotic behavior of a conventional laser

j/ X=X

[39-41l. In the context of SRFEL, the control is achieved by
where X =[o,1,7,0]. The explicit expressions for the ele- replacing the constant detunirggwith the time-dependent

mentsJ; are given in Appendix B. The eigenvalues of the quantity
Jacobian are found by solving the fourth-order characteristic _ :
equations €(t) = g+ BATI (60)
N+ A3+ M2+ G\ + G =0 (57) (wherel stands for the time derivative of the laser intengity
. which is added to the syste(B8).
with Here ¢, is assumed to be larger thag when the control
oz —Jo = 30— 3] is switched off, i.e.,8=0, the laser is therefore unstable and
3T YL w22 ehEs displays periodic oscillations. Fo8 larger than a certain
5 thresholdg,, the oscillations are damped and the laser be-
C2 = 3J2J33~ Jordip + J1adap + 2333+ 3J11d33~ Jundas haves as if it were in the “cw” region. Note that, as soon as
= J34d43=— o112, (58)  the saturation is reachetz 0 and, thus, the stable regime is
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4l FIG. 9. Behavior of the FEL intensity in absen@gpper panel
£ and in presencdower panel of the derivative control system. The
B ol parameters utilized for the simulations are those of Super-é@_@
> Table )). The value ofey [see Eq(60)] has been set to 1.3 fs, i.e.,
Y well inside the unstable region of the detuning curve. The stabiliza-
o tion has been achieved usigF6x 1073,
E
any given experimental setting. In Fig. 14,is plotted ver-
-4t _/// 1 sus the ratia;/P. The circles refers to the values determined
from dynamical simulations, while the diamonds stand for
'60 05 15 the computation. The agreement is good.

e (fs) "o Further, as previously mentioned, it is is principle possible
o to obtain an approximate relation feg, by using the closed

FIG. 8. Real(upper pangland imaginarylower pane) parts of  gnaiytical expressions for the fixed points, derived in Sec. V.
the eigenvalues of the Jacobian matrix associated to the sy38&m Assume Eq(57) to admit two purely imaginary solutions,
as a function of the detuning parameteiThe circle in the picture ie., A=tiw (With weRe). By definition, this condition
for the real parts represents the transition from the stable to thﬁolds whene=e.. Equation(57) reduces to
pulsed regime, i.e., the Hopf bifurcation. ¢

4 2 -

maintained asymptotically foe=¢,> ¢, i.e., well in the W'~ G+ =0,
former unstable zone. Figure 9 shows the behavior of the
FEL intensity obtained for, respectivelg=0 (control off) — Ca0%+ C,w=0. (62)
and 8=6x 1073 (control on. Here B,~5x 1074

This theoretical result provides the ground for experimen- By inserting the solution of the first of E¢61) into the
tal tests, aiming to enlarge the stable “cw” zone of the desecond, and taking into account that numerical evidences
tuning curve. An outline of the strategy is depicted below.SUggesty<c,, one gets
The signal proportional to the total output powgroduced,
e.g., by the response of a photodipde sent to the stabili-
zation system, made of a simple device to obtain a deriva-0 =
tive, followed by an inverting amplifier with a variable gain.
The output of the feedback system is then used to modify the _ _; | (Jug+ Iyt 339 - (Ju1+ Jpp+ 3339 235101,05
electron-beam revolution periagia the modification of the T V2121l T Y227 9N Jo1d1s
radio frequency, i.e., the value of the detuning Recently, ’ 3
this technique has been applied at Super-A@Q] and + 3021012033 = — Q11+ D) (Jordip + 2039 — 6033 (62)
ELETTRA [43] and shown to produce a significant extension gy making use of the explicit expressions given in Ap-
of the stable “cw” region, thus confirming our theoretical pengix B, it can be shown thdts is much smaller thad,,,
predictions. Joo, Jz1, @andJy,, and thus the previous equation reduces to

1 2 CoCs
_503(02 + V€5~ 4Cy) +Cp = —CxC3+ o *tC
2

IX. CALCULATION OF THE CRITICAL DETUNING
(J11+ 30 =0. (63)
PARAMETER

The knowledge of the eigenvalues of the Jacobian matriRecalling Eqs(B2) and (B7) in Appendix B, the equation
(56) as a function of allows us to derive the value ef, for  for . takes the final form
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15 TABLE lll. Theoretical values of the critical detuning value
€ (fs) calculated using the set of parameters specified in Table | and com-
o o pared, for the case of the Super-ACO FEL, with experimental re-
-] ® sults. Heree2** refers to the exact calculatiogiamonds in Fig.
10 | ° 10) while PP stands to the approximate analytical expression
(66); (e-)sm has been calculated using E§7).
= Super ACO
05 o
- T exactts) 1
G 2P fs) 0.5
(€c)smifs) 2
0.0 : : : : Experimental valugfs) 1-4
2.0 25 3.0 35 4.0 /P4.s
9i

FIG. 10. ¢ is plotted versus the ratig/P. The circles stand for
the simulations. The diamonds represent the exact numerical stud
The squares refer to the approximate analytical expres€i6én
Simulations refer to the case of Super-ACO.

— 2
9 (-1la as( 0 (T+€)
-+ R 1+24f >21——(— —) -1

=0. (64)

For the purpose of evaluating, one can neglect the contri-
bution of the correctiord in the expressioK45) for o. Thus,
according to Eq(9), o=0./0p=1+1/2 Ing;/P).

Moreover, taking into account that,<7? and thate,
<7, and recalling Eq(41), one gets

(_ _P+§@ )ii~1ll+ﬂ
“ 4 o “a giRz Qay B (52/(13)2’

(65
that is, making use of Eq43),
; _ 4;("3 + al)

2
= 1{{5 w2 ] —1}. (66)

The values computed using relatigf5) are plotted in
Fig. 10(square} for different values ofy;/ P. Even though a
discrepancy is observed, E(6) is able to reproduce the
qualitative behavior of the simulated data. Hence, it repre
sents a reliable tool to investigate the extension of the stabl
zone as function of the main parameters of the system. No

_ laaly
€. =
4 a3

case of the Super-ACO FEL.

y. A comparison with experiments is possible only for the
case of the Super-ACO FEL. As it has been already re-
marked, the ELETTRA FEL does not presently display a
stable “cw” zone around the perfect synchronism. As shown
in Table |, a satisfactory agreement between theory and ex-
periments is found, even though relati@®6) slightly under-
estimates the real value. However, it is again worth stressing
that while Eq.(67) has been found by means of a semiana-
lytical calculation, relatior{66) is fully analytical and allows

us to relate the critical detuning parameter to the values of
the independent variables of the model.

X. CONCLUSIONS

The results obtained in this paper are manifold. Based on
the assumption of Gaussianity of the laser profile, a new
approximate model of SRFEL has been derived. This simpli-
fied formulation enables a deeper analytical insight into the
longitudinal dynamics of a detuned SRFEL. This allows us,
in particular, to characterize the saturated statistical param-
eters as a function of the detuning amount and to determine
the critical detuning at the point of transition between stable
and unstable regimes. Theoretical results have been com-
pared to the estimates obtained in the framework of the
super-mode theory and shown to be in good agreement with
experiments.

_ Moreover, the transition between the stable “cw” regime
gnd the unstable steady state has been shown to be a Hopf

@ifurcation. Hence, a suitable feedback procedure has been

that the explicit knowledge of the critical detuning may al- introduced and shown to enlarge the region of stable signal.

low to exploit the range of tunability of the machine param-

eters, thus obtaining the largest stable zone as a result of 4

optimization of the experimental setting.

This theoretical result opens up the perspective of improving
e performance of the real device, in terms of stability and
efficiency.

In the framework of the super-mode theory a semianalyti-

cal expression fog, was recently derived34], namely,
1.355 §

CC 14pdX
where §=0.1141+0.018Ny4/N)]Ag; is the cavity mis-
match yielding the maximum gain.=A,./ o, o stands for

the slippage factor ank=3+0.1(Ny/N).
The different theoretical estimates can be compared to th

(67)

(6)sm=
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APPENDIX A: CALCULATION OF THE FIXED POINTS
OF SYSTEM (38)

Consider the systert84). The fixed points are found by
solving the following set of equations:

a2|_+ 1 _5,2: O,

Rz{l +9_‘a£{’2'1)’“2<1 a5’ _as(r+ 6)2)]

T 202 2 & ’
(2-1)/ FF
(?+ E)gia3a4g azq = 61
g

P00, 9 _Ns( P +?) : (A1)

Qiazay, =
53 | ag

By dividing, side by side, the third and the fourth equations

of Eq. (A1), one gets
(t+¢€) _ e_l_ 1
o s (Z +?)

ag
Neglectinge with respect tor, the previous equation can be
written in the form

(A2)

P edl
P+ L= (A3)
ag s
From the third equation of the systgiAl), one gets
€T Py €T 1P
5= ay = —ay . (A4)
gias(7+e€) Qs T
Substituting(A4) into (A3) gives
2 &1 03 (1-0D)ay
Felp=00 (A5)
a3 ls  Gis

On the other hand, from the first equation of the systad),
one obtains

— -1
s
[which coincides with Eq(40)].

The fourth-order equation for can be finally written in
the form

(A6)

2+ T2,

ag

(A7)

where the coefficien is defined as in Eq43). Solving Eq.
(A7), one gets the resu{dl).

Consider now the fourth equation of the systg¢Al).
Using the expressio1) for 7, one finds Eq(42) for a;.

52:0—2§+5
0o

(A8)

(with 6< 1) and solving Eq(44) for 6. The main steps of the
calculation are outlined below.
First, the following approximations hold:

2
_ 5 103
o= 1‘;(1+ . 2)253<1+——‘2’5), (A9)
o odlog o 207
In
aE{T Ve ~ g a2 ~ 4<1+ aa45), (A10)
2
1 0'(2)( 0p )
= =201--25 All
7ol A

By making use of relation6A9)—<All), one gets

-l
P Gt L [(o_%;_l)+5]
alg gias Oilsazas| \ oy
0'5 10’5 |I’l a'4
X 0—2 +511+ —0—25 1- )
0 205 @3
which, at the first order i, takes the form
A=a+db (A12)

with a andb given, respectively, by Eq$51) and(49).
Further, by inserting Eq(A12) into (41) and retaining
only the first order terms i one gets
=T+ 6y,

with I'; andT', as in Eqs(47) and(49).
Finally, the second equation of the systgAill) can be
recast in the form
P

i (P-Dla 1
81128 ol

By inserting both Eqs(A12) and (A13) into Eq.(A14) and
solving for § one ends up with relatio(6).

(A13)

(A14)

APPENDIX B: CALCULATION OF JACOBIAN MATRIX
OF SYSTEM (38)

In this Appendix the elements

Jaj=(a—fi> ~ (,j=1,2,3,9 (B1)
X=X

X

of the Jacobian matrix associated to the single-turn (88p
are listed. A straightforward calculation leads to

Jy=——, B2

1= 37 (B2)
a1y

Jip= ——, B3

127 7 (B3)
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J13 =0 , (B4)

J14=0;

R? g— 2 na, 1
Jp1= — 2ol Ve | —2 - =
ATATe ¢ ay 20

(B5)

(7+¢)? o (7+e€)?
X{l (5‘2 2 )}?(5* & >}
(B6)
_Rl g Gz—l)/a[ ( (r+ 5)2)} 1
JZZ'AT{“E"‘“ 11 2\E = AT
(B7)
st—_A—Ta3?T_IIaE{’2 Dlag— T?E) (B8)
3=t g'l (@D, L . (B9)

MITOATRS N T
1 O 1 of(lna, 31

= gyl e o3[ -2

(B10)

PHYSICAL REVIEW E 70, 016503(2004)

J3,=0, (B1Y
Tz = 2 1 w3 - 1)/a2(7| (B12)
337 T T 2’
1 g G2y
Jou= — —ag=ay V(74 B13
34 ATa3a (7 6)52 ( )
PP P (In a4_§i)+i£
4l AT 3; 4 52 a2 25’2
(B14)
11
=———=| —+(7+ Bl
Jaz AT { (7 E)} (B15)
2 Is(_+ 5)
N — B16
13737 | (B16)
J44: 2J33. (Bl?)
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