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Eulerian method for computing multivalued solutions of the Euler-Poisson equations
and applications to wave breaking in klystrons
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We provide methods of computing multivalued solutions to the Euler-Poisson system and test them in the
context of a klystron amplifier. An Eulerian formulation capable of computing multivalued solutions is derived
from a kinetic description of the Euler-Poisson system and a moment closure. The system of the moment
equations may be closed due to the special structure of the solution in phase space. The Eulerian moment
equations are computed for a velocity modulated electron beam, which has been shown by prior Lagrangian
theories to break in a finite time and form multivalued solutions. The results of the Eulerian moment equations
are compared to direct computation of the kinetic equations and a Lagrangian method also developed in the
paper. We use the Lagrangian formulation for the explicit computation of wave breaking time and location for
typical velocity modulation boundary conditions.
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[. INTRODUCTION dynamics, gas dynamics, elasticity, gaseous stars, quantum
gravity, general relativity, rigid bodies, and semiconductors.
The phenomenon of wave breaking in systems describe@hile it is known that for certain initial conditions the solu-

by fluid equations is widely documentgd]. Different physi-  tion of the Euler-Poisson system can br¢ak], methods for
cal systems and their associated model equations may réomputing its multivalued solutions using Eulerian methods
quire that their wave breaking events be handled in differenbave not been reported. _ _
manners. Where the physics of one system may dictate that a 1Ne main result of this paper is an Eulerian method for
shock develops after the wave breaking event, the physics §PIving the Euler-Poisson system that can capture multival-
another system may dictate that the formation of multivalued'®d Solutions beyond wave breaking. The method is based on
solutions is appropriate after the wave breaking event. Physf’—1 k|.net|c formulatlon. and an exact moment clos_ure. Fo_r com-
cal systems where multivalued solutions may be appropriatgar'son’ we glso give a Lagrangian fprmulahon Wh'.Ch IS
include geometric optics, arrival time in seismic imaging,SOIVed analytically prior to wave breaking, and numerically

semiclassical limits of the linear and nonlinear Schinoer to include the multivalued solutions. An application of the
: ) clir 9 method to a modulated electron beam as found in a klystron
equations, integrable systemé&uch as the nonlinear

. o ) : amplifier is given.
Korteweg-de Vries equationin the small dispersion re- ', ga¢ "1 we describe the principle of operation for a

gimes, nonlinear plasma waves, stellar dynamics and galaxyysiron amplifier, and we present an Euler-Poisson model of
formation, multilane traffic flows, and electron overtaking in (o system. The Eulerian methods are developed in Sec. II.
the electron beams of vacuum electronics devices. Direct Eu kinetic formulation for the Euler-Poisson system is given

lerian formulations of such systems based on the classicajst, using the Vlasov-Poisson system, which is then closed
WKB analysis, which usually introduces viscosity solutions,ysing anexactmoment closure to derive multiphase equa-

may fail when the physical solution is the one which be-tions in the physical space. This is the main result of the
comes multivalued after wave breaking. paper. In Sec. IV we present a Lagrangian formulation of the

Recently, there has been a growing interest in developingystem. Numerical examples comparing the methods are
an Eulerian framework for the computation of the multival- given in Sec. V. Section VI discusses the computation of
ued solutions that arise in geometric optigs-6] and in the  breaking time and location. The paper is concluded in Sec.
semiclassical limit of the Schdinger equatiorf7—10]. An  VII. There are several supplemental appendixes providing
Eulerian method may be preferred over a Lagrangian methodetails of numerical methods and analytical computations.
since the former computes the numerical solution of partial
differential equations on a fixed grid, while the latter may
lose accuracy or need regridding as the rays expand.

In this paper we consider a system of Euler-Poisson equa-
tions. The Euler-Poisson equations have applications to A wide variety of vacuum electronics devices constitute a
many physical problems including fluid dynamics, plasmalarge fraction of today’s high power, high frequency electro-

magnetic wave sources and amplifi¢is8]. The source of
energy for amplification in a vacuum electronics device is a
*Present address: Los Alamos National Laboratory, MS H851high energy beam of electrons that interacts with an electro-
Los Alamos, NM 87545, USA. magnetic wave. The class of vacuum electronics devices

II. AN EULER-POISSON MODEL OF A MODULATED
ELECTRON BEAM
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Input cavity Output cavity to the internal “Coulomb repulsion,” or “space charge”
Electron beam J electric field, and Gauss’ law to determine the evolution of
the space charge electric field. The governing equations are
the following Euler-Poisson systefi2]:

EEI\ /Qfl ot (=0
. —p+—(pu)=0,
X 20 cavity ot Jz

gaps z=L
J N J ) e R
v i (pu)+ - (pu?) . sEp,
FIG. 1. Two-cavity klystron geometry. The signal on the input E _
JE  p—po

cavity imparts a velocity modulation on the electron beam, which is — = ,
streaming from left to right in the figure. The velocity modulation is Iz €0
converted to a beam current modulation downstream, which in- . L
duces an amplified version of the input signal in the output cavity.SUbject to the boundary conditions

@

_ _ _ p(0, t)=po,
known as “linear beam devices” use electron beam velocity
modulation to obtain amplified electron beam current modu- (1)
lation, which is converted into amplified electromagnetic ra- u(o, t)=u0+u07,
diation.
The simplest example of a linear beam device is a two- E(0,1)=0,

cavity klystron[14,19-2]. The geometry of the two-cavity

klystron is shown in Fig. 1. The basic components of thewherep(z,t) is the electron beam charge densityz,t) is
device are an input cavity, an output cavity, and an electrofhe electron beam velocity, arf(z,t) is the space charge
beam. The cavities are resonant electromagnetic cavitie§ectric field. The functiore(t) represents an arbitrary time-
whose resonant frequencies are equal to the operational frgependent modulation of the electron beam velocity at loca-
quency of the amplifier. The electron beam is passed througfion z=0. The “space charge reduction factdR.. accounts
the _input cavity where it experiences the electric field of thefgr the finite radius of the electron beam by reducing the
cavity “gap,” and subsequently passes through the outpufccelerating electric field an electron experienfgs,22.
cavity where it induces electromagnetic fields in the outputrhe variables, me, and e, represent electron charge, elec-
cavity. The radio frequencrf) signal injected into the input tron mass, and permittivity of free space, respectively. The
cavity results in a time-varying electric field in the input ¢ peam charge density, and dc beam velocity, are
cavity gap. As the electron beam passes through the gap thgtermined by the dc beam current, dc beam voltage, and
time-varying gap electric field imparts a “modulation” on pegm radiugsee Sec. Y

the electrons in the beam. In particular, an electron is accel- |y order to make our formulation more generic, and the
erated or decelerated depending on the phase of the gap el¢fmerical procedures more convenient and effective, we

through the gap. As the “velocity modulation” is carried by

the dc beam velocity to the output cavity the velocity modu- Z

lation transforms to a beam density and beam current modu- Z=L, U=u,, T=g. D=po,

lation. Finally, as the current modulation passes through the

output cavity it induces a rf signal which is an amplified whereL is the Klystron lengti{see Sec. ¥, and define the

version of the input rf signal. However, due to the nonlinearngndimensional variables

evolution of the electron beam, the spectra of the beam cur-

rent modulation and the rf output signal are distorted from z t p =
. k . * _— * * T * 7

the spectrum of the original rf input signal. zZ=7, u , T P o E 7D "

For strong enough input rf “drive,” some electrons are

sped up sufficiently such that they pass by, or “overtake,"one arrives at the rescaled equations

other electrons that were initially ahead of them before they

reach the output cavitj24,21. In a one-dimensionallD) J J

Eulerian description of the electron beam, a multivalued ve- EPJF E(PU)=0,

locity function is required to describe the electron beam be-

havior when the beam has experienced “overtaking.” J J

To simplify our analysis we model a 1D velocity modu- —(pu)+ —(pu?) =R pE,

lated electron beam and for the time being ignore coupling of at 9z

the beam current to an output cavity. Required for the model

are a charge conservation equation, a momentum balance E: q @)

equation(Newton’s law where the force on electrons is due 9z P70
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with as charge density and current density functions. If one as-
sumes that the solution to Eq%) remains as & function
A eZDTR - w2T?R 3) (as will be justified for the single-phase casiee.,
s MeeoU sc— @Wp sc

w(z,v,t)=p(z,t) (v —u(z,t)),

and the boundary conditions ) . ]
one can multiply the Vlasov-Poisson equations by 1 and

€(t) integrate with respect t@ and obtain the Euler-Poisson
o equations(2). This indicates the equivalence of the Vlasov-
Poisson equations and the Euler-Poisson system when the
where the normalized asterigk) notation has been dropped. solution is single valued. As the solution becomes multival-
A case of general interest in klystrons is ued, the introduction of the phase variabl@aturally incor-
porates all of the possible values in the solution.
) To solve Egs(5), we define its “bicharacteristic curves”

[s,t(vo.to;s),v(vo,to;S)]

p(z=0,1)=p%t)=1, u(z=0,t)=u’(t)=1+

1
ul(t)y=1+ > > ensin(w, Tt+ 6,).
n

In this case, we will normalize the frequeney, to w,T so d

that the scaling factol will not appear in derivations. The gst= . t=toats=0,
term w, introduced in Eq(3) is the plasma frequendy4].

Finally, we would point out that our analysis and numerical

methods are not restricted to a constant input densi(y) sV~ RsElv, v=vo at s=0,
=1. We will use the notatiorp®(t) or p° to represent a
generic density boundary condition, even though all the nu- 7=5. )

merical results are carried out fpP=1.
Equations(7) define a mapping
Ill. EULERIAN METHODS N N N N
(vo,tg)eR"XRT—(v,t) e R"XR™.
A. A kinetic approach

It is known that the solution of the Euler-Poisson systemWe assume that this mapping is smooth. This is not a math-

can break in finite timé11], and that the density(z.t) wil emat@cally rigorous res_ul_t._ It has not been proven true math-
display the concentration effectisually called a5 shock, ematically for general initial or boundary value problems of
whereas the velocity will develop a shock profile. After thethe VIasov—I?msspn syste(ﬁ). Hovyever, for the numerical .
solution breaks, there are different ways to interpret the So(_axamples given n t.h's paper, this assumption seems valid
lution. Conventionally the solution is obtained in the limit of based on the nu_menc'al_ gwdence given in Sec. V. .

zero viscosity. Numerical evidence shows that this allows To check the invertibility of the mapping we consider the

shock propagation. However, in some circumstances, such §3§500|ated Jacobian,

a modulated electron beam, one expects the overtaking phe- av.t)
nomena, i.e., the solution of the Euler-Poisson system be- A=de<—' )
comes multivalued. d(vo.to)

To interpret the multivalued solutions of the Euler-
Poisson equations, we propose the following so-calle
Vlasov-Poisson equations for the kinetic distribution d
w(z,v,t), d—s(vA)zo. 8

OIBy direct differentiation one can verify that

Wit ow,+ RsE(Z,)w, =0, In light of the initial conditions we get from Ed8),

iE:f w(z,v,t)dv—1, A(vo.to;8)=vo/v(vo.to;9). (€)
]R+

0z
Since we only consider cases whefvg,ty;s)>0, Eq.(9)
(z,v,t) e RXR"XRY, (5) implies that the mappingv@,ty)— (v,t) is invertible. We
use[ty(v,t;s),v0(v,t;s)] to represent the inverse transform.
with the boundary value, Simple computation using E@5) shows that
w(0p,t)=p°(t) 8w —u’(t)). (6)

d
GsW(s0(v0,10:9),t(v0,10;5))=0.
In order to make the connection to the Euler-Poisson equa-

tions we define Therefore, along the bicharacteristic curves the solution of

Eqg. (5) remains invariant,

p:JR+W(Z’”’t)dU’ ':fww(z’”’t)vdv’ W(Z,0,H)=W(0w4(v,t:2),to(v,t:2)),
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=p%(to(v,1;2)) 8(D (v)), \'}
with
D ,(v)=vo(v,t;2) — U (to(v,t;2)). (10 A

If the kernel of®,(v) {v:P,(v)=0} has finitely many ’

elements{u,,k=1,2,... N(z1)}, then §(®,(v)) can be 4
split up and the solution of Eq$5) can be written as v /)
/

A Y
v
e

N ’
Wz, =2 pdo =), pi=pTlPi(ug] &
(1D)

This form of the solution will be used to close the moment
system of the Euler-Poisson equatidhs$, just as the local
Maxwellian closes the moment system of the Boltzmanr
equation. This linear superposition was obtained first for the
linear Vlasov equation where the potential is independent o
the solution(external potentialin Refs.[8,15]. 4

One can verify that each paip(,u,) given above satis-
fies the Euler-Poisson system. This was proved for the linear
Vlasov equation in Ref[8] and the same argument holds
here. Therefore, the kinetic formulation provides a way to,
recover the multivalued solutions to the Euler-Poisson sys
tem.

hfw03

FIG. 2. (Color onling lllustration of evolution inz of a constant
(z,v,t) curve for which the solution in the physical space be-
comes three phased.

Meanwhile, as the solution becomes multivalued, we have |
m=] w(zyu,t)v'dv, [1=01,...A. (12
N R
p= f W(X,v,t)dv=k21 Pk Then taking moments of Eq¢5) one gets
" d J 0
_m0+_ml: y
I=J wW(x,0,t)odv= > pyly. N 92
k=1
i i RedMoE
Namely, the charge density and current density comply with gt M1 gz Me™ RedMol,
the linear superposition principle even though each indi-
vidual phase is governed by a nonlinear system. =y
Figure 2 provides an illustration of the evolutionZrof a P g
constantw(z,v,t) curve for which the solution in the physi- — My 1+ —Mon=(2N—1)RedMon - 5E,
cal space becomes three phased. ot Jz
IE o
B. Multiphase equations in the physical space i E p—1. (13
JZ (=1

The kinetic equation can certainly be solved via standard
finite difference discretization using the upwind scheme or a In order to close this system, and to be able to advance the
particle method. However, computations based on the dissystem in the direction, we need to represent in terms of
cretization of phase space or a collection of interacting parm;,m,, ... ,myy). From Eq.(11) one can express the mo-
ticles can be very expensive, especially when one attemptwents in terms of g ,uy)’s:
to achieve good resolution. We thus aim at establishing a
system defined only in thehysical spacdo describe the |
multiphase phenomena. This technique is motivated by m,= > pl, 1=12,... N,

. . . . . k=1

the kinetic theory of gas dynamics and is usually called ki-
netic moment closurgl6—-18. Unlike the usual moment clo- and therefore we have a mapping fronp, (u,)’s to
sure for a general kineti(Boltzmann equation, which uses (m;,m,, ...,m,). It has been showf8] that if p,’s are
anad hocform of density distribution and therefore obtains positive andu,’s are distinct, then the mapping is invertible.
an approximate moment system, here we have obtained thherefore, when the number of physical phades finite the

N

exact moment closure using E@.1). system can be closed exactly.
We first define the moments of the Vlasov-Poisson equa- For the examples we will present in Sec. V we hdve
tion =3. We define
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p1:U1+ U2+ U3

_ MgMj — MgMgM; + MgM,M; — MsMpMg-+ Mym3— mmy

PHYSICAL REVIEW E70, 016502 (2004

(14)

MsM5— MgM3m; +m3m; —

po=UgUs+UjUz+UsU3

(15
2m,mzm,+m3

(16)

MgM,M; — MgM3M,+ MsM3 — M2M; + MgM,M, — Mym3

MsM3— MgMgM, + M3m; — 2m,mgm,+ m3

P3=ujUyUs

MgM,M, — MgM3 — M2m, + 2MgM,Mg — mj

17

(18

MsM3— MsMsm; +m3m; — 2m,mgm,+ m3

Thenm, can be expressed as
Mo= (M3~ p1My+ pomy)/p3.

The first six equations of Eq§13) are closed in this manner.
For N=2, one can define

m,m; —m,mg

pl_ 2
m;mz—m;

2

M,m, — M
po=——.
mymz—m;

Thenmy=(—my+p;m,)/p, and the first four equations are
closed. In the casBl=1 the first two equations of the sys-

(19

IV. A LAGRANGIAN APPROACH

For comparison with the Eulerian method of Sec. Il B,
we next develop a Lagrangian formulation of E(®.

Upon entering the system at time ty a fluid element has
the coordinatesZ=0, t=t;). The trajectory of the fluid el-
ement may be parametrized by eithée,t(zty)] or
[z(t,tp),t] where the different parametrizations lead to two
different sets of equations. Since we consider only cases
when the electrons are not reflected, i&/ot>0, the in-
verse function theorem guarantees the equivalence of the de-
scriptions. In this section we consider the first of the two
suggested parametrizations.

tem, Eqs(193), are reduced to the original Euler-Poisson sys-

tem. One can also define functions,
_ 2
¢1=mimz—mj3,

$2= — MsM5+ MsMzm; — mzm; + 2m,mgm, — ms,

as indicators to identify the number of phases at the point

(z,t). Namely,

1 if ¢,=0
No. of phases{ 2 if ¢;>0, ¢,=0
3 if ¢,>0.

We define
Z=S5S,
t=t(s,{), (20
with
22 wop-i,
Js u
B_RE T L00-u0). (2D)

as u

By employing the derivative transformations the continuity
equation in Lagrangian coordinates becomes

J ot —o
Js pu&g e

To use the multiphase formulation one must assume &lence,

maximum number of phases,,,, at the outset of the calcu-

lation, and use indicator functions as above to monitor the

actual number of phaseds in the solution[23]. WhenN is
large one may not get an exact formula fiog, but a numeri-
cal procedure can be used to obtaig approximately(see
Ref. [8]).

_po(é)uo(é)
B at '
a

The absolute value on the Jacobi@nd{ is required by the

I(s,{)= (22
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physics of the problem, i.e., far>0 the density and current TABLE |. Physical parameters and derived quantities for a rep-
must be positive. For systems that exhibit wave breaking thé&esentative Klystron design with nominal operating frequency of 1
absolute value is required since the Jacobian changes sigfHz. The value oRgis estimated from Fig. 9-3 in Ref14] for a

At the point of wave breaking the Jacobian is zero and théill factor of r,/a~0.3 andger,~0.1.

current becomes infinite. At this point ER2) is not valid

and an intggral equgtion is requireq. _ N Description Symbol Value
In Eulerian coordinates the density is the superposition of
each of _the densities carried along each of the characteristjg, voltage A 8.50 KV
curves, i.e.,
Beam current lo 0.25A
pE(z,t)= > pt(s,0). (23)  Beam radius o 0.85 mm
{(sOED=t,s=2
Klystron length L=\g/4 13.6 cm
Gauss’ law forE must account for this superposition. A nu- .
merical scheme for solving Eq&1) is given in Appendix A. Space charge reduction factor Rec 0.01
. 2eV, 7
V. NUMERICAL RESULTS dc beam velocity Up=\/ = 5.46X10" m/s
In this section we present results for two cases to test the
vglidity of our fprmulations. We compare results fror_n the 4c beam charge density Po= lo S 2.02¢ 1073 c/m?
kinetic formulation (Sec. Il A), the multiphase technique UpT,
(Sec. Il B), and the Lagrangian methd®ec. IV)—which
will serve as the correct reference solution. Plasma frequenc 3 [ epo 2 16 rad/s
In our examples we conside(t) to be of the form[12] q y ™ N mee, 7
e(t)=¢e;SiN(w t+ 0;) + e8I wot + 65). Effective plasma frequency — wq=Rew,  2mx10° rad/s
The physical parameters and derived quantities used in the s ma wavelength AP:ZWUO 543 cm
examples are listed in Table I. w,
A. Single frequency input Effective plasma wavelength , _ Np 54.3 cm
. . o ! VRee
For comparison of the multiphase, kinetic, and Lagrang-
ian schemes we choose the velocity modulation function
(1), that the Eulerian methods use numerical viscosity, which
e(t) = e;5iN(,TH) (24) smears out the discontinuity as in any standard shock captur-
’ ing scheme. In the kinetic computation, a narrow Gaussian is
with w;=27x10° rad/s ande;=0.4 (i.e., ,=0). used to represent th&function boundary data, as described

We first show the numerical solutions obtained by inte-N APPendix A, which could further smooth out the discon-

grating the Euler-Poisson equatiof® without accounting

for multiple phasegEgs. (13) with N,,,=1]. In Fig. 3 we 14l " I' ' ' i
plot the currentl (z,t) solutions at different locations. The ! : — z=0.2
solution first develops a single peak and is then smoothed ou 12~ 1 T ;:(1)8 7

by the potential. This solution does not allow overtaking and 44| f i _
thus is not physically corre¢compare with Fig. 4 i I

The current waveforms at=1.0 predicted by the meth- _ 8 i 1 7
ods presented in this paper are shown in Fig. 4. The methodﬁ 6
include solving directly the Vlasov-Poisson system with -
=5Xx10"° At=4Az,Av=Az, solving the moment system
with Az=5x10 3,At=2Az, and solving the Lagrangian
equations withAz=5x10"3 At=2Az via the method de-
veloped in Appendix A. Using the analysis of Sec. VI we
determined that there are three phases in the multiphase re
gion. 0 01 02 03 04 05 06 07 08

The numerical computations of the current display similar
structure. However, the Eulerian methods—both the kinetic FIG. 3. (Color online The current solutions at different loca-
and the moment methods—display smooth transitions acrosmns obtained from the Euler-Poisson system when only accounting
phase boundaries, whereas the Lagrangian method shows a single phase in the solutidne., Ny,,,=1). The solutions are
discontinuous transitions. The discrepancy lies in the factlisplayed for two periodse (0,0.§].
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6 T T T T T T

—— Lagrangian T —— Lagrangian |
--- Multi-phase
-—-= Kinetic

— Uy

e
-

1.0,1)

I(z

Beam velocity

o
©

0.8

FIG. 4. (Color online The current waveforms at=1.0 pre-
dicted by the kinetic formulation, the multiphase formulation, and
the Lagrangian formulation. The solutions are displayed for two
periods:t e (0,0.9]. 1.1

1.2 —— Lagrangian |
S

locity

tinuity. The peaks in the current waveform are theoretically @

of infinite height; however, due to numerical resolution of €

the methods they have finite amplitudes in the Eulerian so-§

lutions. 0.9
To further illustrate the existence of the multivalued solu-

tions in Eulerian coordinates, we plot the multivalued veloc-

ity profile (u;,u,,u;) obtained from the moment system

=

0.8

(13) together with the algebraic equatiofist)—(18), as well 0 01 0.2 0.3 0.4
as the Lagrangian solutions in FiggaB-5(c). The velocities t
produced by these two methods are in good agreement, an , i
the large multiphase region of the velocity solution is clearly 12k — Lagrangian 1
evident. As the number of phases changgor uz) andus, ',: . u3g 9

[}

approach each other and the systeéiM)—(18) becomes ill
conditioned. This fact accounts for the jumpsug at the 1.1
phase boundary seen in Figgak-5(c). This is of little con-
cern since the values at the jump are disregarded, as in a
shock computation.

Among the three numerical methods, the multiphase $
method is the most computationally efficient. Rdrgrid 0.9
points in thez andt directions the computational complexity
is of order O(N?) for the multiphase method. Solving the
kinetic Vlasov-Poisson equations by finite difference meth- 08
ods are ofterO(N?®) because of the additional phase-space

m ve:iocity

B

) . e . : N . 0.1 0.2 0.3 0.4
dimension. Another difficulty in solving the kinetic equation t
is due to the irregularity of the solution, i.e., the presence of
o functions. Although one can replacé functions by FIG. 5. (Color online The multivalued velocity profiléa) uj,

smoother functions, such as Gaussian distributions with narb) u,, and(c) u; and the Lagrangian velocity solution at location
row width, the numerical grid size must decrease as the=1.0. The solutions are displayed for one peribd{0,0.4]. The
width decreases. The development of an efficient coupling of agrangian solutionf(5) has been converted into this interval us-
the moment system and the kinetic equations is currently ifhg the periodic properties of the solution.

progress. The Lagrangian method, along with the finite Fou-

rier method, offers the best resolution for a given mesh sizePeaks a very large number of modes are required to represent
However, the evaluation of the Fourier integrals can lead tdhe solutions. Therefore, the numerical solutiga,t) often
O(M X N?) cost, whereM is the number of Fourier modes. displays spurious oscillations. Interestingly, since the trajec-
In fact, for the test problem in Sec. V B, the Lagrangiantory t(z) is well resolved in the Lagrangian method, it is
method takes several days to finish on a 1.8 GHz Gnu/Linuypreferable to use Eq22), accounting for multiple phases as
machine, while solving the moment system only takes sevin Eq. (23), to compute the current once the trajectory is
eral minutes. In addition, because of the presence of thebtained. A natural fix to speed up the Lagrangian method
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0 [ T T T _ 1 /

T
! i : |
T
Q Multiphase ® @® s i i ! i
20k Data from Ref. 12 o (Y ! ! : !
- g o5 | ! |
o 7T w i ] | I
= S | | | | ]
=40 'y @® 1 8 o l ! L
8 o | | ! |
i l 2 |
— = | | ! i
& 60 1 Zoos- ! i v
5 : /\ : | /\ ]
L | I ] H i
[} 1 1 1
i | i
1
I s ! I

T 9 ) S Y AN IR ¥ PO 1

995 999 1003 1007 1011 1015 ¢
Frequency (MHz)

) ) ) FIG. 7. (Color onling The left-hand side of Eq26) illustrating
FIG. 6. (Color onling Output spectrum due to input modulation tiphase content in the current waveform. The fluid elements

in Eq. (24). Included are the third-ordé®99, 101} and fifth-order  |5peled by¢ where the left-hand side of E6) is between—1 and
(995, 1019 intermodulation products. Shown are results from the 1 will enter the multiphase region.

multiphase formulation and data from Rgf2].

would be to use a local basis in lieu of a Fourier representa- ﬁ_ 1 i
tion. i Jp d
N

B. Two frequency input which is only validprior to wave breakingTo find the criti-
The klystron theory of Lawt al.[12] has been favorably cal time at which the solution breaks, we setd{ equal to
compared to certain experimenal results for several case&ro
[19,20. Therefore, it is useful to compare results from the

W0(2)sinmRed 7— £)— u(0),

methods in this paper to those in REE2]. - u®(g) =
A case of considerable interest in klystrons is when the VRsc =sinVRy{ 7= ), (26)
input signal contains more than one frequency. For such an d—guo(g)

input signal the electron beam nonlinearity produces addi-
tional spectral componentso-called intermodulation prod-

ucts in the beam modulation, and hence in the rf output : : )
signal. For such input modulations the theory of Letual. ggza}gogégs)eéislogﬁgli as long as the value of left-hand

[12] has been compared to experiments with remquable For the case of a modulation with a single frequency, Eqg.
agreemenf19,20. We test our formulations on such an input 6
. ) becomes
spectrum and compare our results to those computed in Re(lz.
[12].
We have the velocity modulation functia(t), ~— 1+ % sin(w4¢)

and determine conditions for which E(R6) has solutions.

s 2VRsc
€(t)= €SI w1 Tt) + €8I w,Tt), (25) Sln\/ic( T={)= cio;  coswd) (27)

with €;=€,=0.1, w;=2mX(1.003x10°) rad/s, w,=27  Since fore;<2,
X (1.007x 10°) rad/s. The beam spectrum a=1.0 is

shown in Fig. 6. The spectral components are the Fourier 1+ L egsin(w?) e
coefficients of the current a&= 1.0, computed from the mul- mn——r— = 7
tiphase equations. . lcodwid)

V1. BREAKING TIME AND LOCATION a necessary condition for ER7) to have solutions is

In this section we develop tools for studying wave break- w16, €7
ing time and location based on the alternative Lagrangian —="\/1- 7 (28
formulation given in Appendix B. This is of relevance as one 2VRg.

chooses the physical parameters as well as the computational
domain to observe multiphase phenomena. Similar result Eq. (27) is satisfied, then at least two characteristic curves
are obtained in Ref.11] for initial value problems. will cross at timer. The multiple values of can be solved

In Appendix B we derive the following expression for the from Eq.(27). These calculations can also be carried out for
Jacobian of the alternate Lagrangian coordinfiEes (B14)]:  the general boundary condition given in E4).
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< APPENDIX A: NUMERICAL SCHEMES

o
o
T

— 1. Kinetic scheme for the multiphase system

Left hand side of Eq. (26)
o
I

1 In this section we briefly present the numerical methods
we use to solve the multiphase systélfi). The schemes are
ﬂ\ ! 1\ called kinetic schemes, which were developed in R&ffor
0 0.2 0.4 0.6 0.8 multiphase moment equations. The method consists of a
S transport step through the kinetic equation and a projection
FIG. 8. (Color onling The left-hand side of Eq26) for two  INtO the equilibrium state in Eq11). See Ref[8] for details.
frequency input. The figure illustrates that there is multiphase con- Ve first give a direct scheme to solve the kinetic equation,
tent in the current waveform. The fluid elements labeled nere ~ @nd this scheme will induce a “kinetic scheme” for the mo-

the left-hand side of Eq26) is between—1 and 1 will enter the ~Ment system. Since we restrict our phase variabl® be

multiphase region. positive, we can simply use upwind scheme to solve the
kinetic equation
A direct way to see whether a solution is multivalued is to N on-1 N0
plot the left-hand side of Eq26). For parameters where the Wik~ Wik UkWJ+1,k Wik | REMW,=0.  (AL)

value is between—1 and 1 multiphase phenomena is en- At Az
sured. For the parameters of Sec. V A the left-hand side of , .
Eq. (26) is shown in Fig. 7. Since the left-hand side takesHerew; =w(z ,vi.t,). Note that since we update the so-
values between-1 and 1 the solutions become multivalued !ution values in the direction, the upwind difference is done
in part of the domain. One can show using E2j7) that for in thet derivative. The discretization of the derivative de-
these parameters the number of phases in the multiphase f£nds on the sign df. For instance, one may use

lution is three.

n n
For the parameters of Sec. V B we plot the left-hand side Wik Wik-1 ¢ grsg
of Eq. (26) in Fig. 8. This illustrates that for these parameters Av .
the solutions are multivalued. Wo=Y W —wn
—lv“Al Lk it Ef=<o.
v

VII. CONCLUSIONS
. . . . The electric fieldE" can be obtained by simple finite differ-
In this paper, we develop an Eulerian technique to simu- )
g - ence, for example,
late multiphase phenomena for electron beam wave breaking
in a modulated electron beam. The basic physical model is S
the Euler-Poisson system. We provide three methods of solv- e

ing the Euler-Poisson systeli?) that are valid when the

solutions are multivalued: a kinetic formulation, a multi- To improve the accuracy of the above schemes nonoscilla-

phase Eulerian formulation, and a Lagrangian formulationq second-order schemes can be introduced following Ref.
We compare the methods with each other for a modulatertg

elgctron _beam. For the case when the input modulation con- Because of the presence &functions in the solution, we
tains a single frequency, the three methods are seen to agregse 1o smooth out the singularities in order for the point-

The multivalued structure of the current is confirmed by thewise values to make sense. In practice, a Gaussian distribu-

multiphase Eulerian technique as well as the Lagrangiag, is usually used. For example, the boundary condit®n
technique. For an input modulation with two frequencies thecan be replaced by

output current spectrum is computed. In this case the multi-
valued region is small and the multiphase method is in agree- w(0w,t) ZPO(t)expf[U7uo(t)]2/e/ e
ment with the theory of Ref12]. n '

n

Az Piv

with € as a small parameter. We also take the grid size to be
ACKNOWLEDGMENTS smaller thane to resolve the small width. For this reason,
particle methods, which are similar to our Lagrangian
X.T.L. gratefully acknowledges support in part by ONR method, are suitable for the problem. We have found that a
Grant No. N0O0014-01-1-0674. J.G.W. and J.H.B. gratefullyparticle method offers a substantial advantage over solving
acknowledge support in part by AFOSR Grant No. 49620+the kinetic equation by finite differencing, but is still four to
00-1-0088 and by DUSIIS&T) under the Innovative Micro-  five times more expensive than our Lagrangian method. For
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example, for the problem of Sec. V B the Lagrangian method . wq [2mey
requires several days of computation, the particle method Pn=5 0 e '“Mp(z,t)dt.
requires more than ten days of computation, and solving the
kinetic equation by finite differencing requires about four 1, ejectric field can also be represented by a Fourier series
weeks of computation on a 1.8 GHz Gnu/Linux PC. Since
our purpose of solving the kinetic equation is to numerically - ,
verify the multiphase approach, we will not discuss this issue E(zt)= 2 E,(z)eneot (AS)
further. 3
In order to get a numerical method for the moment sys—q
tem, one can simply integrat@1) with respect ta and use

the closure ansatz SedllB). Since all of the waves are <9En
going to the right in the context of the klystron, the kinetic a—(z)zﬁn(z)— On» (AB)
scheme is reduced to an upwind procedure. Namely, z
My (Zi,tn) = Mi(Z th-1) My a(Zern,tn) = Mis g (20 ty) wheres,=1 if n=0 and 0 otherwise. Notice th&,=0.
At + Ax We now derive a formula to compute these Fourier coef-
ficients with the aid of the kinetic distribution(z,v,t),
= (1= 1)Re — 1(Zi,tn) E(Z ty), (A2) o)
Bo= 0 J " "JOJ e w0y (z,u,t)dudt
for1=0,1, . ... Thepotential is obtained from integration of Pn= o 0 RT Y
mo. Periodic conditions are imposed in thelirection and /
: ; ; ; w 27l wg , _
the Eumerlcal methods can be advanced inztd&ection up _ %o J J e"“‘“O‘(UO"O’Z)w(O,vo,tO)Adedto
to z=L. 27 Jo R*
2. Finite difference scheme for the Lagrangian system =;)_7(:_ JZW/“’OJ +e—inw0t(u0,t0;z)p05(vo_uo(to))Advodto
0 R

In this section, we present a numerical procedure that
solves the Lagrangian equatiof®l). The novelty of this wo [(27log
approach is that one can easily switch to Eulerian coordi- = — e Neot(to:|0(t) /5 (ty:2)dty. (A7)
nates to solve the electric fiel(z,t). 2m Jo

F'rSt we deﬂAng the cAharactenstlc curves of the EUIer'In the above computations we made a transformation from
Poisson systerfiz, t(to;s),0(to;s) ], (v,t) coordinates to,,t,) coordinates using the Jacobian
d in Eq. (9), we have used the projection from Eg8) to Egs.
—i=1/, t=t, at s=0, (A3) which is realized by the’ function, and we have used
ds the fact that the initial curren(ty) = p°(to)u(to).

Finally we can build a numerical procedure. Within one
iﬁ:ﬁscE/ﬁ, v=u%t,) at s=0, loop te[z,z+Az) we use a second-order Runge Kutta
ds method.

(1) Solve Eq.(A3) for a half step:

Z=Ss. (A3)

N 1 _3 . 1 ~ .
Equations(7) may be projected to Eq$A3) by forcing v, t(to, 2+ 282)=1(t0;2) +242/0(to;2),
=uOt,). This fact will be used in the following computa-
tion. Notice that Eqs(A3) are the same as Eq&0) and
(21); however, we use a different notation here to make the .
connection between EqgA3) and Eqs.(7). i, r(nZ) uLtJ;e tzhe formula(A7) and trapezoidal quadrature to

The characteristic curves of Euler-Poisson system may put Pl )1 ~ N
experience crossing which indicates the appearance of mul- (3) En(z+342)=Eq(2) +242[pn(t,2) — 6,]. .
tiphase solutions as we have seen in Sec. VI. However the (4) Use fast Fourier transform to computg[t(ty;z
bicharacteristic curves of the kinetic equati@ will never  +3Az),z+3Az] by Eq. (A5).
cross since the Jacobian of Ef) is always nonzero. This is (5) Solve Eq.(A3) for the whole step:
essentially why the kinetic approach is capable of unfolding

0(tg,z+3A2)=0(tg;2) + 2AZRE(t(tg;2),2)/0(ty;2).

the multivalued solutions. f(to,z+ Az)=f(t0;z)+Az/z§(to;z+%Az),
Second we represent the densitfz,t) in Eulerian coor-
dinates by a Fourier series 0(tg,z+AZ)=0(ty;2) + AtRE(t(ty;z+3A2),z
, +3A2)/0(tg;z+3A2).
p(z =3 Bu(D)e (a) Aozt 282)
n

(6) ComputeE(f(to;z+ Az),z+ Az) as in previous steps.
The coefficient$, can be determined by the integral (7) z=z+ Az, go to 1 unlesz=L.
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Remark 1.The technique used in E§A7) can be easily This Lagrangian formulation can be analytically solved,
applied to other quantities. For example, one can make udeut the solution only holds prior to wave breaking. We con-
of Fourier series and obtain the Fourier coefficients of thesider the case when the Jacobian is negative definite and we
current, remove absolute value signs. For the Euler-Poisson system in

these Lagrangian coordinates we have

TyLon)= =2 2Wlwe*inwotm (L tydt (A8)
1 2 n= #z .
ﬁ = RscEr (84)
® 27l o . A
=ﬁ Oe_mwot(to;L)l(OatO)dtoa (A9) .
pa—f—po(é)uo(z), (B5)
which has appeared in Rdfl2]. JE iz
Remark 2By replacing the Fourier mode in Eq. A4 with p—1). (B6)
a delta distributions(t—t,,), with t,, as discrete points on the 9 L
t axis, one obtains the traditional particle method. We hav f
found that the Fourier method has better performance thal eline
the particle methodsee preceding sectipn 97
X= (9—£(p— 1) (B7)
APPENDIX B: ALTERNATIVE
LAGRANGIAN COORDINATES and use(B4)—(B6) to get
Next we introduce an alternative set of Lagrangian coor- )
dinates. The resulting Lagrangian equations can be analyti- ﬂ
. o +RX=0. (B8)
cally solved, where the solutions are only valid prior to wave 972
breaking. The resulting formulas allow us to compute break-
ing times and locations. The first of the two initial conditions required to solve Eq.
Define the Lagrangian coordinatég{) which are con- (B8) is
nected to the Eulerian independent variables)(by 0 o
X(£,)=u"(1-p"). (B9)
z=2(7,{),
Then notice that
t=r, Bl
(B1) X
with S-(80)= —a—g(é {) (B10)
0z
—-=u, 2(£,0)=0, and compute
(©.001- 2T MK g
u . 7 TOT o€ AL 9
T oRE, U0 =00, 82 5 %7 3

on(r,0)=(&8). Sinceu(¢,£) =u’(¢) andE(¢,¢) =E®(¢) one
By the definitions in Eqs(B1) and (B2) the Lagrangian co- gets
ordinates(r,{) are equivalent to the Lagrangian coordinates

0
(t,tg) that one often sees in the microwave device literature au _5 o d_u _
Using Egs.(B1) and (B2) one finds that the continuity

equation in these Lagrangian coordinates is SO

d [dz d

=5 = — =—R B12

aT(agp 0, (§ )=-RE%AD~ (s“) (B12)
which considering the boundary data has the solution Finally, solving Eq.(B8) subject to the initial conditions one

has
0 0
p(HU™(d)
)= —T, B3 -
T B3 Xno=uw- pcos R -0
5 1 |. 0 du® ) \/A—

where the absolute value sign on the Jacobian is required by - —\/A— RscE"+ ra SinVRgd7—¢).  (B13
the insistence on positive densities. R
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In the remainder of the calculation we consider a uniform /ﬁq e
input density sp®=1 andE®=0, and we get the following _ VR Lodwn7+ )
expression for the Jacobian: Ro— w2
SC n
Jz 1 du = 1 €
—=——=——()siVR{ 7= )~ u%(¢). (B14 += > codw,l+ 6,) —cod w,m+ 6,)].
I N Rsc d¢ 2 oy

The analytic solvability of Eq(B14) depends om®(¢). (B19)

For the boundary data in E¢4), repeated here
When €({) = €;5in(w1), Eq. (B15) gives

€01 | CO§(w1— \/Ec)g"‘ \/ﬁ_scﬂ

u’(¢)=1+ % 2, epsin(@nd + ),

with the w, normalized frequencies one gets Arnf)=1—{+——= —
“n a 9 2VRs¢ 2(VRg— 1)
€W ~ ~ ~
Ar =1+, ——= L cod(1t VR VRer]  VRycodw7)
n = - ~
2VRse 2(VR+ wy) Rec— w7
cog (wn— Vﬁs&("' VARSCT+ 0nl 1 e
A + - —[coqw;{)—cogw;y7)]. (B16)
2(VRy— wp) 2 o
cog (@ + VRsd { = VRT+ 6,] Equation(B16) does not apply beyond wave breaking, since
+ \/A— the absolute value was removed from the Jacoli&8) in
2(VRsct wp) the derivation.
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