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The third-harmonic generation of a pump wave, resulting from the electron-ion collision frequency depen-
dence on the electric field in the skin layer of a hot dense plasma is investigated. The relation of the current
third harmonic with the high-frequency field in the skin layer is established for arbitrary ratios of the electron-
ion collision frequency to the field frequency. For arbitrary ratios of these two frequencies, the field structure
inside the skin layer is determined, and the field of the wave irradiated by the plasma at tripled frequency, too,
is calculated. It has permitted us to find the explicit dependencies of the third-harmonic generation efficiency
on the plasma and pump field parameters.
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I. INTRODUCTION

Harmonic generation(HG) occurring as a result of
electron-ion collisions in the presence of a strong high-
frequency electromagnetic field has been attracting attention
for almost 40 years[1–5]. As a rule, excluding numerical
calculations of papers[4], theoretical papers addressing this
subject restrict their analysis to conditions when the fre-
quency of the generating field is much larger than the
electron-ion collision frequency. The consideration of such
conditions is of interest and is appropriate when the high-
frequency field interacts with a sufficiently hot plasma of
relatively low density. At the same time, according to theo-
retical papers[1–3,5], the HG efficiency in a low-density
plasma grows proportionally to the square of the electron(or
the ion) density. We also recall that in the experiments[6],
due to the spatial coherence effect, the dependence of HG
efficiency on density may be not quadratic. In any case, in
experiments, too, the efficiency in a low-density plasma is
found to be higher the more dense the plasma. These findings
are recalled here to underline that both theory and experi-
ments for rare plasmas suggest that the increase of HG effi-
ciency in electron-ion collisions requires the desirable in-
crease of the plasma density. In turn, the increase of plasma
density causes the increase of electron-ion collision fre-
quencyn, which may become comparable to the frequencyv
of the generating field. So, to extend the investigation of the
HG efficiency to the interesting domain of sufficiently dense
plasmas, one needs to work out a theory, appropriate to deal
with the process of HG in the conditions, when the frequency
n is not small as compared withv. Such a theory is required
also in another important context of laser-plasma interaction;
namely, in that concerned with experiments in which intense
ultrashort laser pulses interact with solid targets. In such ex-
periments, on the surface of a solid target, a hot dense

plasma with a sufficiently sharp boundary is formed. The
latter fact has been used in the theoretical treatment given in
papers[7–11]). Besides, the conditions occur when the elec-
tron plasma frequency is much larger than both the funda-
mental frequency of the laser pulse and the electron-ion col-
lision frequency. The ratio betweenn andv may be arbitrary.
The present paper takes a step towards a theory of the third
HG in just such conditions.

The paper is organized as follows: In Sec. II we obtain an
appropriate solution of the kinetic equation for the electron
distribution function in the presence of a given periodic elec-
tric field. The field strength is assumed to be relatively small,
allowing us to describe its influence on the electron motion
on the basis of perturbation theory. Within such an approach
we find the linear, quadratic, and cubic corrections to the
initially Maxwellian electron distribution function. The cor-
rections are obtained for arbitrary ratios of the electron-ion
collision frequency to the field frequency. In Sec. III, we
determine the current density in the plasma at the frequency
3v and investigate how it depends on the parameterV
=n /v. It is shown, that for smallV values, the current den-
sity grows proportionally toV, reaches its maximum value at
approximatelyV<10, and then monotonically decreases ac-
cording to,V−2. In Sec. IV, we describe the absorption and
reflection of an electromagnetic wave normally impinging on
the surface of a dense hot plasma with a sharp boundary. The
relation is established between the strength of the field gen-
erating the current third harmonic in the plasma skin layer
and the strength of the field impinging in the plasma. In Sec.
V we report the solution of the equation for the field, con-
taining the current source at the frequency 3v. The relation is
established between the field inside the plasma and the field
of the wave emitted by the plasma at 3v. An analytical
expression for the third HG efficiency in the skin layer
of a dense hot plasma is obtained and analyzed. In Sec. VI,
finally, the conditions are indicated, allowing us to observe
the characteristics of the third HG established in the present
investigation.*Electronic address: zarcone@unipa.it
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II. APPROXIMATE SOLUTION OF THE
KINETIC EQUATION

Let us consider a fully ionized plasma, in which the mul-
tiplicity Z of ionized ions is much larger than unity,Z@1.
This assumption will allow us to neglect the influence of
electron-electron collisions in describing the kinetics of the
electron bulk. We note that the conditionZ@1, in its es-
sence, does not add limitations to the domain of validity of
the present theoretical treatment. As a matter of fact, the
necessary condition required below, that the particles’ cou-
lomb interaction energy be small as compared to their kinetic
energy for a plasma with almost solid-state density, is ful-
filled only when the ion and electron temperatures are larger
than hundreds of electron volts. At such temperatures, for all
the media, except those formed by the most light atoms, the
degree of atom ionization is much larger than unity. Let us
consider that in the plasma is present an electric field of the
form

EW std = EW cossvt − dd, s1d

whereEW =s0,0,Ed, while the strengthE and the phase shiftd
weakly change over the distance covered by thermal elec-
trons in the field period 2p /v. In these conditions, to de-
scribe the electron response to the electric field, Eq.(1), we
may use the spatially uniform kinetic equation

]

] t
f +

e

m
EW std ·

] f

] vW
= Stsfd, s2d

where the electron-ion collision integral is naturally taken in
the Fokker-Planck form

Stsfd =
1

2
nsvd

]

] vi
sv2di j − viv jd

] f

] v j
. s3d

The electron-ion collision frequencynsvd entering to Eq.(3)
is given by

nsvd =
4pZe4nL

m2v3 , s4d

where e, m, and n are, respectively, the electron charge,
mass, and density, whileL is the Coulomb logarithm. Let us
confine our consideration to the action on the plasma of a
relatively weak electric field, in which the velocity of the
electron directed motion is small compared to the electron
thermal velocity. It allows us to look for a solution to Eq.(2)
as a series of field strength powers. Accordingly, in the linear
approximation, from Eq.(2) we have

]

] t
df 1 − Stsdf 1d = −

e

m
EW std ·

] fm

] vW
, s5d

wherefm is the equilibrium electron Maxwellian distribution,

fm =
n

s2pd3/2vT
3 expF−

v2

2vT
2G , s6d

wherevT is the electron thermal velocity. Equation(5) has
the solution

df 1 = −
v

v2 + n2svd
fv sinc + nsvdcoscgSvWE ·

] fm

] vW
D , s7d

wherec=vt−d , vWE=eEW /mv.
In the quadratic approximation, from Eq.(2) we have

]

] t
df 2 − Stsdf 2d = −

e

m
SEW std ·

]

] vW
Ddf 1. s8d

Taking into account the solution to Eq.(7), we write the
right-hand side(r.h.s.) of Eq. (8) as

−
e

m
SEW std ·

]

] vW
Ddf 1 =

1

2
v2SvWE ·

]

] vW
Dhnsvd + fnsvdcos 2c

+ v sin 2cgj 1

n2svd + v2SvWE ·
] fm

] vW
D .

s9d

According to Eq.(9), the solution to Eq.(8) may be looked
for as the sum of two independent terms

df 2 = df 20 + df 22. s10d

The functiondf 20 does not contain the periodic time depen-
dency and it describes the quadratic in the field strength cor-
rection to the initial Maxwell electron distribution function.
As we are considering a weak field case,df 20 gives negligi-
bly small corrections to the third HG efficiency. Accordingly,
there is no need to write down the solution to the equation
for df 20. At the contrary,df 22 changes with the frequency
2v and is crucial for the following analysis. The function
df 22 is found from Eq.(8), leaving in its r.h.s.[see Eq.(9)]
only the terms changing with frequency 2v. The solution to
the corresponding equation has the form

df 22 =
1

4
S vE

2

3v2

]

] v
D vv2

n2svd + v2fnsvdsin 2c − v cos 2cg
] fm

] v

+
1

2
FsvWE ·vWd2 −

1

3
vE

2v2G v2

9n2svd + 4v2

3Hf3nsvdsin 2c − 2v cos 2cg 3 S1

v

]

] v
D v

n2svd + v2

3S1

v

] fm

] v
D + f3nsvd cos 2c + 2v sin 2cg

3 S1

v

]

] v
D nsvd

n2svd + v2S1

v

] fm

] v
DJ . s11d

Finally, taking into account the role of the functiondf20,
to determine the cubic correction to electrons distribution, it
is sufficient to consider the equation

]

] t
df3 − Stsdf3d = − vSvWE ·

]

] vW
Ddf22 cos c. s12d

From Eqs.(11) and(12) it is seen that in the r.h.s. of Eq.(12)
are present terms changing with frequenciesv and 3v. Ac-
cordingly to the linearity of Eq.(12), in its r.h.s. we leave
only the terms with the frequency 3v necessary to describe
the generation of the third harmonic of the fundamental fre-
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quency. Besides, in writing down the solution to the trun-
cated Eq.(12), we write only the terms of the functiondf3
which give nonzero contributions to the current density at
3v. It allows, in particular, to omit that part of the function

df3, which is proportional to the combinationsvWE·vWd3

−3vE
2v2svWE·vWd /5. On the basis of the above considerations,

for df3 needed in what follows we have:

df 3 =
1

3v
svWE ·vWdvE

2v3 1

n2svd + 9v2fnsvdcos 3c + 3v sin 3cg

3 H1

8

]

] v
S 1

v2

]

] v
Dv3 +

2

5
S 1

v3

]

] v
D v2

9n 2svd + 4v2Sv4 ]

] v
D −

3

5
S 1

v3

]

] v
D n svd

9n 2svd + 4v2Sv4 ]

] v
DnsvdJ 1

n 2svd + v2S1

v

] fm

] v
D

+
1

3v
svWEvWdvE

2v3 1

n 2svd + 9v2f3v cos 3c − nsvdsin 3cgH1

8

]

] v
S 1

v2

]

] v
Dv3nsvd

v
+

3

5
S 1

v3

]

] v
D nsvdv

9n 2svd + 4v2Sv4 ]

] v
D

+
2

5
S 1

v3

]

] v
D v

9n 2svd + 4v2Sv4 ]

] v
DnsvdJ 1

n 2svd + v2S1

v

] fm

] v
D . s13d

In Eq. (13), the differential operators over the velocity act on
all the functions staying on the right side.

III. CURRENT THIRD HARMONIC

Let us calculate the current densityd jW3 at the frequency
3v. By definition, the current density is given by

d jW3 = eE dvW vWdf 3. s14d

Using the relation(13), after averaging over the velocity vec-
tor angles from Eq.(14), we find

d jW3 = 10−4J3sVd
vL

2

v

vE
2

vT
2 EW cosf3c − D3sVdg, s15d

where vL=Î4pe2n/m is the electron plasma frequency,n
=nsvTd, the effective frequency of thermal electron collisions
with ions. The functionsJ3sVd andD3sVd, which determine
the amplitude and the phase shift of the current third har-
monic, depend only on the parameterV and are given by the
expressions

J3sVd = hf jc1sVd + jc2sVdg2 + f js1sVd + js2sVdg2j1/2,

s16d

cosfD3sVdg =
f jc1sVd + jc2sVdg

J3sVd
, s17d

sinfD3sVdg =
f js1sVd + js2sVdg

J3sVd
, s18d

in which use is made of the notations

jc1ss1d = −
104

18pÎ2p
E

0

`

dt Ic1ss1d
t 6

V2 + 9t 6

3 H1

8

]

] t
S 1

t 2

]

] t
Dt 3 + S 2

5t 3

]

] t
D t 6

9V2 + 4t 6St 4 ]

] t
D

− S 3

5t 3

]

] t
D V2

9V2 + 4t 6St 7 ]

] t
D 1

t 3J t 6

V2 + t 6

3expS−
t 2

2
D , s19d

jc2ss2d = −
104

18pÎ2p
VE

0

`

dt Ic2ss2d
t 6

V2 + 9t 6

3H1

8

]

] t
S 1

t 2

]

] t
D + S 3

5t 3

]

] t
D 1

9V2 + 4t 6St 7 ]

] t
D

+ S 2

5t 3

]

] t
D t 6

9V2 + 4t 6St 4 ]

] t
D 1

t 3J t 6

V2 + t 6

3expS−
t 2

2
D , s20d

Ic1 = − Is2 = V, Is1 = Ic2 = 3t 3. s21d

The functionsJ3sVd and D3sVd take a simple form in the
limits of small and largeV. In the case of a high-frequency
field, when

v @ n, s22d

from Eqs.(16)–(21), up to terms linear inV=n /v!1, we
find

J3sVd .
103

24pÎ2p
V, V ! 1, s23d
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D3sVd ! 1, V ! 1. s24d

Obviously, the results(23) and (24) also follow from the
theory of HG based on the mechanism of electron-ion colli-
sions(see Refs.[1] and [5]), where from the beginning it is
assumed that the electron-ion effective collision frequency is
much smaller than the field frequency. In the opposite limit-
ing case, when

n @ v, s25d

from Eqs.(16)–(21) we approximately have

J3sVd .
105

16p

104

V2 , V . 100, s26d

D3sVd . −
3p

2
, V . 100. s27d

The results of the numerical calculations ofJ3sVd andD3sVd
are shown in Fig. 1. Comparing the curves obtained numeri-
cally with the simple analytic dependencies Eqs.(23), (24),
(26), and(27), one can see that the domains of validity of the
latter are restricted to very small and to very large values of
the parameterV, respectively. In the range ofV values that
are important for applications, where the efficiency of cur-
rent third HG is the most large, from Fig. 1 it is seen that the
function J3sVd exhibits a useful quantitative property.
Namely, according to Fig. 1, the functionJ3sVd changes by
no more than a factor of 3 in the wide and most interesting
region of theV values, when 1øVø100. We note also that
the current third HG efficiency has its maximum atV.10
with the value maxfJ3sVdg.3. The phase shift in the maxi-
mum, as seen from Fig. 1, is close to −p /2. From Fig. 1 it is
also seen that by increasingV, the phase shift is monotoni-
cally decreasing from zero to −3p /2. This last value of the
phase shiftD3sVd takes place at rather highV values, and
corresponds to the situation when the current is generated in

opposition of phase with the field. In concluding this section
we observe that the nonmonotonic dependence of the func-
tion J3sVd on V established here is similar to the dependence
on plasma density of the current third harmonic found in Ref.
[4] as a result of numerical solution of a quantum kinetic
equation.

IV. THE FIELD IN THE PLASMA

In this section we study the field in the plasma in the
conditions when the ratio of the electron-ion effective colli-
sion frequency to the field frequency is assumed neither
small nor large, as it is usually done in the theory of high-
frequencysv@nd or normal sn@vd skin effect. With this
aim, we first find the current density at the field frequency.
From Eq.(7), by definition, we have

d jW1 = eE dvW vWdf 1 = J1sVdenvWE cosfc − D1sVdg, s28d

where the functionsJ1sVd andD1sVd are given by

J1sVd = f jc
2sVd + js

2sVdg1/2, s29d

D1sVd = arctanF jssVd
jcsVdG . s30d

In writing down the relations(29) and (30), the following
notations are used:

jcssd =
2

3Î2p
E

0

`

dt
t7

V2 + t6
Icssd expS−

t 2

2
D , s31d

whereIc=V, Is= t3. For small and largeV values, the func-
tions J1sVd (29) and D1sVd (30) yield known asymptotic
expressions

J1sVd . 1, D1sVd .
p

2
−

2V

3Î2p
, V ! 1, s32d

J1 .
32

Î2pV
, D1sVd .

315Î2p

32V
! 1, V @ 10. s33d

In Fig. 2, J1sVd and D1sVd are plotted for intermediateV
values. According to Fig. 2, both the current density phase
shift and amplitude decrease monotonically, increasing the
ratio of the collision frequencyn to the field frequencyv.

Let us use the current density(28)–(31) to determine the
field in the plasma, which we represent as[see Eq.(1)]

EW cossvt − dd =
1

2
EW sxdexps− ivtd + c.c., s34d

where EW sxd=(0,0,Esxd). Then, for the functionEsxd from
the Maxwell equations and Eq.(28), we have the equation

d2

dx2Esxd +
v2

c2 Esxd = − iJ1sVd
vL

2

c2 EsxdexpfiD1sVdg.

s35d

The expression(28) for the current density, determining the
r.h.s. of Eq.(35), has been obtained for arbitrary values of

FIG. 1. Phase shift −D3sn /vd and current third-harmonic ampli-
tude J3sn /vd, in relative units, versus the ratio of the electron-ion
collision frequencyn to the field frequencyv.
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the ratio n /v. At the same time, in deriving(28), use has
been made of a kinetic equation suited for weak interaction
of electrons with ions and themselves, whenn!vL. It means
that in the case whennùv is implied, the fulfillment of the
inequalityv!vL is also implied. Thus, the field frequency is
assumed to be smaller than the electron plasma frequency. A
field with such a frequency penetrates inside the plasma only
to the skin-layer depth. In other words, here we can speak
only about the current third HG in the skin layer. Keeping
this in mind, let us assume that also in the case in whichn
øv takes place, the inequalityv!vL also occurs. As a re-
sult, we arrive at the conclusion that it is necessary to con-
sider the current third HG in the skin-effect conditions. Fur-
ther, we assume that

v ! vL
ÎJ1sVd. s36d

When n!v, this last inequality is equivalent tov!vL,
while whenn@v from (36), we havenv!vL

2. The inequal-
ity (36) allows us to neglect the second term proportional to
the squared-field frequency in the left-hand side of the equa-
tion for the field (35). Furthermore, considering that the
plasma fills the half spacex.0, from Eq. (35) we have
approximately the following solution going to zero atx
→`:

Esxd = Es0dexps− ikxd, s37d

k =
vL

c
ÎJ1sVd expF i

2
D1sVd − i

p

4
G . s38d

We now use the field distribution in the plasma given by Eqs.
(37) and (38) to solve the problem of pump wave reflection
and absorption.

Let us assume that on the plasma filling the half space
x.0, normally to its surface impinges a linearly polarized
electromagnetic wave of the form

1

2
Eo exps− ivt + ikxd + c.c.. s39d

This wave penetrates inside the plasma to the skin-layer
depth and is reflected by it. The reflected wave field is writ-
ten as

1

2
REo exps− ivt − ikxd + c.c., s40d

whereR is the complex reflection coefficient. In the condi-

tions we are considering, the magnetic fieldBW sx,td
=(0,Bsx,td ,0) both in vacuum and inside the plasma, is con-
nected to the electric one by

]

] x
Esx,td =

1

c

]

] t
Bsx,td. s41d

From Eqs.(37)–(41) and the continuity requirements on the
magnetic and electric fields on the plasma surface we have

Eo + REo = Es0d, s42d

− Eo + REo = − i
c

v
kEs0d. s43d

From these relations, we find the complex reflection coeffi-
cient

R=
v − ick

v + ick
. − 1 +

2v

vL
ÎJ1sVd

expF−
i

2
D1sVd − i

p

4
G
s44d

and the relation connecting the field inside the plasma to the
electric field of the impinging wave

Es0d =
2Eo

1 + ikcv
.

2v

vL
ÎJ1sVd

Eo expF−
i

2
D1sVd − i

p

4
G .

s45d

From Eq.(44), a relatively simple expression follows for the
absorption coefficient due to electron-ion collisions:

A = 1 − uRu2 .
4v

vL
ÎJ1sVd

cosF1

2
D1sVd +

p

4
G . s46d

Using the relations(32) and (33) in two limiting cases from
Eq. (46) we have

A .
2nei

vL
, nei ! vL, s47d

A .Î3p

4

Îneiv

vL
, nei @ vL, s48d

where use has been made of the notationnei=Î2n /3Îp fa-
miliar in the theory of high-frequency field absorption. For
the general case, the dependence of the absorption coefficient
A, given by formula(46), on the ration /v is reported in Fig.
3.

We conclude the description of the field inside the plasma
by reporting the relations that connect the strength and the

FIG. 2. Phase shiftD1sn /vd and current amplitudeJ1sn /vd of
the fundamental frequency vsn /v.
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phase shift of the generating field(1) and(34) to the electric
field in vacuum. From Eqs.(34), (38), and (45), we have
approximately

Esxd .
2veid

vL
ÎJ1sVd

Eo

3expH− x
vL

c
ÎJ1sVdcosF1

2
D1sVd −

p

4
GJ ,

s49d

d . −
p

4
−

1

2
D1sVd − x

vL

c
ÎJ1sVd sinF1

2
D1sVd −

p

4
G .

s50d

According to these relations, the field strength and the phase
shift depend on the space coordinate. As mentioned above
(Sec. II), we neglect this dependence in dealing with the
electron kinetics in the skin layer. It is allowed, if the dis-
tance covered by thermal electrons in the field period is
much smaller than the effective depth of the skin layer,
which, according to Eq.(49), is c/vLÎJ1sVd.

V. THIRD-HARMONIC EMISSION

Let us consider now the emission of the third harmonic by
the plasma. The field inside the plasma at the frequency 3v
is written as

1

2
EW 3sxd exps− 3ivtd + c.c.; EW 3 coss3vt − d3d, s51d

whereEW 3sxd=f0,0,E3sxdg andd3 is the corresponding phase
shift. In accordance with the relation(28), the field (51)
yields the current at 3v with the density

d jW3v =
e2n

3vm
EW 3J1SV

3
DcosF3vt − d3 − D1SV

3
DG . s52d

Taking into account the relation(52), similar to Eq.(35), to
determine the fieldE3sxd from the Maxwell equations we
find

d2

dx
E3sxd +

9v2

c2 E3sxd − k3
2E3sxd = F exps− 3kxd, s53d

whereF is given below by Eq.(55) and the notation

k3 =
vL

c
ÎJ1SV

3
D expF i

2
D1SV

3
D − i

p

4
G s54d

is used. A substantial difference of this equation as compared
to Eq. (35) is that its r.h.s. contains a field source at fre-
quency 3v, due to nonlinear dependence of the electron-ion
collision frequency on the field. According to relations(15),
(49), and (50), the current density value of the sourceF is
proportional to the third power of the field strength and has
the form

F = − i12p10−4J3sVdS e

mv

vL

vT

Eo

c
D2F 2v

vL
ÎJ1sVd

G3

Eo

3expF− i
3p

4
− i

3

2
D1sVd + iD3sVdG . s55d

Furthermore, together with the condition(36), assumed in
analyzing the field atv, we will consider that a similar con-
dition takes place for the field at 3v as well. Namely, we
assume that

3v ! vLÎJ1SV

3
D . s56d

In this case, the solution to the nonhomogeneous Eq.(53),
going to zero inside the plasma, has the form

E3sxd = Es0dexps− k3xd

+
F

k3
2 − 9k2fexps− k3xd − exps− 3kxdg. s57d

Next, in accordance with Eq.(41), the electric field(57)
univocally determines the magnetic field in the plasma

B3sxd =
i

3k

d

dx
E3sxd. s58d

At the plasma boundaryx=0, the electromagnetic fields(57)
and(58) transform into the field of the wave irradiated by the
plasma at 3v. According to Maxwell equations, the field of
the irradiated wave has the form

1

2
EW r exps− 3ivt − 3ikxd + c.c., s59d

where EW r =s0,0,Erd. Besides, according to Eq.(41) BW r

=s0,Er ,0d. Furthermore, using the field continuity condi-
tions atx=0, from Eqs.(57)–(59), we find the strength of
electric and magnetic fields of the irradiated wave:

FIG. 3. Fundamental wave absorption coefficientA and third-
harmonic generation efficiencyW, Eq. (63), in relative units vs
n /v.
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Br = Er = − i
F

s3k + ik3dsk3 + 3kd
. s60d

From here we find the energy flux density irradiated by the
plasma at the frequency 3v

SW =
c

4pTr
E

0

Tr

dtfEW sx,tdBW sx,tdg = − iWIr , s61d

where Ir =cuEru2/8p and Tr =2p /3v the corresponding pe-
riod. As the energy flux density of the impinging on the

plasma wave isIo=cEo
2/8p, using the inequality(56) from

Eqs. (55), (60), and (61) for the third HG efficiency in the
skin layer of a dense plasma, we have the following result:

h =
Ir

Io
= S eEo

mvvT
D4v6

vL
6WS n

v
D , s62d

where the functionWsVd has the form

WsVd = S 6p

625
D2 J3

2sVd
J1

3sVdJ1sV/3d5 1

J1sV/3d + 9J1sVd + 6ÎJ1sVdJ1sV/3dcosFD1sVd − D1sV/3d
2

G6 . s63d

In the limit of small and large values of the ration /v from
Eq. (63), we have the simple asymptotic dependencies

WsVd =
5

p
10−3V2, V ! 1, s64d

WsVd .
Î2p

2 +Î3
S105p

2048
D2

V, V @ 10. s65d

In Fig. 3 we report the curve of the functionWsVd. From
Fig. 3 it is seen that increasingV=n /v one has a monotoni-
cal increase of the third HG generation efficiency.

VI. CONCLUSIONS

Let us recall the basic points of our work. First of all, we
note that, in investigations on harmonic generation due to
electron-ion collisions, an analytical treatment is given in
which the effective electron-ion collision frequency is com-
parable to, or greater than, the radiation frequency. These
conditions have great relevance for present-day experiments
concerning ultrashort laser pulses interacting with dense
plasmas generated on the solid-state target surface. Thus, the
domain of validity of the theory is extended to the conditions
required by present-day and future experiments. Second, an
essential merit of third-harmonic generation treatment given
here is that we establish the explicit dependencies of the
radiation flux density at 3v measured experimentally on the
plasma and fundamental wave parameters. It is at variance
with previous treatments(see, for instance[1–5]), where
only the current density or the harmonics field inside the
plasma were determined. The theory of the third-harmonic
generation presented here is easily extended to higher odd
harmonics. Here we are confined to the most important third
harmonic, because due to the strong weakening of the fun-
damental wave electric field in the skin layer, the generation
of higher-order harmonics is significantly smaller. Harmon-
ics generation is an important nonlinear effect, interesting in

its own right. At the same time, the prediction of the nonlin-
ear theory of harmonics generation may be used for applica-
tion purposes as well. In particular, the simultaneous mea-
surement of the plasma radiation at 3v and of the reflected
signal at the fundamental frequency makes it possible to find
the plasma density and temperature on the solid-state sur-
face, using the analytical dependencies established above.
We recall that the idea of using high-order harmonics for
plasma diagnostics is not new and has been verified in Ref.
[12].

Let us now discuss in some detail the domain of validity
of our treatment. It is valid in the conditions of normal and
high-frequency skin effects, which, as it is known[7–11],
takes place in broad ranges of radiation frequencies, and
plasma temperatures and densities. We refrained from ex-
tending the treatment to the anomalous skin-effect condi-
tions, which are not easy to realize, because in such a case,
the influence of electron-ion collisions is severely reduced,
which is the physical mechanism responsible for harmonics
generation.

As far as the radiation intensity is concerned, the domain
of validity of our theory extends from vanishingly small flux
densities(having in mind radiation interaction with prepared
plasma) up to very high values, at which the electron-
directed motion velocity in the skin layer, where the funda-
mental wave electric field is strongly reduced, becomes com-
parable to the electron thermal velocity. For instance, in the
visible frequency range, taking into account the effective
electron heating in the skin layer of a solid-state plasma, the
above condition of velocity comparability allows us to use
the present theory up to flux densities of the order
1018–1017 W/cm2, when the anomalous skin-effect domain
is approached.

Finally, concerning the limitations stemming from the la-
ser pulse duration, they are very weak. On the side of very
long pulse durations, a limitation comes from the possible
plasma hydrodynamic flying away, which yields the plasma
density decrease and the need to describe harmonics genera-
tion in a rarefied plasma with a density smaller than the
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critical one. Usually, the plasma flying away time is larger
than picosecond order times. We note that the basic pulse
may be very short. As a matter of fact, the characteristic time
of high-order harmonics generation is smaller than the period
of the fundamental wave. It means that the dependencies
established above for the third-harmonic generation hold true
if the field intensity of the pump wave and the plasma state
change weakly in a field period. In the visible frequency
range, such a time is of the femtosecond order.

As a consequence of plasma heating and flying away, its
temperature and density may change, with the ensuing con-
sequence that the harmonic generation efficiency, too, may
change. In the physical conditions that are realized more fre-
quently, the characteristic times of variation of plasma den-
sity and temperature are larger than the field period of the
fundamental wave. So in discussing the harmonic generation
efficiency, it is enough to substitute, in the above derived
formulas, the results concerning plasma heating and flying
away, available in the literature.

The regularities established above concerning the third
HG in the skin layer of a dense hot plasma allow us to
understand at which plasma and laser parameter the genera-
tion of radiation at 3v is most effective. According to rela-
tions (62) and (63) and Fig. 3, the third HG efficiency is
higher the greater the electron-ion collision frequency. At the
same time, the expression forh (62) has been obtained in the
framework of the ideal plasma theory, whenn,vL. The de-
pendence ofh on the radiation frequencyv is such that for
v,n the functionn increases proportionally tov and does
not depend uponv for v.n. The presence of such scalings
on n and v allows us to formulate the hypothesis, that the
third HG efficiency in the skin layer takes its largest values
when all the characteristic frequencies are the same order of
magnitudevønøvL, though their numerical values may
differ by several times.

Another parameter, on which the functionh depends in an
essential way, is the ratioeEo/mvvT, characterizing the
strength of the pump wave electric field. According to(62),
h increases proportionally toseEo/mvvTd4. Such a depen-
dence is derived in the assumption that in the skin layer, the
electron-directed motion velocity in the fieldE is much
smaller than the electron thermal velocity. Forv.n, this
assumption amounts tovE/vT!1, while for n.v to
ueE/mnu!vT. The limitation on the field strength value for
n.v makes it possible to neglect the runaway electrons, at
least before the electron temperature doubling. It is just the
electrons run away effect that may be responsible of the rela-
tive third HG efficiency weakening in the most favorable
conditions whenvønøvL andvE is comparable tovT.

In choosing the best conditions to generate the third har-
monic, it is wise to take into account two other important
processes. One of them is the electron heating due to inverse
bremsstrahlung in the skin layer. We should remark that the
theory given above is applicable only when the time of elec-
tron temperature doubling is much greater than the period of
the fundamental wave. As a result of the electron temperature
increase, the generation efficiencyh (62) decreases:h

,T −7/2 for n.v, and h,T −5 for n,v, wheren,T −3/2.
The other one is the plasma matter flying away, yielding its
density decrease and the destruction of the sharp plasma-
vacuum boundary. The relations(62)–(65) indicate that for
v,vL, the generation efficiencyh must increase with the
density decrease. However, it must be noted that this conclu-
sion is derived considering a plasma with a sharp boundary,
and evidently a different analysis is required if the plasma
boundary loses its sharpness because of the plasma flying
away. We note also that the plasma matter flying away is
irrelevant if the third HG is studied for times smaller than the
skin-layer depthc/vLÎJ1sVd divided by the acoustic veloc-
ity vs in the plasma.

Let us give an example illustrating the possibility of third
HG. For an estimate we assume that a laser radiation with
frequency v.231015 s−1 and flux density Io=4
31016 W/cm2 interacts with a fully ionized beryllium
plasma with electron densityn=531023 cm−3, ionization
multiplicity Z=4, and temperatureT=500 eV. In such
conditions vT.9.43108 cm/s, n.5.431015 s−1, vL.4
31016 s−1, V=n /v.2.7, 2v /vLÎJ1sVd.0.11, while for
the ratiovE/vT in the skin layer of the Be plasma, we have
vE/vT.0.5. In these estimates we do not take into account
the small corrections to the distribution function related to
the Langdon effect. The resulting third HG efficiency is
h.3310−6 WsVd.2310−9, which corresponds to the
radiation flux density irradiated by the plasma at 3v equal
to Ir .108 W/cm2. In the same conditions, the time
of the electron temperature doubling is th
.3vT

2f2vvE
2J1sVdcosD1sVdg−1.20 fs, while the time of

plasma boundary loss of sharpness istexp.c/vLvsÎJ1sVd
.50 fs. In other words, for about 20 fs the flux density of
the radiation emitted by the plasma at 3v is rather high,
while in the subsequent time instants it rapidly decreases
basically due to electron heating. The reported estimates
show that it is possible to carry out a relatively simple ex-
periment aimed at observing the third HG regularities estab-
lished above and those of higher odd harmonics as well. In
connection to this possibility we remark that the radiation at
3v is concentrated in the opposite direction to that of the
impinging fundamental wave, and has a narrow spectral
width, which should allow us to single it out from the back-
ground plasma thermal radiation. The latter may be intense
enough, but is distributed over all the frequencies and angles
of the wave vector.
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