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Beat wave injection of electrons into plasma waves using two interfering laser pulses
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An electron injector concept that uses a single injection laser pulse colliding with a pump laser pulse in a
plasma is analyzed. The pump pulse generates a large amplitude laser wapédisith wave The counter-
propagating injection pulse collides with the pump laser pulse to generate a beat wave with a slow phase
velocity. The ponderomotive force of the slow beat wave is responsible for injecting plasma electrons into the
wakefield near the back of the pump pulse. Test particle simulations indicate that significant amounts of charge
can be trapped and acceleratedl0 pQO. For higher charge, beam loading limits the validity of the simula-
tions. The accelerated bunches are ultrasheft fs) with good beam qualityrelative energy spread of a few
percent at a mean energy of10 MeV and a normalized root-mean-square emittance on the order 0.4 mm
mrad). The effects of interaction angle and polarization are also explored, e.g., efficient trapping can occur for
near-collinear geometries. Beat wave injection using a single injection pulse has the advantages of simplicity,
ease of experimental implementation, and requires modest laser interit§ W/cn?.
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[. INTRODUCTION is of high charggup to 10 nQ, with an energy distribution
that can be modeled as a Boltzmann distribution with tem-
erature in the few MeV rang®-14]. One possible mecha-
ism for self-trapping is direct wavebreaking of the plasma

Plasma-based acceleratddy are capable of producing
compact and high-energy electron sources in much short

distances than conventional accelerators due to the large lop;, i : : N
S g . . . ield[15]. Sin he ph veloci f the wakefield i
gitudinal electric fields that can be excited without the limi- akefield[13]. Since the phase velocity of the wakefield is

tati f breakd i 1f Struct | | h near the speed of light, it is difficult to trap the background

allont(_) ffa‘ld ovx:cn aslln i structures. in atﬁ asm(;a, efg]cﬂuid electrons, which are undergoing the fluid oscillation

celérating Telds of a plasma wave aré on the order of g, ot g stains the wakefield. Wavebreaking typically occurs at
cold nonrelativistic wavebreaking fiel@E,=mCw,/e, or

Eq[V/m]=96(nglcn )2, wherew, = (4mnoe2/ m)L2is the high wakefield amplitudes, e.g., amplitudes greater than the

plasma frequency, is the plasma density. is the speed of wavebreaking field, which for a cold one-dimensioBD)
0 i = - 12E s =
light, m, is the electron mass, arlis the electron charge. plasma wave isyg=[2(y,~1)]" o> Eo, wherev,=cB,

(212 ; .
The wavelength of the accelerating field is the plasma waveTC(l .7¢) Is the phase velocity of the plasma wave. Al
length A, =2mC/ @, or AJm]=3.3x 10%ng[cm 3))"2. For ternatively, self-trapping and acceleration can result from the
P~ P pLITH= 3. :

example, a laser wakefield accelerattWFA) [1] in the coupling of Raman backscatter and Raman sidescatter to the
; dp d, . in which the | Ise lerigt matched wakefield[16]. When electrons become trapped in the fast
foatﬂea[:r)la;erg;mvsé\l/r:ergngth N?\ a?;;;iggli/ehgrs‘ga drgr?s(i:tyeon wakefield, they become accelerated to high energies as they
(I pr H H H H _
the order ofny~ 10t cm® for & 100 fs pulse, which gives rotate up in momentum inside the separatrix of the wake

~ _ . field. In the self-modulated regime, a large energy spread for
Eo=100 GV”_“ _andxp_—30 pm. If a monoenergetic elec- the trapped electrons results beca@gsome fraction of the
tron bunch is injected into a wakefield such that it is accel'background electrons are continually being swept up and
erated Wh'lfe mtﬁlntglnln% ? small energy slrl)r(faad,r thenf 'ihﬁrapped in the wakefield as the laser pulse propagates into
neie?_s?(rjy or de lirr:c g occf:up]}/ afsm? rac '3” 0 hi §resh plasma, andi) typically the self-guided propagation
waketield period, on the order of a few femtoseconds, w IC}]jistance of the laser pulse is much greater than the detuning

:ﬁggértehse;eanrléosueirceoggn?gcgr\ij‘;r)i/eltn gf'ela'sné??;'%r;ti%rﬁfﬁthO-%ngth for trapped electrons. This implies that deeply trapped
q ' y ! ectrons will circulate many revolutions within the separa-

have been proposg@-7. . ; oo
. . trix, again resulting in a large energy spread.

Perha_lp_s the [most basic and simplest form of a laser- For many applications, a small energy spread is desired.
pla§ma injector is the seIf-moduIa.ted LWF[A,S], |n.wh|ch .. This can be achieved by using a standard LWFA, in which
a single laser pulse, propagating in a relatively h|gh-den5|t¥he wakefield is produced in a controlled manner at an am-
plasma(such thall. > A, and the laser pulse power eXceedsplitude below the wavebreaking or self-trapping threshold. In

:?: C.rr']t'czlngovgﬁ;r':trornegt';'zt'g_fzcgfggggisgItic'r? f}glf'e eprinciple, if a small energy spread electron bunch of duration
ppIng 9 ' uo-p unch, NOWEVEL . a)i compared to, is injected into the wakefield at the

with a large energy spread. Typically the self-trapped buncrbroper phase, then the bunch can be accelerated while main-
taining a small energy spread. Umstadteial. [2] first pro-
posed using an additional laser pulse to inject background
*Also at University of Paris XI(Orsay, France; electronic ad- plasma electrons into the wave for acceleration to high ener-
dress: gjfubiani@Ibl.gov gies. To generate ultrashort electron bunches with low-
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energy spreads, the original laser injection method proposeidjection, differs in these two methods. In ponderomotive
by Umstadteret al. [2] (referred to as the LILAC scheme injection, injection is the result of the ponderomotive force
utilizes two laser pulses which propagate perpendicular t@associated with thenvelope(time-averaged intensity pro-
one another. The first pulgpump pulsg¢ generates the wake- file) of a single pulse. In CPI, injection is the result of the
field via the standard LWFA mechanism, and the seconghonderomotive force associated with tlew beat wavef
pulse(injection pulsg intersects the wakefield some distancetwo intersecting pulses.
behind the pump pulse. The ponderomotive forfee= In CPI, the pump pulse generates a plasma wave with
-(myc?/ y) Va?/2 of the injection pulse can accelerate a frac-phase velocity near the speed of lighto=c). The forward
tion of the plasma electrons such that they become trapped injection pulse travels at a fixed distance behind the pump
the wakefield. Herey is the relativistic Lorentz factor of the pulse, which determines the positiine., phasg of the in-
electrons an@?=3.6x 107 *(\[um])?I[W/cn¥] for a circu-  jected electrons. The injection pulses are orthogonally polar-
larly polarized laser field, withh as the laser wavelength and ized to the pump laser pulse, such that the pump pulse and
| as the laser intensity. Specifically, the axidirection of  backward going injection pulse do not beat. When the injec-
propagation of the pump pulse along thaxis) ponderomo- tion pulses collide some distance behind the pump, they gen-
tive force of the injection pulsé€propagating along thex  erate a slow ponderomotive beat wave of the form
axis) scales as a,a, cogAkz—Awt) (hereAk=k; —k,=2k;) with a phase ve-
locity vpp=|Aw|/2ky<c, where the frequency, wavenumber,
F2pona= — (M )(913 2)a5/2 ~ (mc¥y)ailr,, (1)  and normalized intensity of the pulses are denotedp;,

) ) ) ) ] and a; (i=0,1,2, respectively. Furthermore, it is assumed
wherea; andr, are the normalized intensity and spot size of it k, ~k;, ko~ —ko, andw;— w,=Aw> w,. The axial force
the injection pulse, respectively. A simple estimate for theygsociated with this beat wave scales as
change of momentum that an electron will experience due to
the ponderomotive force of the injection pulse A, Fobea= ~ (MeC¥7)(919 2)a18, o 2kgz ~ Awt)
= rlFZ,ponp(mcz/ y)air,/r1, wherer, is the injection pulse ~ (MeC?y) 2kya25. 2)
duration. It is possible foAp, to be sufficiently large that ) o ) S
electrons are injected into the separatrix of the wakefield®uring the time in which the two injection pulses overlap, a
such that they become trapped and accelerated to high endwo-stage acceleration process can occur, i.e., the slow beat
gies. To inject into a single plasma wave bucket, it is necestraps and heats background plasma electrons which, as a re-
sary for both the injection pulse spot size and pulse length tult of shifts in their momentum and phase, can be injected
be small compared to the plasma wavelength, rieé, )\5 into the fa_st Wakeflel_d for acceleration to high energies.
ultrashort pulses at high densitiga,/A=10 and E,/E, a single pulse in the ponderomotive injection scheme scales
=0.7), indicated the production of a 10 fs, 21 MeV electron &S

bunch with a 6% energy spread. However, high intensities Fopear  2KoAdy
(1>10'8 W/cm?) are required in both the pump and injec- T 3
tion pulses(ag=a;=2). It is important to note that in the zpond /T

work of Umstadteret al. [2], the pump pulse and the injec- where the subscrigh refers to the single ponderomotive in-
tion pulse do not overlafin space and timeand a laser beat jection pulse and the contribution of the relativistic Lorentz
wave is not generated, as is discussed below. factor v (which is different for the two casgss neglected.
Hemker et al. [4] also studied the LILAC injection For comparable injection pulse intensitigg =a,=ay), the
scheme using two-dimensiongé@D) particle-in-cell simula-  ratio scales askgr,> 1, i.e., the axial force of the beat wave
tions. They found that the wake generated by the transverss much greater than the ponderomotive force of a single
propagating injection pulse can play an important role in thegulse. Consequently, CPI using beat waves is much more
trapping process and even exceed the amount of trappingffective for electron injection than relying on the pondero-
produced by the ponderomotive force of the injection pulsemotive force of the injection pulse alone. CPI can result in
alone. In addition, they varied the delay between the pumglectron injection at relatively low intensiti¢a; ~a,~ 0.2),
and injection pulses and found that the trapping can be eras well as at relatively low densitig /X ~ 100, thus al-
hanced when the two pulses overlap. However, the electriqowing for high single-stage energy gains. Furthermore, the
field polarizations of the two pulses were orthogonal in thesecp| concept offers detailed control of the injection process:
simulations, i.e., no laser beat wave was generated when thghe injection phase can be controlled via the position of the
two pulses overlapped. forward injection pulse, the beat phase velocity fia, the
Esareyet al. [3,6] proposed and analyzed a colliding injection energy via the pulse amplitudes, and the injection
pulse injection(CPI) concept that uses three short lasertime (number of trapped electronsia the backward pulse
pulses: An intens(aa(z): 1) pump pulsedenoted by subscript duration.
0) for plasma wave generation, a forward going injection In this article, a simplified configuration of the CPI con-
pulse (subscript 3, and a backward going injection pulse cept is proposed and analyzed that uses only two laser pulses
(subscript 2. CPI is intrinsically different from the method with parallel polarizations: An intense pump pulse for wake-
of ponderomotive injection discussed above in that both théield generation and a single counterpropagatioigpropa-
source and form of the ponderomotive force, responsible fogating at a finite angleinjection pulse[25,2§. Injection is
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the result of the laser beat wave produced when the back- For simplicity, the notatior(a,—2> is introduced to denote
ward injection pulse collides with the trailing portion of the the time-averaged peak intensity of the laser pulse. For a
pump pulse. This configuration has the advantages of beingnearly polarized laser pulse of the form cos e, (a2)
easier to implement in comparison to the three-pulse CPLa2/2. For a circularly polarized laser pulse of the form
scheme, and of requiring less intensity in the injection pulsey,(cos y;e,+sin hey), (a®y=a?. Comparisons between linear
compared to the ponderomotive injection scheme, since ingnq circular polarization will be done for equal values of the
jection is the result of the laser beat wave as opposed to “”t‘?me-averaged peak intensilﬁaﬁ). The weakly relativistic

ponderomotwe_ force of a single injection pulse. . . limit, sometimes referred to as the linear regime, corresponds
In the following, analytical models and test particle simu-, (@) <1

lations are used to describe the basic characteristics of the Included in the simulations presented in Sec. IV are the

two-pulse CPI concept, such as the threshold for injection . S
and the trapped bunch quality. Test particle simulations ar&vakeﬁelds generated by both the pump and injection laser

carried out in three dimensions in which the fields of thePU!Ses- In the lineat(a’)<1) three-dimensiona(3D) re-
laser pulses and their wakes are described analytically vi?
linear theory. For high laser intensiti¢a®> 1), this model ! . ’ : )
becomes inaccurate. To describe the nonlinear regime iH‘a"ZGd Ze_lect_rostatlc potential of the wakefield,
three dimensions, as well as other nonlinear effects such agcri/ MeC” IS given by[1]

beam loading, requires self-consistent simulations such as (Pl §i2+k§)¢i = kgai?m, (7)
can be done with particle-in-cell codes, which is beyond the . )

scope of this paper. Also explored are the effects of interaci/herek,=wp/c and a time averaging has been performed
tion angle and polarization on the injection process. Thes@Ver the fast laser oscillationlaser frequency ie.,
results are directly relevant to laser injection experimentdd €OS #)=&'/2. The solution to Eq(7) is

ime, wakefield generation can be examined using the cold
uid equations. In particular for linear polarization, the nor-

being pursued at Lawrence Berkeley National Laboratory g
(LBNL) [17] and elsewhere. &i(r,8) = kpf dgi sinky(¢ - £Had(r,g)i4. (8)
0
Il TWO-PULSE COLLIDING PULSE INJECTION: FIELDS Specifically, Eq(7) yields the potential generated inside the
pulse(-L;<¢<0)
This section describes the fields used in the two-pulse CPI 2 2 5 2
simulations discussed below. The laser fields of the pumpy, = ir_ie—ZrZ/rﬁ{lJr (47’2/kp|-i)c°5(kp§i)'Cos{zﬂi/'-i)],
(i=0) and injection(i=1) laser pulses are described by the 8 rgi (1 —4712/k?,Li2
normalized vector potentialsa;=eA;/m,?. Using the (9)

paraxial wave equation with a linear plasma response, the _
transverse laser fielddinearly polarized in thex direction ~ and behind the puls; <-L;)

and propagating along theaxis) are given by[18] ) izr_lz _2r2/r2.< 4772)sir[kp(§i + L/2)Jsinlk,Li/2)
a(r,2) = &(r,5)cos (4) =22 ez (1-42LD)
with (10
a(r,5) = a(rifrg)exp(- rar2)sin(m4iLy), (5)  Forthe resonant case=\,, which corresponds to maximum

wakefield generation,
for —=L;<<{;<<0 and zero otherwise, whetg=z-Syoct (for-

2.2
ward comoving coordinaje; =z+ B¢t (backward comov- AT a2 codkot) — (k2/2)sink )] (11
ing coordinatg By=7 is the linear group velocityS, d)' 8r2 [ $hodi) = (lpdf2)sinlld) ] (1)
=7, ' is the linear phase velocity; =1 -w?/ w?-4/(kr)? is
the plasma index of refractiony;=ki(z—B4ct) +a; r2/rZ,

and

+a;—tar g is the phasek =w;/(B,c) is the wavenumber, _marl e
w; is the frequency in vacuumg(z)=r;\/1+a(2) is the spot $="g 2€ ssin(ky)., (12)

size,r; is the spot size at waighere chosen to be:Zfi), i 4 behind th SII -
ai(z):(z_zfi)zlzza' Zr=kin /2 is the Rayleigh lengtfL, WItDISri?]g ths clglIi;ioenFo%/Zﬁérpeigeiﬁgvﬁl% laser pulses, a
is the pulse length, and a constant has been omitted in ﬂ}?eat wave space charge potentil will be driven by thé
definition of ¢ that represents the initial position and phaseSIOW ponderomotive beat wave, i.e

of the laser pulse. The axial component of the laser field is T
specified viaV -a;=0. Keeping only the leading order contri- (Ploct®+ kf,) dp = kﬁ(axoaﬂ), (13

i : o .
butions gives where(a,pa,q) =(893,/2)cos i, ,=AK(z—B,ct) is the beat

b , , . wave phasecB,=Aw/Ak is the beat wave phase velocity,
ai(rdi) =~ f dgj da(r,¢)ax = 2X{&(r, &)/(kr3)] Aw=wo-wy, an?jAk=ko—k2:2ko assumingAw?< w? and a
0 counterpropagating geometry. As an example, analytical so-
X (sin ¢ — a; cOS ). (6) lutions for ¢, can be found in the linear limit for the case of
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square pulse profiles, without diffraction and equal frequen- -47 -37 -27 -7 0 gAm 3w 2w om0
ciesAw=0. In this case, during the overlap, 0.4 Y 1s| b ;! Vol ()

02 . ‘\,’ , ' ‘\\ ’/' -

¢ = (8gaa/A)[1 - coswy(t —to)lcos gy, (14) ) Ssh N
- - N\

wheret,(2) is the onset of overlap of the colliding pulses at -o02 0 -7
fixed z. Associated with¢y, is a density perturbatiodny —04L -05
=Ngk?V2ehy, i.€., ANyl ng=—(2ko/Ky)?ehy,. Strictly speaking, 4w 3w gmoem 0 4w 3w ogmoom 0

the linear solution given by Eq(14) is only valid if
[onp/nel <1, or (kO/kp)2a0a1< 1, which is easily violated FIG. 1. (a) Wakefield ¢ (solid line), drive laser pulse envelope
even for modest values aha, since(ky/k,)>>1. However, (&) (dashed ling and Iongitgdinal electric fieléE,=—d,¢ (dotted-
the relationV2¢,=k2an,/ny holds in the nonlinear limit and  dashed lingfor Lo=A, and(ag)=0.5.(b) Phase space plot showing
hence the Scalind¢>b|~(kp/2k0)2|bhb/n0| holds even for cold fluid orbit(solid Il_ne), trapped and.focused orlidashed ling
large values 0B,/ ng, assumingv2¢, ~ 4k2y. In particular, ~2nd trapped separatridotted-dashed line
as long as|on,/ng| < (2ke/kp)A(apay) [€.9., (2ko/ kp)A(agay) . . _
~10® in the simulations presented belpwthen |V | wave (approximately equal to the group velocity of the drive
<|Vapa,/2| (i.e., |¢p| <apa;) and the effects of the space laser pulsg and
charge potential of the beat wawg, can be neglected in 22
comparison to the ponderomotive potential of the beat wave H(u, ) = Vﬁ(w) U= Byt~ B). 17)
apa,. Hence, in the following test particle simulationg, is is the Hamiltonian. Hereg(y) is the laser-driven plasma
neglected. wave(wakefield potential given by Eq(8) and the subscript
0, denoting the pump laser pulse, has been omitted. In the
above equations, the identity, =a has been used, which is
exact in one dimension. Note that the Hamiltonian is time
To gain a qualitative understanding of the basic process, sndependenga function of onlyy) and, therefore, is constant
heuristic theory of injection and trapping is presented. Spealong any orbit.
cifically, an approximate expression for the injection thresh- The normalized axial momentum of an electron on an
old can be obtained by considering the motion of an electromrbit (specified by the value ofl.) in the plasma wave is
in the wakefield and the beat wave individually, and by usingfound from Eq.(17) by settingH=H,, whereH. is a con-
an island overlap criterigl9]. Recall that the beat wave stant, i.e.,
leads to formation of phase space buckssparatricesof e
width 277/ Ak=\o/2, which are much shorter than tﬁzse of U(¥) = Byy(Ho+ &) £ v\ Vy(Ho+ 92— ¥4, (18)
the wakefield(x,), thus allowing for a separation of spatial For example, assuming the plasma is initially ceie., u,
scales. In the following analytical treatment, electron motion=0 in front of the laser pulse wher@=$=0), the back-
will be described using a Hamiltonian approach in the limitground electron fluid motion in the plasma wave is defined
of a broad laser pulserok,>1 and neglecting diffraction by the orbitH.=1.
effecty and assumingyj/wi<1 (such that the group and ~ The HamiltonianH(u,,4) exhibits fixed points(du,/dt
phase velocities are approximatedy Furthermore, circular  =dy;/dt=0) that are stablg*O” points) at u,= Y. () Y4By,
polarization Y"Z'II Ak;e assumeda=2; &(Cos ¢ig,+sin yiey), Yo=—-1.47-0.60k,L +0.02K’L? inside the drive pulse and
such thata®=&;+8&] +28,8,C0S y, is independent of the fast , =—7/2—k | /2 modulo 2r outside. Unstable fixed points
laser phases; and only a function of the beat phage=4o  (“X" points) lie at u,=y,8,, and g5 =—3m/2-k,L/2 modulo
~ 1 =2kz-Awt. 27. The boundary between trapped and untrapped orbits de-
fines the separatrix orbit, which is specified by,
=H(y4B4, ) and crosses thi point.
. Figure Xa) shows wakefieldy (solid line), drive laser
In the absence of the beat waya,=0), the nonlinear ;s  enveloped? (dashed ling and longitudinal electric
motion of an (_alectron. in a plasma wave W|th_ r9|atIV.IStI(?fie|d E,=—d,¢ (dotted-dashed linefor the parameters.
phase velocity is described by the Lorentz equation, which m__)\p and<a§>=0.5 as obtained from Eqgll) and(12). The

the 1D limit can be written in the following forrfi7] corresponding phase space orbits are plotted in Fig. ds

IIl. PHASE SPACE ANALYSIS

A. Plasma wave

dy  oH u, obtained from Eq(18). Shown are the cold fluid orbit, sepa-
dort = ’m =T By (15 ratrix between trapped and untrapped orbits, and the trapped
@p 2 AW+ and focused2D) separatrix.

Behind the drive laser pulse, the width of the separatrix is
du, _ dH_dé 1 Jvi Ayr=2m, however, only half this region is acceleratifthe
dayt a9y X 2\/)&(1/,) + uf ' I_eft half for t_he case of the Iasgr pulse_ propagating to the
right). The width of the accelerating region of the wakefield
whereu=p/mgc is the normalized electron momentum,  is A= and extends from th® point to theX point. When
=(1+a9)2 y=ky(z-v4t) is phase of the plasma wave, 2D effects are taken into consideratispecifically, the fo-
=cﬁ¢=c(1—1/y§5)1’2 is the phase velocity of the plasma cusing and defocusing regions associated with the transverse

(16)
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electric field of the plasma wayethere exists only a region wave separatrix is approximately/2), the spatial variation
of width Ay=/2 that is both accelerating and focusifax-  in the pulse envelope, ;, which are assumed to have pulse
tending from theD point to half the distance to the point). lengths much greater thay, will be neglected.
Hence, the “2D separatrix”, defining the region of trapped The normalized axial momentum of an electron in the
orbits that are both accelerating and focusing, is given byeat wave is
H:.=H(y4B4,—7m—k,L/2 modulo 27) =H;. For the case of a ———
single inTet?iion pulge colliding with the pump pulse, trapping Uz, (4) = Bo¥oHoe * Yo\ ¥oHpe— ¥ibs (20)
will occur within the first 2D separatrix, which typically ex-
tends from theO point within the pump laser pulse to
roughly half the distance to the firg¢ point immediately
behind the pump pulse. This region of trapped orbits that aré
in the accelerating and focusing region of the wakefield ar
characterized by values of the Hamiltonian in the rakige
In the limit 7/2(H +)?> 2, Eq (18) can be expanded to
yield u,= 2y2(H +¢) and U= I[2(He+ $)]-(He+ ) /2 .
for the plus and minus portions of E@18), respectively, C. Trapping threshold
assumingy;,> 1. These expressions are useful for evaluating  An approximate threshold for injection into the wakefield
u,(#) on the separatrix for values @fin the vicinity of theO  can be estimated by applying a phase space separatrix over-
points. lap condition(i.e., Chirikov island overlap criterign[19],
assuming circular polarization. Specifically, island overlap
B. Ponderomotive beat wave requires(i) the maximum momentum of the beat wave sepa-
ratrix exceed the minimum momentum of the wakefield
separatrix andii) the minimum momentum of the beat wave
separatrix be less than the plasma electron fluid momentum,

where Hy. is a constant specifying a given orbit. Thé
points are given by, =0 modulo 2r and the separatrix is
specmed byHu(¥. YoBp:0)=7v,(0)/ y. The maximum and

inimum normalized axial momenta of an electron on a
rapped beat wave orbiextrema of the separatjare

Ups = Y6BpY16(0) £ 27’b\ a9y . (21)

The motion of the electron in the beat wave aldre
=0) is described by the beat wave Hamiltonig6,7]

S ErEe ie.,

Ho(Uz ) = V72 o) + U5 = Boll = (i), (19)
where 2 (i) = 1+83+ 28,3, cosy, (a?<al has been as- U+ = U(H =Hy), (22)
sumed, ¥,=(ko—ky)(z—Bpct) is the beat wave phagmote

N o Up. < Uy(H = 1). (23)

k, <0 for the backward puldeandcB,=Aw/(ky—k;) is the
beat wave phase velocithw=wy—w; with, typically, Aw®  |f this occurs, then there exists a phase space path that can
<whandB;<1). In the following, the space charge potential take an electron from the cold fluid orbit, through the beat
driven by the beating of the two colliding pulseg(y,) will  wave separatrix, and finally on a trapped orbit within the 2D

be neglected sincep, is typically much smaller than the separatrix of the wakefield.
ponderomotive beat wave potentiéhyd;), as discussed The trapping threshold can be solved analytically. In the
above. Also, sinc&kg—k; =2k, (i.e., the width of the beat limit g,<1, Eqgs.(22) and(23) imply

oag | UAHOU(H)/2 = B\ +86 + U(H/2], if By = B (24
Yl uH= DluH= 12 - B 1+ + AH=1/2], if B> B,
where
2 (Y = )
B* - [uz(Hf) uz(H 1)]/\2 (25)

[Uy(H)V2 + 282+ U2(Hy) = Uy(H = )\2 + 282+ ui3(H = 1)]

Numerical solutions to the analytical estimation of the pump pulsg Trapping is easiegbccurs for the lowest value
trapping threshold, Eq$22) and (23), are shown in Fig. 2. of &, for a givenag) whenL =X\, which is the resonant case
Note that, in Eqs(22) and(23), 4, and ¢ are functions ofy,  for wakefield generation that yields the Iargest wakefield am-
i.e., the relative position within the pump laser pulse. Theplitude (e.g., ¢o=0.4 for L=\, and (a§)=0.5). Similarly,
minimum value ofa; required for trapping is plotted versus Fig. 2(b) shows the value o&l required for trapping as a
ap in Fig. 2@ for different lengths of the drive pulse for function of the beat wave phase velocfy for several val-
Bp=0.05 and ¢=ty,==3m/2 (i.e., near the back of the ues ofay with Lo=\, and¢=i,,=—37/2. For these param-
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FIG. 2. (a) Injection laser pulse amplitud® versus pump laser -27 -7

pulse amplitudeay at threshold foriy,,=-3m/2, B,=0.05, Lo
=\, (solid ling), Lo=9\,/8 (dashed ling andLy=5\,/4 (dotted-
dashed ling (b) Injection laser pulse amplituda; versusp, at
threshold for yp=—-37/2, Lo=\,, (a3)=0.45 (solid line), (a3
=0.32(dashed ling and(aé):0.245(dotted-dashed line

FIG. 3. Phase spade/,u,) showing trapped and focused sepa-
ratrix (solid line), cold fluid orbit (dashed ling and maximum of
the beat wave separatrigdot-dashed ling for (a3)=0.45, (a3)
=0.125,8,=0, andL0=)\p.

In the following simulations, the plasma was modelled by
eters, trapping is optimized for small positive values@gf  a group of test electrons initially at rest and loaded randomly
Figure 3 shows an example of the phase space athgs2D  in a 3D spatial region of length, and transverse sizg,
separatrix, the beat wave separatrix, and the fluid pfita X\, uniformly about thez axis. This spatial region was

case where the island overlap condition is well satisfiedchosen to be ahead of the pump laser pulse, and timed with
(<a§>:0.5,(a§>:0.125,,8b:0.1 andLo=X\,). respect to the initial position of the injection pulse such that

In the following section, the results of test particle simu-When the two pulses collide, the test electrons fill the entire

lations are presented for the linear polarized laser fields dis®9ion in which trapping may occur. After the collision, vari-
cussed in Sec. II. For linear polarization, an analytic theory?US Properties of the trapped electron bunch were monitored
of the trapping threshold is complicated by the fact tfais ~ aS function of propagation time, such as the mean energy, the
no longer independent of the fast laser phases, ag., €nergy spread, the root-mean-squamss) bunch length, and
:ég cog ¢O+a§ coyn +aga,[cos gy +cog Yo+ i;)].  One the trapping fraqtlon. Here, the trapping fractlon_ is defined as
consequence is that the wake separatrix now contains firldh/ Ns whereN, is the number of test electrons in the bunch
scale structure since the quant@ozl+é§cos’-¢/xo oscillates @ndNs the tota] number of test elec.trons in the S|_mulat|on.
between 1133 and unity. Similarly, the beat wave separatrix Unless otherW|se noted, the S|muzlat|ons were carried unt for
becomes “fuzzy” because of contributions from wave com-ihe following parameters range@, from 0.5 to 0.88(ay)
ponents with phases cogg, cos 24, and coéyy+ ). Fur- frc_)m 0 to 0.32, drive pulse Iengt_h fromoz_)\_p to O\p/8,
thermore, simulations of the motion of test particles in thelnjéction pulse lengthL;=\,/2, drive and injection pulse
beat wave from two counterpropagating, linear polarized lafadii 1=\, frequencies wy=w;=50 w, and propagation
ser pulses indicates that the particle orbits can become chindth @yt from 50 to 100. The trapping fraction can be
otic [20], as discussed in Appendix B. The result is that the'€ated to the number of trapped particles My=nofVioaq
trapping threshold is lower than that predicted by circularWhereVIoad=7\#) is the initial volume of loaded test particles.

polarization theonf7], as is apparent in the simulations dis- ~ Three configurations of the two-pulse colliding pulse in-
cussed below. jector were simulatedi) Two counterpropagating, collinear

laser pulses with equal polarizatiofis) two pulses colliding
at a finite interaction angle with equal polarizations, &iiid
IV. SIMULATION RESULTS two coun_terpropagating, collinear laser pulses with orthogo-
nal polarizations.
This section describes results from a 3D particle tracking )

code in which the electromagnetic fields for the laser pulses A. Two collinear pulses

and their corresponding wakefields are specified analytically This section presents results for the basic two-pulse col-

as described in Sec. Il. liding injector geometry in which the pulses are collinear and

0.07  0.07 ro/Ap | 002

*

® Ay 2% 008 (b) 0015

7

6

5 % - *
4’\/,,\‘0‘04 0.04 L e/, 001
3 * 0.03 0.03® P || 5
2 , fir(%)  10.02  0.024" ‘

1 v 0.01  0.01 ) 02&0
0

0.

X 0 0"
35 04 045 05 055 06 035 04 045 05 055 06
a1l ay

FIG. 4. (Color) Trapped bunch parameters versys(for two collinear, counterpropagating laser pulses with equal polariza(t;iaéh,
=0.5, wo/ wp=50, Log=9\,/8, w1/ w,=50, L1=\,/2, andw,t=50). (a) Trapping fractionf, (right vertical axi$ and relative energy spread
Ayl y (left vertical axig. (b) Bunch lengtha,/\, (left vertical axig, rms radiusry/\, (left vertical axig, and normalized transverse rms
emittancee , /N, (right vertical axig.
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wyt = 100.

Uz
53

FIG. 5. (8 Longitudinal electron momentum, versus phasé=k,{. (b) Normalized laser strength, (solid curve, longitudinal electric
field E, (dashed curveand wakefield potentialp (dotted curve versus phasénote that the trapped and focused region isr<dy<
—7m/2). (¢) Longitudinal momentum versus normalized beam radiyrs Laser-plasma parameteréaé)zO.S, wol 0,=50, Lo=9\,/8,
(af}zo.lS,wl/wp:SO, L1=\,/2, parallel polarization, and,t=100.

counterpropagating with equal polarizations. Figure 4 showping becomes more efficient, with corresponding increases in
the trapped fractiorf, of electrons, relative energy spread fy, Ay/y, a,/\,, €, /N, andr,/N,. This is consistent with
Avyly, rms bunch lengthr,/\,, rms radiusry/\,, and nor-  the fact that the overlap in phase space area between beat
malized transverse rms emittaneg /\, versus counter- wave and wakefield separatrices increases, ascreases, as
propagating laser pulse intensity after a propagation time o§hown in Fig. 3. Maximum acceptance for the electron
wpt=50 for the parameters{a2)=0.5, wol w,=50, Ly  plasma wave is obtained féa2)=0.125 and, consequently,
=9\p/8, w1/ wp=50, andLy=\,/2. emittance reaches an asymptotic value. Figure 6 shows the
Simulations using the 3D particle tracking code point outchange in trapping fractiofy, as a function of the beat wave
that typical electron bunches produced by colliding lasemphase velocity for the parameters of Fig. 4 and for the case
pulses have a “head-to-tail” energy correlation as can be seda§>:0.88. The maximum of,, occurs nearB,=0.35 for
in Fig. 5@), which shows the normalized longitudinal mo- (ag):O.S andB,=0.1 f0r<a(2)>:0_88, which is qualitatively
mentumu, versus longitudinal ph2r'315$ for the parameters gimilar to theoretical predictions found for circular polariza-
(85)=0.5, wp/ 0, =50, Lo=9\,/8, (a7)=0.18, w1/ w,=50, L1  tion (cf. Fig. 2.
=\p/2, andwpt=100. The corresponding field profiles versus  The total charge in the buneg can be estimated from the
i are shown in Fig. @®). In Fig. 5c), the normalized trans- trapping fractionf,, (the fraction of the initial electrons that
verse radial position of the particldgr is shown versus remain on trapped and focused orbity Q=erbftr>\3- A plot
normalized longitudinal momentunn, for the parameters of of bunch chargeQ versusa, is shown in Fig. 7 for the
Fig. Xa). The mean kinetic energy of the electron bunch isparameters:\;=0.8 um, Ap=40 um (ny=6.9 107 cm ),
found to beT=17.3 MeV. The most energetic electrons that| j=r,=40 um, and<a3>:0.88. Due to the small volume of
reside at the head of the bunch are on trapped orbits that afge trapped bunch,, the bunch density, can be very high,

both accelerating and focusing and, hence, remain close {gheren,=Q/V,,. For example, the colliding laser intensities
the axis. Moving back through the bunch, the electrons area2)=0.88 and (a?)=0.18 yield an electron bunch with
on orbits with less acceleration and less focusing. The least A

/Np,=0.1, 0,/\,=0.02,Q=0.35 nC, anch,/ny=20.
energetic electrons at the back of the bunch reside on orbitd Bgam Iogaing is imp?)rtant when the btr;pped electron

that are transversely defocusing and are hence scattergflyc significantly alters the plasma wave that accelerates
transversely. . . . the bunch. Beam loading is neglected in the particle tracking
The / Eun,czh emzlttagce is approximated a8,  .,qe To estimate the effects of beam loading, the wakefield
= 7080y (0O(X' D = OA(U)  where Up=y080=1 is the generated by a short electron bunch in a uniform plasma can
axial momentum of the electron bunch. Asincreases, trap-  pe calculated21,22 (see Appendix for detaijs For a uni-
form beam profilen,(r, ) =n,O(r,—r)O(-)O({+ o, of ra-

*l @ 6t (b) /,,./”\‘\ diusry, and lengtho,, where® is a step function, the ampli-
S Kss tude of the perturbed density and the axial electric field of
« 02 “ 5 the bunch-induced wakefield are given by

01

o 4 /g = Koo/, (26)
-01 0 01 OBZ 03 04 0S5 ~-0.1-005 0 ﬂ0.05 0.1 015

EZ/EO = kp(TZFR(r)nb/no, (27)
FIG. 6. Trapping fractiorf,, as a function of beat wave phase )
velocity By, for two collinear, counterpropagating laser pulses with a§sum|nq<paz<1'_5n/r)o< 1, andE,/Ey<1, where the ra-
equal polarization for the parametefa) (a2)=0.5, w,=50 w,, L,  dial profile function is Fg(r)=1-kyr,Ks(kyrp)lo(kyr) for
=O\,/8, <a§):0.125,L1:7\p/2, wpt=50, and(b) same parameters I <ry Herel, andK; are modified bessel functions aig
except with(a2)=0.88 and(a2)=0.245. =mec?k,/e. For a narrow bearkf,r§<1 and along the axis
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_ FIG. 9. (Color) Bunch charge® in pC (right vertical axis, staps
FIG. 7. Bunch charg;Q[nC] versusa; with )\02:0-8 MM, Ny normalized axial electric fieldE,/Ey) (left vertical axis, points
=40 um (ng=6.9 16" cm™3), Lo=ry=40 um, and(ag)=0.88. and normalized density perturbatidn/ng) (left vertical axis,

he el h al ith
Fr(r=0)=[0.308-0.5 Ifiyy)Kir2. The bunch charga), oo erencrated by the electran bunch alone vemuimii Mo
. . . S =0.8um, A\p=40 um (ng=6.9 13" cm™3), Ly=ru=40 um, and
norr_nallzed bun(_:h-lnduced ax_lal electric ﬂfﬂg/ Eo, and nor- <a§)=0.5. Note that the parameter regime is well below the beam
malized bunch-induced density perturbatiém' n, are plot- loading limit
ted in Fig. 8 as a function of, for (a3)=0.88 and the pa- '

. . 2 - .
rameters of Fig. 7. In the regim;)=0.02, the density linear geometry, since this avoids having additional optics in

i > . ,
g? 23:‘%?]2(;? S:;fnn:gzdﬁg%gé(%?& g elr'bing etglfa ngcts orthe path of the accelerated electron bunches. The interaction
linear beam loading will most likely reduce the bunch quaIityilngle 0 between the two laser pulses is given by éos

(fraction trapped, average energy, Bic. =(Kko-kq)/ (koky), Wherek, propagates along theaxis andk,

The effects of beam loading will be small provided the IS in thex-2z plane(¢= corresponds to collinear, counter-
beam-induced wakefield ER7), is much less than that pro- Propagating pulsgsNote for noncollinear interactions, the

duced by the drive laser pulse E42), or component of the beat wave phase velocity alongzthgis
y is  reduced, e, cBy,=Aw/(k-[k|cosd), cpy
a = —%Z%FR(O) <1. (28)  =Aw/(|k|sin ), and CBy, =0, for O (m/2,m). In addition

a Mo to the axial(z-axis) component of the beat wave ponderomo-

To reduce beam loading, the pump laser amplitude and, coriive force, proportional téky—|k; |cos 6)agay, there is now a
sequently, the plasma wave amplitude can be reduced, whidfansverse component, proportional (@ |sin 6)aga,, that
also reduces the trapping. For examp(e§>:0.5, <a§> pushes electrons off axis. Figure 10 shows the trapping frac-
=0.18, k1, = 0.4, andk,o,~0.04 give a trapped bunch den- tion versus interaction angle abt=50 for (a3=0.5,

sity of ny/ny=3.9 and, hencey, =0.03, which satisfies Eq. wg/ wp,=50, Lo=9),/8, (a3)=0.125, w1/ 0,=50, and L

(28). The bunch charg®, normalized bunch-induced axial =\,/2. As the angled decreases from= to 6=/2 (trans-
electric fieldE,/Ey, and normalized bunch-induced density verse injectioi, the trapping fraction decreases to zero. Fur-
perturbationsn/ng are plotted in Fig. 9 as a function @  thermore, for theg=/2 case, when the delay between the
for (a)=0.5 and the parameters of Fig. 8. For the casesnjection and the pump pulses was increased, such that the
shown in Fig. 9, the effects of beam loading should be mini-injection pulse intersects the wakefield and does not overlap
mal. with the pump pulséas in Umstadteet al, [2] and Hemker

) ) o et al, [4]) no trapping was observed.
B. Effects of interaction angle and polarization

1. Noncollinear geometry 2. Orthogonal polarization

Experimentally, the colliding pulse injector geometry can Al of the above examples have assumed parallel polar-

be simplified by using two pulses that intersect in a noncolization, i.e.,8,-a;=a¢a;, and injection is the result of the
ponderomotive force associated with the beat whyg,~

50. —-(mgC?/ y)V(ay-a;). For orthogonal polarizationd; ,,=0
40.
30.8 0.03
20.® =
10. x2 0.02
A 0. =
01 015 02 025 03 001
ai
FIG. 8. (Color) Bunch charg&) in pC (right vertical axis, staps 0l
normalized axial electric fiel&,/ Eq (left vertical axis, pointg and /2 27T/39 b7/6 T
normalized density perturbatiofn/ng (left vertical axis, squares
generated by the electron bunch alghere the laser contribution is FIG. 10. Trapping fractiorfi, as a function of angle for two laser
not included versusa; with Ag=0.8 um, N\y=Lo=ro=40 um, and  beams with equal polarization ai,t=50 with (aé):O.S, wol wp
(a3)=0.88. =50, Lo=9\,/8, (a3)=0.125,w;/ w,=50, andL; =\,/2.
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(since ay-a;=0), and the beat wave mechanism can nolacking in the literature. Self-consistent simulations, such as
longer be responsible for electron injection. For orthogonalising particle-in-cell codes, are required in this nonlinear
polarizations, the time-averaged force on the electrons isegime, and this line of research is currently being pursued.
given by Fpon=MeC?V (¢—y) =m?V ¢—(mc?/ y)(Va§/2  Likewise, experiments on colliding pulse injection are being
+Vé_§/2), Electron injection can still be the result of the pursued at LBNL, as well as other laboratories world wide.
ponderomotive force associated with envelope of the injec- Note added in proofWe have recently become aware of
tion laser pulseFq,~=-(mc?/y)Va3/2, but this is rela- the work by Kotakiet al. [24] that examines injection by the
tively small compared to that of the beat wave as discussestanding wave produced by two counterpropagating laser
in the introduction. As an example, a case was simulate@ulses using a 1D particle-in-cell simulation.

identical to that shown in Fig. 4, except with orthogonal

polarization. For the orthogonal polarization case, there are ACKNOWLEDGMENTS

no trapped electrons, comparedfie=6.5x 107 for the par-

o o . Some of these results were originally presented at the
allel polarization case. For orthogonal polarization, trappmg2002 Advanced Accelerator Concepts Works[,26. The
can occur, but for higher laser intensities in which nonlinear P '

effects (not included in the test particle simulation model %Lrj]?;\;vs.cicﬁniwg :tﬁﬁl\l]szfug:f; uasrfcljog_sc\_/‘\ggzo‘lﬁ e'f?%i’\/\?&ﬁ'
polarization are presently being explored using particle-ir?BNas perforr_ned und_er the auspices_the U.S. Department of
cell simulations[23] Energy, Office of High Energy Physics, under Contract No.

' DE-AC-03-76SF0098, and by the U.S. Department of En-
ergy SciDAC project, “Advanced Computing for 21st Cen-

V. CONCLUSION tury Accelerator Science and Technology”, which is sup-
An alternative configuration of the colliding pulse injector ported by the Office of High Energy Physics and the Office

that uses a single pump pulse and a single counterpropagzﬂf- Advanced Scientific Computing Research.
ing injection pulse has been analyzed and simulated. This
single injection pulse configuration has the advantages of
simplicity and ease of experimental implementation. Injec- Beam loading, whereby the trapped electron bunch sig-
tion is the result of the slow ponderomotive beat wave gennificantly alters the accelerating wakefield, can degrade the
erated when the backward injection pulse collides with thequality of the electron bunch. To estimate the effects of beam
rear portion of the forward pump pulse. Injection requiresjoading, the wakefield generated by the trapped electron
high pump laser intensit{a,= 1) and modest injection pulse bunch propagating in an initially uniform plasma can be cal-
intensity (a;=0.2). Test particle simulations indicate that culated[21,22 and compared to the wakefield driven by the
significant amounts of charge can be trapped and acceleratedmp laser pulse. Using linear perturbation theory of the
(Q~10 pO, up to the limits imposed by beam loading. In cold fluid-Maxwell equationgi.e., to first order indn/ng,
addition, the accelerated bunches are ultrashetit fs) with E,/E,, @2 etc), the normalized density perturbatiaim/nj
good beam qualityAy/ y~ few percent at a mean energy of <1 and normalized axial electric fiel,/Ey< 1 driven in an
~10 MeV and a normalized rms emittance on the ordeinitially uniform plasma by either a short electron bunch
0.4 mm mragl Reduction of the energy spread can be(n,/n, drive term or a short laser pulsg? drive term are
achieved by including a density taper in the trapping regiongiven by
The density taper will rephase electrons and consequently 2 ,n 2 \(a? N
reduce the energy spread and increase the bunch charge. Also <_ + k2>— = (Vi + —>— - K22
examined was the effect of interaction angle. For an interac- P/ ng 7] 2 "ng
tion angle of 1509where 180° is collinear, counterpropagat-
ing), the trapping fraction is only reduced by roughly ten > 2 E d (@ én
. - . . . ) (V2 -K)==k,—|—-—], (A2)
percent, thus allowing efficient noncollinear interaction ge LR TP\ 2 g
ometries for further ease of experimental implementation.
When the interaction angle was decreased to(@@hsverse Wheren, is the density of the drive electron bundf,is the
injection geometry, no trapping was observed for the param-ambient plasma densit{,=k;m.c?/e the cold nonrelativis-
eters of the simulation. Similarly, no trapping was observedic fluid wave breaking limity,=c was assume,, is the
for the parameters of the simulations for the case of orthogobunch velocity, and the angular brackets denote an average
nal polarization. This confirms that the mechanism responoVer the fast laser frequengwith w?> ). In deriving the
sible for injection is the result of the slow ponderomotive above equations, the quasi-static approximation was as-
force associated with the beating of the laser pulses, and nétimed, i.e, the drive beams and the resulting wakefields are
due to ponderomotive force associated with the envelope dtinctions of only the variableg=z-ct andr .
the injection pulse. Consider the wakefield generated by the electron bunch in
One limitation of the approach used in this research is thathe absence of the laser pulse. Solving B&R) with a?=0
it relies on test particle simulations in which the fieltlsers ~ and a cylindrically symmetric drivey, yields
and wakepswere specified analytically. This model becomes ¢ ,
inaccurate asay and a; a h and d uni i on_ I 1)
, approach and exceed unity, since =k, | d¢'sinky(£- )] , (A3)
analytical expressions for nonlinear wakefields in 3D are No 0 No

APPENDIX A: BEAM LOADING CONSIDERATIONS

PYe (A1)
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E ¢ ”
= kgf dg’f dr'r’ cogky(Z
E0 o 0

— ) lolket Kokt >>”b(r 194
0

(A4)
wherely and K, are the zeroth-order modified bessel func-
tions of the second kind, and. (r-) denote the smaller
(largen of r andr’ respectively. For a uniform beam profile
Ny(r,)=n,O(r,—rO(-)O({+0c, of radiusr, and length
o, Where® is a step function, the amplitudes of the per-
turbed density and the axial wakefield are

on n
= koo, 2, (A5)
No No
E,
E = kpo'z Fr(r), (A6)
0
assumingo,<<1, where the radial profile function is
1 -krpKi(krp)lokyr), forr<r
FR(”:{ oKk ) ko) -
Kpr pl 1(Kprp) Ko(Kpr), forr >ry,

with 1; andK; the first-order modified bessel functions.
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FIG. 11. Phase space orbifs,, ) of test electrons in two
counterpropagating laser pulses wi# circular polarization and
(b) linear polarization. Here both lasers are infinite plane waves
with <a§):(a§>:0.5, i.e., equal time-averaged intensities.

APPENDIX B: EFFECT OF POLARIZATION ON
ELECTRON MOTION IN BEAT WAVES

Test particle simulations of the colliding pulse injection
process indicate that trapping occurs more readily for the
case of linear polarization compared to that of circular polar-
ization. One reason for this difference is the form of the
normalized laser intensity.e., the ponderomotive potentjal
for the two polarizations. Consider the case of two counter-
propagating and overlapping laser pulses with uniform pro-
files (i.e., pulse rise time effects are neglegtdeor circular
poIar|zat|on a=3; &(cosyie+sin yig,), such thata?=2a3

a1 23,3,C0S iy, is independent of the fast laser phage

Consider the wakefield generated by the laser pulse in thg, 5 only a function of the beat phasé= - = 2koz

absence of the electron bunch. Solving E&2) with n,=0
yields

o , @)
o= dz sin{k(¢ - g)](v ag/z)—z ,
(A8)
2
E f e sinkld 201 o @ (25 D (a9
0

Assuming a laser pulse with a half-sine axial profile and

Gaussian radial profile, similar to Ep), with a pulse length Wave CH

-Awt. Becausea®=a?(¢y,), the Hamiltonian for the motion
of an electron in the combined laser fields is time indepen-
dent,Hy(u,, ) = y1+a%(h,) + U2~ By, i.€., the Hamiltonian
describes the motion of an electron in a single beat wave
characterized by a single phase velocity. In this case, the
electron motion is regular as describe in Sec. Il B.

For linear polarizationa=3; & cos e, such thata?
=82 cog Yip+a5 coS i +89A[COS ¢+ COL o+ ¥)]. In this
case the ponderomotive potential is, in effect, composed of
four waves. In addition to the slow beat wagigh; cos i,

dhere |s a forward going wa\ﬁa% cog iy, a backward going

cog ¢y, and a wave at the sum of the laser phases

L=\, (the resonant case yielding maximum plasma wavedods oS¢+ ). The end result is that the Hamiltonian is

amphtude gives

UL P (1——2r2) ex (——r2> (A10)
89 Mgtz [oel )
E,_ 7, p( 2r2)
== -5 A1l
g, 80N (AL

k

Beam loading can be neglected provided that the wake
field generated by the trapped electron bunch is small cong
S

pared to that generated by the drive laser pulse. Con
quently, from Egs.(A6) and (Al1l), beam loading can be
neglected provided

a = 22PF(0) < 1. (A12)
0

For the parameters under consideration in this pgeey.,
(a3)=0.5, (a3)=0.18, kyr,=0.4, k,0,=0.04, and ny/ny
=3.9, which yieldsa;=0.03], Eq. (A12) is satisfied.

no longer time independent and an analytic solution for the
motion of a test electron in the combined laser fields is in-
tractable.

To study the effect of polarization, the motion of test par-
ticles is studied numerically for two identical, counterpropa-
gating laser pulses, neglecting the effects of the space charge
potential (¢=0). The first set of simulations, shown in Fig.
11, is for two overlapping pulses with uniform profiles, i.e.,
the effects of the laser envelope profiles are neglected. In this
ase, a group of electrons is initially loaded at rest over one-
1alf of a beat periodspaced uniformly within the laser
ields. Here, the time-averaged intensities of the circularly
and linearly polarized laser pulses are chosen to be equal,
(ady=(a2)=0.5.

Results for circular polarization are shown in Fig(a1
which indicates that the orbits are regular and well behaved,
as is described by the Hamiltonian theory in Sec. Il B. In
this case, the maximum electron momentum in the beat wave
is less than or equal to that of the maximum of the beat wave
separatrix given by Eq20).
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0.8 2

The corresponding case for linear polarization is shown in ™[ (o sl ®
Fig. 11b). For linear polarization, the orbits are irregular 0a NS
and, for sufficiently intense laser pulses, can become chaotic oz 05 1
This is similar to the case of “stochastic heating” in counter-=  ° o
propagating laser fields as studied by Shengl.[20] In this
case, the electrons are not confined to a single beat wav . .
period and the maximum momentum can exceed that of the -8 — 2
maximum of the beat wave separatrix as predicted by a P e
Hamiltonian theory for circularly polarized pulses.

To Study the effect of the finite rise times of the laser FIG. 12. Phase space orbitg,, #,) of test electrons in two
pulses, a second set of simulations was performed. In thes®unterpropagating laser pulses wi# circular polarization and
simulations, the electrons were loaded at rest in the regio) linear polarization. Here the laser pulses have a finite length of
between the two counterpropagating laser pulses before they=| =50\, and a radius of,=r;=50\, with equal peak time-
overlappedspaced uniformly over a width equal to half of a averaged intensities 482)=(a)=0.5.
beat periogl The initial conditions were such that the elec-
trons were first struck by the left-going pulse for a short time
(less than a beat peripdbefore being struck by the right-
going pulse(at which time the electrons experience the bea%
wave). Here the laser pulses have a finite lengthLgfL,
=50\y and a radius of9:r1:50)\0 with equal peak time-
averaged intensities dﬁ()):(ai):O.S. > ) o L

The case of circular polarization is shown in Fig.(82 The ab_ove simulations She‘?‘ |n5|ght as to Why |_nject|on
Initially, the electrons move to the left due the axial pondero-2Nd trapping occurs more readily for linear polarization than

motive force of the left-going pulse. As the two pulses col-it does fo_r _c_ircular polarization. F_or_ circul_ar polarization,
lide, the electrons begin to execute orbits within the pbeaglectrons initially loaded at rest within a single beat wave
wave. As the laser pulses continue to overlap, the size of theeriod remain confined to a single period of the beat wave
ponderomotive beat wave increases, since the local laser ifith momenta less than that of the beat wave separatrix. For
tensity of the two pulses is increasing. This leads to largefinear polarization, the electron trajectories become chaotic,
beat wave orbits. The end result is that the electrons argo longer confined to a single beat wave period, and obtain
confined to a single period of the beat wave and, for thesenomenta exceeding that predicted by the separatrix corre-
initial conditions, the maximum momentum is significantly sponding to the circular polarization case. The fact that linear
less than that corresponding to the top of the beat wave seppeolarization results in large phase excursions as well as large
ratrix given by Eq.(20). momentum gains, in comparison to circular polarization, im-

The case of linear polarization is shown in Fig.(2  plies that the use of linear polarization can be more effective
Again, the electron orbits are highly irregular and chaotic.than circular polarization in the beat wave injection and trap-
The electrons are not confined to a single beat wave perioging of electrons.

Uz

nd the maximum momentum exceeds that predicted by a
simple Hamiltonian theory of the separatrix for circularly
polarized pulses.
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