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An electron injector concept that uses a single injection laser pulse colliding with a pump laser pulse in a
plasma is analyzed. The pump pulse generates a large amplitude laser wakefield(plasma wave). The counter-
propagating injection pulse collides with the pump laser pulse to generate a beat wave with a slow phase
velocity. The ponderomotive force of the slow beat wave is responsible for injecting plasma electrons into the
wakefield near the back of the pump pulse. Test particle simulations indicate that significant amounts of charge
can be trapped and accelerateds,10 pCd. For higher charge, beam loading limits the validity of the simula-
tions. The accelerated bunches are ultrashorts,1 fsd with good beam quality(relative energy spread of a few
percent at a mean energy of,10 MeV and a normalized root-mean-square emittance on the order 0.4 mm
mrad). The effects of interaction angle and polarization are also explored, e.g., efficient trapping can occur for
near-collinear geometries. Beat wave injection using a single injection pulse has the advantages of simplicity,
ease of experimental implementation, and requires modest laser intensity,1018 W/cm2.
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I. INTRODUCTION

Plasma-based accelerators[1] are capable of producing
compact and high-energy electron sources in much shorter
distances than conventional accelerators due to the large lon-
gitudinal electric fields that can be excited without the limi-
tation of breakdown as in rf structures. In a plasma, the ac-
celerating fields of a plasma wave are on the order of the
cold nonrelativistic wavebreaking fieldE0=mecvp/e, or
E0fV/mg.96sn0fcm−3gd1/2, wherevp=s4pn0e

2/med1/2 is the
plasma frequency,n0 is the plasma density,c is the speed of
light, me is the electron mass, ande is the electron charge.
The wavelength of the accelerating field is the plasma wave-
length lp=2pc/vp, or lpfmg.3.33104sn0fcm−3gd−1/2. For
example, a laser wakefield acceleratorsLWFAd [1] in the
standard regime, in which the laser pulse lengthL is matched
to the plasma wavelength,L.lp, typically has a density on
the order ofn0.1018 cm−3 for a 100 fs pulse, which gives
E0.100 GV/m andlp.30 mm. If a monoenergetic elec-
tron bunch is injected into a wakefield such that it is accel-
erated while maintaining a small energy spread, then it is
necessary for the bunch to occupy a small fraction of the
wakefield period, on the order of a few femtoseconds, which
requires femtosecond accuracy in the injection process. To
meet these requirements, a variety of laser injection methods
have been proposed[2–7].

Perhaps the most basic and simplest form of a laser-
plasma injector is the self-modulated LWFA[1,8], in which
a single laser pulse, propagating in a relatively high-density
plasma(such thatL.lp and the laser pulse power exceeds
the critical power for relativistic focusing), results in self-
trapping and generation of a sub-ps electron bunch, however,
with a large energy spread. Typically the self-trapped bunch

is of high charge(up to 10 nC), with an energy distribution
that can be modeled as a Boltzmann distribution with tem-
perature in the few MeV range[9–14]. One possible mecha-
nism for self-trapping is direct wavebreaking of the plasma
wakefield[15]. Since the phase velocity of the wakefield is
near the speed of light, it is difficult to trap the background
fluid electrons, which are undergoing the fluid oscillation
that sustains the wakefield. Wavebreaking typically occurs at
high wakefield amplitudes, e.g., amplitudes greater than the
wavebreaking field, which for a cold one-dimensionals1Dd
plasma wave isEWB=f2sgf−1dg1/2E0@E0, wherevf=cbf

=cs1−gf
−2d1/2 is the phase velocity of the plasma wave. Al-

ternatively, self-trapping and acceleration can result from the
coupling of Raman backscatter and Raman sidescatter to the
wakefield [16]. When electrons become trapped in the fast
wakefield, they become accelerated to high energies as they
rotate up in momentum inside the separatrix of the wake-
field. In the self-modulated regime, a large energy spread for
the trapped electrons results because(i) some fraction of the
background electrons are continually being swept up and
trapped in the wakefield as the laser pulse propagates into
fresh plasma, and(ii ) typically the self-guided propagation
distance of the laser pulse is much greater than the detuning
length for trapped electrons. This implies that deeply trapped
electrons will circulate many revolutions within the separa-
trix, again resulting in a large energy spread.

For many applications, a small energy spread is desired.
This can be achieved by using a standard LWFA, in which
the wakefield is produced in a controlled manner at an am-
plitude below the wavebreaking or self-trapping threshold. In
principle, if a small energy spread electron bunch of duration
small compared tolp is injected into the wakefield at the
proper phase, then the bunch can be accelerated while main-
taining a small energy spread. Umstadteret al. [2] first pro-
posed using an additional laser pulse to inject background
plasma electrons into the wave for acceleration to high ener-
gies. To generate ultrashort electron bunches with low-
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energy spreads, the original laser injection method proposed
by Umstadteret al. [2] (referred to as the LILAC scheme)
utilizes two laser pulses which propagate perpendicular to
one another. The first pulse(pump pulse) generates the wake-
field via the standard LWFA mechanism, and the second
pulse(injection pulse) intersects the wakefield some distance
behind the pump pulse. The ponderomotive forceF .
−smec

2/gd¹a2/2 of the injection pulse can accelerate a frac-
tion of the plasma electrons such that they become trapped in
the wakefield. Here,g is the relativistic Lorentz factor of the
electrons anda2.3.6310−19slfmmgd2IfW/cm2g for a circu-
larly polarized laser field, withl as the laser wavelength and
I as the laser intensity. Specifically, the axial(direction of
propagation of the pump pulse along thez axis) ponderomo-
tive force of the injection pulse(propagating along thex
axis) scales as

Fz,pond= − smec
2/gds] /] zda1

2/2 , smec
2/gda1

2/r1, s1d

wherea1
2 andr1 are the normalized intensity and spot size of

the injection pulse, respectively. A simple estimate for the
change of momentum that an electron will experience due to
the ponderomotive force of the injection pulse isDpz
.t1Fz,pond,smc2/gda1

2t1/ r1, wheret1 is the injection pulse
duration. It is possible forDpz to be sufficiently large that
electrons are injected into the separatrix of the wakefield
such that they become trapped and accelerated to high ener-
gies. To inject into a single plasma wave bucket, it is neces-
sary for both the injection pulse spot size and pulse length to
be small compared to the plasma wavelength, i.e.,r1

2!lp
2

and c2t1
2!lp

2. Simulations[2], which were performed for
ultrashort pulses at high densities(lp/l=10 and Ez/E0
=0.7), indicated the production of a 10 fs, 21 MeV electron
bunch with a 6% energy spread. However, high intensities
sI .1018 W/cm2d are required in both the pump and injec-
tion pulsessa0.a1.2d. It is important to note that in the
work of Umstadteret al. [2], the pump pulse and the injec-
tion pulse do not overlap(in space and time) and a laser beat
wave is not generated, as is discussed below.

Hemker et al. [4] also studied the LILAC injection
scheme using two-dimensionals2Dd particle-in-cell simula-
tions. They found that the wake generated by the transverse
propagating injection pulse can play an important role in the
trapping process and even exceed the amount of trapping
produced by the ponderomotive force of the injection pulse
alone. In addition, they varied the delay between the pump
and injection pulses and found that the trapping can be en-
hanced when the two pulses overlap. However, the electric-
field polarizations of the two pulses were orthogonal in these
simulations, i.e., no laser beat wave was generated when the
two pulses overlapped.

Esarey et al. [3,6] proposed and analyzed a colliding
pulse injection sCPId concept that uses three short laser
pulses: An intensesa0

2.1d pump pulse(denoted by subscript
0) for plasma wave generation, a forward going injection
pulse (subscript 1), and a backward going injection pulse
(subscript 2). CPI is intrinsically different from the method
of ponderomotive injection discussed above in that both the
source and form of the ponderomotive force, responsible for

injection, differs in these two methods. In ponderomotive
injection, injection is the result of the ponderomotive force
associated with theenvelope(time-averaged intensity pro-
file) of a single pulse. In CPI, injection is the result of the
ponderomotive force associated with theslow beat waveof
two intersecting pulses.

In CPI, the pump pulse generates a plasma wave with
phase velocity near the speed of lightsvp0.cd. The forward
injection pulse travels at a fixed distance behind the pump
pulse, which determines the position(i.e., phase) of the in-
jected electrons. The injection pulses are orthogonally polar-
ized to the pump laser pulse, such that the pump pulse and
backward going injection pulse do not beat. When the injec-
tion pulses collide some distance behind the pump, they gen-
erate a slow ponderomotive beat wave of the form
a1a2 cossDkz−Dvtd (hereDk=k1−k2.2k0) with a phase ve-
locity vpb.uDvu /2k0!c, where the frequency, wavenumber,
and normalized intensity of the pulses are denoted byvi, ki,
and ai si =0,1,2d, respectively. Furthermore, it is assumed
that k1.k0, k2.−k0, andv1−v2=Dv@vp. The axial force
associated with this beat wave scales as

Fz,beat= − smec
2/gds] /] zda1a2 coss2k0z− Dvtd

, smec
2/gd2k0a1a2. s2d

During the time in which the two injection pulses overlap, a
two-stage acceleration process can occur, i.e., the slow beat
traps and heats background plasma electrons which, as a re-
sult of shifts in their momentum and phase, can be injected
into the fast wakefield for acceleration to high energies.

The ratio of the axial force of the CPI beat wave to that of
a single pulse in the ponderomotive injection scheme scales
as

Fz,beat

Fz,pond
,

2k0a1a2

ap
2/rp

, s3d

where the subscriptp refers to the single ponderomotive in-
jection pulse and the contribution of the relativistic Lorentz
factor g (which is different for the two cases) is neglected.
For comparable injection pulse intensitiessa1.a2.apd, the
ratio scales as 2k0rp@1, i.e., the axial force of the beat wave
is much greater than the ponderomotive force of a single
pulse. Consequently, CPI using beat waves is much more
effective for electron injection than relying on the pondero-
motive force of the injection pulse alone. CPI can result in
electron injection at relatively low intensitiessa1,a2,0.2d,
as well as at relatively low densitiesslp/l,100d, thus al-
lowing for high single-stage energy gains. Furthermore, the
CPI concept offers detailed control of the injection process:
The injection phase can be controlled via the position of the
forward injection pulse, the beat phase velocity viaDv, the
injection energy via the pulse amplitudes, and the injection
time (number of trapped electrons) via the backward pulse
duration.

In this article, a simplified configuration of the CPI con-
cept is proposed and analyzed that uses only two laser pulses
with parallel polarizations: An intense pump pulse for wake-
field generation and a single counterpropagating(or propa-
gating at a finite angle) injection pulse[25,26]. Injection is
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the result of the laser beat wave produced when the back-
ward injection pulse collides with the trailing portion of the
pump pulse. This configuration has the advantages of being
easier to implement in comparison to the three-pulse CPI
scheme, and of requiring less intensity in the injection pulse
compared to the ponderomotive injection scheme, since in-
jection is the result of the laser beat wave as opposed to the
ponderomotive force of a single injection pulse.

In the following, analytical models and test particle simu-
lations are used to describe the basic characteristics of the
two-pulse CPI concept, such as the threshold for injection
and the trapped bunch quality. Test particle simulations are
carried out in three dimensions in which the fields of the
laser pulses and their wakes are described analytically via
linear theory. For high laser intensitiessa2.1d, this model
becomes inaccurate. To describe the nonlinear regime in
three dimensions, as well as other nonlinear effects such as
beam loading, requires self-consistent simulations such as
can be done with particle-in-cell codes, which is beyond the
scope of this paper. Also explored are the effects of interac-
tion angle and polarization on the injection process. These
results are directly relevant to laser injection experiments
being pursued at Lawrence Berkeley National Laboratory
(LBNL ) [17] and elsewhere.

II. TWO-PULSE COLLIDING PULSE INJECTION: FIELDS

This section describes the fields used in the two-pulse CPI
simulations discussed below. The laser fields of the pump
si =0d and injectionsi =1d laser pulses are described by the
normalized vector potentialsai =eAi /mec

2. Using the
paraxial wave equation with a linear plasma response, the
transverse laser fields(linearly polarized in thex direction
and propagating along thez axis) are given by[18]

axisr,zid = âisr,zidcosci , s4d

with

âisr,zid = aisr i/rsidexps− r2/rsi
2 dsinspzi/Lid, s5d

for −Li ,zi ,0 and zero otherwise, wherez0=z−bg0ct (for-
ward comoving coordinate), z1=z+bg1ct (backward comov-
ing coordinate), bgi=hi is the linear group velocity,bfi

=hi
−1 is the linear phase velocity,hi =Î1−vp

2/vi
2−4/skir id2 is

the plasma index of refraction,ci =kisz−bfictd+ai r2/ rsi
2

+ai −tan−1ai is the phase,ki =vi / sbficd is the wavenumber,
vi is the frequency in vacuum,rsiszd=r iÎ1+aiszd is the spot
size, r i is the spot size at waist(here chosen to bez=Zfi

),
aiszd=sz−Zfi

d2/ZRi

2 , ZRi
=kihi r i

2/2 is the Rayleigh length,Li

is the pulse length, and a constant has been omitted in the
definition of ci that represents the initial position and phase
of the laser pulse. The axial component of the laser field is
specified via= ·ai =0. Keeping only the leading order contri-
butions gives

azisr,zid = −E
0

zi

dzi8 ] axisr,zi8d/] x . 2xfâisr,zid/skirsi
2 dg

3ssin ci − ai coscid. s6d

For simplicity, the notationkai
2l is introduced to denote

the time-averaged peak intensity of the laser pulse. For a
linearly polarized laser pulse of the formai cosciex, kai

2l
=ai

2/2. For a circularly polarized laser pulse of the form
aiscosciex+sin cieyd, kai

2l=ai
2. Comparisons between linear

and circular polarization will be done for equal values of the
time-averaged peak intensitykai

2l. The weakly relativistic
limit, sometimes referred to as the linear regime, corresponds
to kai

2l!1.
Included in the simulations presented in Sec. IV are the

wakefields generated by both the pump and injection laser
pulses. In the linearskai

2l!1d three-dimensionals3Dd re-
gime, wakefield generation can be examined using the cold
fluid equations. In particular for linear polarization, the nor-
malized electrostatic potential of the wakefieldfi
=eFi /mec

2 is given by[1]

s]2/] zi
2 + kp

2dfi . kp
2âi

2/4, s7d

where kp=vp/c and a time averaging has been performed
over the fast laser oscillation(laser frequency), i.e.,
kâi

2 cos2 cil= âi
2/2. The solution to Eq.(7) is

fisr,zid = kpE
0

zi

dzi8 sin kpszi − zi8dâi
2sr,zi8d/4. s8d

Specifically, Eq.(7) yields the potential generated inside the
pulses−Li ,zi ,0d

fi =
ai

2

8

r i
2

rsi
2 e−2r2/rsi

2F1 +
s4p2/kp

2Li
2dcosskpzid − coss2pzi/Lid
s1 − 4p2/kp

2Li
2d G ,

s9d

and behind the pulseszi ,−Lid

fi =
ai

2

4

r i
2

rsi
2 e−2r2/rsi

2S 4p2

kp
2Li

2Dsinfkpszi + Li/2dgsinskpLi/2d
s1 − 4p2/kp

2Li
2d

.

s10d

For the resonant caseL=lp, which corresponds to maximum
wakefield generation,

fi =
ai

2

8

r i
2

rsi
2 e−2r2/rsi

2
f1 − cosskpzid − skpzi/2dsinskpzidg s11d

and

fi =
pai

2

8

r i
2

rsi
2 e−2r2/rsi

2
sinskpzid, s12d

within and behind the pulse, respectively.
During the collision(overlap) of the two laser pulses, a

beat wave space charge potentialfb will be driven by the
slow ponderomotive beat wave, i.e.,

s]2/] ct2 + kp
2dfb . kp

2kax0ax1l, s13d

wherekax0ax1l=sâ0â1/2dcoscb, cb=Dksz−bbctd is the beat
wave phase,cbb=Dv /Dk is the beat wave phase velocity,
Dv=v0−v1, andDk=k0−k2.2k0 assumingDv2!vi

2 and a
counterpropagating geometry. As an example, analytical so-
lutions forfb can be found in the linear limit for the case of
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square pulse profiles, without diffraction and equal frequen-
ciesDv=0. In this case, during the overlap,

fb = sa0a1/4df1 − cosvpst − tondgcoscb, s14d

wheretonszd is the onset of overlap of the colliding pulses at
fixed z. Associated withfb is a density perturbationdnb
=n0kp

−2¹2fb, i.e., dnb/n0.−s2k0/kpd2fb. Strictly speaking,
the linear solution given by Eq.(14) is only valid if
udnb/n0u!1, or sk0/kpd2a0a1!1, which is easily violated
even for modest values ofa0a1 sincesk0/kpd2@1. However,
the relation¹2fb=kp

2dnb/n0 holds in the nonlinear limit and
hence the scalingufbu,skp/2k0d2udnb/n0u holds even for
large values ofdnb/n0, assuming¹2fb,4k0

2fb. In particular,
as long asudnb/n0u! s2k0/kpd2sa0a1d [e.g., s2k0/kpd2sa0a1d
,103 in the simulations presented below], then u¹fbu
! u¹a0a1/2u (i.e., ufbu!a0a1) and the effects of the space
charge potential of the beat wavefb can be neglected in
comparison to the ponderomotive potential of the beat wave
a0a1. Hence, in the following test particle simulations,fb is
neglected.

III. PHASE SPACE ANALYSIS

To gain a qualitative understanding of the basic process, a
heuristic theory of injection and trapping is presented. Spe-
cifically, an approximate expression for the injection thresh-
old can be obtained by considering the motion of an electron
in the wakefield and the beat wave individually, and by using
an island overlap criteria[19]. Recall that the beat wave
leads to formation of phase space buckets(separatrices) of
width 2p /Dk.l0/2, which are much shorter than those of
the wakefieldslpd, thus allowing for a separation of spatial
scales. In the following analytical treatment, electron motion
will be described using a Hamiltonian approach in the limit
of a broad laser pulse(r0kp@1 and neglecting diffraction
effects) and assumingvp

2/vi
2!1 (such that the group and

phase velocities are approximatelyc). Furthermore, circular
polarization will be assumed,a=oi âiscosciex+sin cieyd,
such thata2= â0

2+ â1
2+2â0â1coscb is independent of the fast

laser phaseci and only a function of the beat phasecb=c0
−c1.2k0z−Dvt.

A. Plasma wave

In the absence of the beat wavesa1=0d, the nonlinear
motion of an electron in a plasma wave with relativistic
phase velocity is described by the Lorentz equation, which in
the 1D limit can be written in the following form[7]

dc

dvpt
=

] H

] uz
=

uz

Îg'
2 scd + uz

2
− bf, s15d

duz

dvpt
= −

] H

] c
=

] f

] c
−

1

2Îg'
2 scd + uz

2

] g'
2

] c
, s16d

whereu=p/mec is the normalized electron momentum,g'

=s1+â2d1/2, c=kpsz−vftd is phase of the plasma wave,vf

=cbf=cs1−1/gf
2d1/2 is the phase velocity of the plasma

wave(approximately equal to the group velocity of the drive
laser pulse), and

Hsuz,cd = Îg'
2 scd + uz

2 − bfuz − fscd. s17d

is the Hamiltonian. Here,fscd is the laser-driven plasma
wave(wakefield) potential given by Eq.(8) and the subscript
0, denoting the pump laser pulse, has been omitted. In the
above equations, the identityu'=a has been used, which is
exact in one dimension. Note that the Hamiltonian is time
independent(a function of onlyc) and, therefore, is constant
along any orbit.

The normalized axial momentum of an electron on an
orbit (specified by the value ofHc) in the plasma wave is
found from Eq.(17) by settingH=Hc, whereHc is a con-
stant, i.e.,

uzscd = bfgf
2sHc + fd ± gf

Îgf
2sHc + fd2 − g'

2 . s18d

For example, assuming the plasma is initially cold(i.e., uz
=0 in front of the laser pulse wherea2=f=0), the back-
ground electron fluid motion in the plasma wave is defined
by the orbitHc=1.

The HamiltonianHsuz,cd exhibits fixed pointssduz/dt
=dc /dt=0d that are stable(“O” points) at uz=g'scodgfbf,
co.−1.47−0.60kpL+0.02kp

2L2 inside the drive pulse and
co=−p /2−kpL /2 modulo 2p outside. Unstable fixed points
(“X” points) lie at uz=gfbf andcx=−3p /2−kpL /2 modulo
2p. The boundary between trapped and untrapped orbits de-
fines the separatrix orbit, which is specified byHc
=Hsgfbf ,cxd and crosses theX point.

Figure 1(a) shows wakefieldf (solid line), drive laser
pulse envelopeâ2 (dashed line), and longitudinal electric
field Ez=−]zf (dotted-dashed line) for the parametersL0
=lp and ka0

2l=0.5 as obtained from Eqs.(11) and (12). The
corresponding phase space orbits are plotted in Fig. 1(b) as
obtained from Eq.(18). Shown are the cold fluid orbit, sepa-
ratrix between trapped and untrapped orbits, and the trapped
and focuseds2Dd separatrix.

Behind the drive laser pulse, the width of the separatrix is
Dc=2p, however, only half this region is accelerating(the
left half for the case of the laser pulse propagating to the
right). The width of the accelerating region of the wakefield
is Dc=p and extends from theO point to theX point. When
2D effects are taken into consideration(specifically, the fo-
cusing and defocusing regions associated with the transverse

FIG. 1. (a) Wakefieldf (solid line), drive laser pulse envelope
ka2l (dashed line), and longitudinal electric fieldEz=−]zf (dotted-
dashed line) for L0=lp andka0

2l=0.5. (b) Phase space plot showing
cold fluid orbit (solid line), trapped and focused orbit(dashed line),
and trapped separatrix(dotted-dashed line).
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electric field of the plasma wave), there exists only a region
of width Dc=p /2 that is both accelerating and focusing(ex-
tending from theO point to half the distance to theX point).
Hence, the “2D separatrix”, defining the region of trapped
orbits that are both accelerating and focusing, is given by
Hc=Hsgfbf ,−p−kpL /2 modulo 2pd;Hf. For the case of a
single injection pulse colliding with the pump pulse, trapping
will occur within the first 2D separatrix, which typically ex-
tends from theO point within the pump laser pulse to
roughly half the distance to the firstX point immediately
behind the pump pulse. This region of trapped orbits that are
in the accelerating and focusing region of the wakefield are
characterized by values of the Hamiltonian in the rangeHf
=Hsgfbf ,−p−kpL /2 modulo 2pdøHøHo=Hsgfbf ,cod.

In the limit gf
2sHc+fd2@g'

2 , Eq.(18) can be expanded to
yield uz=2gf

2sHc+fd and uz=g'
2 / f2sHc+fdg−sHc+fd /2

for the plus and minus portions of Eq.(18), respectively,
assuminggf

2 @1. These expressions are useful for evaluating
uzscd on the separatrix for values ofc in the vicinity of theO
points.

B. Ponderomotive beat wave

The motion of the electron in the beat wave alonesf
=0d is described by the beat wave Hamiltonian[3,6,7]

Hbsuz,cbd = Îg'b
2 scbd + uz

2 − bbuz − fbscbd, s19d

where g'b
2 scbd.1+â0

2+2â0â1 coscb (a1
2!a0

2 has been as-
sumed), cb=sk0−k1dsz−bbctd is the beat wave phase(note
k1,0 for the backward pulse), andcbb=Dv / sk0−k1d is the
beat wave phase velocity(Dv=v0−v1 with, typically, Dv2

!v0
2 andbb

2!1). In the following, the space charge potential
driven by the beating of the two colliding pulsesfbscbd will
be neglected sincefb is typically much smaller than the
ponderomotive beat wave potentialsâ0â1d, as discussed
above. Also, sincek0−k1.2k0 (i.e., the width of the beat

wave separatrix is approximatelyl0/2), the spatial variation
in the pulse envelopesâ0,1, which are assumed to have pulse
lengths much greater thanl0, will be neglected.

The normalized axial momentum of an electron in the
beat wave is

uzb
scbd = bbgb

2Hbc ± gb
Îgb

2Hbc
2 − g'b

2 , s20d

where Hbc is a constant specifying a given orbit. TheX
points are given bycx=0 modulo 2p and the separatrix is
specified byHbsg'gbbb,0d=g's0d /gb. The maximum and
minimum normalized axial momenta of an electron on a
trapped beat wave orbit(extrema of the separatrix) are

ub± = gbbbg'bs0d ± 2gb
Îâ0â1. s21d

C. Trapping threshold

An approximate threshold for injection into the wakefield
can be estimated by applying a phase space separatrix over-
lap condition (i.e., Chirikov island overlap criterion) [19],
assuming circular polarization. Specifically, island overlap
requires:(i) the maximum momentum of the beat wave sepa-
ratrix exceed the minimum momentum of the wakefield
separatrix and(ii ) the minimum momentum of the beat wave
separatrix be less than the plasma electron fluid momentum,
i.e.,

ub+ ù uzsH = Hfd, s22d

ub− ø uzsH = 1d. s23d

If this occurs, then there exists a phase space path that can
take an electron from the cold fluid orbit, through the beat
wave separatrix, and finally on a trapped orbit within the 2D
separatrix of the wakefield.

The trapping threshold can be solved analytically. In the
limit bb!1, Eqs.(22) and (23) imply

2â0â1 .HuzsHfdfuzsHfd/2 − bb
Î1 + â0

2 + uz
2sHfd/2g, if bb ø b*

uzsH = 1dfuzsH = 1d/2 − bb
Î1 + â0

2 + uz
2sH = 1d/2g, if bb . b* ,

s24d

where

b * =
fuz

2sHfd − uz
2sH = 1dg/Î2

fuzsHfdÎ2 + 2â0
2 + uz

2sHfd − uzsH = 1dÎ2 + 2â0
2 + uz

2sH = 1dg
. s25d

Numerical solutions to the analytical estimation of the
trapping threshold, Eqs.(22) and (23), are shown in Fig. 2.
Note that, in Eqs.(22) and(23), â0 andf are functions ofc,
i.e., the relative position within the pump laser pulse. The
minimum value ofa1 required for trapping is plotted versus
a0 in Fig. 2(a) for different lengths of the drive pulse for
bb=0.05 andc=copt=−3p /2 (i.e., near the back of the

pump pulse). Trapping is easiest(occurs for the lowest value
of a1 for a givena0) whenL=lp, which is the resonant case
for wakefield generation that yields the largest wakefield am-
plitude (e.g., f0.0.4 for L=lp and ka0

2l=0.5). Similarly,
Fig. 2(b) shows the value ofa1 required for trapping as a
function of the beat wave phase velocitybb for several val-
ues ofa0 with L0=lp andc=copt=−3p /2. For these param-
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eters, trapping is optimized for small positive values ofbp.
Figure 3 shows an example of the phase space orbits(the 2D
separatrix, the beat wave separatrix, and the fluid orbit) for a
case where the island overlap condition is well satisfied
(ka0

2l=0.5, ka1
2l=0.125,bb=0.1 andL0=lp).

In the following section, the results of test particle simu-
lations are presented for the linear polarized laser fields dis-
cussed in Sec. II. For linear polarization, an analytic theory
of the trapping threshold is complicated by the fact thata2 is
no longer independent of the fast laser phases, i.e.,a2

= â0
2 cos2 c0+ â1

2 cos2c1+ â0â1fcoscb+cossc0+c1dg. One
consequence is that the wake separatrix now contains fine
scale structure since the quantityg'0

2 =1+â0
2cos2c0 oscillates

between 1+a0
2 and unity. Similarly, the beat wave separatrix

becomes “fuzzy” because of contributions from wave com-
ponents with phases cos 2c0, cos 2c1, and cossc0+c1d. Fur-
thermore, simulations of the motion of test particles in the
beat wave from two counterpropagating, linear polarized la-
ser pulses indicates that the particle orbits can become cha-
otic [20], as discussed in Appendix B. The result is that the
trapping threshold is lower than that predicted by circular
polarization theory[7], as is apparent in the simulations dis-
cussed below.

IV. SIMULATION RESULTS

This section describes results from a 3D particle tracking
code in which the electromagnetic fields for the laser pulses
and their corresponding wakefields are specified analytically
as described in Sec. II.

In the following simulations, the plasma was modelled by
a group of test electrons initially at rest and loaded randomly
in a 3D spatial region of lengthlp and transverse sizelp
3lp, uniformly about thez axis. This spatial region was
chosen to be ahead of the pump laser pulse, and timed with
respect to the initial position of the injection pulse such that
when the two pulses collide, the test electrons fill the entire
region in which trapping may occur. After the collision, vari-
ous properties of the trapped electron bunch were monitored
as function of propagation time, such as the mean energy, the
energy spread, the root-mean-squaresrmsd bunch length, and
the trapping fraction. Here, the trapping fraction is defined as
Nb/Ns whereNb is the number of test electrons in the bunch
and Ns the total number of test electrons in the simulation.
Unless otherwise noted, the simulations were carried out for
the following parameters ranges:ka0

2l from 0.5 to 0.88,ka1
2l

from 0 to 0.32, drive pulse length fromL0=lp to 9lp/8,
injection pulse lengthL1=lp/2, drive and injection pulse
radii r i =lp, frequenciesv0=v1=50 vp and propagation
length vpt from 50 to 100. The trapping fraction can be
related to the number of trapped particles byNe=n0f trVload,
whereVload=lp

3 is the initial volume of loaded test particles.
Three configurations of the two-pulse colliding pulse in-

jector were simulated:(i) Two counterpropagating, collinear
laser pulses with equal polarizations,(ii ) two pulses colliding
at a finite interaction angle with equal polarizations, and(iii )
two counterpropagating, collinear laser pulses with orthogo-
nal polarizations.

A. Two collinear pulses

This section presents results for the basic two-pulse col-
liding injector geometry in which the pulses are collinear and

FIG. 2. (a) Injection laser pulse amplitudea1 versus pump laser
pulse amplitudea0 at threshold forcopt=−3p /2, bb.0.05, L0

=lp (solid line), L0=9lp/8 (dashed line), and L0=5lp/4 (dotted-
dashed line). (b) Injection laser pulse amplitudea1 versusbb at
threshold for copt=−3p /2, L0=lp, ka0

2l=0.45 (solid line), ka0
2l

=0.32 (dashed line), andka0
2l=0.245(dotted-dashed line).

FIG. 3. Phase spacesc ,uzd showing trapped and focused sepa-
ratrix (solid line), cold fluid orbit (dashed line), and maximum of
the beat wave separatrix(dot-dashed line) for ka0

2l=0.45, ka1
2l

=0.125,bb=0, andL0=lp.

FIG. 4. (Color) Trapped bunch parameters versusa1 (for two collinear, counterpropagating laser pulses with equal polarization,ka0
2l

=0.5, v0/vp=50, L0=9lp/8, v1/vp=50, L1=lp/2, andvpt=50). (a) Trapping fractionf tr (right vertical axis) and relative energy spread
Dg /g (left vertical axis). (b) Bunch lengthsz/lp (left vertical axis), rms radiusrb/lp (left vertical axis), and normalized transverse rms
emittancee' /lp (right vertical axis).
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counterpropagating with equal polarizations. Figure 4 shows
the trapped fractionf tr of electrons, relative energy spread
Dg /g, rms bunch lengthsz/lp, rms radiusrb/lp, and nor-
malized transverse rms emittancee' /lp versus counter-
propagating laser pulse intensity after a propagation time of
vpt=50 for the parameters:ka0

2l=0.5, v0/vp=50, L0

=9lp/8, v1/vp=50, andL1=lp/2.
Simulations using the 3D particle tracking code point out

that typical electron bunches produced by colliding laser
pulses have a “head-to-tail” energy correlation as can be seen
in Fig. 5(a), which shows the normalized longitudinal mo-
mentumuz versus longitudinal phasec for the parameters
ka0

2l=0.5, v0/vp=50, L0=9lp/8, ka1
2l=0.18,v1/vp=50, L1

=lp/2, andvpt=100. The corresponding field profiles versus
c are shown in Fig. 5(b). In Fig. 5(c), the normalized trans-
verse radial position of the particleskpr is shown versus
normalized longitudinal momentumuz for the parameters of
Fig. 5(a). The mean kinetic energy of the electron bunch is
found to beT.17.3 MeV. The most energetic electrons that
reside at the head of the bunch are on trapped orbits that are
both accelerating and focusing and, hence, remain close to
the axis. Moving back through the bunch, the electrons are
on orbits with less acceleration and less focusing. The least
energetic electrons at the back of the bunch reside on orbits
that are transversely defocusing and are hence scattered
transversely.

The bunch emittance is approximated ase'

=g0b0Îkx2lkx82l.Îkx2lkux
2l where u0=g0b0.g0 is the

axial momentum of the electron bunch. Asa1 increases, trap-

ping becomes more efficient, with corresponding increases in
f tr, Dg /g, sz/lp, e' /lp, and rb/lp. This is consistent with
the fact that the overlap in phase space area between beat
wave and wakefield separatrices increases asa1 increases, as
shown in Fig. 3. Maximum acceptance for the electron
plasma wave is obtained forka1

2l.0.125 and, consequently,
emittance reaches an asymptotic value. Figure 6 shows the
change in trapping fractionf tr as a function of the beat wave
phase velocity for the parameters of Fig. 4 and for the case
ka0

2l=0.88. The maximum off tr occurs nearbb.0.35 for
ka0

2l=0.5 andbb.0.1 for ka0
2l=0.88, which is qualitatively

similar to theoretical predictions found for circular polariza-
tion (cf. Fig. 2).

The total charge in the bunchQ can be estimated from the
trapping fractionf tr (the fraction of the initial electrons that
remain on trapped and focused orbits) by Q=en0f trlp

3. A plot
of bunch chargeQ versusa1 is shown in Fig. 7 for the
parameters:l0=0.8 mm, lp=40 mm sn0=6.9 1017 cm−3d,
L0=r0=40 mm, andka0

2l=0.88. Due to the small volume of
the trapped bunchVtr, the bunch densitynb can be very high,
wherenb=Q/Vtr. For example, the colliding laser intensities
ka0

2l=0.88 and ka1
2l=0.18 yield an electron bunch with

rb/lp.0.1, sz/lp.0.02,Q.0.35 nC, andnb/n0.20.
Beam loading is important when the trapped electron

bunch significantly alters the plasma wave that accelerates
the bunch. Beam loading is neglected in the particle tracking
code. To estimate the effects of beam loading, the wakefield
generated by a short electron bunch in a uniform plasma can
be calculated[21,22] (see Appendix for details). For a uni-
form beam profilenbsr ,zd=nbQsrb−rdQs−zdQsz+szd of ra-
dius rb and lengthsz, whereQ is a step function, the ampli-
tude of the perturbed density and the axial electric field of
the bunch-induced wakefield are given by

dn/n0 . kpsznb/n0, s26d

Ez/E0 . kpszFRsrdnb/n0, s27d

assumingkpsz!1, dn/n0!1, andEz/E0!1, where the ra-
dial profile function is FRsrd=1−kprbK1skprbdI0skprd for
r , rb. Here I0 andK1 are modified bessel functions andE0
=mec

2kp/e. For a narrow beamkp
2rb

2!1 and along the axis

FIG. 5. (a) Longitudinal electron momentumuz versus phasec=kpz. (b) Normalized laser strengtha' (solid curve), longitudinal electric
field Ez (dashed curve) and wakefield potentialf (dotted curve) versus phase(note that the trapped and focused region is −4p,c,
−7p /2). (c) Longitudinal momentum versus normalized beam radiuskpr. Laser-plasma parameters:ka0

2l=0.5, v0/vp=50, L0=9lp/8,
ka1

2l=0.18,v1/vp=50, L1=lp/2, parallel polarization, andvpt=100.

FIG. 6. Trapping fractionf tr as a function of beat wave phase
velocity bb for two collinear, counterpropagating laser pulses with
equal polarization for the parameters:sad ka0

2l=0.5, v0=50 vp, L0

=9lp/8, ka1
2l=0.125,L1=lp/2, vpt=50, andsbd same parameters

except withka0
2l=0.88 andka1

2l=0.245.
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FRsr =0d.f0.308−0.5 lnskprbdgkp
2rb

2. The bunch chargeQ,
normalized bunch-induced axial electric fieldEz/E0, and nor-
malized bunch-induced density perturbationdn/n0 are plot-
ted in Fig. 8 as a function ofa1 for ka0

2l=0.88 and the pa-
rameters of Fig. 7. In the regimeka1

2l*0.02, the density
perturbation becomes large,kpszsnb/n0d.1, and the effects
of nonlinear beam loading can no longer be neglected. Non-
linear beam loading will most likely reduce the bunch quality
(fraction trapped, average energy, etc.).

The effects of beam loading will be small provided the
beam-induced wakefield Eq.(27), is much less than that pro-
duced by the drive laser pulse Eq.(12), or

al =
kpsz

a0
2

nb

n0
FRs0d ! 1. s28d

To reduce beam loading, the pump laser amplitude and, con-
sequently, the plasma wave amplitude can be reduced, which
also reduces the trapping. For example,ka0

2l=0.5, ka1
2l

=0.18,kprb.0.4, andkpsz.0.04 give a trapped bunch den-
sity of nb/n0.3.9 and, hence,al .0.03, which satisfies Eq.
(28). The bunch chargeQ, normalized bunch-induced axial
electric fieldEz/E0, and normalized bunch-induced density
perturbationdn/n0 are plotted in Fig. 9 as a function ofa1
for ka0

2l=0.5 and the parameters of Fig. 8. For the cases
shown in Fig. 9, the effects of beam loading should be mini-
mal.

B. Effects of interaction angle and polarization

1. Noncollinear geometry

Experimentally, the colliding pulse injector geometry can
be simplified by using two pulses that intersect in a noncol-

linear geometry, since this avoids having additional optics in
the path of the accelerated electron bunches. The interaction
angle u between the two laser pulses is given by cosu
=sk0·k1d / sk0k1d, wherek0 propagates along thez axis andk1

is in thex−z plane(u=p corresponds to collinear, counter-
propagating pulses). Note for noncollinear interactions, the
component of the beat wave phase velocity along thez axis
is reduced, i.e., cbbz

=Dv / sk0− uk1ucosud, cbbx
=Dv / suk1usin ud, andcbby

=0, for uP sp /2 ,pd. In addition
to the axial(z-axis) component of the beat wave ponderomo-
tive force, proportional tosk0− uk1ucosuda0a1, there is now a
transverse component, proportional tosuk1usin uda0a1, that
pushes electrons off axis. Figure 10 shows the trapping frac-
tion versus interaction angle atvpt=50 for ka0

2l=0.5,
v0/vp=50, L0=9lp/8, ka1

2l=0.125, v1/vp=50, and L1

=lp/2. As the angleu decreases fromu=p to u=p /2 (trans-
verse injection), the trapping fraction decreases to zero. Fur-
thermore, for theu=p /2 case, when the delay between the
injection and the pump pulses was increased, such that the
injection pulse intersects the wakefield and does not overlap
with the pump pulse(as in Umstadteret al., [2] and Hemker
et al., [4]) no trapping was observed.

2. Orthogonal polarization

All of the above examples have assumed parallel polar-
ization, i.e.,a0·a1=a0a1, and injection is the result of the
ponderomotive force associated with the beat waveFbeat=
−smec

2/gd= sa0·a1d. For orthogonal polarizations,Fbeat=0

FIG. 7. Bunch chargeQfnCg versusa1 with l0=0.8 mm, lp

=40 mm sn0=6.9 1017 cm−3d, L0=r0=40 mm, andka0
2l=0.88.

FIG. 8. (Color) Bunch chargeQ in pC (right vertical axis, stars),
normalized axial electric fieldEz/E0 (left vertical axis, points), and
normalized density perturbationdn/n0 (left vertical axis, squares)
generated by the electron bunch alone(here the laser contribution is
not included) versusa1 with l0=0.8 mm, lp=L0=r0=40 mm, and
ka0

2l=0.88.

FIG. 9. (Color) Bunch chargeQ in pC (right vertical axis, stars),
normalized axial electric fieldsEz/E0d (left vertical axis, points),
and normalized density perturbationsdn/n0d (left vertical axis,
squares) generated by the electron bunch alone versusa1 with l0

=0.8 mm, lp=40 mm sn0=6.9 1017 cm−3d, L0=r0=40 mm, and
ka0

2l=0.5. Note that the parameter regime is well below the beam
loading limit.

FIG. 10. Trapping fractionf tr as a function of angle for two laser
beams with equal polarization atvpt=50 with ka0

2l=0.5, v0/vp

=50, L0=9lp/8, ka0
2l=0.125,v1/vp=50, andL1=lp/2.
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(since a0·a1=0), and the beat wave mechanism can no
longer be responsible for electron injection. For orthogonal
polarizations, the time-averaged force on the electrons is
given by Fpond=mec

2= sf−gd.mec
2=f−smec

2/gds=â0
2/2

+ = â1
2/2). Electron injection can still be the result of the

ponderomotive force associated with envelope of the injec-
tion laser pulse,Fenv.−smec

2/gd= â1
2/2, but this is rela-

tively small compared to that of the beat wave as discussed
in the introduction. As an example, a case was simulated
identical to that shown in Fig. 4, except with orthogonal
polarization. For the orthogonal polarization case, there are
no trapped electrons, compared tof tr.6.5310−4 for the par-
allel polarization case. For orthogonal polarization, trapping
can occur, but for higher laser intensities in which nonlinear
effects (not included in the test particle simulation model)
become important. The details of trapping using orthogonal
polarization are presently being explored using particle-in-
cell simulations[23].

V. CONCLUSION

An alternative configuration of the colliding pulse injector
that uses a single pump pulse and a single counterpropagat-
ing injection pulse has been analyzed and simulated. This
single injection pulse configuration has the advantages of
simplicity and ease of experimental implementation. Injec-
tion is the result of the slow ponderomotive beat wave gen-
erated when the backward injection pulse collides with the
rear portion of the forward pump pulse. Injection requires
high pump laser intensitysa0.1d and modest injection pulse
intensity sa1.0.2d. Test particle simulations indicate that
significant amounts of charge can be trapped and accelerated
sQ,10 pCd, up to the limits imposed by beam loading. In
addition, the accelerated bunches are ultrashorts,1 fsd with
good beam quality(Dg /g, few percent at a mean energy of
,10 MeV and a normalized rms emittance on the order
0.4 mm mrad). Reduction of the energy spread can be
achieved by including a density taper in the trapping region.
The density taper will rephase electrons and consequently
reduce the energy spread and increase the bunch charge. Also
examined was the effect of interaction angle. For an interac-
tion angle of 150°(where 180° is collinear, counterpropagat-
ing), the trapping fraction is only reduced by roughly ten
percent, thus allowing efficient noncollinear interaction ge-
ometries for further ease of experimental implementation.
When the interaction angle was decreased to 90°(transverse
injection geometry), no trapping was observed for the param-
eters of the simulation. Similarly, no trapping was observed
for the parameters of the simulations for the case of orthogo-
nal polarization. This confirms that the mechanism respon-
sible for injection is the result of the slow ponderomotive
force associated with the beating of the laser pulses, and not
due to ponderomotive force associated with the envelope of
the injection pulse.

One limitation of the approach used in this research is that
it relies on test particle simulations in which the fields(lasers
and wakes) were specified analytically. This model becomes
inaccurate asa0 and a1 approach and exceed unity, since
analytical expressions for nonlinear wakefields in 3D are

lacking in the literature. Self-consistent simulations, such as
using particle-in-cell codes, are required in this nonlinear
regime, and this line of research is currently being pursued.
Likewise, experiments on colliding pulse injection are being
pursued at LBNL, as well as other laboratories world wide.

Note added in proof. We have recently become aware of
the work by Kotakiet al. [24] that examines injection by the
standing wave produced by two counterpropagating laser
pulses using a 1D particle-in-cell simulation.
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APPENDIX A: BEAM LOADING CONSIDERATIONS

Beam loading, whereby the trapped electron bunch sig-
nificantly alters the accelerating wakefield, can degrade the
quality of the electron bunch. To estimate the effects of beam
loading, the wakefield generated by the trapped electron
bunch propagating in an initially uniform plasma can be cal-
culated[21,22] and compared to the wakefield driven by the
pump laser pulse. Using linear perturbation theory of the
cold fluid-Maxwell equations(i.e., to first order indn/n0,
Ez/E0, a2, etc.), the normalized density perturbationdn/n0
!1 and normalized axial electric fieldEz/E0!1 driven in an
initially uniform plasma by either a short electron bunch
(nb/n0 drive term) or a short laser pulse(a2 drive term) are
given by

S ]2

] z2 + kp
2Ddn

n0
= S¹'

2 +
]2

] z2D ka2l
2

− kp
2nb

n0
, sA1d

s¹'
2 − kp

2d
Ez

E0
= kp

]

] z
S ka2l

2
−

dn

n0
D , sA2d

wherenb is the density of the drive electron bunch,n0 is the
ambient plasma density,E0=kpmec

2/e the cold nonrelativis-
tic fluid wave breaking limit,vb.c was assumed(vb is the
bunch velocity), and the angular brackets denote an average
over the fast laser frequency(with v2@vp

2). In deriving the
above equations, the quasi-static approximation was as-
sumed, i.e, the drive beams and the resulting wakefields are
functions of only the variablesz=z−ct and r'.

Consider the wakefield generated by the electron bunch in
the absence of the laser pulse. Solving Eq.(A2) with a2=0
and a cylindrically symmetric drivenb yields

dn

n0
= kpE

0

z

dz8sinfkpsz − z8dg
nbsz8d

n0
, sA3d
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Ez

E0
= kp

3Èz

dz8E
0

`

dr8r8 cosfkpsz

− z8dgI0skpr,dK0skpr.d
nbsr8,z8d

n0
, sA4d

where I0 and K0 are the zeroth-order modified bessel func-
tions of the second kind, andr, sr.d denote the smaller
(larger) of r and r8 respectively. For a uniform beam profile
nbsr ,zd=nbQsrb−rdQs−zdQsz+szd of radius rb and length
sz, whereQ is a step function, the amplitudes of the per-
turbed density and the axial wakefield are

dn

n0
. kpsz

nb

n0
, sA5d

Ez

E0
. kpsz

nb

n0
FRsrd, sA6d

assumingsz!1, where the radial profile function is

FRsrd = H1 − kprbK1skprbdI0skprd, for r , rb

kprbI1skprbdK0skprd, for r . rb
sA7d

with I1 andK1 the first-order modified bessel functions.
Consider the wakefield generated by the laser pulse in the

absence of the electron bunch. Solving Eq.(A2) with nb=0
yields

dn

n0
= kpE

0

z

dz8 sinfkpsz − z8dgS¹'
2 +

]2

] z82D ka2sz8dl
2

,

sA8d

Ez

E0
= kpE

0

z

dz8 sinfkpsz − z8dg
]

] z8

ka2sz8dl
2

. sA9d

Assuming a laser pulse with a half-sine axial profile and a
Gaussian radial profile, similar to Eq.(5), with a pulse length
L=lp (the resonant case yielding maximum plasma wave
amplitude) gives

dn

n0
=

p

8
a0

2F1 +
8

kp
2rs

2S1 −
2r2

rs
2 DGexpS−

2r2

rs
2 D , sA10d

Ez

E0
=

p

8
a0

2expS−
2r2

rs
2 D . sA11d

Beam loading can be neglected provided that the wake-
field generated by the trapped electron bunch is small com-
pared to that generated by the drive laser pulse. Conse-
quently, from Eqs.(A6) and (A11), beam loading can be
neglected provided

al =
kpsz

a0
2

nb

n0
FRs0d ! 1. sA12d

For the parameters under consideration in this paper[e.g.,
ka0

2l=0.5, ka0
2l=0.18, kprb.0.4, kpsz.0.04, and nb/n0

.3.9, which yieldsal .0.03], Eq. (A12) is satisfied.

APPENDIX B: EFFECT OF POLARIZATION ON
ELECTRON MOTION IN BEAT WAVES

Test particle simulations of the colliding pulse injection
process indicate that trapping occurs more readily for the
case of linear polarization compared to that of circular polar-
ization. One reason for this difference is the form of the
normalized laser intensity(i.e., the ponderomotive potential)
for the two polarizations. Consider the case of two counter-
propagating and overlapping laser pulses with uniform pro-
files (i.e., pulse rise time effects are neglected). For circular
polarization a=oi âiscosciex+sin cieyd, such that a2= â0

2

+ â1
2+2â0â1coscb is independent of the fast laser phaseci

and only a function of the beat phasecb=c0−c1.2k0z
−Dvt. Becausea2=a2scbd, the Hamiltonian for the motion
of an electron in the combined laser fields is time indepen-
dent,Hbsuz,cbd=Î1+a2scbd+uz

2−bbuz, i.e., the Hamiltonian
describes the motion of an electron in a single beat wave
characterized by a single phase velocity. In this case, the
electron motion is regular as describe in Sec. III B.

For linear polarizationa=oi âi cosciex, such thata2

= â0
2 cos2 c0+ â1

2 cos2 c1+ â0â1fcoscb+cossc0+c1dg. In this
case the ponderomotive potential is, in effect, composed of
four waves. In addition to the slow beat waveâ0â1 coscb,
there is a forward going waveâ0

2 cos2 c0, a backward going
wave â1

2 cos2 c1, and a wave at the sum of the laser phases
â0â1 cossc0+c1d. The end result is that the Hamiltonian is
no longer time independent and an analytic solution for the
motion of a test electron in the combined laser fields is in-
tractable.

To study the effect of polarization, the motion of test par-
ticles is studied numerically for two identical, counterpropa-
gating laser pulses, neglecting the effects of the space charge
potentialsf=0d. The first set of simulations, shown in Fig.
11, is for two overlapping pulses with uniform profiles, i.e.,
the effects of the laser envelope profiles are neglected. In this
case, a group of electrons is initially loaded at rest over one-
half of a beat period(spaced uniformly) within the laser
fields. Here, the time-averaged intensities of the circularly
and linearly polarized laser pulses are chosen to be equal,
ka0

2l=ka1
2l=0.5.

Results for circular polarization are shown in Fig. 11(a),
which indicates that the orbits are regular and well behaved,
as is described by the Hamiltonian theory in Sec. III B. In
this case, the maximum electron momentum in the beat wave
is less than or equal to that of the maximum of the beat wave
separatrix given by Eq.(20).

FIG. 11. Phase space orbitssuz,cbd of test electrons in two
counterpropagating laser pulses with(a) circular polarization and
(b) linear polarization. Here both lasers are infinite plane waves
with ka0

2l=ka1
2l=0.5, i.e., equal time-averaged intensities.
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The corresponding case for linear polarization is shown in
Fig. 11(b). For linear polarization, the orbits are irregular
and, for sufficiently intense laser pulses, can become chaotic.
This is similar to the case of “stochastic heating” in counter-
propagating laser fields as studied by Shenget al. [20] In this
case, the electrons are not confined to a single beat wave
period and the maximum momentum can exceed that of the
maximum of the beat wave separatrix as predicted by a
Hamiltonian theory for circularly polarized pulses.

To study the effect of the finite rise times of the laser
pulses, a second set of simulations was performed. In these
simulations, the electrons were loaded at rest in the region
between the two counterpropagating laser pulses before they
overlapped(spaced uniformly over a width equal to half of a
beat period). The initial conditions were such that the elec-
trons were first struck by the left-going pulse for a short time
(less than a beat period) before being struck by the right-
going pulse(at which time the electrons experience the beat
wave). Here the laser pulses have a finite length ofL0=L1
=50l0 and a radius ofr0=r1=50l0 with equal peak time-
averaged intensities ofka0

2l=ka1
2l=0.5.

The case of circular polarization is shown in Fig. 12(a).
Initially, the electrons move to the left due the axial pondero-
motive force of the left-going pulse. As the two pulses col-
lide, the electrons begin to execute orbits within the beat
wave. As the laser pulses continue to overlap, the size of the
ponderomotive beat wave increases, since the local laser in-
tensity of the two pulses is increasing. This leads to larger
beat wave orbits. The end result is that the electrons are
confined to a single period of the beat wave and, for these
initial conditions, the maximum momentum is significantly
less than that corresponding to the top of the beat wave sepa-
ratrix given by Eq.(20).

The case of linear polarization is shown in Fig. 12(b).
Again, the electron orbits are highly irregular and chaotic.
The electrons are not confined to a single beat wave period

and the maximum momentum exceeds that predicted by a
simple Hamiltonian theory of the separatrix for circularly
polarized pulses.

The above simulations shed insight as to why injection
and trapping occurs more readily for linear polarization than
it does for circular polarization. For circular polarization,
electrons initially loaded at rest within a single beat wave
period remain confined to a single period of the beat wave
with momenta less than that of the beat wave separatrix. For
linear polarization, the electron trajectories become chaotic,
no longer confined to a single beat wave period, and obtain
momenta exceeding that predicted by the separatrix corre-
sponding to the circular polarization case. The fact that linear
polarization results in large phase excursions as well as large
momentum gains, in comparison to circular polarization, im-
plies that the use of linear polarization can be more effective
than circular polarization in the beat wave injection and trap-
ping of electrons.
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