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The Cherenkov wakes excited by intense laser drivers in a perpendicularly magnetized plasma are a potential
source of high-power terahertz radiation. We present a two-dimensional(2D) theory of the emission of mag-
netized wakes excited by a short laser pulse. The 2D model reveals the important role of the transverse size of
the laser pulse missed in previous simple one-dimensional estimations of the radiation. We derived expressions
for the radiated fields and for the angular/frequency distribution of the radiated energy. Beats in the radiation
pattern behind the moving pulse are predicted and explained. For the interpretation of existing experimental
results, the time dependence of the energy flux parallel and perpendicular to the laser path is examined.
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I. INTRODUCTION

A charged particle traveling in a uniform medium with a
constant speed greater than the phase velocity of light in the
medium emits Cherenkov radiation[1]. The phenomenon is
extensively used in experiments for counting and identifying
relativistic particles[2]. First developed by Frank and Tamm
[3] as early as 1937, the theory of Cherenkov radiation still
attracts a lot of attention. In particular, Interesting emission
features in a dispersive medium with a Lorentzian resonance
were reported in recent papers[4–6].

In 1962, Askar’yan[7] predicted that in nonlinear disper-
sive media Cherenkov radiation can be produced by electro-
magnetic pulses, rather than particles. In this case, an elec-
tromagnetic pulse produces a moving pulse of nonlinear
polarization which in turn can emit Cherenkov radiation.
Similarly to classical Cherenkov radiation, the group veloc-
ity of the driving pulse should be greater than the phase
velocity of the emitted radiation. This threshold condition
can be satisfied in dispersive media when the driving pulse
and emitted radiation belong to different frequency ranges.
Cherenkov emission of terahertz(THz) radiation from sub-
picosecond optical pulses in electro-optic media has been
observed experimentally[5,6,8].

Recently, a mechanism for converting large-amplitude
plasma wakes(of the type used in plasma accelerators) into
high-power THz radiation has been proposed[9]. In this
scheme, a large-amplitude plasma wakefield is generated by
an intense laser pulse(or a laser beatwave or particle bunch).
By applying a magnetic field perpendicularly to the laser
path, the wake becomes partially electromagnetic and devel-
ops a nonzero group velocity. This enables the wake to
propagate through the plasma and to couple out into vacuum
as radiation at the plasma boundary. The phenomenon may
be interpreted in terms of Cherenkov radiation. Indeed, the
magnetization of the plasma gives rise to the appearance of a
frequency interval between the plasmasvpd and upper hybrid
svhd frequencies where the phase velocity of the extraordi-
nary sXOd mode is less than the speed of light. Thus, the
velocity threshold condition can be fulfilled for a laser pulse

propagating in the plasma at nearly the speed of light, and
the XO mode from the frequency intervalvp,v,vh can be
emitted. Simple estimates made in Refs.[9–11] on the basis
of the one-dimensional(1D) theory of unmagnetized laser
wakefields showed that megawatt sources of THz radiation
could be built with present facilities. The first experimental
attempts to observe THz radiation using terawatt lasers and
kilogauss magnetic fields resulted in detection of only weak
radiation with several tens of milliwatts power[12,13].
Particle-in-cell simulations of the phenomenon were per-
formed to verify the scaling laws of the radiation[10]. How-
ever, only wide(compared to the plasma wavelengthc/vp)
laser beams were considered. Meanwhile, generating large-
amplitude plasma wakes requires tightly focused laser beams
with focal spot radius less or even much less thanc/vp. For
example, in experiments[12,13], the laser waist was of the
order of,0.1c/vp.

In this paper, we develop an analytic two-dimensional
(2D) theory of Cherenkov emission from intense laser pulses
in a magnetized plasma. The 2D model allows us to investi-
gate the role of the laser beam width in the radiation process,
including the most practically interesting case when the
pulse width is comparable to or less thanc/vp. Besides the
practical significance, it is of general interest to study fea-
tures of Cherenkov radiation produced by short laser pulses
in a magnetized plasma.

The paper is organized as follows. In Sec. II, we lay out
the theoretical model and basic equations. The solution of the
equations using a Laplace-transform technique is given in
Sec. III. We discuss the radiated fields in Sec. IV and radi-
ated energy in Sec. V. The final Sec. VI contains concluding
remarks.

II. MODEL AND BASIC EQUATIONS

We consider a short laser driver moving in a homoge-
neous plasma of densityN at nearly the speed of lightsV0

<cd in the +z direction. The transverse laser profile depends
only on coordinatex and is independent ofy. An external
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magnetic fieldB0 is applied in the +y direction. This field is
uniform in space and constant in time.

To find Cherenkov radiation generated by the laser pulse,
we start with Maxwell’s equations
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and the equations for electron motion along thex andz axes
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with F the average ponderomotive potential defined by the
envelope of the laser pulse[14]. In deriving Eqs.(1) and(2),
we assumed that the potentialF and, therefore, the fields and
electron velocities, depend only onx andj with j= t−z/V0.
This implies that pump depletion and laser instabilities are
neglected.

To specify final formulas, we will use the Gaussian shape
for the pulse envelope in the transverse direction:

Fsx,jd = F0sjdexps− x2/,2d, s3d

where, is the laser spot half-width.

III. LAPLACE TRANSFORMS

To solve Eqs.(1) and(2), we will use a Laplace-transform
technique. The initial conditions for the fields and electron
velocities atj=0 are taken to be zero since there is no radia-
tion ahead the laser pulse. Applying Laplace transform with
respect toj to Eqs.(1) and (2) and eliminating the Laplace
transforms of the electric field and electron velocities, we
arrive at the following equation for the magnetic field trans-

form B̃ysx,sd (s is the Laplace variable):

]2B̃y

] x2 − k2B̃y = Fsx,sd, s4d

with function Fsx,sd acting as a source, given by

Fsx,sd = −
1

c
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2vc
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c2b2F̃ +
]2F̃

] x2D , s5d

whereF̃sx,sd=F̃0ssdexps−x2/,2d is the Laplace transform of
the ponderomotive potential
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c2S1 +
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2 −

1
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whereb=V0/c, vh=Îvp
2+vc

2 is the upper hybrid frequency,
vp=Î4pe2N/m is the plasma frequency, andvc=eB0/mc is
the electron cyclotron frequency.

The solution of Eq.(4) can be written as

B̃ysx,sd = −
1

2k
E
−`

+`

Fsx8de−kux−x8udx8, s7d

where the real part of the complex double-valued function
kssd should be taken positive to ensure evanescence of the
fields atx→ ±`.

The Laplace transforms ofẼx andẼz are related toB̃y by
means of Eqs.(1) and (2) (in the s domain) and have the
following form:
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Further, we will use the approximationb=1. In this ap-
proximation, Eq.(6) for kssd can be simplified as

k =
vp

c
Îs2 + vp

2

s2 + vh
2 . s9d

IV. THE RADIATED FIELDS

Expressions(7) and (8) give the solution of the problem
in the s domain. To obtain the solution in thej domain, we
have to take the inverse Laplace transform. In taking the

inverse transform ofB̃y for j.0, we choose the integration
contour(see Fig. 1) in the Riemann sheet in the complexs
plane, where the real part ofkssd is positive. The branch cuts
due to double-valued functionkssd run along the imaginary
axis (wheres= iv) between the branch points ±ivp and ±ivh.
At the branch cuts, functionksivd is purely imaginary:
ksivd= ± ig, where

g =
vp

c
Îv2 − vp

2

vh
2 − v2 , s10d

sign “+” is taken at the right-hand sidefRessd=0+g of the
upper branch cutsv.0d and left-hand sidefRessd=0−g of
the lower branch cutsv,0d, and sign “−” is assigned to the
opposite sides of the branch cuts.
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Combining the integrals along all four sides of the branch
cuts, we arrive at the following expression for the magnetic
field:

Bysx,jd = −
,vp

2vc

2Îpc3E
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vh

dv He−s1/4dg2,2

g

v2 + c2g2

vh
2 − v2 uF̃0u

3 fsinsvj − gx+ wd + sinsvj + gx+ wdgJ ,

s11d

wherewsvd is the phase ofF̃0sivd: F̃0sivd= uF̃0uexpsiwd. For
example, for a square pulse with durationt, we have

uF̃0u =
etEL

2

4mvL
2

sinsvt/2d
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, w = −
vt

2
, s12d

whereEL andvL are the laser field amplitude and frequency,
respectively.

Equation(11) gives the expansion of the magnetic field
Bysx,jd into plane waves that propagate from the laser path
to x→ ±` (outgoing waves) and towards the laser path(in-
coming waves). The angleu, at which a partial plane wave
propagates with respect to the +z direction, is related to the
frequency of the wave by formula tanu=cg/v. At large j,
only the outgoing waves survive; the incoming waves inter-
fere destructively. As a result, at largej the far-field pattern
of the outgoing radiation will be formed.

The spatial distribution of the magnetic fieldBy calculated
on the basis of Eq.(11) is shown in Fig. 2. Three features are
apparent in Fig. 2. First, the radiation pattern is conical(or
wedge-shaped, in the present 2D case) that is typical for
Cherenkov radiation. Second, there are beats, or multiple
tails, in the field distribution. The beats disappear with in-
crease of the transverse size of the laser pulse. Third, near
the laser path,uByu is larger for the more focused pulse. To
get insight into the radiation pattern, we made an asymptotic
evaluation of the integral(11) for largej:
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In Eq. (13), gi =gsvid, gi9 denotes the second derivative with
respect tov taken atvi, and the sum is taken over the fre-
quenciesvi for which

d

dv
svj − gx+ wd = 0, s14d

or

c
dg

dv
=

csj − t/2d
x

= cot a, s15d

wherea is a half-apex angle of a cone with its apex on the
moving laser pulse. Equation(15) has two rootsv1,2 for a
fixed cone with anglea,a0 (Fig. 3); the maximum anglea0
corresponds in Fig. 3 to the horizontal tangent to the curve
cg8svd sg8=dg/dvd at its minimum point. A superposition of
two harmonic oscillations with frequenciesv1 andv2 gives
the beats in the field distribution along the cone. This ex-
plains the multitail radiation pattern visible in Fig. 2. Indeed,
the beats may be interpreted as a result of the intersection of
the cone with a sequence of the field tails. The beat fre-
quency should increase with decreasinga as the two roots
v1,2 move farther apart(Fig. 3). This conclusion is in accord
with Fig. 2. Interestingly, the radiation pattern is similar to
that obtained in Ref.[5] for “subluminal” regime of Cheren-

FIG. 1. Integration contour in the complexs plane.

FIG. 2. (Color online). Distribution of the magnetic fieldBy

behind the laser driver[normalized touF̃0svpdu,vp
2vc/ sÎpc2d] for

(a) vp, /c=0.3 and(b) vp, /c=2.0. For both cases,vc/vp=0.3.
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kov radiation in an isotropic resonant medium.
For the cone that subtends the largest anglea0, Eq. (15)

has only one rootv0 (Fig. 3) and, therefore, there are no
beats at this overall cone(see Fig. 2). From the condition
g9svd=0, we can find the frequencyv0 of the radiation at the
overall conesvc

2!vp
2d:

v0 =
vp

Î3
Î1 + 2Î1 +

3

4
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2
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1

8

vc
2
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Substitutingv0 into Eq. (15) gives anglea0:

tan a0 <
3Î3

16

vc
2

vp
2 . s17d

Substitutingv0 into Eq. (10), we find that wave fronts at the
overall cone are tilted at nearly 30° with respect to the −z
direction.

The disappearence of the multitail structure for the laser
pulses withvp, /c.1 [Fig. 2(b)] may be explained by the
influence of an exponential factor in Eq.(13). For large pulse
width, this factor determines significantly different ampli-
tudes of the oscillations in sum(13) and, as a result, the beats
are weakened.

To explain the effect of the field enhancement near thez
axis with narrowing of the laser, it is necessary to study the
spectral distribution of the radiated energy(see Sec. V).

V. THE RADIATED ENERGY

As in the classical theory of Cherenkov radiation[3], we
calculate the total radiated energy per unit length of the laser
path by integrating over time the energy flux per unit area far
from the laser path. To find thex component of the Poynting
vectorSx, we use Eq.(11) and inverse Laplace transform of

Eq. (8b) for Ẽz. On integratingSx, we obtain the total radi-
ated energy

W=E
vp
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wvsvddv, s18d

wherewvsvd is the spectral density of the radiation
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uF̃0u2.
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The spectral density of the radiated energy is shown in Fig.
4(a) for two values of the laser width. The energy flux of the
laser pulse is taken the same for both curves in Fig. 4(a), i.e.,
EL

2,=const, so these curves correspond to different degrees
of laser focusing. The singularity atv→vp is weak
fwvsvd~ sv−vpd−1/2g and therefore, it is integrable; its con-
tribution into integral(18) is practically negligible. For tight
focusing svp, /c!1d, a sharp peak inwvsvd near vh is
formed.

The angular distribution of the radiated energywusud can
be found from Eq.(19) by using relation tanu=cg/v. For a
typical situation, whenvc

2!vp
2, we obtain

wusud <
,2vp

5

16pc3

expF−
1

2
Svp,

c
D2

tan2 uG
cos4 u

uF̃0svpdu2.

s20d

This distribution is shown in Fig. 4(b) for vp, /c=1.0 and
0.5. Unlike wvsvd, the functionwusud has no peculiarity at
u→0 (when v→vp). For vp, /c=0.5, there is a peak near
u<p /2. When the laser width decreases, the peak grows in
magnitude and moves closer top /2. Correspondingly, the
peak in Fig. 4(a) shifts tovh. The plane waves with frequen-
cies close tovh have a large transverse wave numbergsvd,
according to Eq.(10), and small group velocitysvc

2!vp
2d

FIG. 3. Graphical solution of Eq.(15). There are two rootsv1,2

for a,a0; these roots merge together atv0 for a=a0. The depen-
dencecg8svd is plotted forvc/vp=0.3.

FIG. 4. (a) Spectral density of the radiated energywvsvd [nor-

malized to uF̃0svpdu2,2vp
4/ s16pc3d] for vc/vp=0.3 and vp, /c

=1.0,0.5 (values shown near corresponding curves). (b) Corre-
sponding angular distribution wusud [normalized to

uF̃0svpdu2,2vp
5/ s16pc3d].
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vg < c
svh

2 − v2d3/2

vp
2vc

. s21d

Equation(21) follows from the dispersion equation for the
XO mode propagating perpendicularly to the magnetic field
[15]. Thus, narrow(with vp, /c,1) laser beams excite pre-
dominantly the slow waves propagating almost perpendicu-
larly to the laser path. The slowness of the emitted waves
leads to the slowness of energy spreading in the radial direc-
tion. This explains the enhancement of the field magnitude
near the laser path with decreasing parametervp, /c (see Fig.
2).

Figure 5(a), which also supports the conclusion above,
shows the temporal dependence of the energyWjsjd
=e0

j Sxsjddj passed to the momentj through the unit area
placed atx=15c/vp for different values ofvp, /c. The steps
of the ladder structure visible in Fig. 5(a) [and also in Fig.
5(b) showingWjsjd for different vc/vp] correspond to the
arrival of the maximums(tails) of the radiation pattern. A
fine structure that oscillates at frequency of the radiated field
is present in the dependenceWjsjd; it is not visible in Fig. 5
because of its small amplitude. Interestingly, unlike Cheren-
kov radiation in an isotropic medium[4], in the present case
of magnetized plasma the radial energy flux as a function of
j oscillates with change of sign(Fig. 6). The oscillations are
due to the presence in XO mode of a component of the
Poynting vector perpendicular to the direction of the wave
propagation[16]. The waves that propagate obliquely with
respect to thex axis provide the radial energy flux that os-
cillates and assumes both positive and negative values. The
average radial energy flux is still positive.

Although the energyWjsjd for any j and the total(at j
→`) energyW increase with decrease of the transverse size
of the laser pulse[Fig. 5(a)], the rate of the energy growth at
the first step of the dependenceWjsjd remains practically
independent ofvp, /c for vp, /c,1. This fact may be cru-
cial for experimental observation of the radiation, because
collisional losses can attenuate the radiation before a signifi-
cant number of maximums(tails) of the radiation pattern
reaches the receiver.

It may seem paradoxical thatvc does not enter Eq.(20)
and, therefore, the total radiated energy is independent of the
imposed magnetic fieldB0. Indeed, the possibility to produce
propagating radiation is due to the presence of the magnetic
field. To resolve the paradox let us note that the total radiated
energyW was obtained by integration of the Poynting vector
Sx over infinite time interval. The smallervc the more time it
takes for the fields to leave the region near the laser path
[Fig. 5(b)].

In experiments[12,13], the radiation is collected by a
horn antenna oriented toward the laser beam. Therefore, it is
interesting to examine the energy flux of the radiation
through the planez=const. To find thez component of the
Poynting vectorSz, we use Eq.(11) and the inverse Laplace

transform of Eq.(8a) for Ẽx. After integratingSz over the
infinite interval −̀ ,x, +` and averaging over the period
of the field, we obtain the average power in the forward
direction as

Pz =E
vp

vh

pzsvddv, s22d

where

pzsvd =
,2vp

2v

8pc3g

v2vc
2 − sv2 − vp

2d2

vh
2 − v2 e−s1/2dg2,2

uF̃0u2. s23d

For vc
2!vp

2, the approximationv2vc
2−sv2−vp

2d2<vp
2vc

2

can be used in Eq.(23) so that Eq.(22) may be reduced to a
form convenient for estimations, as

FIG. 5. The energyWj [normalized touF̃0svpdu2,2vp
5/ s16pc3d]

passed to the momentj through the unit area placed atx=15c/vp

as a function ofj for: (a) vc/vp=0.3 andvp, /c=2.0,1.0,0.5,0.3
(values shown near corresponding curves); (b) vp, /c=0.5 and
vc/vp=0.1,0.15,0.2,0.3 (values shown near corresponding
curves).

FIG. 6. The radial energy flux Sx [normalized to

uF̃0svpdu2,2vp
6/ s16pc3d] at x=15c/vp as a function of j for

vc/vp=0.5 andvp, /c=0.5.
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Pz <
,2vp

3vc
2

16pc2 uF̃0svpdu2I , s24d

with dimensionless factor

I =E
1

xh

dx
Îxh − xÎx − 1

expF−
1

2
Svp,

c
D2 x − 1

xh − x
G , s25d

where xh=vh
2/vp

2=1+vc
2/vp

2. A numerical investigation of
integral (25) shows that the factorI varies very little in a
wide range of the parametersvp, /c andvc/vp: I <2 to 4 for
0.1øvp, /cø3 and 0.01øvc/vpø0.3. Therefore, two es-
sential conclusions can be made from Eq.(24). First, the
radiating power is practically independent of laser focusing
in the interesting range of the parametervp, /c. Indeed, it

follows from Eq. (12) that uF̃0svpd u~EL
2 and thus, the vari-

ables , and EL enter Eq.(24) only in combinationEL
2,,

which is constant for laser pulses with the same energy. Sec-
ond, the radiating power depends rather strongly on the
plasma frequency:Pz~vp

3.
Now let us esimate the radiating powerPz given by Eq.

(24) for the conditions of the experiments[12,13]. Taking
laser intensity 1017 W/cm2, wavelength 800 nm,t=100 fs,
,=10 mm, vp/2p=2 THz, andvc/vp=0.01, we obtain from
Eq. (24)

Pz < 350 W. s26d

The radiating power detected in experiments[12,13] was es-
timated to be only about several tens of milliwatts. There
seems to be a large discrepancy between the experimental
result and estimation(26). To explain the discrepancy, let us
note that the detected frequency of the radiation was ten
times lower than the expected one; i.e.,vp/10 rather thanvp
[12]. The latter fact indicates that the detected radiation ar-
rived not from the plasma volume, but from the smooth tran-
sition layer that existed between the plasma and vacuum. In
this layer, the plasma density drops fromvp to 0. By substi-
tuting the experimentally measured frequencyvp/10 instead
of vp into Eq. (24), we obtain

Pz < 500 mW, s27d

which fits much better the experimental data. This agreement
shows that Eq.(24) can be used for quantitative estimates of
the power yield from Cherenkov wakes.

VI. CONCLUSION

To conclude, we have developed a 2D theory of the emis-
sion of magnetized wakes excited by a short laser pulse. This
theory is directly related to the experimental situation when
cylindrical lenses are used to focus the laser beams and the
beam is extended in one transverse direction and tightly fo-
cused in the other direction. For three-dimensional focusing,
the 2D model can give a qualitative physical insight into the
role of the transverse size of the laser pulse in the wake
emission that was completely missed in previous simple 1D
estimations of the Cherenkov wakes[9–11].

In particular, we have shown that Cherenkov radiation
excited by a focused laser pulse with transverse size, such
that vp, /cø1 forms a multitail conical structure with the
apex at the moving laser pulse. The energy radiated in the
radial direction has a steplike dependence on time that cor-
responds to the arrival of the radiation tails at the unit area
far from the laser path. The total radiated energy increases
with decreasing the parametervp, /c. However, this raise in
the radiated energy is attributed mainly to the harmonics that
have frequenciesv<vh and low group velocities. Colli-
sional losses can attenuate these spectral parts of the radia-
tion before they reach the receiver. Therefore, the effect of
the growth of the radiated energy for a more tight laser fo-
cusing may not be easily registered in experiment.

For the interpretation of existing experimental results, we
derived a simple formula[Eq. (24)] for the average powerP
in the forward(along the laser path) direction. According to
the estimations of Refs.[9,10], made on the basis of 1D
approximation, this power should be independent of the
plasma density. On the contrary, our formula(24) predicts
strong dependence ofP on the plasma density:P~vp

3. In
fact, this prediction is indirectly supported by the experimen-
tal results of Ref.[12].

In addition, in 1D approximation, the energy-flux density
of the radiation in forward direction is proportional toEL

4

[9,10]. Applying this approximation to 2D laser focusing by
cylindrical lenses gives for the powerP~EL

4, or P
~ sEL

4,2d /,; i.e., the power grows infinitely as,→0. Our
rigorous calculations show[Eq. (24)] that, in fact, the radi-
ating power P depends rather weakly on the laser pulse
width in the practically interesting interval 0.1øvp, /cø3.
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