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Defect turbulence in a spiral wave pattern in the torsional Couette flow
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Our experimental study is devoted to the transition to defect turbulence of a periodic spiral wave pattern
occurring in the flow between a rotating and a stationary disk. As the rotatiofi)rafethe disk is increased,
the radial phase velocity of the waves changes its sign: The waves that propagate first outward on average, then
become stationary and finally propagate inward. As they become stationary, the nucleation of topological
defects breaks the periodicity of the pattern. For highemore and more defects are generated in the flow
pattern. This article presents the statistical study of this defect mediated turbulence.
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I. INTRODUCTION II. EXPERIMENTAL APPARATUS AND DESCRIPTION OF
THE FLOW

One known scenario of transition to turbulence in ex- Our experimenta| device is the same as the one of Schou-
tended systems is related to the nucleation of defects in pereiler, Le Gal and Chauvgl2]. The rotating stainless-steel
riodic patterns[1,2]. This is the case for instance in disk is immersed in a water-filled tank. Its drive shaft passes
Rayleigh—Bénard convectidi3], in binary mixture convec- through the bottom of the tank and is connected to an electric
tion [4], in Tay|o|'_Dean systerfb], or in e|ectroconvecting motor thl’OUgh a belt. The rotation ra€® of the disk is the
nematics[6]. Topological defects in wave patterns have alsocontrol parameter of the experiment and can be varied from
been identified numerically in coupled amplitude equationd t© 200 rpm. The top lid of the container is the stationary
[7], and a particular type of hole have even been found in th&liSk- The radius of the disks B=14 cm, and the distande
complex Ginzburg-Landau equatiotCGLE) [8]. The between the disks is set for these experiments to

mechanism of the transition from phase to defect chaos ha%lio'02 mm(excgpt for some visualizations where a best
been studied by Coulledt al[9], who concluded that a to- contrast was obtained for other very close values)ofFor

pological defect was created by a diverging phase gradien%hIS smallh, and the considered rotation ralik the shear is

Bruschet al[10] found that periodic coherent structures of fiearly constant in the fluid thickne¢d2] and this is the

) reason why this flow is called the torsional Couette flow. In
the CGLE, called modulated ampI|tqde wavadAWSs), order to visualize the flow patterns, water is seeded with
evolved toward defects, as the period of these MAW

- e Sreflective anisotropic flake@alliroscopg whose orientation
reached a critical minimum value. depends upon the local shear stress inside the flow. As the
We present in this article a study of the flow between agyface of the rotating disk is painted in black while the top
rotating and a stationary disk, a configuration which is ofgne is a plexiglass plate, the flow pattern that develops be-
great interest from a fundamental point of view but also hagyeen the two disks can be illuminated by a circular neon. A
many applications in turbomachines for instance. Moreovers|ight illumination inhomogeneity due to the neon tube elec-

rotating disk flows are often considered as model flows fotrical connections is barely visible but it will be any way,
the study of general three-dimensional flow instabilities. Ouffiltered out by image processing. Images are captured with a
results may then be interesting for the understanding and theharge coupled devic€CCD) camera placed 25 cm above
control of the transition to turbulence in boundary layers,this lid. This video camera is connected to a computer, and
pipe flows, or mixing layers for instance. In our experimentalspatiotemporal diagrams can be performed in real time.
work, topological defects appear in a periodical wgee  These diagrams are performed along a radius, with a 25 Hz
roll) pattern appearing in the flow between a rotating and ar 50 Hz sampling rate that gives between 30 and 60 images
stationary disk, through the local disappearance of a roll, oper disk revolution. They have a total duration of 4096 points
through the connection of two systems of rolls of differentin time and 512 points in space. In the following, we will use
orientations. As the disk rotation rat@ is increased, the the disk rotation period as the time unit, while for figures
number of these defects increases, and above a certain s@®escribing an evolution in function é2, a second horizontal
ondary thresholdQs equal to 45 rpm(revolutions per scale based on the Reynolds numgRe=QR?/ v, wherev is
minute) in the present configuration, spatially localized cha-water viscosity will also be presented.

otic regions develop in the form of turbulent spirdlBS9 Figure 1 shows an image of the whole disk when the
[11]. The defects are associated with strong amplitude modyperiodical waves appear and the corresponding periodic
lations of the background waves and thus act as seeds for tlspace—time diagram. These spiral rolls were called “SRIII”
birth of these TSs. We describe in this paper the appearands Schouveileet al. and were also observed by San’kov and
of the disorder in the periodical wave pattern, i.e., the tranSmirnov [13] and Sirivat[14]. Their stability analysis was
sition to defect turbulence, until the first TSs appear. also analytically performed by Sank’ov and Smirnfb]
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FIG. 1. SRIll forh=2 mm and(2=38 rpm clockwisgRe=7.8
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who found a critical Reynolds number Rebased on the
thickness of the fluid layer between 10 an 20. They also
confirmed that the angle of the spirals versus the azimuthal
direction is weak between -5° and 4°so that Chauve and
Tavera[16] described them as nearly circular waves. Be-
cause of the weak value of this spiral angle, they are thought
to be type Il waves which are created by the combined ef-
fects of viscous and Coriolis forcg$7]. Note also that Hoff-
mannet al. [18] calculated “stationary rolls” solutions in the
Ekman Couette layer, corresponding to the SR Ill waves of
our system. Indeed, as it will be seen in this work, their
radial phase velocity can decrease to zero for some values of
the control parametef.

For h=2.1 mm, the spatiotemporal diagram recorded at
threshold is presented in Fig(&. The radial wavelength
of the spirals as well as their temporal pulsation are well
defined: The waves propagate toward the periphery of the
disk with a constant velocity 4. When increasind}, an
oscillation appears in the dynamical behavior of the spiral
waves as shown in Fig.(8). This oscillation is in fact a
precursor of an increasing disorganization observed for
higher values of) and is, as can be seen in Fighg syn-
chronized on the disk rotation rate. Figuréc)2shows the
spatiotemporal diagram fa2=40.5 rpm. It can be observed
that the waves possess now, on average, a very slight veloc-
ity toward the center of the disksy, is weakly negative and
has thus changed its sign. Moreover, some rolls are found to
disappear at certain locations and at a certain tisee, for
example,t=0.8, r/R=0.82, while some others appear at
different placeqt=2,r/R=0.87). Fort=1, the signal pre-
sents a discontinuity for a whole interval iR, which re-
flects the passage on the acquisition line of a grain boundary
between two systems of rolls of different orientations. Im-

% 10% (a). Corresponding space—time diagram where a perfect peades of such defects are presented, respectively, in R@s. 3

riodicity is observed closed to threshqlo).

and 3b).

FIG. 2. Spatiotemporal diagrams fér=2.1 mm and(a) =34.5 rpm (Re=7.08<10%, (b) Q2=36.5 rom (Re=7.49x 10%, (c) Q

=40.5 rpm(Re=8.31x 10, and(d) Q=46 rpm(Re=9.44x 10%).
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FIG. 3. g Defect forh=2 mm and()=45 rpm, b defect forh
=2.1 mm and2=43 rpm. Clockwise rotation.

The first one is a dislocatioffrig. 3@)]: The circulation of
the phase of the periodic pattern around the defect is differ- _ _ .
ent from zero. Figure (®) presents a grain boundary: The =1g |2C;. 14(')4§a)(:;§tz fg;]ﬁgg?h?”ﬁ'ixaézg ;;?/Zkvgggleub_
rolls on the right-hand side of the image possess a higheilrshéd reverlsecl Close-up of a. seéd of a TS fér=2.1 mm and
inclination angle. For higher rotation rates, new structure — 45 rpm. Cl 'k : tati '

. . . pm. ockwise rotation.

appear in the flow: These are chaotic domains that we ca
TSs and show in Fig. 4. They appear on the large amplitude ) . .
modulations associated with topological defects of the SR 110 'PM, and negative above this value. Figure 5 shows the
pattern which act indeed as seeds for these turbulent spiraf@volution of v, This is in accordance with the results of
Note that these TSs are similar to the turbulent hedixd not ~ Hoffmannet al. [18] who calculated a vanishing phase ve-
a spira) of the cylindrical Couette flow or the turbulent band 0City for the same kind of waves. Note also the linear evo-
of the plane Couette floyl1]. Figure 4b) shows a close-up Ution of vy, with Q.
of the flow at the turbulent spiral threshold. As it is observed,
the underlying SR Il pattern is strongly modulated and Ill. TRANSITION TO DEFECT TURBULENCE
breaks up to let a turbulent domain take place in the flow.
Above Q15=45 rpm, a transition to turbulence via a scenario
of spatiotemporal intermittency has been descrifdeld. In order to automatically count the number of defects oc-

From the spatiotemporal diagrams, we can measure theurring in the flow pattern, a numerical procedure has been
characteristics of the spiral waves. Whereas the wavelengttieveloped. It is based on the calculation of the Hilbert trans-
of the SR IIl keeps a constant value which is equal to twiceform associated with space—time diagrams. As done in Refs.
the thicknes# of the fluid layer, the radial phase velocity, [19] or [20Q] the envelope of the wave pattern is computed.
as seen before, is found positive for values(bfless than Figure &b) presents the spatiotemporal evolution of the en-

A. Evolution of the total number of defects
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FIG. 5. Radial phase velocity,, as a function of. v,>0 for FIG. 7. Evolution withQ) of the mean number of defects per
an outward propagation, ang,<<0 when the waves propagate to- disk rotation. The dotted line is the curve predicted by R22]
ward the center. with a=1, a=5, b=4, c3=(), andc3=38.5 rpm.

velope of the pattern presented in Figia6 As can be
checked in Fig. @), the dark regions correspond to depres-

sions in the amplitude of the waves and are clearly associatq ay be of some relevance to understand this feature. As the
) ; . nsition experien r hydrodynamical m shar
with defects. The amplitude of the SR Ill waves being nearly. ansition experienced by our hydrodynamical system shares

. ) S similarities with the transition between phase turbulence and
zero in the core of the defects, a simple binarization proce

SZmpli i imulati

) : plitude turbulence observed in the simulations of the
(using an adequate threshpleéads to the black and white . - ; ;

pattern presented in Fig.(@. It is then quite obvious to Ginzburg-Landau equatioel], we plot together with our

count the total number of defectindenendently of their experimental data, a relationship similar to the one predicted
- the 0 ect pendently 0 in [22] using the facts that topological defects appear when
duration3 encountered on average per disk rotation on a re

gion extended betweer/R=0.83 andr/R=0.9, where the the phase gradients have Gaussian fluctuations and diverge.

. S The five coefficients in expression:
contrast of the images is high enough and the waves clearly P

observed. To insure the statistical convergence of this mean -b
defect number, we have checked that the time durations of (N) :anP<( )
the analysis windows were long enough. Figure 7 presents
the evolution of this mean number of defects per disk rotaare simply adjusted to fit our experimental data. The values
tion. For ) less than 40 rpm, the average number of defectsr=1, a=5, b=4, c3=) andc3=38.5 rpm, give the best re-

is below 1 per disk rotation period. These defects are genesult and the smooth transition of an Arrhenius type can be
ated by the natural noise present in the SR 1ll pattern close tobserved in Fig. 723], with an inflection point around,

its threshold. For values abo¥&.=40 rpm, this number in- =40 rpm.

creases to 3. A transition occurs arouflg=40 rpm, which

is the value where the radial phase velocity changes its sign. B. Time distribution of defect occurrence

The absolute or convective nature of the SR Il instability

1)

U
C3—C3)”

Another interesting interpretation of the transition to de-
fect turbulence was performed by Afraimovich and Buni-
movich in Ref. 24 and in the same spirit by Argentieaal.

[25]. The former consider a simple nonlinear version of a
diffusion equation and show that a defect can be considered
as a homoclinic orbit around a saddle-node critical point.
Therefore, the time between defects corresponds to the
length of the trajectories that leave and then come back in the
vicinity of the fixed point. This duration,,, is thus con-
trolled by the Liapunov exponent of the instability around
the fixed point which possesses a logarithmic divergence at
transition. Figure 8 presents the evolution with of the
mean lifetimerys Of a defect andr,,, the time separating
two consecutive defects. Contrary g which is nearly

FIG. 6. Close-up of a spatiotemporal diagram for2.1 mm  constant and equal to 0.1 disk rotation periag,, shows a
and Q=40.5 rpm,(b) envelope of the signal calculated by Hilbert strong evolution with(). Before the transition, this average
transform of signala), and(c) binarization of envelope signah). time is close to 1.5 disk rotation but climbs up to three rota-
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78 8.1 850 9.03 944 FIG. 9. Semilogarithmic plot of the cumulated histograms of the
Re x 10* durationr,, for several values of the rotation rate Linear fits are
also plotted.
4 :
35l '\ ] Figure 10 shows the evolution of versus the average
i number(N) of defects when the disk rotation rate is varied.
3r ‘ I By definition, a Poisson distribution for the occurrence of
o5l 1 ‘_,‘ _ ] defects in time is expected from the previous exponential
c T \\ shapes given in Fig. 9. In this case, the temporal duration of
w2 2r | 1 each defect is supposed to be zero and thus the evolution of
|5k | Y ] \ versus() would be a line with a slope equal to 1. In Fig.
X 10(a), we can observe a slight deviation from this linear be-
1} SN 1 havior. A, which is the inverse of a characteristic time, is
osl e % } { | larger than the expected value. Therefore, the duration used
i i i { »E%%_}_I_; to calculate the average number of defe@s should be
% 39 20 41 5 13 a1 a5 a5 r_educed. By simply subt_racting from the_ total r_neasuring
Q (rpm) time, the cumulated duration of defects, it is possible to cor-
7's 851 8.62 9.03 o4 rect the calculation ofN) by taking into account the average
Re x 10* duration of a defect as presented in Figa)8This corrected

defect numbetN?) is equal to(N)/1 - 7,4, Figure 1@b) pre-
FIG. 8. Evolution of the mean lifetime,es of one defecta) and  sents the new evolution of which is closer to the expected
of the time 7,y Separating two successive defeds. The error  pehayior is recovered. This may indicate that the nucleation
pars_ represent the s@andard deviation of the statistics. The dgshgﬁl a defect freezes the dynamics of the pattern around the
I|r_1e is a fit from relatlon(l} and the dotted line is the logarithmic defect and in a way validates the role of a homoclinic orbit as
divergence as calculated in R¢24]. in the transition scenario of Ref. 24.
Therefore, it appears that if the distribution of occurrence

Eonkperlodzfor thef C”kt]'.c";l valuflzﬂébgfore It decregses of defects is quite well represented by a Poisson law near the
ack toward zero for higher values Of. Superimposed on .5 qirion threshold, it is necessary to take into account the

the experimental Qata points, we show also Fhe e.XDECtegﬁective duration of the defects as their density increases.
curves corresponding to defect number evolution given b h

¥his behavior is confirmed by the direct computations of the
Eqg. (1) and also the logarithmic divergence similar to the one, y P
calculated in Ref. 24. As it can be seen, both evolutions arg

compatible with our data. Note, moreover, that the error bars

robability distributionP(N) of defects when increasing.

5 5
given in Fig. 8 represent the standard deviations of the sta- , ) 4 :
tistics of these typical times. Thus, a strong increase of the s o »* . ot 5
intensity of the fluctuations ofj,,, is observed near the de- < e -
fect turbulence threshold. 2 2
The complete statistics of the distribution gf,, versusQ 1 ¥ 1
has also been calculated. Some examples are presented ir o 0
Fig. 9 for four values), where the cumulated histograms of (o) ! <N> 2 : (b()) ! <:l1> : ¢

Tam that is the numbeN of occurrence of durationsiym,
larger than a given tim&,,,. These semilogarithmic plots FIG. 10. Evolution of the slopes of the cumulated histograms as
show that these distributions are exponential and a best linearfunction of the mean number of defe¢h$ (a), and as a function

fit of the experimental data leads to the determination of thef the corrected mean number of defe@t8)=(N)/1 -7y (b). The
slopes A of these histograms. solid lines represent the expected behavior of the Poisson statistics.
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FIG. 13. Ratioryed 7jam vVersus ). The error bars represent the
standard deviation of the fluctuations. It can be observed that the

the Poisson law characteristic and the dotted line is given by the . is larger than 1 fof)=Q;s=45 rpm.

binomial distribution.

C. Probability distribution of defect occurrence

it can be seen in Fig. 12 that the disagreement is worse. This
is in fact not surprising as our system is not close: single

As can be seen in Fig. 12, the experimental measuremegefects can appear or disappear at the frontier of the SR Il
of P(N) shares some features with the expected general bgrattern. However, as we saw in the previous section, the time
havior of a Poisson distribution: Moreover, it can beenduration of each defect cannot be neglected as soon as the

checked in Fig. 11 that for the smallest values(df the

density of defects increases. Indeed, we are able to fit the

standard deviation increases quite proportionally to thexperimental data by the binomial distribution of events, by
mean. However, if we try to fit the Poisson law on the dataadjusting the mean of this theoretical distribution with the

misfits appear starting & =42 rpm. We then try to fit our

experimental mean. The elementary probabifitpf the bi-

data with the square Poisson law. Indeed, as shown in Refiomial distribution was then checked to be equal to the ex-
[26], in close systems, topological defects appear by pairgerimental probabilitymyef/ 7gert 7iam t0 Observe a defect.

inducing a modification of their probability distribution. But

Q=40 rpm o5 Q=43 rpm

FIG. 12. Distribution of probability?(N) of defect number per
rotation for several rotation rat@. () experiments, Poisson law
distribution (solid line), squared Poisson law distributiqgdashed
line), and binomial distributior{dotted ling.

D. Generation of turbulent spirals

The transition to a more developed turbulence occurs
when the correlation length of the system becomes of the
same order of the mean distance between def@its-ol-
lowing the same idea, Afraimovich and Bunimovi@#] cal-
culated a limit value of the defect density whefs= 7jam
With this aim, we calculate the ratio betweegs and 74,

As can be seen in Fig. 13, this ratio first slightly decreases
under the critical threshold to defect turbulend€),
=40 rpm and then progressively increases. As before, the
error bars represent the standard deviations of the experimen-
tal data. ForQ) larger than(Q);s=45 rpm, we see that some
values of the ratiay 74m Can be larger than 1: The distance
between two defects is smaller than their own size. More-
over, these values of) around 45 rpm correspond to the
apparition of the TSs studied in Rgfl1]. This confirms the
role of the SR 1l pattern and its transition to defect turbu-
lence, in the generation of the TSs of the torsional Couette
flow.

IV. CONCLUSION

This study was devoted to the statistical description of an
experimental observation of a transition toward defect turbu-
lence in the wave patterns that appear in the gap flow be-
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tween a rotating and a stationary disk. Using Hilbert transnegligible in front of their separating time, a binomial distri-
forms of space-time diagrams, an automatic counting of théution of the defect occurrence gives a better fit of the ex-
increasing number of defects permits the characterization gderimental data. Finally, as the defect density increases,
the transition to defect mediated turbulence. This transitionsome strong amplitude modulations of the waves are gener-
arises as the waves become stationary. Comparisons withe . These will become seeds for the birth of localized TSs

models are quite satisfactory and show that the statistics hich are known to be highly nonlinear structures of the
defect occurrence are well represented near the transition . o . .
rsional Couette flow. Similar trends relative to the transi-

. . 0
threshold by a Poisson process: Defects nucleate mdepetl— . )
dently and their lifetime is small compared to the distafice lon toward turbulence might then be searched in other open

time or in spacgthat separates them. But as soon as theiflows such as the plane or the cylindrical Couette flows, pipe
density is too large, that is when their lifetime is no longerflows, or boundary layers.
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