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In this paper, a mathematical model within the framework of generalized hydrodynamics is developed for
the description of flows in microsystems where the Knudsen number is large and the aspect ratio[(width)/
(length)] is not so small. The model is based on a set of empirical generalized hydrodynamic equations, which
are fashioned from the steady-state generalized hydrodynamic equations derived from the Boltzmann equation
in a manner consistent with the laws of thermodynamics. The constitutive equations used for the model are
highly nonlinear, unlike the Newtonian law of viscosity and the Fourier law of heat conduction, but they are
thermodynamically consistent. In the absence of heat conduction, the model yields exact solutions for the
velocity components and a nonlinear differential equation for the pressure distribution in the rectangular
microchannel. The Langmuir adsorption model for surface-gas interaction is used for boundary conditions for
the velocity. The calculated flow rate exhibits a Knudsen minimum with respect to the Knudsen number. The
longitudinal velocity profile is also non-Poiseuille. The differential equation for pressure distribution is also
solved approximately in order to obtain an analytic formula for the flow rate, which exhibits a Knudsen
minimum. The formula, although approximate, provides considerable insights into the Knudsen flow phenom-
ena in microchannels.
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I. INTRODUCTION

Because of the technological applications, flows in sys-
tems of micro- and nanoscales are of considerable current
interest[1–6]. However, the problems are also of great sig-
nificance from the fundamental theoretical viewpoint be-
cause physical phenomena, including flow phenomena in
systems of the aforementioned spatial scales, reveal new as-
pects not amenable to the classical hydrodynamical treat-
ments, and call for approaches to understanding them. For
this reason, there has been considerable attention paid to the
subject in recent years within the framework of the Navier-
Stokes theory with slip boundary conditions, but there are
still many areas of study on the subject that should be carried
out in order to put the theory into a form comparable to that
for macroscopic scale flows. The present work is a contribu-
tion toward that end.

It is generally known that classical hydrodynamics is not
capable of satisfactorily treating flows in microsystems. The
important questions are to what extent and in which direction
should the classical hydrodynamics, namely, the Navier–
Stokes–Fourier(NSF) theory, as a continuum mechanics
theory, be modified if a continuum mechanics approach is to
be taken for the flow phenomena of interest. These questions
are all very worthy and challenging from the fundamental
theoretical and practical viewpoints. As a way to improve the
situation beyond the NSF theory approach, the direct simu-
lation Monte Carlo(DSMC) method[7] has been increas-
ingly used for study of microflows[8,9]. The DSMC method
facilitates the understanding of microflow phenomena from a
purely computational standpoint, but it is also known that it
has its own limitations[8] when applied to phenomena in the

large Knudsen number regime in the case of two- or three-
dimensional flows. In any case, it is desirable to have a con-
tinuum hydrodynamical approach, which gives a different
perspective to the understanding of the subject matter and
even gives semianalytical results for some flow problems.
The present work is aimed at such a goal.

As the size of the flow system gets smaller, the relative
size of the boundaries of the flow system becomes increas-
ingly large compared with the fluid volume flowing through
the system, and thus the boundary conditions evidently begin
to play an important role in determining flow characteristics.
In other words, the surface-fluid interactions can have major
effects in determining the physical properties of flow charac-
teristics. Microflow phenomena, however, is not the first sub-
ject that requires the recognition of the importance of
surface-fluid interaction effects, since surface-fluid interac-
tion effects, in fact, have been well recognized and studied
extensively in surface and colloid sciences for a long time
since the pioneering work of Langmuir[10]. Therefore,
study of flows in micro- or nanostructures should have much
to benefit from the concepts, notions, and theories developed
in surface science and, in particular, in the field of surface-
gas scattering[11–13]. It, however, should be remarked that
the surface-fluid molecule interactions are actively present,
regardless of the sizes of the systems and the density of the
fluid in hand, but their effects do not become manifestly
observable, and they play a significant role in determining
flow characteristics unless the Knudsen number of the flow
becomes sufficiently large.

In this work we would like to combine the surface-gas
interactions with the ideas of continuum mechanics theory to
see how far the combination mentioned can be pushed for-
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ward and where the limitations of such a combination lie.
What we report in this work represents an elaboration of the
generalized hydrodynamics formulation for microflows
sketched out in a recent work[14]. In the present work, not
only is the formulation reworked, but also numerical analysis
is made to see if the theory has practical utility in microflow
studies. We show that it is capable of describing the Knudsen
flow, which is known to be one of the prominent features of
microflows.

This paper is organized as follows: In Sec. II the general-
ized hydrodynamic equations[14–16] are presented for gas
flows in a rectangular microchannel. They can be derived
[17] from the Boltzmann equation in conformity with the
laws of thermodynamics, but may be treated as phenomeno-
logical equations if the transport coefficients are accepted as
phenomenological parameters. In the case of the latter ap-
proach, they may be regarded as a thermodynamically con-
sistent phenomenological model for the hydrodynamic de-
scription of microflows. Since the surface-gas interactions
become increasingly important as the ratio of the surface
area to the characteristic gas volume in the flow system in-
creases, and the boundary conditions are thereby modified, it
is necessary to examine and take into account such interac-
tion effects in the formulation of flow problems. This aspect
of the flow problem is also considered in Sec. II. Then, a
solvable model for the steady-state generalized hydrody-
namic equations for the rectangular channel flow in the mi-
croscale is developed and solved with the boundary condi-
tions that take into account the surface-gas interactions in
Sec. III. Such boundary conditions will be given the term
Langmuir boundary conditions. The flow characteristics thus
obtained are described in Sec. IV. The numerically computed
flow rate exhibits a Knudsen minimum, as observed experi-
mentally [18–20]. Approximate analytic expressions for
pressure distribution and flow rate are also presented for the
insights they provide with regard to microflows. The ap-
proximate, but analytic, flow rate formula thus obtained also
exhibits a minimum. Discussions and concluding remarks
are given in Sec. V.

II. GENERALIZED HYDRODYNAMIC EQUATIONS

If the fluid is far removed from equilibrium because the
Knudsen or Mach number is large, then the conventional
hydrodynamic equations, such as the NSF equations, lose
their effectiveness in the description of flow in such a con-
dition. This is well recognized in rarefied gas dynamics[23].
It has been shown in the literature[14–16,24–27] that the
classical hydrodynamics equations, namely, the NSF equa-
tions, can be generalized for the flow regimes, where the
aforementioned fluid dynamic numbers are large, in such a
manner that they fully obey the laws of thermodynamics.
When the laws of thermodynamics are strictly satisfied by a
set of hydrodynamic evolution equations, the set is said to be
thermodynamically consistent, and the aformentioned gener-
alized hydrodynamic equations are examples for such ther-
modynamically consistent evolution equations for macro-
scopic flow variables. Although the generalized
hydrodynamic equations are continuum theory equations,

they are still applicable to large Knudsen number flows be-
cause the nonlinear transport processes are appropriately
taken into consideration in them, so that the flows are prop-
erly described despite the large Knudsen number. The break-
down in the large Knudsen number regime of the classical
hydrodynamics, and the first-order Chapman-Enskog kinetic
theory that underlies the classical hydrodynamics, have
given rise to the unfortunate belief that the continuum me-
chanics loses its power in the large Knudsen number regime.
Such a belief appears to be unjustified on the basis of the
evidence[14–16,24–27] accumulated so far by means of the
generalized hydrodynamics and the results presented in the
following in this work, since they indicate that if the crucial
nonlinear transport processes are properly taken into consid-
eration, the continuum mechanics concept produces sensible
results and thus is still applicable to large Knudsen number
flows.

The thermodynamic consistency constraint used for deriv-
ing the generalized hydrodynamic equations is very useful
for acquiring hydrodynamic equations that are not only in
conformity with the laws of thermodynamics but also very
effective in describing nonlinear processes occurring far re-
moved from equilibrium. Such generalized hydrodynamic
equations have been formulated for the purpose just men-
tioned and applied to various large scale flow problems. In
this work we apply them to microflow phenomena involving
large Knudsen numbers. Since the generalized hydrodynamic
equations are sufficiently well reviewed in the literature, it is
not warranted to go over their derivation, and the reader is
referred to Refs.[14–16] and the references quoted therein
for their derivation and details, especially, with regards to
their relation to the classical hydrodynamics equations and
also their validity. In this work we will simply cast them into
the appropriate forms necessary for the flow problem at
hand.

The notation used in this work is kept the same as in Refs.
[14–16] so as to make the reading of this article as easy as
possible in reference to the body of the previous work on the
subject matter. We simply note thatu=sux,uy,uzd is the fluid
velocity andr is the mass density. The stress tensor will be
denoted byP and its traceless symmetric part byP, that is,

P = rP̂ =
1

2
sP + Ptd −

1

3
d Tr P, s1d

whered stands for the unit second rank tensor. The excess
normal stress will be denoted by

D = rD̂ =
1

3
Tr P − r s2d

with p standing for the hydrostatic pressure.
Under the assumption of uniform temperature, we con-

sider the channel flow in which the axial direction of the flow
is assumed to be parallel with thex axis of the coordinate
system whose origin is suitably fixed at a point. This means
that heat flow is absent, and hence the heat flux evolution
equation is not taken into consideration. The channel is as-
sumed to have a widthD in the y direction, whereas thez
direction is neutral and has no flow in that direction. There-

M. AL-GHOUL AND B. CHAN EU PHYSICAL REVIEW E 70, 016301(2004)

016301-2



fore there is no flow velocity in thez direction, that is,uz
=0. In this case, the flow becomes two dimensional. Since
the lengthL of the channel is necessarily finite in the case of
microflows, the translational invariance of flow variables
along the channel axis is broken. This broken translational
invariance means that the flow variables depend on the axial
position x, and it thus gives rise to a coupled system of
partial differential equations for flow variables varying with
respect tox andy. Under the assumptions made, the gener-
alized hydrodynamic equations consist of the equation of
continuity, momentum balance equation, and the shear stress
evolution equation, because for a dilute gas, the excess nor-
mal stress identically vanishes[15,16]; that is,D=0. For the
flow problem at hand, the generalized hydrodynamic equa-
tions become those of a steady-state two-dimensional flow.

SinceP is traceless and symmetric it follows that in the
case of the two-dimensional flow,

Pxx + Pyy = 0. s3d

Since r and T are in the set of local conserved variables,
which relax much more slowly than the nonconserved vari-
ables such as the stress tensor and heat flux, the ideal gas
equation of state can be shown[15,16] to be valid even if the
flow is far removed from equilibrium. If the gas is ideal and
the temperature is spatially uniform, then the ideal gas equa-
tion of state

p = rkBT s4d

can be used to eliminate the density in the equation of con-
tinuity and other evolution equations given earlier. With the
definition of the primary normal stress difference

N1 = Pxx − Pyy = 2Pxx = − 2Pyy, s5d

the steady-state generalized hydrodynamic equations in the
adiabatic approximation[14–16] can be put into the forms

] pux

] x
+

] puy

] y
= 0, s6d

p

kBT
Sux

]

] x
+ uy

]

] y
Dux = −

] p

] x
− S1

2

]

] x
N1 +

]

] y
PxyD ,

s7d

p

kBT
Sux

]

] x
+ uy

]

] y
Duy = −

] p

] y
− S ]

] x
Pxy −

1

2

]

] y
N1D ,

s8d

p

h0
qskdN1 = − 2pS ] ux

] x
−

] uy

] y
D +

1

2
N1S ] ux

] x
+

] uy

] y
D

+ PxyS ] ux

] y
−

] uy

] x
D , s9d

p

h0
qskdPxy = − pS ] uy

] x
+

] ux

] y
D − PxyS ] ux

] x
+

] uy

] y
D

+
1

2
N1S ] ux

] y
−

] uy

] x
D . s10d

In these equations,qskd is the nonlinear factor defined by

qskd =
sinh k

k
,

wherek is the dissipation function, which, when expressed
in terms of the shear stressPxy and the primary normal stress
N1 is given by

k =
t

2h0
SPxy

2 +
1

2
N1

2D1/2

, s11d

with t denoting the relaxation time defined by

t = sh0
Î2mrkBTd1/2snkBTsd−1. s12d

Here mr is the reduced mass,s is the size parameter(i.e.,
diameter) of the molecule,n is the number density,kB is the
Boltzmann constant, andh0 is the viscosity of the gas—the
Chapman-Enskog viscosity.

If the evolution equations for the stress tensorP and the
heat flux are derived from the Boltzmann equation, the non-
linear factorqskd arises if the Boltzmann collision term is
expanded in cumulants, which are basically resummations of
an expansion of the Boltzmann collision integral in an infi-
nite series of the Knudsen number. The nonlinear factor,
therefore, enables us to describe rather effectively transport
processes to infinite order in the Knudsen number, and as a
consequence, the transport processes described by the evolu-
tion equations, such as Eqs.(9) and (10), are highly nonlin-
ear. Moreover, because the nonlinear factor is intimately con-
nected to the local form of the second law of
thermodynamics and satisfies the inequalityk sinhù0 de-
manded by the latter, the generalized hydrodynamics equa-
tions satisfy the second law of thermodynamics. Therefore
they are thermodynamically consistent.

Equations(9) and (10) are the steady-state constitutive
equations for the primary normal stress difference and the
shear stress, respectively. Equation(10), in particular, re-
duces to the Newtonian law of viscosity if the equation is
linearized with respect to theP andN1 dependence. There-
fore, the model generalizes the NSF equations with respect
to the constitutive equations for stress tensor components.
The generalized hydrodynamic equations(6)–(10) are appli-
cable to monatomic gases that flow in a steady state far re-
moved from equilibrium. The size of the system, and hence
the Knudsen number, is not as yet manifest in the equations
presented. To make them apparent it is necessary to cast the
generalized hydrodynamic equations into dimensionless
forms.

A. Nondimensionalization of the generalized hydrodynamic
equations

The evolution equations presented are made nondimen-
sional by suitably scaling the variables involved. Let us de-
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note byL the channel length, byD the channel width, byue
the entrance velocity, and bype the pressure at the entrance
of the channel. The exit pressure will be denoted byp0. We
also define the nondimensional fluid dynamic parameters

« =
D

L
, NRe=

reueD

h0
, NM =

ue

ÎgkBT
, s13d

whereg is the polytropic ratio(ratio of specific heats) of the
gas. The parameter« is the aspect ratio,NRe is the Reynolds
number, andNM is the Mach number at the channel entrance.
The mean-free pathl of the gas entering the channel is de-
fined by the relation

h0 =
1

2
mreuel . s14d

This is the mean-free free path theory expression[28] for the
shear viscosity of the gas. The mean-free pathl must be
estimated in terms of molecular parameters if it is to be made
use of in fluid dynamic investigations. We use the following
method:

If the Chapman–Enskog shear viscosity[28–30] for hard
spheres,

h0 =
5

16

ÎmkBT
Îps2

,

is used forh0 then the mean-free path is more explicitly
given by the formula

l =
5

8

ÎmkBT
Îps2mreue

=
5

16Î2

1

s2re
. s15d

This is good enough for our purpose here, but if an expres-
sion for a nonhard sphere potential model is desired for
l—e.g., for the Lennard-Jones potential model—thenl may
be expressed in terms of the collision bracket integral forh0
of the Lennard-Jones gas. This will require a numerical com-
putation of the collision bracket integral involved, which in
turn requires the collision cross section as a function of scat-
tering angles and the relative kinetic energy of collision. We
would like to avoid the need for computing collision bracket
integrals because we are principally interested in the hydro-
dynamic aspects of the flow phenomenon of interest, which
can be examined without such complications mentioned.

With the mean-free path so given in terms of density as in
Eq. (15), the transversal Knudsen number is defined by

NKn =
l

D
. s16d

This implies that there are some relations among nondimen-
sional fluid dynamic parametersNRe, NM, andNKn in the case
of l for hard spheres we obtain

NM =Î 2

gp
NReNKn

. s17d

For this relation,ue is taken as the root mean square speed of
the gas

ue =Î8kBT

pm
.

The fluid dynamic number associated with the dissipation
function k is the nonuniformity numberNd defined by
[14–16]

Nd =Î2g

p
NMNKn. s18d

This nonuniformity number plays an important role in the
generalized hydrodynamic equations since it is the parameter
determining the measure of energy dissipation in the flow
process, sincek in the nonlinear factorqskd is proportional
to Nd. If the nonconserved variables in Eqs.(9) and(10) are
expanded in a series ofNd then the leading order equations
are those of the classical hydrodynamics, namely, the
Navier–Stokes theory. For the discussion of this aspect, see
Refs.[14–16].

With various nondimensional numbers so introduced, if
various variables involved in the evolution equations are
nondimensionalized as follows:

j = xL−1, z = yD−1,

u = ux/ue, v = uy/«ue, f = p/pe,

c = NdPxysh0ue/Dd, w = NdN1sh0ue/Dd, s19d

the generalized hydrodynamic equations then can be given
the nondimensionalized forms

«
] fu

] j
+ «

] fv
] z

= 0, s20d

] c

] z
+ «

]

] j
Sf +

1

2
wD + g«NM

2 fSu
] u

] j
+ v

] u

] z
D = 0,

s21d

«
]

] z
+ Sf −

1

2
wD + «2] c

] j
+ g«3NM

2 fSu
] v
] j

+ v
] v
] z

D = 0,

s22d

qskdc = − SNd −
2

p
NKn

w

f
D ] u

] z
−

4

p
«NKn

c

f
S ] u

] j
+

] v
] z

D
− «2SNd +

2

p
NKn

w

f
D ] v

] j
, s23d

qskdw =
4

p
NKn

c

f

] u

] z
− 2«NdS ] u

] j
−

] v
] z

D
+

2

p
«NKn

w

f
S ] u

] j
+

] v
] z

D = «2 4

p
NKn

c

f

] v
] j

. s24d

The dissipation functionk is now given by the formula
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k =
1

2
Îp3/2

g

1

f
Sc +

1

2
w2D1/2

. s25d

The dissipation function in the present reduced form super-
ficially appears to be independent ofNd. However, it should
be remembered that it is a consequence of the particular
manner of scaling made forPxy andN1 in Eq. (19). Never-
theless,k in effect depends implicitly onNd through its ap-
pearance in the other parts of the equations. The present
manner of scaling the variables is convenient for developing
approximations for the nonlinear flow problem under consid-
eration, especially if nonlinear dissipative effects are desired
to be taken into account.

If the axial flow velocity is known, the volume flow rate
may be calculated with it. Since the temperature is uniform,
by using the reduced equation of state, the volume flow rate
can be cast into the form

E
0

1

dzfsj,zdusj,zduj=0 =E
0

1

dzfsj,zdusj,zduj=1. s26d

With the definition

fsjd =E
0

1

dzfsj,zdusj,zd, s27d

this particular form of the mass conservation law represented
by Eq. (26), therefore, may be written as a differential equa-
tion

dfsjd
dj

= 0. s28d

Equation(26) and (28), when explicitly worked out, can be
found to be a differential equation for pressure distribution
along the axial direction. This equation can be equivalently
replaced by the boundary conditions for the transversal com-
ponentv at the walls of the channel, which produces a dif-
ferential equation for the pressure distribution, as will be
discussed and used later. The differential equations(20)–(24)
and Eq.(28) complete the evolution equations with which to
determine flow variables for the microchannel flow under
consideration.

B. Langmuir boundary conditions

We have seen in previous studies[14–16,26,31] of mac-
roflows in the large Knudsen and Mach number regimes that
with just stick boundary conditions, the generalized hydro-
dynamic equations still can adequately account for flow char-
acteristics in the flow regimes mentioned, because the non-
linear energy dissipation mechanism, which is properly built
into them, is adequate for giving rise to nonlinear transport
processes. However, as the size of flow systems is dimin-
ished to the level of microflows or nanoflows, the ratio of the
boundary layers of the flow system to the fluid volume,
which is roughly of the order of the Knudsen number, be-
comes increasingly large, and consequently the effects of the
boundaries on the flow characteristics are no longer negli-
gible. As a matter of fact, they even become dominant ef-

fects. This is well recognized in rarefied gas dynamics, and
there are numerous works devoted to this aspect in the lit-
erature [32,33]. Therefore, surface-fluid interactions[34]
must be properly taken into account if one desires to com-
prehend various flow characteristics in microflows from the
hydrodynamical viewpoint.

In the approach to this problem in the field of microflows,
various authors[1,4] have employed the Navier-Stokes
theory and have implemented it with the conventional slip
boundary conditions in the same manner as originally devel-
oped by Maxwell[32] and, for example, often used in rar-
efied gas dynamics[23]. This approach not only limits the
hydrodynamic description to that of the classical theory, but
also requires an expansion of the flow velocity in a series of
mean-free paths and the determination of the expansion co-
efficients in terms of accommodation coefficients.[13] Such
an approach does not make evident the connection between
the accommodation coefficients and the interaction of the
surface and fluid molecules. The desired connection cannot
be achieved unless the molecular nature of surface is explic-
itly taken into account by means of a suitable molecular
model.

On the other hand, it was shown by Euet al. [26] that if
the generalized hydrodynamic equations are combined with
the Langmuir adsorption theory[10], which adequately takes
into account the surface-fluid interactions, flow characteris-
tics of rarefied gases can be adequately accounted for. This
Langmuir adsorption model was applied to a microflow
problem by Myong[35] within the framework of the classi-
cal NSF hydrodynamic theory. However, it is desirable to
improve upon the classical NSF theory in order to capture
more satisfactorily the basic feature of the Knudsen flow. We
will show in this work that the generalized hydrodynamics
equations can be employed with the Langmuir adsorption
theory [15,26,35]. There still is room for improving the
Langmuir boundary conditions in their application to micro-
flow problems, but we will defer a further study of them to
the future.

Equations(20)–(24) will be solved subject to the bound-
ary conditions

usz = 0,jd = ua, usz = 1,jd = ua8,

usz = 0,jd = vsz = 1,jd = 0,

fsj = 0,zd = f0, fsj = 1,zd = f1s0z ø 1d, s29d

where ua and ua8 are the boundary values of the velocity,
which will be elaborated later, andf0 and f1 are reduced
pressures at the entrance and exit of the channel. It should be
noted thatua and ua8 are equal to zero in the case of stick
boundary conditions, but, as already mentioned, such bound-
ary conditions are generally unsuitable in the case of flows in
microchannels, because despite that the surface-fluid mol-
ecule interactions play important roles in small systems, the
stick boundary conditions do not take them into account. The
stick boundary conditions are appropriate if the density of
the gas is such that gas molecules fully cover the surface of
the channel.
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In order to take the wall-gas interaction into account so
that the physicochemical properties of the fluid and the walls
of the flow system are well reflected in the flow behavior of
the fluid, we modify the boundary conditions in a manner
similar to the method used by Euet al. [26] and
Bhattacharyaet al. [27]. According to the aforementioned
theory of boundary conditions based on the Langmuir ad-
sorption model, the velocity boundary conditions can be
modified to the form[14]

ua = usTduw + f1 − usTdgug. s30d

In this expression,uw is the wall velocity,ug is the stream-
wise velocity of the fluid one or a fraction of a mean-free
path away from the wall; and in the case of a long mean-free
path comparable with the channel widthD, the streamwise
velocity ug may be taken for the midstream velocity. A simi-
lar equation holds for the boundary condition onu at z=1:

ua8 = usTduw + f1 − usTdgug8, s31d

where the meaning ofug8 is similar to that ofug.
Since the velocity profile should be symmetric in the

present flow problem, we may takeug as u at positionzl
= l / s1+xNKndD=NKn/ s1+xNKndsx.2d, or ug8 as u at posi-
tion zl =1−NKn/ s1+xNKnd:

ug = uS NKn

1 + xNKn
D ,

ug8 = uS1 −
NKn

1 + xNKn
D , s32d

wherex is a constant. The precisez dependence ofug andug8
is not determined yet: it must be determined self-consistently
for the flow problem of interest by using the flow profile for
u with respect toz

C. A model for the surface coverageu

For the original Langmuir adsorption isotherm in the sim-
plest form, it is generally assumed that the surface is covered
by monolayers of fluid molecules. In this case, the fraction
usTd of the surface covered is given by the formula
[10,14,26]

usTd =
bp

1 + bp
, s33d

where the parameterb is closely related to the surface-gas
interaction characteristics andp is the pressure of gas that is
assumed to be in equilibrium with the adsorbed layer. The
parameterb may be expressed by the formula[26,27]

b =
K

kBT
s34d

(whereK is the equilibrium constant), which permits evalu-
ation by means of statistical mechanics since the equilibrium
constantK can be calculated with the surface-gas interaction
model that treats adsorption of the fluid molecules on the
surface as a kind of chemical reaction. Here,T is the wall

temperature. The equilibrium constantK depends on the wall
temperature and the wall-gas interaction parameters. We re-
mark that in the derivation of the formula forusTd in Eq.
(33), there is no condition whatsoever on the magnitude ofp.
Furthermore, because the collisions of fluid molecules with
the surface occur on the time scale of 10−14–10−12s, which is
much shorter than the hydrodynamic relaxation times, and on
the scale of hydrodynamic processes the fluid molecules may
be regarded as being in equilibrium with the surface in the
interface, the assumption of equilibrium between the surface
and the fluid is not at all inconsistent with the flow problem
under consideration and is justifiable.

However, in practice the surface is not smooth, but rough
[36]. Furthermore, it can be covered by not only monolayers
but also by multiayers of adsorbed molecules as rough edges
in the surface can attract many molecules at a site. Phrased in
more appropriate terms, more than a molecule can get ad-
sorbed(i.e., physically, but not chemically bound) at a site on
the surface, which is rather rough in the scale of microflows.
The average number of molecules adsorbed at a site may be
in principle found by applying a statistical mechanics
method, but it constitutes a full-fledged question of its own
right, and it is not a problem we would like to devote our-
selves to in this work because it will take us far afield from
the question of fluid dynamics. We would rather like to treat
it empirically and answer the fluid dynamics question of in-
terest here. In this spirit, we assume thatn=1+dsd.0d par-
ticles on the average are adsorbed at a site on the surface. If
we further assume that the adsorption processes may be re-
garded as a kind of chemical reaction between then gas
moleculessMd and the adsorption sitesSd on the surface
according to the reaction model

S+ nM = SMn,

then it is possible to calculate the coverageu explicitly in
terms of molecular parameters by means of a statistical me-
chanics method in a way similar to the case of monolayer
adsorption. Ifd=0, this model reduces to the original Lang-
muir model in which the surface is covered by monolayers.
By using the same method as for the derivation of Eq.(33),
it is possible to show that the fractionu of coverage of the
surface by the gas molecules is given by the formula

usTd =
b8pn

1 + b8pn , s35d

whereb8 is a parameter depending onT and molecular pa-
rameters characteristic of the surface and gas molecules; it is
comparable to the parameterb. It will be empirically found
that d is less than unity. The temperature and molecular pa-
rameter dependences ofb8 may be calculated by means of
statistical mechanics under some simplifying assumptions,
but it is not essential at this point to know its temperature
and molecular parameter dependence for the purpose of cal-
culating flow variables, especially with respect to the Knud-
sen and other fluid dynamics numbers. SinceusTd generally
depends on pressure, and hence on the density of the gas, it
varies with the Knudsen number. Formula(35) modifies the
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coverage formula exmployed in the discussion given for the
Langmuir boundary conditions in Ref.[14].

III. SOLVABLE MODEL EQUATIONS FOR
MICROCHANNEL FLOW

Microchannel flow problems that we have in mind usually
deal with flows with a rather low Mach number, although the
Knudsen number may not be small because of a small chan-
nel width and length. On the other hand, although the aspect
ratio « is small, it is not vanishingly small. Therefore, we are
interested in creeping flows in a microchannel with a mod-
erately small aspect ratio. Consequently, it is reasonable to
retain only the terms of first order with respect toNM and«
in the generalized hydrodynamic equations. Examining the
evolution equations(20)–(24), we see that the inertia terms
are multiplied byNM

2 . Therefore, in the small Mach number
limit, the intertia terms are of second-order importance. In
any case, we take the set of equations as a proposition for a
model for nonlinear constitutive relations—a non-Newtonian
approximation. We will see that they are capable of account-
ing for the important features of flow behavior in microf-
lows, notably, the velocity profiles and the Knudsen mini-
mum in the flow rate. Thus, on retaining only such terms as
mentioned, the following equations arise for the flow prob-
lem of interest:

«f
] u

] j
+ «u

] f

] j
+ «f

] v
] z

+ «f
] f

] z
= 0, s36d

] c

] z
+ «

] f

] j
= 0, s37d

«
] f

] z
= 0, s38d

qskdc = − Nd

] u

] z
, s39d

E
0

1

dz fsj,zdusj,zduj=0 =E
0

1

dz fsj,zdusj,zduj=1, s40d

or

]

] j
fsjd = 0, s41d

for which we have usedw=0 that arises from the equation

qskdw = 0, s42d

holding to the lowest order in«. Equation(41) yields a dif-
ferential equation for pressure variation in the axial direction,
but the vanishing transversal velocities at the boundariesz
=0 and 1 may be used equivalently for the purpose of ob-
taining the differential equation mentioned. In order to re-
mind us of the order of« taken, we have kept« in Eqs.(36)
and (38) even though it may be factored out. Equation(41)
implies that the primary normal stress differencew does not
exist in the present model.

On close examination of these equations, we find that they
are almost the same as the one-dimensional channel flow
equations for a channel of infinite length[14–16] except for
the equation of continuity and the condition on mass flux,
Eq. (40). We solve these equations and examine their predic-
tions for flow characteristics. This set of equations can be, in
fact, reduced to a single nonlinear differential equation for
the reduced pressuref. Therefore, when the differential
equation forf is solved, the flow properties of the gas in the
microchannel are fully determined.

Equation(38) implies that pressure is a function ofj only:

f = fsjd. s43d

Therefore, the pressure is transversally uniform. It also fol-
lows that the equation of continuity takes the form

f
] u

] j
+ u

] f

] j
+ f

] v
] z

= 0. s44d

This equation may be used for determining the pressure dis-
tribution along the channel axis, but it is not directly in-
volved in the determination ofu. It will be considered later
to determine the transversal velocityv after the remaining
equations are solved for the longitudinal velocityu.

A. Longitudinal velocity profile

Sincew=0, the dissipation function is given by the for-
mula

k =Îp3/2

g

1

2f
sc2d1/2 =Îp3/2

g

1

2f
ucu. s45d

The constitutive equation(39), therefore, can be written as

sinhSÎp3/2

g

1

2f
ucuD = − NdÎp3/2

g

1

2f

] u

] z
.

By inverting this relation, we find the reduced shear stress

c = 2Î g

p3/2fsinh−1S− NdÎp3/2

g

1

2f

] u

] z
D . s46d

At this point, it is convenient to define some abbreviations:

a ;
v

f
= NdÎp3/2

g

1

2f
, v =

1

2
NdÎp3/2

g
, s47d

b = − m−1] ln f

] j
, m−1 =

«

2
Îp3/2

g
. s48d

On taking the derivative ofc with respect toz and using Eq.
(37), we then obtain the differential equation foru

]

] z
sinh−1S− a

] u

] z
D = b. s49d

Integrating it with respect toz yields the equation

a
] u

] z
= − sinhsbz + Cd, s50d

whereC is a constant. The integration of Eq.(50) once more
gives the solution foru:
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au = −
1

b
coshsbz + Cd + C1, s51d

whereC1 is an integration constant. This form of solution for
u was also known[15,16] for the infinite channel flow prob-
lem obeying the same constitutive equation forc, as consid-
ered here. The difference in the two cases lies in the fact that
a and b now depend on the longitudinal positionj. There-
fore, u presented in Eq.(51) is not a complete solution for
the flow problem untila andb are determined with regard to
their longitudinal positionsjd dependence. The constants of
integrationC and C1 can be determined by the boundary
conditions onu.

The modified boundary conditions alter the velocity pro-
file. Using the boundary conditions(30) and (31) in the ve-
locity formula (51) we find atz=0,

abf1 − usTdgug = − coshC + bC1, s52d

whereug is the fluid velocity at a fraction of a mean-free path
away from the wall atz=0. At the wall atz=1, there holds a
similar equation

abf1 − usTdgug8 = − coshsb + Cd + bC1, s53d

whereug8 is the fluid velocity at a fraction of a mean-free free
path away from the wall atz=1. Since the flow profile must
be symmetric around the axis of the channel, if the distances
away from the walls are taken equal, thenug=ug8;u0. Solv-
ing the Eqs.(52) and (53) for C andC1 we obtain

C = −
b

2
,

bC1 = abf1 − usTdgu0 + cosh
b

2
. s54d

Hence, the streamwise velocity profile is given by the for-
mula

u =
1

ab
Fcosh

b

2
− coshbSz −

1

2
D + abf1 − usTdgu0G ,

s55d

which, as will be shown, reduces to the stick boundary con-
dition result [14–16] if u=1, that is, if the surface is com-
pletely covered or, put in another way, if the fluid fully sticks
at the walls.

It is necessary to determineu0. Taking the velocity value
at position z=NKn/ s1+xNKnd near z=0 and positionz=1
−NKn/ s1+xNKnd nearz=1, respectively, we find

u0 =
ul

uab
, s56d

where

ul = cosh
b

2
− coshFb

2
S1 + sx − 2dNKn

1 + xNKn
DG . s57d

The velocity profile under the Langmuir boundary conditions
is finally given by the formula

u =
1

ab
Fcosh

b

2
− coshbSz −

1

2
D + su−1 − 1dulG . s58d

This means that asp→`, that is, asu→1, the velocity pro-
file becomes that of the usual macroscopic channel flow,
whereas it begins to progressively exhibit the effects of sur-
face on the flow in the channel asp→0, that is, asu→0.

The fraction of coverage of the surfaceu given in Eq.(35)
is expressible in terms of the Knudsen number as follows:

usTd =
b9/NKn

n

1 + b9/NKn
n ;

1

1 + c*NKn
n sn = 1 +dd, s59d

where b9 is related to b8 through the transformationp
→NKn. Thus, as the Knudsen number increases, the gas den-
sity or pressure is reduced and the surface coverage accord-
ingly diminishes. This, in turn, implies that the flow tends to
be more and more rectangular, sincea=a0NKn, wherea0 is
independent ofNKn and hence

lim
NKn→`

u =
c*

a0b`
Fcosh

b`

2
− cosh

b`

2
Sx − 2

x
DG , s60d

whereb`=limNKn→`
b and, as a consequence, the right-hand

side of Eq.(60) is independent ofNKn and also ofz. An
approximate formula forb` will be given later for the insight
it provides. Because the largeNKn limit of u is independent
of z, the axial flow profile is rectangular—a plug flow, which
may be regarded as being axially ballistic in motion. In such
a regime ofNKn we practically have a beam of molecules.
This limiting behavior ofu is consistent with the DSMC
velocity profiles[4] and velocity profiles[37] obtained by
the solution of a linearized Boltzmann equation[i.e.,
Bhantnagar-Gross-Krook(BGK) equation], which becomes
increasingly flat as the Knudsen number increases. Such lim-
iting behavior ofu indeed can be verified numerically, as is
evident in Fig. 2 presented in Sec. IV below. The plug flow
behavior is also reminiscent of the beaming effect considered
by Clausing[38] and later by others[39,40] in connection
with vacuum technology. However, it should be noted that
the aforementioned authors examined the beaming effect by
using the Knudsen cosine law of reflection[19]. This mecha-
nism is different from that of the Langmuir boundary condi-
tion used here.

If the parametersa andb are determined and, in fact, iff
is determined together with its derivativefj=]f /]j, veloc-
ity profile is fully determined. The determination off is
achieved by imposing the mass conservation in the flow
through the channel or deriving a differential equation forf
from the equation of continuity with the help of the boundary
conditions on the transversal velocity componentv at z=0
and 1. We will use the latter approach.

B. Shear stress profile

The profile for the shear stress is readily obtained by us-
ing the streamwise velocity formula. Since

a
] u

] z
= − sinhbS1

2
− zD , s61d

c is given by
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c = − «
] f

] j
Sz −

1

2
D , s62d

which satisfies Eq.(37). Despite the flow velocity nonlinear
with respect toz, the shear stress is linear with respect toz in
the present flow configuration. It is a peculiarity of the rect-
angular channel flow considered here; in the case of other
configurations, such as, a circular tube flow, thisz depen-
dence ofc is not expected to hold true, as has been shown
for flows in an infinite tube[15,21].

C. Transversal velocity profile

The transversal velocityv can be readily calculated by
using the streamwise velocityu calculated earlier. By using
the formula(55) for u and the equation of continuity(44),
the differential equation forv is obtained. For the purpose of
making the symmetry property ofv and its equation more
transparent, it is convenient to transform the independent
variable

z= z −
1

2
,

so that the range of the variablez becomesf−1
2 , 1

2
g. Then the

differential equation for the transversal velocityv is given by

] vszd
] z

= vt
0 −

1

sabd2

] ab

] j
coshbz+

1

ab

] b

] j
z sinh bz

−
m

a
coshbz, s63d

where

vt
0 = Fcosh

b

2
+ su−1 − 1du1Gsabd−2] ab

] j
−

1

2ab
Fsinh

b

2

+ 2su−1 − 1d
] ul

] b
G ] b

] j
+

m

a
cosh

b

2
. s64d

This equation clearly indicates that]vszd /]z is even with
respect to transformationz→−z, andv is odd.

Integrating Eq.(63) yields the transversal velocity

vszd = V0 + vt
0z−

1

bsabd2

] ab

] j
sinh bz+

1

ab3

] b

] j
sbz coshbz

− sinhbzd −
m

ba
sinh bz. s65d

Imposing the boundary conditionsvs−1
2

d=vs 1
2

d=0, we obtain

0 = V0 +
1

2
vt

0 −
1

bsabd2

] ab

] j
sinh

b

2

+
1

ab3

] b

] j
Sb

2
cosh

b

2
− sinh

b

2
D −

m

ba
sinh

b

2
,

0 = V0 −
1

2
vt

0 +
1

bsabd2

] ab

] j
sinh

b

2

−
1

ab3

] b

] j
Sb

2
cosh

b

2
− sinh

b

2
D +

m

ba
sinh

b

2
.

For these boundary conditions to be consistent with each
other, the constantV0 must be equal to zero identically:V0
=0. Therefore, we obtain the equation forb

vt
0 −

2

bsabd2

] ab

] j
sinh

b

2
+

2

ab3

] b

] j
Sb

2
cosh

b

2
− sinh

b

2
D

−
2m

ba
sinh

b

2
= 0. s66d

This gives rise to Eq.(69) for b more explicitly given in the
following. The transversal velocity is now given by

vszd = vt
0z−

1

bsabd2

] ab

] j
sinh bz+

1

ab3

] b

] j
sbz coshbz

− sinhbzd −
m

ba
sinh bz. s67d

This solution is indeed odd with respect toz. Note thatvszd
is equal to zero atz± 1

2 and at z=0. Therefore, its shape
should be something like an invertedS, as will be evident
from Fig. 4, presented in the following section. It should be
also recalled that since the actual transversal velocity is pro-
portional to the aspect ration, it vanishes as the channel
length becomes infinite.

D. Differential equation for b

We will use the transversal velocityv to derive the differ-
ential equation forb. This equation is, in fact, the solvability
condition for the model generalized hydrodynamic equa-
tions. Using Eq.(67), evaluated atz= 1

2 or −1
2 and the identity

1

ab

dab

dj
= mb +

1

b

db

dj
, s68d

we obtain the differential equation forb or ln f

L1sbd
db

dj
+ mb2L2sbd = 0, s69d

where

L1sbd =
4

b
sinh

b

2
− 2 cosh

b

2
+

b

2
sinh

b

2

− su−1 − 1dul + bsu−1 − 1d
] ul

] b
,

L2sbd =
4

b
sinh

b

2
− 2 cosh

b

2
− su−1 − 1dul . s70d

Solution of this nonlinear ordinary differential equation pro-
videsb, and thusa, which can be used in the expressions for
u and f for the flow rate.
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This differential equation(69) can be cast into the form

d2f2

dj2 − 4f
d2f

dj2 + 231 −

b

2u
sinh

b

2
+ bsu−1 − 1d

] ul

] b

L1sbd
4Sdf

dj
D2

= 0. s71d

By using the identities

d2f2

dj2 − 4f
d2f

dj2 = 2Sdf

dj
D2

− 2f
d2f

dj2 ,

d

dj

f

Sdf

dj
D = 1 −Sdf

dj
D−2

f
d2f

dj2 , s72d

the differential equation may be put in a more convenient
form

d

dj

1

b
= m −

m

2u
b

Fsinh
b

2
+ 2s1 − ud

] ul

] b
G

L1
, s73d

which seems to be more readily amenable to approximate
treatments.

IV. FLOW PROFILES

Since the differential equation forb is not analytically
solvable in closed form, it must be treated numerically or in
an approximation. Before resorting to a numerical treatment
of the differential equation, we examine an approximation
method for it. We will consider only the differential equation
holding for the Langmuir boundary conditions, which is
more general than the differential equation in the stick
boundary conditions.

A. Approximate treatment of b

Before presenting flow characteristics computed with the
numerical solutions of Eq.(69) or, equivalently, Eq.(73), we
will consider an approximate solution of Eq.(73) and an
approximate flow rate calculated therewith. We thereby gain
considerable insights into the Knudsen number dependence
of the flow rate and the physical and mathematical causes
underlying the emergence of Knudsen minimum.

Since b is Os«d and « is usually less than unity, it is
reasonable to expand the numerator and the denominator on
the right-hand side of the differential equation(73) in a series
of b to obtain

]

] j

1

b
= m − 6

m

s3 − ud

S1 +
1

24
b2 + ¯D

F1 −
3

80
S5 − u

3 − u
Db2 + ¯G . s74d

To the lowest order, this equation is approximated by

]

] j

1

b
= m − 6

m

s3 − ud
. s75d

This equation is easily integrated to the form

1

b
= − mS3 + u

3 − u
Dj + C. s76d

Therefore, the differential equation for the reduced pressure
in this approximation is

d ln f

dj
=

− m

d − mS3 + u

3 − u
Dj

. s77d

By integrating it again, we obtain

f = d1Fd − mS3 + u

3 − u
DjGs3−ud/s3+ud

, s78d

where d and d1 are integration constants. They are deter-
mined by the boundary conditions on pressure at the entrance
and exit of the channel:

d = mS3 + u

3 − u
DF1 −Sf1

f0
Ds3+ud/s3−udG−1

,

d1 = f0FmS3 + u

3 − u
DG−s3−ud/s3+udF1 −Sf1

f0
Ds3+ud/s3−udGs3−ud/s3+ud

.

s79d

Finally, on substitution ofd andd1, the pressure distribution
in the lowest order approximation is given by the formula

f = f0H1 −F1 −Sf1

f0
Ds3+ud/s3−udGjJs3−ud/s3+ud

. s80d

From this result follows the expression forb in the same
approximation:

b =
1

m
S3 − u

3 + u
D F1 −Sf1

f0
Ds3+ud/s3−udG

1 −F1 −Sf1

f0
Ds3+ud/s3−udGj

,

which yields the value ofb at the exit of the channel,
namely, atj=1

b1 =
1

m
S3 − u

3 + u
DFSf0

f1
Ds3+ud/s3−ud

− 1G . s81d

In this approximation we find

b` =
1

m
Sf0

f1
− 1D , s82d

which verifies thatb` is independent ofNKn. On use of the
formula for u given in Eq. (59), this form of b1 may be
written as

b1 ; 2b0F1 + l
4 + 3c*NKn

n

2 + 3c*NKn
n + Osl2dG , s83d

where

b0 =
1

2m
lnSf0

f1
D, l =

1

2
ln Sf0

f1
D .
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On substituting the formula foru (58) and performing an
integration overz, we obtain the flow rate[41,42]

f =
f1

ab
Fcosh

b

2
−

2

b
sinh

b

2
+ c*NKn

n ulG . s84d

By using the solution forb obtained from Eq.(69) this for-
mula can be readily calculated at different values ofNKn.

To gain an insight into the behavior off1= fsb1d with
respect toNKn we use the approximate formulab1 for b. On
setting

a1 ; asj = 1d ; v̂NKn s85d

and scaling the flow ratef1 with constant factors independent
of NKn,

Mf =
2v̂b0f1

f1
, s86d

we find the scaled flow rate in the form

Mf =
1

NKnS1 + l
4 + 3c*NKn

n

2 + 3c*NKn
n D5coshb0S1 + l

4 + 3c*NKn
n

2 + 3c*NKn
n D

−

sinh b0S1 + l
4 + 3c*NKn

n

2 + 3c*NKn
n D

b0S1 + l
4 + 3c*NKn

n

2 + 3c*NKn
n D

+ c*NKn
n coshb0S1 + l

4 + 3c*NKn
n

2 + 3c*NKn
v D

− c*NKn
v coshFb0S1 + l

4 + 3c*NKn
n

2 + 3c*NKn
n D

3S1 + sx − 2dNKn

1 + xNKn
DG6 . s87d

If l is small, it is possible to approximate this formula as
follows:

Mf =
1

NKn
Hcoshb0 −

sinh b0

b0
+ c*NKn

n coshb0

− c*NKn
n coshFb0S1 + sx − 2dNKn

1 + xNKn
DGJ . s88d

As NKn→0,

Mf ,
1

NKn
,

whereas asNKn→`

Mf , c*2Fcoshb0 − cosh
sx − 2d

x
b0GNKn

d .

Since

Sx − 2

x
D , 1

we find the coefficient is positive and, therefore,Mf exhibits
a minimum. This feature captures the experimentally ob-
served[18] Knudsen number dependence of flow rate in an
infinitely long circular tube. The Knudsen minimum was
shown to follow from a generalized hydrodynamic theory
[21] and to be responsible for laser-induced drift[22] of gas
in a long thin tube observed experimentally[43]. The mini-
mum occurs approximately atNKn=1 for a suitably chosen
set of parameters.

Such a minimum indeed occurs when Eq.(69) is solved
numerically and the flow rate

f =
2v̂b0f„bs1d…

f1
s89d

is calculated withb so calculated, as will be shown pres-
ently.

B. Numerical solution for b and flow profiles

The longitudinal and transversal velocities, shear stress
tensor, pressure distribution, and flow rate are calculated
with the values numerically obtained forb from Eq. (73). In
Fig. 1, the pressure distribution along the longitudinal direc-
tion is plotted in the case of parametersNKn=0.1, NM =0.5,
«=1/20,x=3, d=0.25, andc* =2.0. It is concave in qualita-
tive agreement with experiment[44]. In Fig. 2, the reduced
streamwise velocity profilessus=u/u*d are plotted forNKn

=0.1, 1.0, and 10 in the case of the same values taken for
other parameters as for Fig. 1. The velocity is scaled byu* ,
which is the integral ofuszd over 0øzø1, that is, the mean
velocity with respect toz. The streamwise velocity exhibits a
slip phenomenon developing from the entrance of the chan-
nel. As the Knudsen number increases, the profiles clearly
get flatter, exhibiting the plug flow behavior in accordance

FIG. 1. Pressure distribution in the axial direction in the case of
f0=2.5, fe=0.9, NM =0.1, NKn=0.1. Other parameters are:g
=5/3, x=3, c* =2.0, e=1/20,d=0.25.

GENERALIZED HYDRODYNAMICS AND MICROFLOWS PHYSICAL REVIEW E70, 016301(2004)

016301-11



with the limiting behavior established in Eq.(60), and the
velocity slip also increases with increasingNKn. The increas-
ing velocity slip arises from the combination of the Lang-
muir boundary conditions and the nonlinear effect arising
from the nonlinear constitutive equation for the stress
tensor—or, alternatively put, the non-Newtonian viscosity,
depending on density. The non-Newtonian viscosity arises
because of the nonlinear factorqskd in the stress evolution
equation. We remark that the sliplike effect[24,25,45] in the
velocity profile can occur because of the non-Newtonian vis-

cosity even if the stick boundary conditions are used. The
Langmuir boundary conditions simply contribute further to
the slip already present in the velocity because of the non-
linear transport coefficient. Such a tendency is in agreement
with the DSMC results[4] and the results by the numerical
solutions of a linearized Boltzmann equation[37].

In Fig. 3 we show that the streamwise velocity profile
(shown by the solid curve) u, calculated forNKn=1 with
formula (58) and the numerical solutions of Eq.(73) are
indeed in agreement with the results(open circles) by the
empirical formula (Eq. (5.3) of Ref. [4]) devised by
Karniadakis and Beskok(KB). Since Karniadakis and Be-
skok [4] have shown that when the parameterbKB (b in their
notation) in the KB formula for the slip boundary conditions
is suitably chosen, the KB empirical formula for slip bound-
ary conditions yields results in excellent agreement with the
DSMC results and the profiles obtained with the BKG lin-
earized kinetic equation[37], we compare our results with
only those of Karniadakis and Beskok to avoid the clutter of
data in the figure. Therefore, the predictions of the present
theory are also seen to be in good agreement with the DSMC
results, provided the parameterc* is varied withNKn, indi-
cated in Fig. 3. This suggests that this parameterc* plays a
role similar to the Karniadakis-Beskok parameterbKB in Eq.
(5.3) of Ref. [4] It should be noted that whereas the
Karniadakis-Beskok velocity profile is an empirical formula,
the velocity profile formula(58) is a solution of the general-
ized hydrodynamic equations subject to the Langmuir
boundary conditions. Thus, the comparison made in Fig. 3
provides support for the utility of generalized hydrodynamic
equations for the description of microflows.

In Figs. 4 and 5, the transversal velocity profile and the
shear stress profile are presented in the case of parameters
that are the same as for Fig. 1. The transversal velocity is odd

FIG. 2. Reduced streamwise velocity profilesus=u/u*d. The
parameters except forNKn and c* are the same as for Fig. 1. The
solid curve is forNKn=0.1,c* =20; the broken curve is forNKn=1,
c* =2.5; and the line with dots is forNKn=10,c* =0.25. The veloci-
ties slip at the boundaries.

FIG. 3. Comparison of the
streamwise velocity profile of the
present theory and the prediction
by the empirical formula by Kar-
niadakis and Beskok{Eq. (5.3) of
Ref. [4]} in the case of NKn

=0.1,1.0,5.0,10.0. The solid
curve is the present theory predic-
tions. The open circles represent-
ing the predictions by the
Karniadakis-Beskok empirical
formula with the Karniadakis–
Beskok parameterbKB=−1 is not
distinguishable from the present
theory results.
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with respect to the transversal coordinatez=z−1/2 aspre-
dicted by the equation forv. The shear stress profiles shown
in Fig. 5 clearly change linearly. It is interesting to see that
the shear stress is linear with respect toz in the present flow
configuration even if the viscosity is non-Newtonian. We re-
mark that this is a peculiar feature of the rectangular flow
configuration in the absence of the normal stress differences.
If the normal stress differences are nonvanishing, the shear
stress is not expected to be a linear function ofz according to
the studies[24,25] on macroflows.

In microflows, the Knudsen effect manifests itself in the
flow rate, and it is known empirically that there exists a
minimum in flow rate plotted againstNKn. As we have shown
by means of an approximate but analytic solution, there is
indeed a minimum in the flow rate versusNKn. It is shown in
Fig. 6 where the flow ratesf for values ofd=0.25 and 0.5
and forc* =10 are plotted againstNKn for the same values of
the other parameters as used for Fig. 1. TheNKn dependence
of f clearly indicates the limiting behaviors exhibited byMf
calculated with the approximate solution forb as shown ear-
lier, and the flow ratef for the parameter values chosen has

a minimum aroundNKn.1, as shown by DSMC simulations
[7–9]. The appearance of a minimum in the flow rate as
pressure or the Knudsen number changes is a hallmark of
rarefied gas flows, which were originally discovered by
Knudsen[18,19] in the case of an infinite tube flow. The flow
rate increases in the high Knudsen number regime past the
minimum because the flow tends to be ballistic as the gas
rarefies and the mean-free path becomes comparable with, or
larger than, the channel width. We have had a glimpse of
how this situation arises when we have examined the limit-
ing behavior of the streamwise velocity in Eq.(60), which
shows a plug flow profile indicating that the flow is axially
ballistic. The Langmuir boundary conditions resulting in a
slip behavior of the flow play an important role in producing
such a ballistic flow behavior. The flow rate shown in Fig. 6
indicates that the generalized hydrodynamics model, with
Langmuir boundary conditions presented in this work, cap-
tures the most important of the features of microflows ob-
served experimentally or in the DSMC simulations. This fea-
ture is a product of interplay between the nonlinear transport
process, namely, non-Newtonian viscosity, and the Langmuir
boundary conditions. The curve depends on the value of the
exponentd, which we consider to be an empirical measure of
the multiplicity of layer covering the surface. Thus, the pa-
rameter is an indication that the sites are covered by more
than one layer of gas molecules. Nevertheless, the Langmuir
boundary conditions and the gas-surface interactions in the
context of microflows need further study in depth, but the
present model indicates such study should be useful and
worthwhile for a better understanding of microflows. The
point we would like to make here is that the flow profiles in
microchannels are products of a combination of the nonlin-
ear constitutive equation—a non-Newtonian law of

FIG. 4. The transversal velocity profile, with the same param-
eters as for Fig. 1.

FIG. 5. The shear stress profile, with the same parameters as for
Fig. 1.

FIG. 6. The Knudsen number dependence of flow ratef. The
parameters are the same as for Fig. 1, except for the Knudsen num-
ber treated as an independent variable. The exponentd is treated as
an empirical parameter for this figure. The values ofd are: d
=0.25,0.5. Ifd.0 there appears a minimum in the flow rate around
NKn.1. The asymptotic behavior of the flow rate is fairly sensitive
to the coverage exponentd, which reflects the surface roughness
and interactions between the surface and the gas.
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viscosity—and Langmuir boundary conditions, which are an
effect of the surface on the flow.

Equation(38) for f and its solution(43) indicate thatf is
independent of the transversal positionz. Therefore, since
the temperature is uniform in the channel, the transversal
density distribution is uniform by virtue of the ideal gas
equation of state, perhaps, except in the Langmuir boundary
layers. The thickness of the Langmuir boundary layers con-
sistent with the velocity profile is

Dz = NKn/s1 + xNKnd.

This means that in the midportion of the channel, excluding
Dz near the walls, the density distribution is uniform as pre-
dicted by r=p/kBT. In the Langmuir layers the density is
given by the equilibrium value, determined by the bulk den-
sity minus the adsorbed portion of the gas as determined by
the Langmuir isotherm at the given temperature.

It is interesting that even a gas exhibits a non-Newtonian
behavior as it rarefies sufficiently, so that the Knudsen num-
ber becomes large. The present model suggests that the non-
Newtonian viscosityh depends on density in the manner

h , n ln n−1 , NKn
−1ln NKn, s90d

asn decreases to the rarefied regime orNKn increases beyond
unity.

V. CONCLUDING REMARKS

In this paper, we have presented a generalized hydrody-
namics model for microchannel flows, which captures the
important features of microflows experimentally observed.
The model combines the generalized hydrodynamics and the
Langmuir boundary conditions. In the case of macroflows,
the former is known to be capable of describing flows far
removed from equilibrium. For example, the generalized hy-
drodynamic equations have been shown to account for mac-
roscopic flows of rarefied gases[24,25,46], shock wave
structures of monatomic[47] and diatomic[48] gases, and
ultrasonic dispersion and absorption of di-atomic gases[49].
Since the generalized hydrodynamics reduce to the classical
NSF theory in the limit of very smallNd, the model is inclu-
sive of the NSF theory, which has usually been employed for
the description of microflows[1,5] in the transient regime of
flow with the help of slip boundary conditions. The Lang-
muir boundary conditions take into account the important
surface-fluid interactions by using a model closely resem-
bling the original adsorption theory of Langmuir[10]. There-
fore, the present model improves the NSF-Langmuir bound-
ary condition model of Myong[35] in the two aspects that
the generalized hydrodynamics equations are used and the
Langmuir boundary conditions proposed in Refs.[14,26,35]
are modified, so as to account for multiple adsorption of
molecules at an adsorption site on the surface. Such a mul-
tiple adsorption model does not appear to be farfetched con-
sidering the roughness of boundary surfaces in a micrometer

scale as observed by Harleyet al. [36]. In surface science,
such rough surfaces are known to provide sites for multiple
adsorption of molecules. The accommodation coefficients in
the NSF theory approach, taken by various authors in micro-
flows [1,4], remain as adjustable parameters until they are
calculated by means of a suitable surface-gas molecule inter-
action model, whereas the coverage parameteru used in this
work is explicitly computable by means of statistical me-
chanics. This is an important theoretical difference between
the two approaches with regard to the boundary conditions.

The necessity of taking the surface-fluid molecule inter-
actions into account in the description of microflows calls for
broadening the scope of purely fluid dynamic modes of
thinking into the realm of the surface-molecule scattering
theory, which is also a many-body problem, but not in the
sense of the molecular theory description required of fluid
dynamic flows of matter. The surface-molecule scattering
phenomena are what may be justifiably called few-body dy-
namics problems at the molecular level of description, which
require the quantum mechanics of a few particles involved.
Therefore, in this work it is suggested that microflows may
be described by combining two divergent viewpoints toward
flows of matter into a single harmonized theory, namely, a
combination of a continuum mechanics theory in the form of
generalized hydrodynamics appropriate for fluids far re-
moved from equilibrium and the Langmuir boundary condi-
tions that can describe the surface-molecule interactions on
the basis of few-body dynamics using quantum-mechanical
methods. The same remark probably applies to nanoflows in
systems of nanoscales. We believe that the present approach
of separating the two basic aspects is simpler than the Max-
well slip boundary condition approach where two aspects are
inextricably meshed up in a continuum theory of flows. It is
also easier in the present approach to implement the
quantum-mechanical calculation required for boundary con-
ditions on the basis of surface-gas molecule interactions. The
present theory is aimed at contributing toward a fuller theo-
retical understanding of the fascinating subjects of flows in
small scales. A great deal of work remains to be done in
connection with the boundary conditions, taking into account
the surface-fluid molecule interactions and their effects on
flows in microsystems and nanosystems, as well as applica-
tions of the present generalized hydrodynamic theory.

For lack of experimental data on flow profiles in micro-
channels, we have been able to compare the results of the
present theory with either DSMC results or the results pre-
dicted by the Boltzmann equation. Recent developments
[50,51] in particle image velocimetry will hopefully be able
to provide the desired experimental data that will enable us
to make a comparison of the prediction by the theory with
laboratory experiments.

The present theory can be applied to nonhard sphere
gases. Since there are some simulation results[52] for den-
sity and velocity profiles available for a large Knudsen num-
ber flow in the Lennard-Jones gas, it would be useful to
investigate such a case, but it is not done here for lack of the
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viscosity data for the Lennard-Jones fluids that are necessary
for the present line of theory.
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