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In this paper, a mathematical model within the framework of generalized hydrodynamics is developed for
the description of flows in microsystems where the Knudsen number is large and the aspegtvidtin/
(length] is not so small. The model is based on a set of empirical generalized hydrodynamic equations, which
are fashioned from the steady-state generalized hydrodynamic equations derived from the Boltzmann equation
in a manner consistent with the laws of thermodynamics. The constitutive equations used for the model are
highly nonlinear, unlike the Newtonian law of viscosity and the Fourier law of heat conduction, but they are
thermodynamically consistent. In the absence of heat conduction, the model yields exact solutions for the
velocity components and a nonlinear differential equation for the pressure distribution in the rectangular
microchannel. The Langmuir adsorption model for surface-gas interaction is used for boundary conditions for
the velocity. The calculated flow rate exhibits a Knudsen minimum with respect to the Knudsen number. The
longitudinal velocity profile is also non-Poiseuille. The differential equation for pressure distribution is also
solved approximately in order to obtain an analytic formula for the flow rate, which exhibits a Knudsen
minimum. The formula, although approximate, provides considerable insights into the Knudsen flow phenom-
ena in microchannels.
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I. INTRODUCTION large Knudsen number regime in the case of two- or three-

Because of the technological applications, flows in SyS_QimensionaI flows. In any case, it is desirable to have a con-

tems of micro- and nanoscales are of considerable currefifitum hydrodynamical approach, which gives a different
interest[1-6]. However, the problems are also of great sig_perspecnve to the understanding of the subject matter and

nificance from the fundamental theoretical viewpoint be-EVen gives semianalytical results for some flow problems.
cause physical phenomena, including flow phenomena ifl "€ Present work is aimed at such a goal. .

systems of the aforementioned spatial scales, reveal new as- As the size of th!a flow system gets smaller, the r_elatlve
pects not amenable to the classical hydrodynamical trea 2& of the boundaries of the flow system becomes increas-

. gly large compared with the fluid volume flowing through
ments, and call for approaches to understand{ng the_m. F Ee system, and thus the boundary conditions evidently begin
this reason, there has been considerable attention paid to t

Co o ) play an important role in determining flow characteristics.
subject in recent years within the framework of the Navier-, oyher words, the surface-fluid interactions can have major

Stokes theory with slip boundary conditions, but there argtecs in determining the physical properties of flow charac-
still many areas of study on the subject that should be carrieg isiics, Microflow phenomena, however, is not the first sub-

out in order to put the theory into a form comparable to thatect that requires the recognition of the importance of
for macroscopic scale flows. The present work is a contribusyrface-fluid interaction effects, since surface-fluid interac-
tion toward that end. tion effects, in fact, have been well recognized and studied
It is generally known that classical hydrodynamics is notextensively in surface and colloid sciences for a long time
capable of satisfactorily treating flows in microsystems. Thesince the pioneering work of Langmuii0]. Therefore,
important questions are to what extent and in which directiorstudy of flows in micro- or nanostructures should have much
should the classical hydrodynamics, namely, the Navier+to benefit from the concepts, notions, and theories developed
Stokes—FourierNSF theory, as a continuum mechanics in surface science and, in particular, in the field of surface-
theory, be modified if a continuum mechanics approach is t@as scattering11-13. It, however, should be remarked that
be taken for the flow phenomena of interest. These questiorthe surface-fluid molecule interactions are actively present,
are all very worthy and challenging from the fundamentalregardless of the sizes of the systems and the density of the
theoretical and practical viewpoints. As a way to improve thefluid in hand, but their effects do not become manifestly
situation beyond the NSF theory approach, the direct simuebservable, and they play a significant role in determining
lation Monte Carlo(DSMC) method[7] has been increas- flow characteristics unless the Knudsen number of the flow
ingly used for study of microflowg8,9]. The DSMC method becomes sufficiently large.
facilitates the understanding of microflow phenomena from a In this work we would like to combine the surface-gas
purely computational standpoint, but it is also known that itinteractions with the ideas of continuum mechanics theory to
has its own limitation$8] when applied to phenomena in the see how far the combination mentioned can be pushed for-
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ward and where the limitations of such a combination lie.they are still applicable to large Knudsen number flows be-
What we report in this work represents an elaboration of th&ause the nonlinear transport processes are appropriately
generalized hydrodynamics formulation for microflows taken into consideration in them, so that the flows are prop-
sketched out in a recent wof4]. In the present work, not erly described despite the large Knudsen number. The break-
only is the formulation reworked, but also numerical analysisdown in the large Knudsen number regime of the classical
is made to see if the theory has practical utility in microflow hydrodynamics, and the first-order Chapman-Enskog kinetic
studies. We show that it is capable of describing the Knudsetheory that underlies the classical hydrodynamics, have
flow, which is known to be one of the prominent features ofgiven rise to the unfortunate belief that the continuum me-
microflows. chanics loses its power in the large Knudsen number regime.
This paper is organized as follows: In Sec. Il the generalSuch a belief appears to be unjustified on the basis of the
ized hydrodynamic equatiorj44—-1§ are presented for gas evidenceg14-16,24—2Faccumulated so far by means of the
flows in a rectangular microchannel. They can be derivedjeneralized hydrodynamics and the results presented in the
[17] from the Boltzmann equation in conformity with the following in this work, since they indicate that if the crucial
laws of thermodynamics, but may be treated as phenomenaonlinear transport processes are properly taken into consid-
logical equations if the transport coefficients are accepted aaration, the continuum mechanics concept produces sensible
phenomenological parameters. In the case of the latter apesults and thus is still applicable to large Knudsen number
proach, they may be regarded as a thermodynamically corflows.
sistent phenomenological model for the hydrodynamic de- The thermodynamic consistency constraint used for deriv-
scription of microflows. Since the surface-gas interactionsng the generalized hydrodynamic equations is very useful
become increasingly important as the ratio of the surfacéor acquiring hydrodynamic equations that are not only in
area to the characteristic gas volume in the flow system ineonformity with the laws of thermodynamics but also very
creases, and the boundary conditions are thereby modified, éffective in describing nonlinear processes occurring far re-
is necessary to examine and take into account such interamoved from equilibrium. Such generalized hydrodynamic
tion effects in the formulation of flow problems. This aspectequations have been formulated for the purpose just men-
of the flow problem is also considered in Sec. Il. Then, ationed and applied to various large scale flow problems. In
solvable model for the steady-state generalized hydrodythis work we apply them to microflow phenomena involving
namic equations for the rectangular channel flow in the midarge Knudsen numbers. Since the generalized hydrodynamic
croscale is developed and solved with the boundary condiequations are sufficiently well reviewed in the literature, it is
tions that take into account the surface-gas interactions inot warranted to go over their derivation, and the reader is
Sec. lll. Such boundary conditions will be given the termreferred to Refs[14-1§ and the references quoted therein
Langmuir boundary conditions. The flow characteristics thudor their derivation and details, especially, with regards to
obtained are described in Sec. IV. The numerically computetheir relation to the classical hydrodynamics equations and
flow rate exhibits a Knudsen minimum, as observed experialso their validity. In this work we will simply cast them into
mentally [18—2(. Approximate analytic expressions for the appropriate forms necessary for the flow problem at
pressure distribution and flow rate are also presented for thieand.
insights they provide with regard to microflows. The ap- The notation used in this work is kept the same as in Refs.
proximate, but analytic, flow rate formula thus obtained alsg14—14 so as to make the reading of this article as easy as
exhibits a minimum. Discussions and concluding remarkgossible in reference to the body of the previous work on the
are given in Sec. V. subject matter. We simply note that (uy, uy,u,) is the fluid
velocity andp is the mass density. The stress tensor will be

denoted byP and its traceless symmetric part b, that is,
Il. GENERALIZED HYDRODYNAMIC EQUATIONS

If the fluid is far removed from equilibrium because the 1| :pﬁ = l(|D+ P - 15Tr P, (1)
Knudsen or Mach number is large, then the conventional 2 3
hydrodynamic equations, such as the NSF equations, 108ghere 6 stands for the unit second rank tensor. The excess
;cjhglr effeqtn_/eness in the.desc.rlptlon _of flow in such a CONnormal stress will be denoted by

ition. This is well recognized in rarefied gas dynanji23].

It has been shown in the literatuf@4-16,24—27 that the ~ 1
classical hydrodynamics equations, namely, the NSF equa- A=pA= §Tr P-p (2)
tions, can be generalized for the flow regimes, where the
aforementioned fluid dynamic numbers are large, in such aith p standing for the hydrostatic pressure.
manner that they fully obey the laws of thermodynamics. Under the assumption of uniform temperature, we con-
When the laws of thermodynamics are strictly satisfied by asider the channel flow in which the axial direction of the flow
set of hydrodynamic evolution equations, the set is said to b&s assumed to be parallel with theaxis of the coordinate
thermodynamically consistent, and the aformentioned genesystem whose origin is suitably fixed at a point. This means
alized hydrodynamic equations are examples for such thethat heat flow is absent, and hence the heat flux evolution
modynamically consistent evolution equations for macro-equation is not taken into consideration. The channel is as-
scopic flow variables. Although the generalized sumed to have a widtb in they direction, whereas the
hydrodynamic equations are continuum theory equationgjirection is neutral and has no flow in that direction. There-
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fore there is no flow velocity in the direction, that is,u, p duy, Uy du, du
=0. In this case, the flow becomes two dimensional. Since ~ — d()ILy=—p{ —2+ = 1/ +—

. o Mo ax  ady ax  dy
the lengthL of the channel is necessarily finite in the case of

microflows, the translational invariance of flow variables 1. (U duy (10)
along the channel axis is broken. This broken translational 2 Nay ax/)

invariance means that the flow variables depend on the axial ) ) ) ]
position x, and it thus gives rise to a coupled system ofIn these equationg)(x) is the nonlinear factor defined by
partial differential equations for flow variables varying with

respect tax andy. Under the assumptions made, the gener- g(k) =
alized hydrodynamic equations consist of the equation of

continuity, momentum balance equation, and the shear streggere « is the dissipation function, which, when expressed

evolution equation, because for a dilute gas, the excess nof terms of the shear strebk, and the primary normal stress
mal stress identically vanish¢s5,16; that is,A=0. For the N is given by

flow problem at hand, the generalized hydrodynamic equa-

sinh k

tions become those of a steady-state two-dimensional flow. - (2. }Nz v (11)
Sincell is traceless and symmetric it follows that in the K= 20\ Y 2 1)
case of the two-dimensional flow, ) ) ] ] )
with 7 denoting the relaxation time defined by
[T+ Iy =0. 3 7= (oV2mksT) ks To) 2. (12)

Sincep and T are in the set of local conserved variables,Here m; is the reduced masg; is the size parametdr.e.,
which relax much more slowly than the nonconserved varidiametey of the moleculen is the number densitkg is the
ables such as the stress tensor and heat flux, the ideal gB8ltzmann constant, ang is the viscosity of the gas—the
equation of state can be sho\itb,1§ to be valid even if the Chapman-Enskog viscosity.

flow is far removed from equilibrium. If the gas is ideal and  If the evolution equations for the stress tenkband the

the temperature is spatially uniform, then the ideal gas equateat flux are derived from the Boltzmann equation, the non-
tion of state linear factorq(k) arises if the Boltzmann collision term is

expanded in cumulants, which are basically resummations of
p=pksT (4) an expansion of the Boltzmann collision integral in an infi-
nite series of the Knudsen number. The nonlinear factor,
can be used to eliminate the density in the equation of contherefore, enables us to describe rather effectively transport
tinuity and other evolution equations given earlier. With theProcesses to infinite order in the Knudsen number, and as a

definition of the primary normal stress difference consequence, the transport processes described by the evolu-
tion equations, such as Eq®) and(10), are highly nonlin-
Ny = [T, — T, = 211, = - 211 (5  ear Moreover, because the nonlinear factor is intimately con-
xx " Hlyy XX yy!

nected to the local form of the second law of

the steady-state generalized hydrodynamic equations in thtgermodynamics and satisfies the_ inequa}&tysinhzo_ de-
adiabatic approximatiofl4—1§ can be put into the forms manded by the latter, the generalized hydrodynamics equa-
tions satisfy the second law of thermodynamics. Therefore

they are thermodynamically consistent.

TPy + IPY =0, (6) Equations(9) and (10) are the steady-state constitutive
X aay equations for the primary normal stress difference and the
shear stress, respectively. Equatict®0), in particular, re-
D P op (10 g C.IUCGS. to the Newtonian law of viscosity if the equation is
—<Ux_ + Uy_>Ux= - (—— 1t Xy>, linearized with respect to thH andN; dependence. There-
keT\ "ox  “dy ax \2dx ~ dy fore, the model generalizes the NSF equations with respect

(7)  to the constitutive equations for stress tensor components.
The generalized hydrodynamic equatig6s~10) are appli-
cable to monatomic gases that flow in a steady state far re-
L(u 9 ‘u i)u __9p_ (iH B }iN ) moved from equilibrium. The size of the system, and hence
keT\ “ax  Yay/ " ay \ax ¥ 29y ) the Knudsen number, is not as yet manifest in the equations
8) presented. To make them apparent it is necessary to cast the
generalized hydrodynamic equations into dimensionless

forms.
duy, du 1 du, du
£q(K)Nl =- 2p<—x - —Y) + —Nl(—X + —¥> A. Nondimensionalization of the generalized hydrodynamic
o gx dy/ 2 "\Jx dy equations
I (% _ ﬂx) (9 The evolution equations presented are made nondimen-
N gy  ax sional by suitably scaling the variables involved. Let us de-
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note byL the channel length, b the channel width, by,
the entrance velocity, and hy, the pressure at the entrance
of the channel. The exit pressure will be denotedphpyWe
also define the nondimensional fluid dynamic parameters

D

L )

u.D
Npe= Pele ,
7o

ue
N g T ,

Ny = (13

E=

wherev is the polytropic ratiqratio of specific heajsof the
gas. The parameteris the aspect ratid\g. is the Reynolds

number, and\y, is the Mach number at the channel entrance

The mean-free pathof the gas entering the channel is de-
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8kaT
mm

e

The fluid dynamic number associated with the dissipation
function « is the nonuniformity numbemN; defined by

[14-19
|2y
Ns= 1/ —NuNkn-
T

This nonuniformity number plays an important role in the
generalized hydrodynamic equations since it is the parameter

(18

fined by the relation determining the measure of energy dissipation in the flow

process, since in the nonlinear factoq(x) is proportional

to N;. If the nonconserved variables in Eg8) and(10) are
expanded in a series ®f; then the leading order equations
This is the mean-free free path theory expres$isj for the  are those of the classical hydrodynamics, namely, the
shear viscosity of the gas. The mean-free patinust be  Navier—Stokes theory. For the discussion of this aspect, see
estimated in terms of molecular parameters if it is to be mad®efs.[14-1§.

use of in fluid dynamic investigations. We use the following  With various nondimensional numbers so introduced, if

“mpeud . (14

7]022

method: various variables involved in the evolution equations are
If the Chapman—Enskog shear viscodi88—3Q for hard  nondimensionalized as follows:
spheres,
é=xLY, (=yD7,
5 \'mlq3T
=16 N U=UfUe,  v=UJele &= plp,,

is used for, then the mean-free path is more explicitly

given by the formula (19

#=Ngll(170Uud/D),  @=NsN;(770U/D),

the generalized hydrodynamic equations then can be given

J—
> ,—\’ml%T = 5/— = . (15 the nondimensionalized forms
8\Vmo’mpale  16v2 pe
. . r? ¢>u (9 d v
This is good enough for our purpose here, but if an expres- =0, (20
sion for a nonhard sphere potential model is desired for (95 ‘75
|—e.g., for the Lennard-Jones potential model—thenay
be expressed in terms of the collision bracket integrakfor alp d 1 du  du
of the Lennard-Jones gas. This will require a numerical com- T proe)t yeNy b P ALY: =0,
putation of the collision bracket integral involved, which in
turn requires the collision cross section as a function of scat- (21)
tering angles and the relative kinetic energy of collision. We
would like to avoid the need for computing collision bracket d 1 N 312 dv  dv)\ _
integrals because we are principally interested in the hydro- Sa_g tl - 2% te a_g +ye"Ny ¢ Ua_g +UO7_§ =0,
dynamic aspects of the flow phenomenon of interest, which
can be examined without such complications mentioned. (22
With the mean-free path so given in terms of density as in
Eq. (15), the transversal Knudsen number is defined by ) ( 2 >5u 4 z//<¢9u au>
- 6 0 )¢ 7 g\ag T ag
Kn— .
D —82<N(S 2N )ﬁv (23)
This implies that there are some relations among nondimen- 2823
sional fluid dynamic parameteldge, Ny, andNg, in the case
of | for hard spheres we obtain A= 4NKn¢Mu 28N5(ﬂ ~ &_v)
\/7 $al a& d¢
Ny =1/—N . 17
T o . gsNan)(a_u M) NG (24
™ p\IE L poé

For this relationy, is taken as the root mean square speed of
the gas The dissipation function is now given by the formula
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1 [7321 1, 172 fects. This is well recognized in rarefied gas dynamics, and
K= 5 7;(%‘ >¢ ) . (25 there are numerous works devoted to this aspect in the lit-
erature [32,33. Therefore, surface-fluid interactions4]
The dissipation function in the present reduced form supermust be properly taken into account if one desires to com-
ficially appears to be independent . However, it should prehend various flow characteristics in microflows from the
be remembered that it is a consequence of the particuldrydrodynamical viewpoint.
manner of scaling made fdi,, andN, in Eq. (19). Never- In the approach to this problem in the field of microflows,
theless,x in effect depends implicitly ofNs through its ap-  various authors[1,4] have employed the Navier-Stokes
pearance in the other parts of the equations. The presetiteory and have implemented it with the conventional slip
manner of scaling the variables is convenient for developindpoundary conditions in the same manner as originally devel-
approximations for the nonlinear flow problem under consid-oped by Maxwell[32] and, for example, often used in rar-
eration, especially if nonlinear dissipative effects are desireéfied gas dynamicf23]. This approach not only limits the
to be taken into account. hydrodynamic description to that of the classical theory, but
If the axial flow velocity is known, the volume flow rate also requires an expansion of the flow velocity in a series of
may be calculated with it. Since the temperature is uniformmean-free paths and the determination of the expansion co-
by using the reduced equation of state, the volume flow ratefficients in terms of accommodation coefficierjts3] Such
can be cast into the form an approach does not make evident the connection between
1 1 the accommodation coefficients and the interaction of the
- surface and fluid molecules. The desired connection cannot
fo AE4(& OU(E: Dlezo fo dHEDUE Dl (20 be achieved unless the molecular nature of surface is explic-
itly taken into account by means of a suitable molecular

With the definition model.
1 On the other hand, it was shown by Eual. [26] that if
f(¢) :f dZp(€,Du(E,Q), (27)  the generalized hydrodynamic equations are combined with
0 the Langmuir adsorption theof§0], which adequately takes

into account the surface-fluid interactions, flow characteris-
Ics of rarefied gases can be adequately accounted for. This
Langmuir adsorption model was applied to a microflow

this particular form of the mass conservation law represente
by Eq.(26), therefore, may be written as a differential equa-

tion problem by Myong[35] within the framework of the classi-
df(é) cal NSF hydrodynamic theory. However, it is desirable to
dé =0. (28) improve upon the classical NSF theory in order to capture

more satisfactorily the basic feature of the Knudsen flow. We
Equation(26) and (28), when explicitly worked out, can be will show in this work that the generalized hydrodynamics
found to be a differential equation for pressure distributionequations can be employed with the Langmuir adsorption
along the axial direction. This equation can be equivalentlytheory [15,26,35. There still is room for improving the
replaced by the boundary conditions for the transversal com:angmuir boundary conditions in their application to micro-
ponentyv at the walls of the channel, which produces a dif-flow problems, but we will defer a further study of them to
ferential equation for the pressure distribution, as will bethe future.
discussed and used later. The differential equatigfs«24) Equations(20)<24) will be solved subject to the bound-
and Eq.(28) complete the evolution equations with which to ary conditions
determine flow variables for the microchannel flow under
consideration. u(¢=0,8=u, u(¢=18=u,

B. Langmuir boundary conditions u(¢=04=v(£=1.6=0,

We have seen in previous studifii—16,26,3] of mac- HE=0,0)=¢y HE=1,0=(0C<1), (29
roflows in the large Knudsen and Mach number regimes that
with just stick boundary conditions, the generalized hydro-where u, and u; are the boundary values of the velocity,
dynamic equations still can adequately account for flow charwhich will be elaborated later, andy and ¢, are reduced
acteristics in the flow regimes mentioned, because the nompressures at the entrance and exit of the channel. It should be
linear energy dissipation mechanism, which is properly builinoted thatu, and u; are equal to zero in the case of stick
into them, is adequate for giving rise to nonlinear transporboundary conditions, but, as already mentioned, such bound-
processes. However, as the size of flow systems is dimirary conditions are generally unsuitable in the case of flows in
ished to the level of microflows or nanoflows, the ratio of themicrochannels, because despite that the surface-fluid mol-
boundary layers of the flow system to the fluid volume,ecule interactions play important roles in small systems, the
which is roughly of the order of the Knudsen number, be-stick boundary conditions do not take them into account. The
comes increasingly large, and consequently the effects of th&tick boundary conditions are appropriate if the density of
boundaries on the flow characteristics are no longer neglithe gas is such that gas molecules fully cover the surface of
gible. As a matter of fact, they even become dominant efthe channel.
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In order to take the wall-gas interaction into account sotemperature. The equilibrium constatilepends on the wall
that the physicochemical properties of the fluid and the wallsemperature and the wall-gas interaction parameters. We re-
of the flow system are well reflected in the flow behavior of mark that in the derivation of the formula f&(T) in Eq.
the fluid, we modify the boundary conditions in a manner(33), there is no condition whatsoever on the magnitudp. of
similar to the method used by Ewt al. [26] and Furthermore, because the collisions of fluid molecules with
Bhattacharyaet al. [27]. According to the aforementioned the surface occur on the time scale of ¥9-107%%s, which is
theory of boundary conditions based on the Langmuir admuch shorter than the hydrodynamic relaxation times, and on
sorption model, the velocity boundary conditions can bethe scale of hydrodynamic processes the fluid molecules may
modified to the form14] be regarded as being in equilibrium with the surface in the

interface, the assumption of equilibrium between the surface
Ua = O(T)uy, + [1 = 6(T) Jug. (300 and the fluid is not at all inconsistent with the flow problem
In this expressiony, is the wall velocity,u, is the stream- under consideration and is justifiable.
wise velocity of the fluid one or a fraction of a mean-free  However, in practice the surface is not smooth, but rough
path away from the wall; and in the case of a long mean-fre¢36]. Furthermore, it can be covered by not only monolayers
path comparable with the channel widEh the streamwise but also by multiayers of adsorbed molecules as rough edges
velocity u, may be taken for the midstream velocity. A simi- in the surface can attract many molecules at a site. Phrased in

lar equation holds for the boundary condition wmt {=1: more appropriate terms, more than a molecule can get ad-
, , sorbed(i.e., physically, but not chemically bouydt a site on
Ug = 8(T)uy +[1 = 6(T) Jug, (31)  the surface, which is rather rough in the scale of microflows.

The average number of molecules adsorbed at a site may be
in principle found by applying a statistical mechanics
method, but it constitutes a full-fledged question of its own
right, and it is not a problem we would like to devote our-
selves to in this work because it will take us far afield from
the question of fluid dynamics. We would rather like to treat
Ny it empirically and answer the fluid dynamics question of in-
g m ) terest here. In this spirit, we assume thatl +5(5>0) par-
. ticles on the average are adsorbed at a site on the surface. If
we further assume that the adsorption processes may be re-
ué:u(l—L) (32) garded as a kind of chemical reaction between thgas
1+ xNkn

molecules(M) and the adsorption sit€S) on the surface
wherey is a constant. The precigedependence afy andu; according to the reaction model

is not determined yet: it must be determined self-consistently

for the flow problem of interest by using the flow profile for
u with respect tof

where the meaning ai;, is similar to that ofuy.

Since the velocity profile should be symmetric in the
present flow problem, we may take asu at position{
=1/(1+xNgn)D=Nn/ (1 +xNkn)(x>2), Or ug asu at posi-
tion §|:1_NKH/(1+XNKI‘1):

S+vM =SM,,

then it is possible to calculate the coveragexplicitly in
terms of molecular parameters by means of a statistical me-
C. A model for the surface coveraged chanics method in a way similar to the case of monolayer
For the original Langmuir adsorption isotherm in the sim-adsorption. 1f6=0, this model reduces to the original Lang-
plest form, it is generally assumed that the surface is covere@uir model in which the surface is covered by monolayers.
by monolayers of fluid molecules. In this case, the fractionBY using the same method as for the derivation of @B3),
6(T) of the surface covered is given by the formulait is possible to show that the fractiohof coverage of the

[10,14,26 surface by the gas molecules is given by the formula
bp b'p”
o(T) = , 33 =
M= T7pp (33 o=y (35)

where the parametdy is closely related to the surface-gas
interaction characteristics anuis the pressure of gas that is
assumed to be in equilibrium with the adsorbed layer. Th
parameteb may be expressed by the formu26,27

whereb’ is a parameter depending dnand molecular pa-
rameters characteristic of the surface and gas molecules; it is
eComparable to the parameter It will be empirically found
that § is less than unity. The temperature and molecular pa-
K rameter dependences bf may be calculated by means of
=ﬁ (34 statistical mechanics under some simplifying assumptions,
B but it is not essential at this point to know its temperature
(whereK is the equilibrium constaptwhich permits evalu- and molecular parameter dependence for the purpose of cal-
ation by means of statistical mechanics since the equilibriunculating flow variables, especially with respect to the Knud-
constantk can be calculated with the surface-gas interactiorsen and other fluid dynamics numbers. Si#¢€) generally
model that treats adsorption of the fluid molecules on thealepends on pressure, and hence on the density of the gas, it
surface as a kind of chemical reaction. Hefeis the wall  varies with the Knudsen number. Form&b) modifies the

b
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coverage formula exmployed in the discussion given for the On close examination of these equations, we find that they

Langmuir boundary conditions in Rgfl4]. are almost the same as the one-dimensional channel flow
equations for a channel of infinite lengith4—1§ except for
Il. SOLVABLE MODEL EQUATIONS FOR the equation of continuity and the condition on mass flux,
MICROCHANNEL FLOW Eq. (40). We solve these equations and examine their predic-

Microchannel flow problems that we have in mind usuallytions for flow charact_eristics. This set _of equ;_itions can be, in
deal with flows with a rather low Mach number, although thefact, reduced to a single nonlinear differential equation for
Knudsen number may not be small because of a small chaPe reduced pressure. Therefore, when the differential
nel width and length. On the other hand, although the aspe&duation for¢ is solved, the flow properties of the gas in the
ratio £ is small, it is not vanishingly small. Therefore, we are Microchannel are fully determined. _
interested in creeping flows in a microchannel with a mod- Equation(38) implies that pressure is a function bnly:
erately small aspect ratio. Consequently, it is reasonable to =

. : . d=d(§). (43)
retain only the terms of first order with respectNg ande
in the generalized hydrodynamic equations. Examining thd herefore, the pressure is transversally uniform. It also fol-
evolution equation$20)—(24), we see that the inertia terms l0ws that the equation of continuity takes the form
are multiplied byNzM. Therefore, in the small Mach number au ¢ 9v
limit, the intertia terms are of second-order importance. In ¢p—+u—+¢dp—=0. (44)
any case, we take the set of equations as a proposition for a Ig ¢ 7¢
model for nonlinear constitutive relations—a non-NewtonianThis equation may be used for determining the pressure dis-
approximation. We will see that they are capable of accounttripution along the channel axis, but it is not directly in-
ing for the important features of flow behavior in microf- volved in the determination ai. It will be considered later
lows, notably, the velocity profiles and the Knudsen mini-to determine the transversal velocityafter the remaining
mum in the flow rate. Thus, on retaining only such terms agquations are solved for the longitudinal veloaity
mentioned, the following equations arise for the flow prob-

lem of interest: A. Longitudinal velocity profile
Ju PP Jv 0 Since ¢=0, the dissipation function is given by the for-
ep—+eu—t+tedp—+tep— =0, (36) mula
ag &g 19§ ag 3/2 3/2
71 12 7 1
K=\ o (WA= . (49
., 9b_. 37 y 2¢ Y 2¢
¢ x3 ' The constitutive equatio(B9), therefore, can be written as
32 q 22 1 gy
9¢_ sinh( 77——4/; ==Ns\/———.
o570 (39) \ 72¢| | N 29z

By inverting this relation, we find the reduced shear stress

Ju
(k) p=-Ns—, (39) / o |72 1 gu
5(9{ y=2 W%/zdsmh 1(— N5 7775507_{) (46)

At this point, it is convenient to define some abbreviations:

1 1
f dg ¢(§! §)U(§, §)|§=O: f dg ¢(§1 {)U(g, §)|§=lv (40)
0 0

® 71_3/2 1 1 77_3/2
a=—=Ng\/—=—, o=2-Ns\/—, (47)
or ¢ y 2¢ 2 y
d 3
—f(& =0, (41) __ 49In¢ T K
=- , == . 48
a& B=-n e M TN, (48)
for which we have useg=0 that arises from the equation On taking the derivative ofs with respect taZ and using Eq.
q(k)e=0, (42) (37), we then obtain the differential equation for
holding to the lowest order ia. Equation(41) yields a dif- K auy _
; : AN e sinh | -« = 8. (49
ferential equation for pressure variation in the axial direction, al al

but the vanishing transversal velocities at the boundafies o , ,

=0 and 1 may be used equivalently for the purpose of oblNtegrating it with respect td yields the equation

taining the differential equation mentioned. In order to re- Ju .

mind us of the order of taken, we have kept in Egs.(36) LY =-sinh(B{+O), (50)
and (38) even though it may be factored out. Equati@i)

implies that the primary normal stress differengeloes not whereC is a constant. The integration of E&0) once more
exist in the present model. gives the solution fou:
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au=- %cosnﬁm 0)+Cy, (51) u= ig[cosrg - cos%((— %) (o= 1>u|] (58)

whereC; is an integration constant. This form of solution for This means that ag— «, that is, as#— 1, the velocity pro-
u was also knowrj15,14 for the infinite channel flow prob- file becomes that of the usual macroscopic channel flow,
lem obeying the same constitutive equation §oras consid- whereas it begins to progressively exhibit the effects of sur-
ered here. The difference in the two cases lies in the fact thdace on the flow in the channel as— 0, that is, as®f— 0.
a and B now depend on the longitudinal positién There- The fraction of coverage of the surfaégiven in Eq.(35)
fore, u presented in Eq51) is not a complete solution for is expressible in terms of the Knudsen number as follows:
the flow problem untikv and 8 are determined with regard to o
their longitudinal position¢) dependence. The constants of o(T) = b"/Nin = 1 (v=1+8), (59
integrationC and C; can be determined by the boundary 1+b"/Ng, 1+c Ng,
conditions onu.

The modified boundary conditions alter the velocity pro-
file. Using the boundary condition80) and(31) in the ve-
locity formula (51) we find at{=0,

where b” is related tob’ through the transformatiomp

— Nkn. Thus, as the Knudsen number increases, the gas den-
sity or pressure is reduced and the surface coverage accord-
ingly diminishes. This, in turn, implies that the flow tends to
ap[1 - 6(T)]ug = - coshC + 5Cy, (52) be more and more rectangular, sinee agNg,, whereay is

, i ) ) independent oNg, and hence
whereu is the fluid velocity at a fraction of a mean-free path

away from the wall at=0. At the wall atZ=1, there holds a im U= ¢ cosHB—w B cosl&(x_ 2) (60)
similar equation N Q0B 2 2\ x /I
apB[1-6(T)]ug = - coslig + C) + BCy, (53)  whereg.=limy __p and, as a consequence, the right-hand

whereuy is the fluid velocity at a fraction of a mean-free free side of Eq.(60) is independent oNg, and also of¢. An

B . : approximate formula foB.. will be given later for the insight
be Symmetrc around ihe xis of the channel,  he distancel POVIdes: Because the [argt, fmitof u s independent
Y ) Sf ¢, the axial flow profile is rectangular—a plug flow, which
away from the walls are taken equal, thgj¥ ug= Uo. Solv-

) . may be regarded as being axially ballistic in motion. In such
ing the Eqs(52) and(53) for C andC, we obtain a regime ofNk, we practically have a beam of molecules.

B This limiting behavior ofu is consistent with the DSMC
o velocity profiles[4] and velocity profileg37] obtained by
the solution of a linearized Boltzmann equatidne.,
Bhantnagar-Gross-KrooBGK) equatiory, which becomes
BC, = a1 - 6(T)Juy+ coské. (54)  increasingly flat as the Knudsen number increases. Such lim-
2 iting behavior ofu indeed can be verified numerically, as is
evident in Fig. 2 presented in Sec. IV below. The plug flow
behavior is also reminiscent of the beaming effect considered
by Clausing[38] and later by other$39,4Q in connection
1 H§ 1 with vacuum technology. However, it should be noted that
u= B cosft, = coshpB| (- 5t af{1-6(T)]uo |, the aforementioned authors examined the beaming effect by
using the Knudsen cosine law of reflecti®]. This mecha-
(55 nism is different from that of the Langmuir boundary condi-

which, as will be shown, reduces to the stick boundary confion used here.

C=-

Hence, the streamwise velocity profile is given by the for-
mula

dition result[14—1§ if #=1, that is, if the surface is com- _ [|f the parametersr and3 are determined and, in fact, f
pletely covered or, put in another way, if the fluid fully sticks IS determined together with its derivativi=d¢/d¢, veloc-
at the walls. ity profile is fully determined. The determination @f is

It is necessary to determing. Taking the velocity value achieved by imposing the mass conservation in the flow
at position =Ny, /(1+xN,) near7=0 and position;=1  through the channel or deriving a differential equation dor

~No/ (1 +xNy,,) near{=1, respectively, we find from _the equation of continuity with the help of the boundary
conditions on the transversal velocity componerat =0
U and 1. We will use the latter approach.
Ug=——, (56)
o B. Shear stress profile
where The profile for the shear stress is readily obtained by us-
) H[—3 B(1+(x-2Ngy ing the streamwise velocity formula. Since
U, = cos S —-Cos AT 1en. I (57) Iu 1
+ xNkn aa—gz—sinh[&(E—g), (61)

The velocity profile under the Langmuir boundary conditions
is finally given by the formula Y is given by
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Y

which satisfies Eq37). Despite the flow velocity nonlinear

with respect taZ, the shear stress is linear with respect to

PHYSICAL REVIEW E70, 016301(2004

1 1 9 .
__1 BB —ainiP ) e AP
a/33 p f( 2cosr§ smh5> + Basth.

the present flow configuration. It is a peculiarity of the rect-cor these boundary conditions to be consistent with each

angular channel flow considered here; in the case of oth

configurations, such as, a circular tube flow, thislepen-

dence ofi is not expected to hold true, as has been shown

for flows in an infinite tubg15,21].

C. Transversal velocity profile

The transversal velocity can be readily calculated by
using the streamwise velocity calculated earlier. By using

the formula(55) for u and the equation of continuitg44),

the differential equation fos is obtained. For the purpose of
making the symmetry property af and its equation more 0
transparent, it is convenient to transform the independent v(2) =v;{z-

variable

z—g—l
=3

so that the range of the variatﬁebecome{—% ,3]. Then the

differential equation for the transversal velocitys given by

dv@) _ o 1 dap 1B

Py =v; @Bl ot coshBz+ aﬂagz sinh Bz

- Ecosh,Bz, (63)
o
where
v = [cosl‘g +(g1- 1)u1}(a,8)‘2%3— ﬁ[sinhg
1_\9U|9B  m

+2(6° 1)(7/3](9§+aCOSH§' (64)

This equation clearly indicates thab(z)/dz is even with
respect to transformation— -z, andv is odd.
Integrating Eq(63) yields the transversal velocity

v(2)=Vy+ v?z— B(iﬁ)z%gsinh Bz+ ai,Bg’Z_?(BZ coshpBz
— sinh B2) - t-sinh Bz. (65)
Ba

Imposing the boundary conditiomé—%):v(ﬁ):o, we obtain

1 1 9
“u- i’gsinh'g

27 Bap? ot 2

+ %ﬂg(Ecost - sinhé) -
af®dEN\2 2 2

O:V0+

isinhé,
Ba 2

&ther, the constan¥, must be equal to zero identically,

=0. Therefore, we obtain the equation 6r

vp - 2 zwsinh’[—g+i3a—ﬁ(écosl£—sinh§>
Blap)? 9¢ 2 afPot\2 2 2
_ 2 ginnf =
Basmha =0. (66)

This gives rise to Eq69) for 8 more explicitly given in the
following. The transversal velocity is now given by

L dap o, 1 0B
BBl o¢ sinh Bz + s ag(,Bz coshpz

-sinh Bz) - isinh Bz. (67)
Ba

This solution is indeed odd with respectzoNote thatv(z)

is equal to zero alz:r% and atz=0. Therefore, its shape
should be something like an invert&J as will be evident
from Fig. 4, presented in the following section. It should be
also recalled that since the actual transversal velocity is pro-
portional to the aspect ration, it vanishes as the channel

length becomes infinite.

D. Differential equation for g

We will use the transversal velocityto derive the differ-
ential equation foB. This equation is, in fact, the solvability
condition for the model generalized hydrodynamic equa-
tions. Using Eq(67), evaluated az=3 or —3 and the identity

1dag_ . 1d
ap i *PT gag

we obtain the differential equation fg or In ¢

(68)

d
Ll(ﬂ)d—‘; + LB =0, (69)

where

Li(B) = ésinh’§ -2 coslﬁ + Esinh'g
B2 2 2 2

(1 SN
(07" = Du + (o 1)(?,8’

4

L,(B) = —sinhﬁ -2 cosl’é - (0= 1u,. (70
B2 2

Solution of this nonlinear ordinary differential equation pro-

vides B, and thusx, which can be used in the expressions for

u andf for the flow rate.
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This differential equatiori69) can be cast into the form 1 3 +6
s 8 3 =-ml3, §+C. (76)
2,2 " —smh—+ﬁ(0‘ 1)— 2 _ ) )
d°¢” 4¢d ¢ +ol1- 20 Jp|(dg Therefore, the differential equation for the reduced pressure
P dé&? L.(B) dé in this approximation is
=0. (71) din ¢ _ - (77
By using the identities ¢ 4 M<3 + 9>§
d2¢2 d2¢ dd) 2 d2¢ 3-0
PRy _2¢ 2" By integrating it again, we obtain
dé dé¢ d§ dé y g g it again,
o [ <3 + 0) }(3—0)/(3“9)
- d;| d- , 78
d_¢ :1_(d_¢> il 2 p=dif d-p| S J¢ (78)
dé(d¢ d¢ dé¢
d_g whered and d; are integration constants. They are deter-

mined by the boundary conditions on pressure at the entrance

the differential equation may be put in a more convenientand exit of the channel:

form

B U
d1 u [smh§+2(1 0) ]

dép

=p (73

26 L, ’

which seems to be more readily amenable to approximate

treatments.
IV. FLOW PROFILES

Since the differential equation fg8 is not analytically

(3+0)/(3-06) [-1
=552
o

3+6 —(3-0)/(3+06) (;bl (3+6)/(3-6) |(3-6)/(3+06)
d, = ¢0 2 3-0 1-(— .
bo

(79)

Finally, on substitution ofl andd,, the pressure distribution
in the lowest order approximation is given by the formula

solvable in closed form, it must be treated numerically or in by \CHE0 || (3-0/(3+0)
an approximation. Before resorting to a numerical treatment =) 1-|1- % 3 . (80
of the differential equation, we examine an approximation 0
method for it. We will consider only the differential equation From this result follows the expression f@ in the same
holding for the Langmuir boundary conditions, which is approximation:
{1 ) <ﬂ)(3+a>/(3—a)]
%o

more general than the differential equation in the stick
5 1 (3 - a)
~ . \3%p @+OIE-0 ]
e

boundary conditions.

numerical solutions of Eq69) or, equivalently, Eq(73), we %o

will consider an approximate solution of E¢/3) and an  which yields the value of8 at the exit of the channel,
approximate flow rate calculated therewith. We thereby gaimamely, até=1

A. Approximate treatment of 8
Before presenting flow characteristics computed with the

considerable insights into the .Knudsen number erendence 1/3-0\[{ ¢\ @10
of the flow rate and the physical and mathematical causes By = _<_>[<_0> - 1]_ (81)
underlying the emergence of Knudsen minimum. 3+0/[\ ¢y
Since B is O(e) and e is usually less than unity, it is In this approximation we find
reasonable to expand the numerator and the denominator on
the right-hand side of the differential equati@t8) in a series 1 ¢
of 8 to obtain Bx= ; Z -1), (82
1
(1 +i’32+ > which verifies thatB., is independent oNy,,. On use of the
Jd 1 _ _6 (74) formula for @ given in Eq.(59), this form of B; may be
aep (3—0){1 3(5 e)ﬁz J written as
80\3-46 Ny )
. o . B1=2Bo| L+N -, +O\9) |, (83
To the lowest order, this equation is approximated by 2 <ol N
J 1 “ where
——=u- . (75)
IEB (3-96)

1 d’o) _ (¢o)
=— — 1, )\_
Fo=5u ”<¢>l 2" g,

This equation is easily integrated to the form
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On substituting the formula fau (58) and performing an

integration overZ, we obtain the flow rat¢41,42
2 *
f= LY cosH[—g - —sinhé +C Ngpy |-
afB 2 B 2

By using the solution foB obtained from Eq(69) this for-
mula can be readily calculated at different valuedNgj.

To gain an insight into the behavior df=f(8;) with
respect td\k, we use the approximate formuf for 8. On
setting

(84)

(85)

and scaling the flow ratg with constant factors independent
of Nkn,

a1 = a(§=1) = 0Nk,

_ 2(’1‘)B0f 1
b1

we find the scaled flow rate in the form

f , (86)

1
4+ 3Ny,
2+ 3Ny,
4+3C*Nf<n)
2+ 3¢ Nk,
4+3c*|\|,zn)
2+ 3N,

4+ 3N
Mf Kn)

coshpBg|l 1+ "
) BO( 2+ 3N,

NKn(l +\

sinh ,80(1 +\

,80<1 +\

. 4+ 3Ny,

+C Ng,coshBgl L+N———=——
2+3¢'NY,

4+3c*N;n)

- ¢'N&, cos (1 +2 -
Kn ’{BO 2+3¢ len

X(w_ZW)] -
1 +XNKn

If N is small, it is possible to approximate this formula as

follows:

inh
M, sinh 3y

1 *
= —{coshﬁo - +¢ Ng,coshBy
NKn 0

1+(x- 2)N|<n>]}_ 88)

- "Ny, cosh{ﬂ()( L+ xN
Kn

AS NKn_)O!
1

M; ,
Nicn

whereas adlx,—

(x-2)

M; ~ c*z[coshﬂo - cosh—ﬁo] N2,
X

Since
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FIG. 1. Pressure distribution in the axial direction in the case of
$0=2.5, $=0.9, Nyy=0.1, Nx,=0.1. Other parameters arey
=5/3,x=3,¢'=2.0,€=1/20,6=0.25.

(X_Z) 1
X
we find the coefficient is positive and, therefoké&; exhibits
a minimum. This feature captures the experimentally ob-
served[18] Knudsen number dependence of flow rate in an
infinitely long circular tube. The Knudsen minimum was
shown to follow from a generalized hydrodynamic theory
[21] and to be responsible for laser-induced di#2] of gas
in a long thin tube observed experimentgy3]. The mini-
mum occurs approximately &ix,=1 for a suitably chosen
set of parameters.

Such a minimum indeed occurs when E§9) is solved
numerically and the flow rate

_ 20Bf(B(1)
b1

is calculated withg so calculated, as will be shown pres-
ently.

f (89)

B. Numerical solution for 8 and flow profiles

The longitudinal and transversal velocities, shear stress
tensor, pressure distribution, and flow rate are calculated
with the values numerically obtained f@rfrom Eq.(73). In
Fig. 1, the pressure distribution along the longitudinal direc-
tion is plotted in the case of parametétg,=0.1, N,=0.5,
£=1/20,x=3, §=0.25, ancc"=2.0. It is concave in qualita-
tive agreement with experimeid4]. In Fig. 2, the reduced
streamwise velocity profilesu;=u/u’) are plotted forNy,
=0.1, 1.0, and 10 in the case of the same values taken for
other parameters as for Fig. 1. The velocity is scaledihy
which is the integral ofi({) over 0< (=<1, that is, the mean
velocity with respect td. The streamwise velocity exhibits a
slip phenomenon developing from the entrance of the chan-
nel. As the Knudsen number increases, the profiles clearly
get flatter, exhibiting the plug flow behavior in accordance
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1.5

cosity even if the stick boundary conditions are used. The
Langmuir boundary conditions simply contribute further to
the slip already present in the velocity because of the non-
linear transport coefficient. Such a tendency is in agreement
with the DSMC result§4] and the results by the numerical
solutions of a linearized Boltzmann equatif3v].

In Fig. 3 we show that the streamwise velocity profile
(shown by the solid curyeu, calculated forNg,=1 with
formula (58) and the numerical solutions of E473) are
indeed in agreement with the resultgpen circles by the
empirical formula (Eq. (5.3) of Ref. [4]) devised by
Karniadakis and BeskokkKB). Since Karniadakis and Be-
skok[4] have shown that when the paramdigg (b in their
notatior) in the KB formula for the slip boundary conditions
is suitably chosen, the KB empirical formula for slip bound-
g 55 o 5 5 = ary conditions yields results_ in excel_lent agreement with _the

) | ¢ | ‘ DSMC results and the profiles obtained with the BKG lin-
earized kinetic equatiofi37], we compare our results with

FIG. 2. Reduced streamwise velocity profilec=u/u’). The  Only those of Karniadakis and Beskok to avoid the clutter of
parameters except fa¥c, andc” are the same as for Fig. 1. The data in the figure. Therefore, the predictions of the present
solid curve is forNy,=0.1, ¢ =20; the broken curve is fd¥,,=1,  theory are also seen to be in good agreement with the DSMC
¢ =2.5; and the line with dots is fd¥,,=10,c =0.25. The veloci-  results, provided the parameter is varied with Ny, indi-
ties slip at the boundaries. cated in Fig. 3. This suggests that this parameteplays a

role similar to the Karniadakis-Beskok paramegg in Eq.
with the limiting behavior established in E¢0), and the (5.3) of Ref. [4] It should be noted that whereas the
velocity slip also increases with increasiNg,,. The increas-  Karniadakis-Beskok velocity profile is an empirical formula,
ing velocity slip arises from the combination of the Lang- the velocity profile formulg58) is a solution of the general-
muir boundary conditions and the nonlinear effect arisingized hydrodynamic equations subject to the Langmuir
from the nonlinear constitutive equation for the stressboundary conditions. Thus, the comparison made in Fig. 3
tensor—or, alternatively put, the non-Newtonian viscosity,provides support for the utility of generalized hydrodynamic
depending on density. The non-Newtonian viscosity arisegquations for the description of microflows.
because of the nonlinear factqfx) in the stress evolution In Figs. 4 and 5, the transversal velocity profile and the
equation. We remark that the sliplike eff¢e#,25,45 in the  shear stress profile are presented in the case of parameters
velocity profile can occur because of the non-Newtonian visthat are the same as for Fig. 1. The transversal velocity is odd

Us

/
0.5

1.2
'3 '3
> S 08 1.0 ) FIG. 3. Comparison of the
Kn o streamwise velocity profile of the
c =25 present theory and the prediction
0.4 by the empirical formula by Kar-
niadakis and BeskokEq. (5.3) of
0 0.2 04 0.6 08 1 Ref. [4]} in the case ofNg,

4 =0.1,1.0,5.0,10.0. The solid
curve is the present theory predic-
tions. The open circles represent-
ing the predictions by the

12 Karniadakis-Beskok empirical
formula with the Karniadakis—
5 * g Beskok parametebyg=-1 is not
3 S o8 P distinguishable from the present
N, =50 N, =10.0 theory results.
c =05 ¢ =0.25
0.4 04
] 0.2 04 ¢ 06 08 1 0 0.2 0.4 ¢ 0.6 0.8 1
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20

18 b

16} 1
—c=10,8=1/4

14} == ¢=10,8=1/2 i

0.5

g 10 0O

FIG. 4. The transversal velocity profile, with the same param-
eters as for Fig. 1.

) ) FIG. 6. The Knudsen number dependence of flow fat&he
with respect to the transversal coordin@te/—-1/2 aspre-  parameters are the same as for Fig. 1, except for the Knudsen num-

dicted by the equation far. The shear stress profiles shown per treated as an independent variable. The expohiEntreated as
in Fig. 5 clearly change linearly. It is interesting to see thatan empirical parameter for this figure. The values dfre: &
the shear stress is linear with respectto the present flow =0.25,0.5. Ifid> 0 there appears a minimum in the flow rate around
configuration even if the viscosity is non-Newtonian. We re-Ng,=1. The asymptotic behavior of the flow rate is fairly sensitive
mark that this is a peculiar feature of the rectangular flowto the coverage exponei® which reflects the surface roughness
configuration in the absence of the normal stress differenceand interactions between the surface and the gas.
If the normal stress differences are nonvanishing, the shear | ) )
stress is not expected to be a linear functiod atcordingto @ Minimum aroundNy, =1, as shown by DSMC simulations
the studieg24,25 on macroflows. [7-9]. The appearance of a minimum in th_e flow rate as
In microflows, the Knudsen effect manifests itself in the Pressure or the Knudsen number changes is a hallmark of
flow rate, and it is known empirically that there exists a'arefied gas flows, which were originally discovered by
minimum in flow rate plotted againsi,,. As we have shown Knudsen18,19 in the case of an infinite tube flow. The flow

by means of an approximate but analytic solution, there i§at€ increases in the high Knudsen number regime past the
indeed a minimum in the flow rate vershg,,. It is shown in ~ Minimum because the flow tends to be ballistic as the gas

Fig. 6 where the flow rates for values of6=0.25 and 0.5 rarefies and the mean-free path becomes comparable with, or

and forc =10 are plotted againdly, for the same values of larger than, the channel width. We have had a glimpse of
the other parameters as used for Fig. 1. Tae dependence _how this situation arises whe_n we haye (_exammed th_e limit-
of f clearly indicates the limiting behaviors exhibited by N9 behavior of the streamwise velocity in E§0), which
calculated with the approximate solution fras shown ear- shows a plug flow profile indicating that the flow is axially

lier, and the flow rate for the parameter values chosen hasPallistic. The Langmuir boundary conditions resulting in a
slip behavior of the flow play an important role in producing

such a ballistic flow behavior. The flow rate shown in Fig. 6
indicates that the generalized hydrodynamics model, with
Langmuir boundary conditions presented in this work, cap-
tures the most important of the features of microflows ob-
served experimentally or in the DSMC simulations. This fea-
ture is a product of interplay between the nonlinear transport
process, namely, non-Newtonian viscosity, and the Langmuir
boundary conditions. The curve depends on the value of the
exponents, which we consider to be an empirical measure of
the multiplicity of layer covering the surface. Thus, the pa-
rameter is an indication that the sites are covered by more
than one layer of gas molecules. Nevertheless, the Langmuir
boundary conditions and the gas-surface interactions in the
context of microflows need further study in depth, but the
present model indicates such study should be useful and
worthwhile for a better understanding of microflows. The
point we would like to make here is that the flow profiles in
FIG. 5. The shear stress profile, with the same parameters as fonicrochannels are products of a combination of the nonlin-
Fig. 1. ear constitutive equation—a non-Newtonian law of

g ' : 10
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viscosity—and Langmuir boundary conditions, which are anscale as observed by Harley al. [36]. In surface science,
effect of the surface on the flow. such rough surfaces are known to provide sites for multiple
Equation(38) for ¢ and its solutior(43) indicate thatp is  adsorption of molecules. The accommodation coefficients in
independent of the transversal positiénTherefore, since the NSF theory approach, taken by various authors in micro-
the temperature is uniform in the channel, the transversdlows [1,4], remain as adjustable parameters until they are
density distribution is uniform by virtue of the ideal gas calculated by means of a suitable surface-gas molecule inter-
equation of state, perhaps, except in the Langmuir boundargction model, whereas the coverage parametesed in this

layers. The thickness of the Langmuir boundary layers conWOrK is explicitly computable by means of statistical me-
sistent with the velocity profile is chanics. This is an important theoretical difference between

the two approaches with regard to the boundary conditions.
A =Ng/(1+ xNkp) - The necessity of taking the surface-fluid molecule inter-

actions into account in the description of microflows calls for

This means that in the midportion of the channel, excludingOroadening the scope of purely fluid dynamic modes of
A/ near the walls, the density distribution is uniform as pre'thinking into the realm of the surface-molecule scattering

d@ctedbbyﬁzp/kBI.b I_n the Il_angdmuir que(rjsbthehdebnsltydis theory, which is also a many-body problem, but not in the
given by the equilibrium value, determined Dy the bulk den-qonqe of the molecular theory description required of fluid

sity minus the_adsorbed portion of the gas as determined béfynamic flows of matter. The surface-molecule scattering
the Langmuir isotherm at the given temperature.

. ph hat be justifiabl lled few-body dy-
It is interesting that even a gas exhibits a non-Newtonia enomena are wha may e JUSHIably caied few-body ¢y

behavi i fi Hicientl that the Knud amics problems at the molecular level of description, which
ehavior as It rareties sufliciently, So that the Knudsen numFequire the quantum mechanics of a few particles involved.

Cfherefore, in this work it is suggested that microflows may
be described by combining two divergent viewpoints toward
p~ninnt~ N;ﬁln N, (90) flows_of maitter into a single harmor_1ized theo_ry, namely, a
combination of a continuum mechanics theory in the form of
asn decreases to the rarefied regimeNgy, increases beyond generalized hydrodynamics appropriate for fluids far re-
unity. moved from equilibrium and the Langmuir boundary condi-
tions that can describe the surface-molecule interactions on
V. CONCLUDING REMARKS the basis of few-body dynamics using quantum-mechanicgl
methods. The same remark probably applies to nanoflows in
In this paper, we have presented a generalized hydrodyystems of nanoscales. We believe that the present approach
namics model for microchannel flows, which captures theof separating the two basic aspects is simpler than the Max-
important features of microflows experimentally observedwell slip boundary condition approach where two aspects are
The model combines the generalized hydrodynamics and theextricably meshed up in a continuum theory of flows. It is
Langmuir boundary conditions. In the case of macroflowsalso easier in the present approach to implement the
the former is known to be capable of describing flows farquantum-mechanical calculation required for boundary con-
removed from equilibrium. For example, the generalized hy-ditions on the basis of surface-gas molecule interactions. The
drodynamic equations have been shown to account for magresent theory is aimed at contributing toward a fuller theo-
roscopic flows of rarefied gasd24,25,4, shock wave retical understanding of the fascinating subjects of flows in
structures of monatomif47] and diatomic[48] gases, and small scales. A great deal of work remains to be done in
ultrasonic dispersion and absorption of di-atomic gd48k connection with the boundary conditions, taking into account
Since the generalized hydrodynamics reduce to the classicttie surface-fluid molecule interactions and their effects on
NSF theory in the limit of very smal;, the model is inclu-  flows in microsystems and nanosystems, as well as applica-
sive of the NSF theory, which has usually been employed fotions of the present generalized hydrodynamic theory.
the description of microflowgl,5] in the transient regime of For lack of experimental data on flow profiles in micro-
flow with the help of slip boundary conditions. The Lang- channels, we have been able to compare the results of the
muir boundary conditions take into account the importantpresent theory with either DSMC results or the results pre-
surface-fluid interactions by using a model closely resemdicted by the Boltzmann equation. Recent developments
bling the original adsorption theory of Langm{iirf0]. There-  [50,5] in particle image velocimetry will hopefully be able
fore, the present model improves the NSF-Langmuir boundto provide the desired experimental data that will enable us
ary condition model of Myond35] in the two aspects that to make a comparison of the prediction by the theory with
the generalized hydrodynamics equations are used and th&boratory experiments.
Langmuir boundary conditions proposed in R¢fs4,26,35 The present theory can be applied to nonhard sphere
are modified, so as to account for multiple adsorption ofgases. Since there are some simulation re$G#for den-
molecules at an adsorption site on the surface. Such a musity and velocity profiles available for a large Knudsen num-
tiple adsorption model does not appear to be farfetched corber flow in the Lennard-Jones gas, it would be useful to
sidering the roughness of boundary surfaces in a micrometénvestigate such a case, but it is not done here for lack of the

Newtonian viscosityy depends on density in the manner
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viscosity data for the Lennard-Jones fluids that are necessa@uebec through the Center for the Study of Nonequilibrium

for the present line of theory. and Nano MaterialfRQMP), McGill University, and the
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