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We introduce a simple model of population dynamics which considers reproducing individuals or particles
with birth and death rates depending on the number of other individuals in their neighborhood. The model
shows an inhomogeneous quasistationary pattern with many different clusters of particles arranged periodically
in space. We derive the equation for the macroscopic density of particles, perform a linear stability analysis on
it, and show that there is a finite-wavelength instability leading to pattern formation. This is responsible for the
approximate periodicity with which the clusters of particles arrange in the microscopic model. In addition, we
consider the population when immersed in a fluid medium and analyze the influence of advection on global
properties of the model, such as the average number of individuals.
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I. INTRODUCTION

Interacting particle systems are useful models to under-
stand a variety of effects in fields as diverse as condensed
matter physics, chemical kinetics, population biology(where
they are called individual based models) or sociology(agent
based models) [1]. As one of the simplest examples one can
consider an ensemble of Brownian particles, each one dying
or duplicating with given probabilities per unit of time. Sev-
eral authors[2–6] have considered suchBrownian Bug(BB)
model in the context of population dynamics(in particular to
address plankton distributions and patchiness), in the case in
which the probabilities of death and reproduction are equal.
Aggregation of the particles in a decreasing number of clus-
ters occurs. This clustering is somehow surprising since a
standard mean-field or rate-equation description gives for the
particle densityr the equation

] r

] t
= sl0 − b0dr + D¹2r, s1d

whereD is the diffusion coefficient, andl0 and b0 are the
birth and death rates, respectively. Obviously, whenl0=b0,
Eq. (1) is simply the diffusion equation which cannot lead to
spatial inhomogeneities.

This result was known since some time ago for this and
related models[2–9], and points out the relevance of the
fluctuations present in the discrete stochastic particle model,
neglected in a naive mean-field macroscopic description, and
that lead toreproductive pair correlations: the mean rates of
death and birth are equal, but if locally there is an excess of
reproduction events, and diffusion is not fast enough, a clus-
ter of particles will develop, whereas no birth will occur in
empty zones and particles will simply disappear from re-
gions with excess of death.

The authors of Ref.[2] go beyond that result, and show
that the clustering persists even in the presence of rather
strong stirring, as it would occur if the bugs live in a turbu-
lent fluid such as the Ocean. The clusters now become elon-

gated filaments, but there is still strong spatial inhomogene-
ity arising from the microscopic particle fluctuations and
reproductive correlations.

The simple model just described misses some important
features present in real biological populations. The most ob-
vious is the absence of any interaction between the bugs.
Among other consequences, the global dynamics of the sys-
tem, i.e. the time evolution of the total number of particles, is
completely independent of its spatial distribution. Thus stir-
ring the system alters the spatial pattern of the bugs, but
neither their individual lifetimes, nor the time history of the
particle number, nor its statistical properties. In the context
of aquatic biological populations this is known to be incor-
rect, as fluid stirring has strong impact on the population
dynamics[10,11].

In this paper we introduce interacting particle models by
modifying the birth and death rates of the BB model. They
will take into account the number of neighbors within a
given distance of each bug. There is now a strong interplay
between the bug dynamics and the ambient flow and, in ad-
dition, new effects arising from the spatial range of interac-
tion occur and modify the reproductive-correlations cluster-
ing effect. In particular, an inhomogeneous steady structure
with many different clusters of particles coming from differ-
ent families(i.e., they are born from a different parent), and
arranged in a periodic pattern, may occur. The number of
particles in any of these clusters is similar, resembling the
spreading of individuals in small groups over a geographical
area. This pattern formation phenomenon occurs via a finite
wavelength instability that can be characterized in a deter-
ministic description, being fluctuations only of secondary
importance. We analyze the phenomenon with a continuous-
field Langevin description obtained from the particle model
by Fock space techniques.

It turns out that, at the deterministic level, the continuous-
field description coincides with the one recently discussed in
Ref. [12] (see also Refs.[13–15]), a model for population
dynamics of the Fisher-type where the dynamics of the popu-
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lation density is non-local. This approach generalizes the
Fisher equation incorporating nonlocal effects in the qua-
dratic term by means of aninfluence function. Biologically,
this function may account for competition for resources
within a certain space range, as for example, when nutrients
have a large diffusivity. Given that the density equation for
our discrete model is, in the absence of the noise term, ex-
actly the one proposed in Ref.[12] for a particular form of
the influence function, our work provides a possible justifi-
cation at the level of microscopic particle dynamics of the
emerging nonlocal nonlinear interactions in the density equa-
tions. In the last decade much interest has led to the study of
other types of nonlocal models in ecological modeling. They
are not directly related to our stochastic particle system, but
they also describe interactions at a distance, most of them
formulated in terms of continuous-field evolution equations
for densities. Biologically, these interactions can be mediated
through vision, hearing, smelling or other kinds of sensing.
Aggregation of organisms is one of the topics widely re-
searched through this line(see Ref.[16] for a review). In
some cases the nonlocality arises from the type of motion of
the individuals, such as in Ref.[17]. In others(more related
to our particle model), it is via the production or annihilation
process[18]. Typically the nonlocality appears as a linear
integro-differential term. The models in Refs.[12–15] repre-
sent a different class, closer to our approach, in which non-
locality is in the nonlinear interactions. At variance with the
present work, however, they do not consider the demo-
graphic fluctuations inherent to stochastic particle models.
As shown later, this effect does not alter the pattern forming
process, but leads to shifting in extinction points, absorbing
transitions, and distinct behavior of the mean density as a
function of parameters, among other consequences.

The paper is organized as follows. In Sec. II we introduce
the discrete models. In Sec. III we study numerically some of
their properties. In Sec. IV we study the pattern formation
process and perform a stability analysis within the
continuum-field description of our model. In Sec. V we study
the influence of a fluid flow on the particle system, and in the
last section we summarize our Conclusions. The Appendix
contains the derivation of the continuum-field representation
of our particle model, performed via Fock space techniques
(see[19] for the application of the same techniques also in
the context of population dynamics).

II. MODELS

In this section we introduce the discrete models that are
the subject of study of the paper. We begin defining the origi-
nal BB model and then our extensions.

A. BB model

The microscopic rules are simply enumerated[2]. Let
Nstd the number of bugs in the system(a two-dimensional
periodic box of sizeL3L; in all our computer simulations
we will take L=1):

(1) There is an initial population ofNst=0d=N0 bugs or
particles, randomly located.

(2) One particle is selected at random and it dies with
probability p, reproduces with probabilityq, or remains un-
changed with probabilityrsp+q+r =1d. In the case of repro-
duction, the newborn particle is located at the same place as
the parent particle. The process is repeated a numberNstd of
times [20].

(3) Each particle moves in random direction a distance
drawn from a Gaussian distribution of standard deviations
(this models Brownian motion).

(4) When advection is considered, the particles are trans-
ported by an external flow to be described later.

(5) Time is incremented an amountt, and the algorithm
repeats.

Symbolically, in chemical reaction notation:

A→
b0

x , s2d

A→
l0

A + A, s3d

whereA represents individual particles, each one dying at a
rate b0=p/t (death rate per particle and unit of time), or
reproducing at a ratel0=q/t. The Brownian motion step
leads to diffusion with a diffusion coefficientD=s2/2t. In
the following we measure time in units oft, so thatt=1,
b0=p, l0=q, ands=Î2D. We taker =0 so thatl0+b0=1,
and define the important parameterm=l0−b0, the difference
between birth and death rates.

B. Neighbourhood-dependent (ND) model

The new model is analogous to the one before, except that
in step 2 the reproduction and death rates of a given particle
labelled j , ls jd andbs jd, are not constant but depend on the
number of particles surrounding the particlej . Explicitly we
take (with t=1):

ls jd = maxS0,l0 −
1

Ns
NR

j D , s4d

and

bs jd = maxS0,b0 −
a

Ns
NR

j D , s5d

whereNR
j denotes the total number of particles which are at

a distance smaller thanR from particle j (excluding the par-
ticle j itself). R is thus a range of interaction,Ns is a satura-
tion parameter, anda controls the asymmetry between its
influence on death and on reproduction. The BB model is
recovered whenR→0. Themaximumcondition is imposed
to insure thatls jd andbs jd are positive definite, as it should
be given that they are probabilities. WhenNs is positive, the
model penalizes reproduction when particles are crowdedly
surrounded. Lonely particles reproduce with higher probabil-
ity. This kind of interaction would be appropriate to model
individuals that compete for resources(e.g., food), in a
neighborhood of its actual position. Whena /Ns is positive,
death rate decreases in crowded environments, modeling a
kind of mutual protection. The opposite behavior occurs
when these parameters are negative, a situation that will not
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be considered in the present paper, though most of the results
presented can be extended easily to this case. This model of
interacting particles is related to many others(see reviews in
Refs. [1,21]) in which some limitation in the growth of the
population at a single site is imposed via a fermionic restric-
tion (explicitly stated[22] or implicitly imposed on computer
simulations by forbidding double occupation of lattice sites)
or via the inclusion of the coagulation processA+A→A in-
verse to(3) [23,24]. Our model(and the BB model) shares
with them several qualitative features, the most important
being the fact that the empty state is an absorbing state: if at
some moment all the population becomes extinct, no recov-
ery is possible within the rules of the model. This leads to an
absorbing phase transitionfrom an active or surviving phase
to an absorbing dead phase when some effective reproduc-
tion rate is reduced. The peculiarity in our model is that
interactions are not purely local, but extend to a finite dis-
tanceR. We expect this to be irrelevant for the critical be-
havior close to the absorbing phase transition, since only
asymptotically large scales are important there, and then we
believe that this transition in our model will be in the stan-
dard Directed Percolation(DP) or Reggeon field-theory uni-
versality class to which many of these interacting models
belong [21,25]. We will see, however, that the behavior in
the active phase is greatly influenced by the existence of a
finite interaction rangeR. In consequence we will not ana-
lyze in great detail the absorbing phase transition, but con-
centrate in the active phase(s), where more novel behavior
occurs.

III. NUMERICAL STUDY OF THE DISCRETE MODELS

This section is devoted to presenting some numerical re-
sults that stress the differences between the BB and the ND
model. Here we consider the system with no external driving
flow, whose analysis is left to Sec. V.

The BB model has been studied in detail[2–5]. If m=l0
−b0.0, the total population generally explodes exponen-
tially, with a time scale given bym−1, although there is a
finite probability for extinction that depends on the initial
population and decreases with increasingm. If m,0 the final
state is, with probability 1, the total extinction of the par-
ticles, occurring again at a exponential rate characterized on
average bym−1, but with diverging relative fluctuations. A
critical situation occurs whenl0=b0. In this case, the par-
ticles arising from the same ancestor form clusters, with the
number of clusters decreasing in time and the number of
particles in the surviving clusters growing, so thatkNstdl
=N0∀ t, with the average taken over different realizations.
But fluctuations inNstd are huge(its variance diverges lin-
early in time), with some runs leading to fast extinctions, and
others with clusters surviving for long time. In a finite sys-
tem all clusters finally disappear, but the typical lifetime di-
verges linearly withN0, and the average lifetime is infinity
[5]. Figure 1 shows the distribution of particles at two dif-
ferent stages of the evolution, one in which a large single
cluster, coming from a single ancestor, is present(right
panel) corresponding to a long-time evolution, and another
with still many clusters from different ancestors(left panel)

for an earlier stage of the temporal evolution.
Figure 2(a) shows the time evolution of the total number

of bugsNstd in the critical case,m=0, for a particular real-
ization, displaying the critical fluctuations, and examples of
cases with nonvanishingm. One can observe the fast decay
(growth) of Nstd for m negative(positive).

The behavior of the ND model is rather different. Just for
simplicity we consider here(and in the rest of the paper) the
valuea=0 so that only reproduction depends on the neigh-
borhood. Figure 2(b) shows the time evolution of the popu-
lation. Form smaller than a critical valuemc.0 (which turns
out to bemc<0.4 for the parameter values used in the fig-
ure), we find always extinction, whereas typical realizations
reach a finite average population at long times form.mc.
We plot in Fig. 3 the total average number of particlesNstd at
long-time vsm, and different values of the parameters. The
scaling used to presentNstd is suggested from an analytical
expression discussed in next section. As discussed later, it

FIG. 1. Spatial configurations for the BB model at two different
times. Left: configuration after 100 steps, with a large number of
surviving clusters. Right corresponds to a single cluster remaining
after 3000 steps. The value of the parameters arel0=b0=0.5, D
=10−5, and the initial population is ofN0=1500 bugs randomly
distributed.

FIG. 2. (a) Total number of particles,Nstd, vs time for the BB
model and three different values of the control parameterm: From
top to bottom:m=5310−4, m=0, andm=−5310−4; hereD=10−5.
(b) Idem for the ND model and four different values ofm: From top
to bottom,m=0.7,m=0.5,m=0.4, andm=0.3. Two are above criti-
cal smc<0.4d and two below it. The other parameter values areR
=0.1, Ns=50, andD=10−5.
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provides good data collapse in the left plot Fig. 3, for a
diffusion coefficient ofD=10−4, but it is grossly inadequate
for data in the right panel, corresponding to smaller diffusiv-
ity, D=10−5.

The nature of the spatial distribution in the active phase
depends on the values of the parameters. For large enoughD,
the spatial distribution of particles is homogeneous on aver-
age, whereas clear clustering occurs for smallD. As in the
BB model, the clusters are coming from different families.
But here they arenot transientand the most striking feature
is that theyorganize in a periodic pattern. The periodicity of
the pattern is of the order ofR, the interaction range. In
addition to decreasingD, this transition to a periodic organi-
zation occurs by increasingR and, for small enoughD, by
increasingm. Figure 4 shows examples of the different spa-
tial patterns.

We see that the most notable effect of the introduction of
interactions with a characteristic spatial scale has been the
segregation of bugs in a periodic array of clusters(bottom-
right plot in Fig. 4). This seem to be a rather natural way to
make compatible the high local growth at relatively large
value of m, with the reduction of this growth that a too
crowded neighborhood would imply: the empty space be-
tween the clusters acts as a buffer zone keeping the compe-
tition for resources less limiting than in a homogeneous dis-
tribution. We expect that this mechanism will appear in
Nature when there is a scattering of the total population in
small groups over a large spatial area. One can think, for
instance, of the spreading of groups of predators, or even of
primitive human societies that are aggregated in small tribes.

We characterize the patterns in terms of thestructure fac-
tor SsKd. It is defined as

SsKd =KU 1

Nstdoj

eiq·x jstdU2L
K,t

, s6d

wherex jstd=sxj ,yjd is the position vector of the particlej at
time t, q=sqx,qyd is a two-dimensional wave vector, the sum

is over all particles, and the average is a spherical average
over all wave vectors of modulusuq u =K, and a further tem-
poral average in the long-time state is added to improve sta-
tistics. Maxima in this function identify relevant periodicities
in the interparticle distribution.

In Fig. 5 we show the structure factor in the steady state
of the model for different values of the parameters. The
emergence of the periodic patterns is indicated by the peak in
the structure factor. As in Fig. 4, we show here two different
scenarios: The upper panels correspond to the structure fac-
tor (left) of different patterns withm fixed and changingD.

FIG. 3. Long-time average number of particlesNstd vs m. Left
panel corresponds toD=10−4 and right toD=10−5, and the other
parameters as indicated. The average is taken from the instanta-
neous particle numbers at times between 1000 and 10000 steps; the
error bar indicates the standard deviation of the instantaneous fluc-
tuations around this mean value.

FIG. 4. Long-time spatial structures for the ND model. Left
column corresponds to two patterns with the same value ofD
=10−4, and two different values ofm=0.5(up) andm=0.9(bottom).
Right column corresponds to fixedm=0.7, andD=10−4 (upper),
andD=10−5 (bottom). In all the plots,Ns=50 andR=0.1.

FIG. 5. Structure factors(left panels) and corresponding height
of the main peak(right) for different patterns in the ND model.
Upper panels are for fixed value ofm=0.7 and the values ofD
shown in the legend box. Bottom panels are forD=10−5 and dif-
ferentm’s as shown in the legend box. In all the plots,Ns=50 and
R=0.1. Note the different scales in all the plots.
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One can observe that by decreasingD the value of the peak
increases(upper-right panel), indicating that clustering with
a strong periodicity develops. Bottom panels are forD
=10−5 and different values ofm. Here the pattern is rather
developed at all values ofm above the absorbing transition at
mc<0.4, with only mild variations of the peak height(right
panel) with m. By analyzing nonspherically-averaged ver-
sions of(6), we confirm that the periodic pattern has hexago-
nal symmetry at onset.

We next try to explain quantitatively the observed patterns
in terms of an analytical description.

IV. FIELD THEORY DESCRIPTION, STABILITY
ANALYSIS, AND SPATIAL PATTERNS

Standard theories and tools for pattern formation studies
[26] address continuous field models, and are not particularly
well suited to analyze pattern formation in particle systems.
Fortunately, there are well established techniques(known un-
der the name of Doi–Peliti theory or Fock space techniques
[8,27,28]) that allow a description of interacting particle sys-
tems in terms of field-theoretic Langevin equations. These
techniques turn out to be equivalent to the Poisson represen-
tation [29,30]. In the simplest cases, the interacting particles
are instantaneously Poisson distributed in each small space
region, and the field description gives the space and time
varying average valuefsx ,td of the local Poisson distribu-
tion for the particle densityr.

In general, however, the continuous field is complex and
this simple interpretation does not hold, but still in this case
all the moments of the particle densityr can be obtained
from the moments of the fluctuating fieldf. For example the
first moment of both quantities are equalkrsx ,tdl=kfsx ,tdl.
In the Appendix, we derive in detail the Langevin field de-
scription for the ND model. Two approximations are needed
to arrive to the final form(A20) (with an additional diffusion
term, see the Appendix for details). As a first attack to the
problem of pattern formation in our particle model, we ana-
lyze in this section just thedeterministicpart of the field
equation, i.e., the noise term will be neglected. We will see
that this will be sufficient to understand the main qualitative
features of the pattern forming instability. The expected in-
fluence of the noise would be to affect system properties in
the vicinity of transitions and instabilities, and to shift the
position of the transition lines[25]. In addition, since our
system is translational invariant and two-dimensional, it is
very likely that the sharp bifurcation to patterns that we find
in the deterministic analysis will be blurred by noise into a
nonsharp crossover even in the thermodynamic limit. Never-
theless, we find good qualitative agreement between several
of the observed properties of the discrete model presented in
the preceding section and the deterministic predictions ob-
tained here.

Thus we analyze the deterministic version of Eq.(A20)
(with the diffusion term added anda=0):

]tfsx,td = D¹2fsx,td + sl0 − b0dfsx,td

−
1

Ns
fsx,tdE

ux−r u,R

drfsr ,td. s7d

This equation is related to the one in Refs.[12,13,15] but

with a particular integral kernel. At this level of mean-field
like approximation(no noise), the fieldfsx ,td can be inter-
preted as the density fieldrsx ,td. Stationary homogenous
solutions of this equation are the absorbing phasefsx ,td
=0, and theactive or survival phasefsx ,td=fs=mNs/pR2

(remember thatm=l0−b0). For m,0 the only stable solu-
tion is the absorbing one; the transition to the survival state is
approached atm=0, and this state is stable for a range of
positive values ofm. At the deterministic level the transition
is transcritical. As expected, particle fluctuations in the dis-
crete model change this transcritical character of the transi-
tion (see Fig. 3), probably to one of the DP-type[21,25],
occurring at values ofm larger than zero.

As mentioned before, Eq.(7) corresponds to the model in
Ref. [12] if an influence function fRsr ,td of the form
fRsr ,td=1 if ur u øR, fRsr ,td=0 if ur u ùR is taken. Two limits
arise in(7): when R goes to zero, the Fisher equation with
local interaction arises, where no patterns appear. The oppo-
site limit, R taking the value of the size of the system, has
been considered in Ref.[12], and the nonexistence of spatial
structures has been reported. Thus, in this work we limit to
the study of intermediate values ofR.

We make a stability analysis of thefs solution by consid-
ering small harmonic perturbations around it,fsx ,td=fs

+dfsx ,td, with dfsx ,td~expslt+ ik ·xd. After simple calcu-
lations one arrives at the following dispersion relation:

lsKd = − DK2 −
2m

KR
J1sKRd, s8d

whereK is the modulus ofk, andJ1 is the first-order Bessel
function. It is clear that the relevant parameters in the prob-
lem arem andD . /R2 (in fact the precise adimensional com-
binations aremt andDt /R2, but remember that we are mea-
suring times in units oft, so thatt=1). The eigenvaluelsKd
(which is in fact a function ofKR, m, andD /R2) is real and
can be positive for some values of the parameters. This is
shown in Fig. 6, where we plotl againstK for different
values ofm aroundmP as given below in Eq.(13), with fixed
D /R2.

The equations

FIG. 6. Linear growth ratel vs wave numberK from (8) for
different values ofm close tomP. We takeR=0.1 andD=10−5 so
that mP=0.185 andKm=47.79.
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U ] lsKd
] K

U
K=Km

= 0, s9d

lsKmd = 0, s10d

identify the values of the parameters at which the maximum
of the curvelsKd, at Km, becomes positive. This gives a line
of instability mP=mPsD /R2d in the parameter plane. It is
straightforward to obtain thatmP=−DRKm

3 / s2J1sKmRdd and
the equation forKm reads

KmR

2J1sKmRd
sJ0sKmRd − J2sKmRdd − 3 = 0. s11d

J0 and J2 are the zero and second order Bessel functions,
respectively. This equation can be solved numerically to ob-
tain

Km <
4.779

R
s12d

so that

mP < 185.192
D

R2 . s13d

The behavior of the deterministic Eq.(7) is now clear: for
m,0 the only stable solution isf=0. In the interval
0,m,mP one has the homogeneous densityf=fs, and for
m.mP spatial patterns emerge. This last transition can also
be crossed by decreasingD /R2 at fixedm.0.

This scenario is consistent with the results for the particle
ND model shown in Sec. II. In particular, note that Eq.(12)
indicates that the pattern periodicity is determined byR, and
is independent of other parameters of the system such asm,
D, andNs. This is in agreement with the results for the struc-
ture factors shown in Fig. 5. It is also observed there that the
numerical value of the dominant wave number in Fig. 5 is
close to the predicted value given by Eq.(12). Since Eq.(7)
has no particular symmetries, we expect on generic grounds
[26] that hexagonal patterns would appear close to the insta-
bility. Since they usually bifurcate subcritically we expect
some range of bistability form,mP, that may be influenced
by noise. In consequence we do not expect the transition line
(13) to be fully accurate. Nevertheless it correctly explains
the distinct behavior between the data shown in Fig. 3(a)
(essentially all of them predicted to be in the homogeneous
phase, as confirmed by Figs. 4 and 5) and Fig. 3(b) (for
smallerD, so that all data points are in the periodic clustered
phase). The curves in Fig. 3(a) collapse together and ap-
proach the deterministic prediction for the homogeneous so-
lution fs (a straight line of slope 1 in that scaled plot) suffi-
ciently far from the absorbing transition point. Such collapse
does not occur in Fig. 3(b) since they do not correspond to
homogeneous states. More important are the fluctuation cor-
rections to our deterministic results around the absorbing
transition: the transition point is quite far from the determin-
istic valuemc=0 and the critical behavior is very different
from the simple linear vanishing of the number of particles
predicted deterministically(transcritical bifurcation).

In Fig. 7 we plot the spherically averaged structure func-
tion, ScsKd, against the wave number,K, of the density field
f obtained numerically, after a long-time, from numerical
solution of Eq.(7). ScsKd is the modulus of the spatial Fou-
rier transform offsx ,td, averaged spherically and in time.
Note that, sincef is a continuous field,ScsKd is related but
not identical to the structure factorSsKd of the particle sys-
tem, Eq. (6). Nevertheless, maxima ofScsKd also identify
dominant periodicities. In Fig. 7 we have takenR=0.1, D
=10−5, so thatmP<0.185. One can see how form.mP the
structure function develops a peak that grows withm, indi-
cating the development of a spatial pattern with a typical
distance between clusters. The peak is located at the wave
number closest to(12) compatible with the discretization im-
posed by the periodic boundary conditions. Figure 8 shows a
steady pattern of density which is analogous to the one
shown for the discrete model in the bottom-right panel of
Fig. 4. These observations confirm for the full nonlinear
model (7) the behavior identified from the linear stability
analysis of the homogeneous solutions. It is also worth men-

FIG. 7. Spherically averaged continuum structure function
againstK for different values of the control parameterm. The other
parameter values areD=10−5 andR=0.1.

FIG. 8. Steady spatial pattern from the deterministic equation
(7). m=0.70,R=0.1,D=10−5, andNs=50. Note the strong similar-
ity with the pattern in the bottom-right plot in Fig. 4.
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tioning that the nonspherically-averaged version of the struc-
ture function displays hexagonal order form*mP. Transi-
tions to other geometries(squares) seem to occur at high
values of m, but we have not pursued the issue further
(square geometry appears for a different integral kernel in
Ref. [12]).

V. INFLUENCE OF FLUID FLOW

In addition to the pattern-forming instability, a crucial dif-
ference between the BB and the neighborhood-dependent
model is their response to an external flow. Since the birth
and death rates of the BB model are fixed constants, global
quantities such as the total number of particles are indepen-
dent of any particle motion, being it diffusive or hydrody-
namic. This seems to be rather unrealistic for applications
such as modeling plankton populations[2,10,11], always
driven by external flows. On the contrary, with the neighbor-
hood dependence of the rates in the tribal model we overpass
this inconvenience and the model becomes dependent on the
environmental conditions.

As a simple illustration of the impact of a velocity field,
we consider the flow given by the Harper map(the one also
used in Ref.[2]), which is a symplectic map in two dimen-
sions and, therefore, it resembles an incompressible flow. At
each time step the fourth item in the algorithm described in
Sec. II consists of moving the particles in the following way:
If we denote bysxistd ,yistdd the coordinates of the particlei
at time t, after one iteration of the map they become

xist8d = xistd + A cossyistdd, s14d

yist8d = yistd + A cossxist8dd, s15d

wheret8= t+t. A gives the strength of the flow, and depend-
ing of its value particles can follow regular or stochastic
trajectories. To check for the robustness of the results with
respect to the particular flow considered, we have also imple-
mented advection by another widely used model to study
chaotic advection by incompressible fluid flows, the Stan-
dard map[31]:

xist8d = xistd +
A

2p
sins2pyistdd, s16d

yist8d = yistd + xist8d. s17d

Here we are just interested in highlighting the behavior when
the flow changes, that is whenA changes. IncreasingA leads
to increasing irregularity and mixing behavior in both flows.
The time evolution of the total number of particles is given
in Fig. 9 (the left plot corresponds to the Harper map flow
and the right one to the Standard map). It is seen that the
asymptotic value depends on the flow strengthA. The reason
can be clearly seen from Fig. 10, where snapshots of the
particle distributions are presented for the Harper case. It is
seen that the periodic array of clusters in the absence of flow
becomes more filamental-like as the flow strength increases.
The shape of the filamental structures reflects the known un-
stable and stable foliation of phase space for the Harper map.

As for the BB model[2], inhomogeneity persists for rather
strong flow, but finally the distribution becomes homoge-
neized. At this point, the particle distribution should be very
close to Poissonian, with density given by the homogeneous
solution of(7). This is indeed what is observed in the figure
(for large values ofA the total number of particles,Nstd,
normalized with the survival steady density value, fluctuates
around 1). For smaller flow strengthA the spatial structure in
the neighborhood of each particle becomes relevant, and the
number of particles approaches the value in the absence of

FIG. 9. Nstd, normalized withmNs/pR2, vs time for different
values of the external flow strength,A, and the two chaotic maps in
the text. Left is for the Harper map and right for the Standard map.
From top to bottom:A=0, A=0.01,A=0.05, and, fluctuating around
the value 1(white line), A=1 andA=3. TheA=0.01 andA=0.05
plots cannot be properly distinguished for the figure of the Standard
map. The other parameters:m=0.8, Ns=50, D=10−5, andR=0.1.

FIG. 10. Long-time spatial structure for the ND model with an
external flow(Harper map). From top to bottom and left to right,
A=0, A=0.1, A=0.5, andA=1. The other parameters:m=0.9, D
=5310−6, Ns=50, andR=0.1.
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flow, given in Fig. 3. For completeness, Fig. 11 shows, in
terms of the structure factor, the disappearance of structure
as the flow strength increases. Thus, we see that the nonlocal
interactions lead to a coupling between flow and population
dynamics, mediated by the changes in local distribution ge-
ometry that the flow induces.

VI. SUMMARY

In this paper we have introduced an interacting particles
model which considers birth and death rates for any indi-
vidual depending on the number of particles that are within a
distance smaller than a given range of interaction. The model
can be considered as a simple nonlocal interacting extension
of the BB model, but showing, however, a very different
behavior. A striking feature is the appearance of a quasista-
tionary (fluctuations are present) periodic pattern of particle
clusters.

In order to deepen in the understanding of the pattern
forming instabilities and structures in the discrete model, we
have derived the continuum equation describing the particle
distribution. Two main features characterize this equation:
(a) the presence in the deterministic part of an integral term
taking into account the nonlocal interaction among the par-
ticles, and(b) the very complex structure of the noise term,
which also reflects the nonlocality of the interaction. To un-
derstand the pattern forming process we have studied the
deterministic part of the equation. It coincides with other
models previously studied in the literature[12]. At this level,
the interpretation of the continuum field as the density field
of particles is valid. Periodic clustering appears as a finite
wavelength instability in the density equation.

In addition, we have also considered the response of the
model to an external driving flow. Global properties of the
system like the total number of particles depend on the flow,
via the influence of it in the spatial structure.

Future extensions of this work will include a further study
of the instabilities, an explicit consideration of the noise term
in the continuum description, and the consideration of differ-
ent (chemical or biological) species of particles interacting
through a finite interaction range.
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APPENDIX: FIELD THEORETICAL APPROACH

In this appendix we derive an approximate continuum
field equation describing the dynamics of our model, by us-
ing Fock space techniques. We present more results than
needed for the deterministic analysis of Sec. IV, but we in-
clude them here by its intrinsic interest and to highlight the
presence of particle fluctuations in the original discrete
model.

The standard formulation of Fock space methods[8,28]
requires the microscopic model to be defined on a lattice.
Thus we first modify our off-lattice model to fit into a grid,
apply the standard procedure, and then let the grid spacing to
become negligibly small, so that we recover the continuum
off-lattice limit. This is somehow different from a macro-
scopic limit, since only the grid size, but not the basic
lengths in our model, such as the interaction rangeR, will be
made to vanish. From the lattice approximation we can write
the stochastic dynamics in terms of a Hamiltonian operator.
A path integral representation can then be obtained and a
Langevin equation can be derived from it. The off-lattice
limit is then conveniently taken. The whole process cannot
be performed exactly and we need to introduce two approxi-
mations, one valid for not too large particle densities and
another restricting to Gaussian fluctuations.

We divide space in cells forming a lattice ofL sites and
describe the state of the system by the number of particles
inside each lattice cellhNiji=1,. . .,L. The lattice model will be
equivalent to the off-lattice one in the limit of small lattice
size, so that only zero or one particles will be present at each
site. In addition it is convenient to work in continuous time,
so that a continuous time Markovian Master Equation de-
scribes the dynamics. At long timess@td there should be no
difference between the discrete and the continuous time ap-
proaches.

Since statistically independent processes are represented
by additive terms in the Master equation, we can treat sepa-
rately particle diffusion and particle transformations(we do
not consider advection here, since it is not used in the analy-
sis of Sec. IV), and then sum up the corresponding contribu-
tions. It is well known[8,28] that the random walk process
leads to a diffusion term in the continuous Langevin equa-
tion, and no contribution to the noise term. This will not be
rederived here. We focus in the birth and death of particles:

At each site we have a birth rate per particle

li = maxS0,l0 −
1

Ns
o

jPRsid
NjD sA1d

and a death rate per particle

bi = maxS0,b0 −
a

Ns
o

jPRsid
NjD . sA2d

The sum is over the cells that are within a distanceR from
the sitei (excluding celli, so that in the continuum limit we

FIG. 11. Structure factor for the patterns shown in Fig. 10.
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recover the original prescriptions(4) and (5)). Defining
PsN1,N2, . . . ,NL ; td=PshNj ; td as the probability of having
N1 bugs in site 1, . . . ,NL bugs in siteL at timet, we have the
following Master Equation:

dPshNj;td
dt

= o
i=1

L

sNi − 1dliPs. . .,Ni − 1,¯ ;td

+ o
i=1

L

sNi + 1dbiPs. . .,Ni + 1,¯ ;td

− o
i=1

L

NiliPs. . .,Ni, ¯ ;td

− o
i=1

L

NibiPs. . .,Ni, . . . ;td. sA3d

The Fock space representation starts by defining the
many-particle state vector:

ucl = o
N1...NL

PshNj;tdp
i=1

L

sai
†dNiu0l, sA4d

whereai
† andai are the creation and annihilation operators at

lattice sitei, that is,

ai
†uN1 ¯ Ni ¯ NLl = uN1 ¯ Ni + 1¯ NLl, sA5d

aiuN1 ¯ Ni ¯ NLl = NiuN1 ¯ Ni − 1¯ NLl, sA6d

verifying bosonic commutation rules

fai,aj
†g = di j , sA7d

aiu0l = 0. sA8d

Thus we have:

ducl
dt

= o
hNj

dPshNj;td
dt

p
i=1

L

sai
†dNiu0l

= o
hNj,i
FsNi − 1dliPs¯Ni − 1¯ d

3p
i=1

L

sai
†dNiu0l − NiliPs¯Ni ¯ d

3p
i=1

L

sai
†dNiu0l + sNi + 1dbiPsNi + 1d

3p
i=1

L

sai
†dNiu0l− NibiPs¯Ni ¯ d

3p
i=1

L

sai
†dNiu0lG . sA9d

After simple algebra we have a Schrödinger-type equation
in Euclidean time:

ducl
dt

= − Hucl, sA10d

with the Hamiltonian:

Hsai
†,aid = − o

i

sfsai
†d2ai − ai

†aigl̂i + fai − ai
†aigb̂id.

sA11d

l̂i and b̂i are the operator versions ofli and bi, that is,
expressions(A1) and (A2) with all the particle numbersNk
replaced by the number operatorsak

†ak. They can be defined
from a power series representation[32] of a conveniently
regularized version of expressions(A1) and (A2).

To obtain a path integral representation, a first step is to
use the commutation relations inH until obtaining normal
ordering(i.e., creation operators to the left and annihilation
to the right). We call the resulting expressionHNO. Then an
action depending on the classical complex variablesci

*std
andcistd is computed as:

S=E
0

t

dto
i

fci
*]tci + HNOsai

† → ci
* + 1,ai → cidg.

sA12d

The “arrow” notation means that the operatorsai
† and ai

should be replaced by the indicated classical variables. The
action allows to calculate average of lattice quantities such as
Ni as adequate path integrals overci and ci

* involving the
weight e−S. For Hamiltonian(A11), it turns out that normal
ordering leads to intricate expressions in any regularized ver-
sion of (A1) and(A2). We note that for low enough densities
(or large Ns), the maximum condition would be rarely
needed. In consequence, a sensible approximation at low
density is:

l̂i < l0 −
1

Ns
o

jPRsid
aj

†aj sA13d

and

b̂i < b0 −
a

Ns
o

jPRsid
aj

†aj . sA14d

In regions where densities are not small, these expressions
would need corrections. We will comment more on this later.

The fact thatl̂i andb̂i do not depend on bosonic operators
on site i (the sumj PRsid excludes the celli) makes trivial
the normal-ordering procedure. The action is

S=E
0

t

dto
i
Hci

*F]tci + sb0 − l0dci +
1 − a

Ns
ci o

jPRsid
c jG

+ sci
*d2F− l0ci +

1

Ns
ci o

jPRsid
c jG +

1 − a

Ns
uciu2 o

jPRsid
uc ju2

+
1

Ns
uciu2ci

* o
jPRsid

uc ju2J . sA15d

An extra term(not written) should be added to implement
the particular initial condition used forPshNj ,td. One could
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approach the continuum limit at this step but, for clarity, we
will perform it after writing down the Langevin equation. By
introducing Gaussian noises at each site,hhkstdj, as Gaussian
integrals in averages involving Eq.(A15), one realizes that
averages of physical quantities, such askNkl can be obtained
as averages over stochastic processeshckstdj satisfying Îto
stochastic differential equations. Terms in the action linear in
hck

*j give rise to deterministic terms in the stochastic equa-
tion, terms quadratic in these variables determine the corre-
lations of the Gaussian noiseshhkstdj. Terms of higher order
give rise to non-Gaussian noise statistics. As usual we ne-
glect these terms(this is our second approximation, by which
we neglect the last term in(A15)) and obtain an approximate
Îto Langevin equation:

]tcistd = sl0 − b0dci −
1 − a

Ns
ci o

jPkRsidl
c j + histd,

sA16d

where the Gaussian noiseshhkstdj obey:

khil = 0, sA17d

khistdh jst8dl = 2dst − t8dHdi jFSl0 −
1

Ns
o

jPRsid
c jDciG

− ui jsRd
1 − a

Ns
cic jJ . sA18d

ui jsRd is a function with value 1 if cellsi and j are different
and each one is within a distanceR from the other. Noise
correlations are multiplicative, nonlocal, and rather involved.
In addition, they cannot be satisfied by real stochastic pro-
cesshhkstdj so that the noise terms, and the variableshckstdj,
are in general complex valued. Despite this, the particle sta-
tistics is encoded in the lattice stochastic process. For ex-
ample, the probability for the occupation numbers is given
by [29]

PshNj,td =Kp
i=1

L
e−cistdcistdNi

Ni!
L

hcistdj

, sA19d

where the average is over the statistics of the processeshcij.
Consequences of(A19) are kNistdl=kcistdl and kNistd2l
=kcistd2l+kcistdl. The term dependent on the initial condi-
tion that was omitted from(A15) can now be taken into
account by providing adequate initial conditions forhckstdj,
linked to the initial particle statistics by(A19).

The off-lattice continuum limit is performed by introduc-
ing the densityfsx ,td by the changeci →fsx ,tdDd and tak-
ing the lattice spacing going to zeroD→0. d is the spatial
dimension(d=2 through this paper). We have some freedom
in performing this limit. For example, if we take the interac-
tion rangeR to be a fixed number of lattice spacings, then
R→0 in the continuum limit. In this case non-locality is lost,
and by properly scaling the interaction parametersNs anda,
we get a continuous equation related to Reggeon field theory
that has been thoroughly studied[21,25]. But we want to
describe the macroscopic behavior of the off-lattice models
introduced in Sec. II, in which the interaction range is finite.
Thus, we fixR to a finite value when going to the continuum
and obtain

]tfsx,td = sl0 − b0dfsx,td −
1 − a

Ns
fsx,tdE

ux−r u,R

drfsr ,td

+ hsx,td, sA20d

with

khsx,tdl = 0, sA21d

khsx,tdhsx8,t8dl = 2dst − t8dHdsx − x8dfsx,td

3Fl0 −
1

Ns
E

0,ux−r u,R

drfsr ,tdG
−

1 − a

Ns
fsx,tdfsx8,tduxx8sRdJ .

sA22d

The continuum description of the BB model is recovered
if R→0. As in the discrete case, correlations in(A22) are
multiplicative, nonlocal, and lead to complex valued pro-
cesses. The diffusion termD¹2f should also be included in
the r.h.s. of(A20) to account for the random walk of the
particles.

We see that the deterministic part of(A20) with the dif-
fusion term is what one would guess as a mean-field descrip-
tion for the particle density when taking into account the
finite range of the interactions, and it has been obtained here
by a more systematic approach. Since we expect the simple
mean field approach to be correct for high enough densities
and far from transition points, we conclude that the terms
neglected in the low density approximation(A13) and(A14)
are just correcting fluctuation statistics in a regime, high den-
sities, in which they are already not very relevant.
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