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We introduce a simple model of population dynamics which considers reproducing individuals or particles
with birth and death rates depending on the number of other individuals in their neighborhood. The model
shows an inhomogeneous quasistationary pattern with many different clusters of particles arranged periodically
in space. We derive the equation for the macroscopic density of particles, perform a linear stability analysis on
it, and show that there is a finite-wavelength instability leading to pattern formation. This is responsible for the
approximate periodicity with which the clusters of particles arrange in the microscopic model. In addition, we
consider the population when immersed in a fluid medium and analyze the influence of advection on global
properties of the model, such as the average number of individuals.
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[. INTRODUCTION gated filaments, but there is still strong spatial inhomogene-
ity arising from the microscopic particle fluctuations and

Interacting particle systems are useful models to underfgproductive correlations.

stand a variety of effects in fields as diverse as condense The simple model just described misses some important
tmhatter physl:cz, .Cr(]fr%'call Ignetlgs, populaﬂon tl)lolc@mere features present in real biological populations. The most ob-
ey are called individual based modets sociology(agent iq 5 is the absence of any interaction between the bugs.

base% modejs{1]. Azloni gf the _S|mplest,_t tlaxampler;s one ga.nAmong other consequences, the global dynamics of the sys-
consider an ensemble of Brownian particies, each one dyingy, ' o the time evolution of the total number of particles, is

or duplicating with given probabilities per unit of time. Sev- ¢, mpletely independent of its spatial distribution. Thus stir-
eral author§2-6) have considered sudgrownian Bug(BB) iy "the system alters the spatial pattern of the bugs, but
model in the context Of populanon dynam(as_ particular 0 neither their individual lifetimes, nor the time history of the
adt;iress plankton .C.iI.StI’IbutIOI']S and patchmn,elssthe case in particle number, nor its statistical properties. In the context
which the probabilities of death and reproduction are equal aquatic biological populations this is known to be incor-
Aggregation of the particles in a decreasing number of clus;, " 45 fuid stirring has strong impact on the population
ters occurs. This clustering is somehow surprising since ﬁynémics[lo 11.

standard mean-field or rate-equation description gives for the™ | 1« pa;;er we introduce interacting particle models by

particle densityp the equation modifying the birth and death rates of the BB model. They
ap 5 will take into account the number of neighbors within a
T (Ao= Bo)p + DV7p, (1) given distance of each bug. There is now a strong interplay
between the bug dynamics and the ambient flow and, in ad-
whereD is the diffusion coefficient, andy and 3, are the dition, new effects arising from the spatial range of interac-
birth and death rates, respectively. Obviously, whgr B, ~ tion occur and modify the reproductive-correlations cluster-
Eq. (1) is simply the diffusion equation which cannot lead to ing effect. In particular, an inhomogeneous steady structure
spatial inhomogeneities. with many different clusters of particles coming from differ-

This result was known since some time ago for this andent families(i.e., they are born from a different pargnand
related modelg2-9], and points out the relevance of the arranged in a periodic pattern, may occur. The number of
fluctuations present in the discrete stochastic particle modeparticles in any of these clusters is similar, resembling the
neglected in a naive mean-field macroscopic description, anspreading of individuals in small groups over a geographical
that lead toreproductive pair correlationsthe mean rates of area. This pattern formation phenomenon occurs via a finite
death and birth are equal, but if locally there is an excess ofvavelength instability that can be characterized in a deter-
reproduction events, and diffusion is not fast enough, a clusministic description, being fluctuations only of secondary
ter of particles will develop, whereas no birth will occur in importance. We analyze the phenomenon with a continuous-
empty zones and particles will simply disappear from re-field Langevin description obtained from the particle model
gions with excess of death. by Fock space techniques.

The authors of Ref[2] go beyond that result, and show It turns out that, at the deterministic level, the continuous-
that the clustering persists even in the presence of rathdield description coincides with the one recently discussed in
strong stirring, as it would occur if the bugs live in a turbu- Ref. [12] (see also Refg[13-15), a model for population
lent fluid such as the Ocean. The clusters now become elomtynamics of the Fisher-type where the dynamics of the popu-
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lation density is non-local. This approach generalizes the (2) One particle is selected at random and it dies with
Fisher equation incorporating nonlocal effects in the quaprobability p, reproduces with probabilitg, or remains un-
dratic term by means of aimfluence functionBiologically, = changed with probability(p+qg+r=1). In the case of repro-
this function may account for competition for resourcesduction, the newborn particle is located at the same place as
within a certain space range, as for example, when nutrientthe parent particle. The process is repeated a nuidtof

have a large diffusivity. Given that the density equation fortimes[20].

our discrete model is, in the absence of the noise term, ex- (3) Each particle moves in random direction a distance
actly the one proposed in Rdfl2] for a particular form of  drawn from a Gaussian distribution of standard deviation
the influence function, our work provides a possible justifi-(this models Brownian motign

cation at the level of microscopic particle dynamics of the (4) When advection is considered, the particles are trans-
emerging nonlocal nonlinear interactions in the density equaported by an external flow to be described later.

tions. In the last decade much interest has led to the study of (5) Time is incremented an amount and the algorithm
other types of nonlocal models in ecological modeling. Theyrepeats.

are not directly related to our stochastic particle system, but Symbolically, in chemical reaction notation:

they also describe interactions at a distance, most of them

. ) . : . Bo
formulated in terms of continuous-field evolution equations Ao @ 2)
for densities. Biologically, these interactions can be mediated '
through vision, hearing, smelling or other kinds of sensing. o
Aggregation of organisms is one of the topics widely re- A—A+A, (3)

searched through this lingsee Ref.[16] for a review. In

some cases the nonlocality arises from the type of motion othereA represents individual particles, each one dying at a
the individuals, such as in RdfL7]. In others(more related rate So=p/7 (death rate per particle and unit of tippeor
to our particle mode) it is via the production or annihilation reproducing at a rate,=q/7. The Brownian motion step
process[18]. Typ|ca||y the non|oca|ity appears as a linear leads to diffusion with a diffusion coefficie®=02/27. In
integro-differential term. The models in Refé2-15 repre-  the following we measure time in units of so thatr=1,
sent a different class, closer to our approach, in which nonBo=p, Ao=0, ando=y2D. We taker=0 so that\o+£,=1,
locality is in the nonlinear interactions. At variance with the and define the important parameger \o— B, the difference
present work, however, they do not consider the demobetween birth and death rates.

graphic fluctuations inherent to stochastic particle models.

As shown later, this effect does not alter the pattern forming B. Neighbourhood-dependent (ND) model

process, but leads to shifting in extinction points, absorbing The new model is analogous to the one before, except that
transitions, and distinct behavior of the mean density as &, step 2 the reproduction and death rates of a given particle
function of parameters, among other consequences. labelledj, A(j) and B(j), are not constant but depend on the

The paper is organized as follows. In Sec. Il we introduc€,mper of particles surrounding the partigleExplicitly we
the discrete models. In Sec. Il we study numerically some of;ye (with 7=1);

their properties. In Sec. IV we study the pattern formation

process and perform a stability analysis within the o 1.

continuum-field description of our model. In Sec. V we study A(j) =max O.xo - ﬁN ' (4)
the influence of a fluid flow on the particle system, and in the

last section we summarize our Conclusions. The Appendi)@nd

contains the derivation of the continuum-field representation o«
of our particle model, performed via Fock space techniques L) = maj(o,ﬂo— —N| )
(see[19] for the application of the same techniques also in Ns

the context of population dynamics whereNL denotes the total number of particles which are at
a distance smaller thaR from particlej (excluding the par-
Il. MODELS t?cle j itself). Ris thus a range of interactiohlg is a satura—_
tion parameter, andv controls the asymmetry between its
In this section we introduce the discrete models that arénfluence on death and on reproduction. The BB model is
the subject of study of the paper. We begin defining the origirecovered wherR— 0. The maximumcondition is imposed
nal BB model and then our extensions. to insure that\(j) and 8(j) are positive definite, as it should
be given that they are probabilities. WhEgis positive, the
model penalizes reproduction when particles are crowdedly
surrounded. Lonely particles reproduce with higher probabil-
The microscopic rules are simply enumeraf@. Let jty. This kind of interaction would be appropriate to model
N(t) the number of bugs in the systea two-dimensional individuals that compete for resourcgs.g., food, in a
periodic box of sizel X L; in all our computer simulations neighborhood of its actual position. WheiN; is positive,

©)

A. BB model

we will take L=D: _ death rate decreases in crowded environments, modeling a
(1) There is an initial population dli(t=0)=Ng bugs or  kind of mutual protection. The opposite behavior occurs
particles, randomly located. when these parameters are negative, a situation that will not
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be considered in the present paper, though most of the resuli. I =g T 1 I T 71 -
presented can be extended easily to this case. This model ¢ i "‘ . . 1 i 1
interacting particles is related to many othésse reviews in 0‘8_' ; ] 0‘8__ ]
Refs.[1,21]) in which some limitation in the growth of the ¢l .- s '_ 4 o6l |
population at a single site is imposed via a fermionic restric-» | ~ . L

tion (explicitly stated22] or implicitly imposed on computer 04 . ' ) 4 04 —
simulations by forbidding double occupation of lattice sites i g ‘ L r ]
or via the inclusion of the coagulation processA— A in- 02r .o N é""}‘_
verse to(3) [23,24. Our model(and the BB modglshares . C

- I ! 0|I|I.II. 0|I|I.I||
with them several qualitative features, the most important 0 02 04 06 08 1 "0 02 04 06 08 1

being the fact that the empty state is an absorbing state: if a. X X
some moment all the population becomes extinct, no recov-

eLy |SSOSS|t;:e W'tthm tht(.a ;nules of thet.model. Th.'s. Ieadﬁ to Mimes. Left: configuration after 100 steps, with a large number of
absorbing p fase ransitiomom an active or surVI\{lng phase surviving clusters. Right corresponds to a single cluster remaining
to an absorbing dead phase when some effective reprodugg., 3000 steps. The value of the parameters\areB,=0.5, D

fcion rate is reduced. The peculiarity in our mode_l _is th_atzl(rs, and the initial population is oNy=1500 bugs randomly
interactions are not purely local, but extend to a finite dis-gjstriputed.

tanceR. We expect this to be irrelevant for the critical be-

havior close to the absorbing phase transition, since onlyor an earlier stage of the temporal evolution.
asymptotically large scales are important there, and then we Figure 2a) shows the time evolution of the total number
believe that this transition in our model will be in the stan- of bugsN(t) in the critical casex=0, for a particular real-
dard Directed PercolatiofDP) or Reggeon field-theory uni- jzation, displaying the critical fluctuations, and examples of
versality class to which many of these interacting modelgases with nonvanishing. One can observe the fast decay
belong[21,25. We will see, however, that the behavior in (growth) of N(t) for u negative(positive.

the active phase is greatly influenced by the existence of & The behavior of the ND model is rather different. Just for
finite interaction rang&R. In consequence we will not ana- gimplicity we consider hergand in the rest of the papethe
lyze in great detail the absorbing phase transition, but congajue #=0 so that only reproduction depends on the neigh-
centrate in the active phasg where more novel behavior porhood. Figure @) shows the time evolution of the popu-

FIG. 1. Spatial configurations for the BB model at two different

occurs. lation. Foru smaller than a critical valug,> 0 (which turns
out to beu.=~0.4 for the parameter values used in the fig-
1. NUMERICAL STUDY OF THE DISCRETE MODELS ure), we find always extinction, whereas typical realizations

_ o _ _ reach a finite average population at long times for ..
This section is devoted to presenting some numerical reywe plot in Fig. 3 the total average number of partidi) at
sults that stress the differences between the BB and the N[dng-time vsu, and different values of the parameters. The
model. Here we consider the system with no external drivingscaling used to preseid(t) is suggested from an analytical

flow, whose analysis is left to Sec. V. expression discussed in next section. As discussed later, it
The BB model has been studied in def@H5]. If u=»Aq

-By>0, the total population generally explodes exponen- 10000 2000

tially, with a time scale given by, although there is a |

finite probability for extinction that depends on the initial 2000 1] ]
population and decreases with increasindf <0 the final 1500 MWWWMW
state is, with probability 1, the total extinction of the par- 1

ticles, occurring again at a exponential rate characterized or 6000 -

av_e_rage_byﬂ_‘l, but with diverging relativ_e fluctuations. A % loooL i
critical situation occurs wheng=g,. In this case, the par- 4000 |

ticles arising from the same ancestor form clusters, with the
number of clusters decreasing in time and the number of
particles in the surviving clusters growing, so thHat(t)) 2000
=Not, with the average taken over different realizations.

But fluctuations inN(t) are huge(its variance diverges lin- L . w L
early in time, with some runs leading to fast extinctions, and 0 1000 2000 3000 %0 1000 2000 3000
others with clusters surviving for long time. In a finite sys- t t

tem all clusters finally disappear, but the typical lifetime di- £ 2. (a) Total number of particles\(t), vs time for the BB
verges linearly withN,, and the average lifetime is infinity model and three different values of the control paramgtefFrom
[5]. Figure 1 shows the distribution of particles at two dif- (op to bottom:u=5x 104, £=0, andu=-5x 10°% hereD=105.
ferent stages of the evolution, one in which a large singlgp) idem for the ND model and four different values of From top
cluster, coming from a single ancestor, is pres@ht  to bottom,x=0.7, x=0.5, ©=0.4, andu=0.3. Two are above criti-
pane) corresponding to a long-time evolution, and anothercal (u.~0.4) and two below it. The other parameter values Bre
with still many clusters from different ancestdteft pane)  =0.1,N,=50, andD=1075.

1 500
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FIG. 3. Long-time average number of particl&) vs u. Left .
panel corresponds tD=10"* and right toD=10"%, and the other 0.2 LT
parameters as indicated. The average is taken from the instante 0 ) TN

neous particle numbers at times between 1000 and 10000 steps; tt
error bar indicates the standard deviation of the instantaneous fluc
tuations around this mean value.

04 0.6 038 1
X

FIG. 4. Long-time spatial structures for the ND model. Left
provides good data collapse in the left plot Fig. 3, for acolumn corresponds to two patterns with the same valué® of
diffusion coefficient ofD=107"%, but it is grossly inadequate =104 and two different values gf=0.5(up) and x=0.9(bottom).
for data in the right panel, corresponding to smaller diffusiv-Right column corresponds to fixed=0.7, andD=10"* (uppe,
ity, D=107°. andD=1075 (bottom). In all the plots,Ns=50 andR=0.1.

The nature of the spatial distribution in the active phase
depends on the values of the parameters. For large eridugh is over all particles, and the average is a spherical average
the spatial distribution of particles is homogeneous on averogver all wave vectors of modullg|=K, and a further tem-
age, whereas clear clustering occurs for srBallAs in the  poral average in the long-time state is added to improve sta-
BB model, the clusters are coming from different families. tistics. Maxima in this function identify relevant periodicities
But here they ar@ot transientand the most striking feature , the interparticle distribution.
is that theyorganize in a periodic patternrhe periodicity of In Fig. 5 we show the structure factor in the steady state
the pattern is of the order dR, the interaction range. In - o the model for different values of the parameters. The
addition to decreasinD, this transition to a periodic organi- gmergence of the periodic patterns is indicated by the peak in
zation occurs by increasing and, for small enougld, by ¢ gtrycture factor. As in Fig. 4, we show here two different
increasingu. Figure 4 shows examples of the different spa-genarios: The upper panels correspond to the structure fac-

tial patterns. : . . :
or (left) of different patterns withu fixed and changind.
We see that the most notable effect of the introduction o} (left P he ging

interactions with a characteristic spatial scale has been thr | 20

segregation of bugs in a periodic array of clustdysttom- _ 2 L5

right plot in Fig. 4. This seem to be a rather natural way to & ¢4 5

make compatible the high local growth at relatively large mg o e [ — 210

value of u, with the reduction of this growth that a too ™ 0.014 e, ééo.s

crowded neighborhood would imply: the empty space be- PR R B 0.0

tween the clusters acts as a buffer zone keeping the compe 0 100 K 200 300 0 2><10'4]3)><1045x10'4

T T T

tition for resources less limiting than in a homogeneous dis- 6
tribution. We expect that this mechanism will appear in
Nature when there is a scattering of the total population in
small groups over a large spatial area. One can think, for
instance, of the spreading of groups of predators, or even o
primitive human societies that are aggregated in small tribes
We characterize the patterns in terms of steicture fac-
tor S(K). It is defined as

1 .
=N dax®
N(t)%

— u=05
-—- p=0.6
—e u=0.7
— p=0.8

300

FIG. 5. Structure factordleft panel$ and corresponding height
(6) of the main peakright) for different patterns in the ND model.
Upper panels are for fixed value @f=0.7 and the values ob
shown in the legend box. Bottom panels are fox 107> and dif-
wherex;(t)=(x;,y;) is the position vector of the particjeat  ferentu’s as shown in the legend box. In all the plot=50 and
timet, g=(qy,q,) is a two-dimensional wave vector, the sum R=0.1. Note the different scales in all the plots.

2

S(K) =

Kt
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One can observe that by decreasihghe value of the peak o1 v T [T T T T
increasegupper-right pane) indicating that clustering with I ]
a strong periodicity develops. Bottom panels are [r 0_
=10"° and different values ofx. Here the pattern is rather 001 4
developed at all values @f above the absorbing transition at L
me=~=0.4, with only mild variations of the peak heigright -0.02 -
pane) with u. By analyzing nonspherically-averaged ver- < I
sions of(6), we confirm that the periodic pattern has hexago- '0'03_ ]
nal symmetry at onset. 0,04 i
We next try to explain quantitatively the observed patterns
in terms of an analytical description. -0.05 .

IV. FIELD THEORY DESCRIPTION, STABILITY — ”3'0 20 50 60 70
ANALYSIS, AND SPATIAL PATTERNS K

Standard theories and. tools for pattern formation ;tudies FIG. 6. Linear growth rate. vs wave numbeK from (8) for
[26] address continuous field models, and are not particularlyjiterent values ofw close toup. We takeR=0.1 andD=10"5 so
well suited to analyze pattern formauon in p_art|cle SYStemSthatMp:O.lss anK,,=47.79.
Fortunately, there are well established techniqkeswn un-
der the name of Doi—Peliti theory or Fock space techniques . i i . ,
[8,27,28) that allow a description of interacting particle sys- v_wth a partl_cula_r mtegral_kernel. At this level of megn-ﬂeld
tems in terms of field-theoretic Langevin equations. Thesdke approximation(no noiss, the field 4(x,t) can be inter-
techniques turn out to be equivalent to the Poisson represeft€ted as the density field(x,t). Stationary homogenous
tation[29,30. In the simplest cases, the interacting particlessolutions of this equation are the absorbing phése,t)
are instantaneously Poisson distributed in each small spaced, and theactive or survival phaseg(x,t) = = uNy/ 7R?
region, and the field description gives the space and timgremember thaj=\y—By). For u<0 the only stable solu-
varying average valueé(x,t) of the local Poisson distribu- tion is the absorbing one; the transition to the survival state is
tion for the particle density. approached ap=0, and this state is stable for a range of

In general, however, the continuous field is complex andositive values ofu. At the deterministic level the transition
this simple interpretation does not hold, but still in this caseis transcritical. As expected, particle fluctuations in the dis-
all the moments of the particle densipycan be obtained crete model change this transcritical character of the transi-
from the moments of the fluctuating fieftl For example the tion (see Fig. 3, probably to one of the DP-typg21,25,
first moment of both quantities are eqyalx,t))=(¢(x,1)). occurring at values of larger than zero.
In the Appendix, we derive in detail the Langevin field de- As mentioned before, E¢7) corresponds to the model in
scription for the ND model. Two approximations are neededRef. [12] if an influence functionfg(r,t) of the form
to arrive to the final form{A20) (with an additional diffusion  fg(r,t)=1if |[r| <R, fg(r,t)=0 if [r| =R s taken. Two limits
term, see the Appendix for detgilAs a first attack to the arise in(7): whenR goes to zero, the Fisher equation with
problem of pattern formation in our particle model, we ana-local interaction arises, where no patterns appear. The oppo-
lyze in this section just theleterministicpart of the field site limit, R taking the value of the size of the system, has
equation, i.e., the noise term will be neglected. We will seebeen considered in Rdf1L2], and the nonexistence of spatial
that this will be sufficient to understand the main qualitativestructures has been reported. Thus, in this work we limit to
features of the pattern forming instability. The expected in-the study of intermediate values Bf
fluence of the noise would be to affect system properties in  We make a stability analysis of thg, solution by consid-
the vicinity of transitions and instabilities, and to shift the ering small harmonic perturbations around ¢(x,t)= ¢
position of the transition line$25]. In addition, since our +5¢(x,t), with S¢(x,t) xexp(At+ik -x). After simple calcu-
system is translational invariant and two-dimensional, it islations one arrives at the following dispersion relation:
very likely that the sharp bifurcation to patterns that we find
in the deterministic analysis will be blurred by noise into a
nonsharp crossover even in the thermodynamic limit. Never-
theless, we find good qualitative agreement between several
of the observed properties of the discrete model presented inhereK is the modulus ok, andJ; is the first-order Bessel
the preceding section and the deterministic predictions obfunction. It is clear that the relevant parameters in the prob-

k2 2H
MK) ==DK? = =3, (KR), (8)

tained here. lem areu andD. /R? (in fact the precise adimensional com-
Thus we analyze the deterministic version of E420)  binations areur andD7/R?, but remember that we are mea-
(with the diffusion term added and=0): suring times in units of, so thatr=1). The eigenvalua(K)

(which is in fact a function oKR, u, andD/R?) is real and
can be positive for some values of the parameters. This is

ﬁt(rb(X!t) = DV2¢(X1t) + ()\O - BO)¢(X1t)

1 shown in Fig. 6, where we plat againstK for different
- ﬁsqs(x’t) <R dr (r.b). (7) " values ofu aroundup as given below in Eqi13), with fixed
: D/R2.
This equation is related to the one in Ref$2,13,15 but The equations
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INK 20— T
K=K, 100 - S; =
F --- p=04
— .6
AMK,) =0, (10) 80 - .
identify the values of the parameters at which the maximum @0 60 .
of the curve\(K), atK,, becomes positive. This gives a line 2
of instability up=up(D/R?) in the parameter plane. It is 40 .
straightforward to obtain thaip=-DRK3/(2J;(KR)) and i
the equation foKK, reads 20 iy
KeR 3 (K R) = J(K-R) -3 =0 (11) T (IR e
ZJl(KmR) o\"\m 2\\m . K

Jo and J, are the zero and second order Bessel functions, FIG. 7. Spherically averaged continuum structure function

respectively. This equation can be solved numerically to ob2gainsi for different values of the control parameter The other
tain parameter values a2=10" andR=0.1.

4.779 In Fig. 7 we plot the spherically averaged structure func-
Km = R (12)  tion, S(K), against the wave numbéf, of the density field
¢ obtained numerically, after a long-time, from numerical
so that solution of Eq.(7). S«(K) is the modulus of the spatial Fou-
rier transform of(x,t), averaged spherically and in time.
p = 185.1929. (13) Note that, sincep is a continuous fieldS.(K) is related but
R? not identical to the structure fact&K) of the particle sys-
tem, Eq.(6). Nevertheless, maxima d&.(K) also identify
dominant periodicities. In Fig. 7 we have tak&¥0.1, D
=10, so thatup~0.185. One can see how f@r> up the
§tructure function develops a peak that grows withindi-
cating the development of a spatial pattern with a typical
edistance between clusters. The peak is located at the wave
number closest t612) compatible with the discretization im-
posed by the periodic boundary conditions. Figure 8 shows a
steady pattern of density which is analogous to the one
shown for the discrete model in the bottom-right panel of
gig. 4. These observations confirm for the full nonlinear
model (7) the behavior identified from the linear stability
analysis of the homogeneous solutions. It is also worth men-

The behavior of the deterministic E¢?) is now clear: for
u<0 the only stable solution isp=0. In the interval
0< u<up one has the homogeneous densbty ¢, and for
u> up Spatial patterns emerge. This last transition can als
be crossed by decreasiiy R? at fixed x> 0.

This scenario is consistent with the results for the particl
ND model shown in Sec. Il. In particular, note that E#j2)
indicates that the pattern periodicity is determinedpyand
is independent of other parameters of the system sugh as
D, andNs. This is in agreement with the results for the struc-
ture factors shown in Fig. 5. It is also observed there that th
numerical value of the dominant wave number in Fig. 5 is
close to the predicted value given by Ef2). Since Eq(7)
has no particular symmetries, we expect on generic grounds
[26] that hexagonal patterns would appear close to the insta-
bility. Since they usually bifurcate subcritically we expect
some range of bistability fon < up, that may be influenced
by noise. In consequence we do not expect the transition line
(13) to be fully accurate. Nevertheless it correctly explains
the distinct behavior between the data shown in Fi@) 3
(essentially all of them predicted to be in the homogeneous
phase, as confirmed by Figs. 4 ang @&d Fig. 3b) (for
smallerD, so that all data points are in the periodic clustered
phasé. The curves in Fig. @) collapse together and ap-
proach the deterministic prediction for the homogeneous so-
lution ¢ (a straight line of slope 1 in that scaled plsuffi-
ciently far from the absorbing transition point. Such collapse
does not occur in Fig.(®) since they do not correspond to
homogeneous states. More important are the fluctuation cor-
rections to our deterministic results around the absorbing
transition: the transition point is quite far from the determin-
istic value u.=0 and the critical behavior is very different  FIG. 8. Steady spatial pattern from the deterministic equation
from the simple linear vanishing of the number of particles(7). =0.70,R=0.1,D=10"5, andNs=50. Note the strong similar-
predicted deterministicallgtranscritical bifurcatioh ity with the pattern in the bottom-right plot in Fig. 4.
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2

tioning that the nonspherically-averaged version of the struc-
ture function displays hexagonal order far= up. Transi-
tions to other geometriegsquares seem to occur at high
values of u, but we have not pursued the issue further )
(square geometry appears for a different integral kernel in
Ref. [12)).

1.8
1.6
14

1.2
V. INFLUENCE OF FLUID FLOW

N(t) tR*/uN

1
In addition to the pattern-forming instability, a crucial dif-

ference between the BB and the neighborhood-depender
model is their response to an external flow. Since the birth 1
and death rates of the BB model are fixed constants, globa L ] T
guantities such as the total number of particles are indepen 0 3000 6000 9000 O 3000 6000 9000
dent of any particle motion, being it diffusive or hydrody- t t
namic. This seems to be rather unrealistic for applications

su_ch as modeling plankton populaﬂm[@,l(_),l]], aIW_ays values of the external flow strength, and the two chaotic maps in
driven by external flows. On th_e contra_wy, with the ne'ghbor'the text. Left is for the Harper map and right for the Standard map.
hood dependence of the rates in the tribal model we overpasgom top to bottoma=0, A=0.01,A=0.05, and, fluctuating around
this inconvenience and the model becomes dependent on thg, yajue 1(white line), A=1 andA=3. TheA=0.01 andA=0.05
environmental conditions. plots cannot be properly distinguished for the figure of the Standard
As a simple illustration of the impact of a velocity field, map. The other parameterg=0.8,N;=50, D=105, andR=0.1.
we consider the flow given by the Harper m@pe one also
used in Ref[2]), which is a symplectic map in two dimen- As for the BB model[2], inhomogeneity persists for rather
sions and, therefore, it resembles an incompressible flow. Agtrong flow, but finally the distribution becomes homoge-
each time step the fourth item in the algorithm described imeized. At this point, the particle distribution should be very
Sec. Il consists of moving the particles in the following way: close to Poissonian, with density given by the homogeneous
If we denote by(x(t),y;(t)) the coordinates of the particle  solution of(7). This is indeed what is observed in the figure
at timet, after one iteration of the map they become (for large values ofA the total number of particled\(t),
“ normalized with the survival steady density value, fluctuates

X(t) =x(t) + A codyi(t)), (14) around ). For smaller flow strengti the spatial structure in
the neighborhood of each particle becomes relevant, and the
yi(t") =yi(t) + A codx(t")), (15 number of particles approaches the value in the absence of

wheret’ =t+ 7. A gives the strength of the flow, and depend- 1
ing of its value particles can follow regular or stochastic Y
trajectories. To check for the robustness of the results with (. g}, " %
respect to the particular flow considered, we have also imple- g
mented advection by another widely used model to study 0.6
chaotic advection by incompressible fluid flows, the Stan->

0.8

FIG. 9. N(t), normalized withuNg/7wR?, vs time for different

dard map[31]: 0.4 X N
A 02 - -# -,
xi(t") = x(t) + 2—sm(2wyi(t)), (16) :
T
Yi(t") =yi(t) +x(t). (17) 0.8
Here we are just interested in highlighting the behavior when
the flow changes, that is whéachanges. Increasindgy leads 0.6

to increasing irregularity and mixing behavior in both flows. >
The time evolution of the total number of particles is given

in Fig. 9 (the left plot corresponds to the Harper map flow 0.2
and the right one to the Standard mpaft is seen that the Lk
asymptotic value depends on the flow strengtfThe reason oL i N R IS TR-L: S
can be clearly seen from Fig. 10, where snhapshots of the 0 02040608 10 02040608 1
particle distributions are presented for the Harper case. It is X X

seen that the periodic array of clusters in the absence of flow F|G. 10. Long-time spatial structure for the ND model with an
becomes more filamental-like as the flow strength increasesxternal flow(Harper map From top to bottom and left to right,
The shape of the filamental structures reflects the known um=0, A=0.1, A=0.5, andA=1. The other parameterg;=0.9, D
stable and stable foliation of phase space for the Harper map5x 1078, N;=50, andR=0.1.
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3.0x10™ - APPENDIX: FIELD THEORETICAL APPROACH
4 In this appendix we derive an approximate continuum

field equation describing the dynamics of our model, by us-
ing Fock space techniques. We present more results than
T needed for the deterministic analysis of Sec. IV, but we in-
clude them here by its intrinsic interest and to highlight the
presence of particle fluctuations in the original discrete
model.
The standard formulation of Fock space meth{g8l28|
FIG. 11. Structure factor for the patterns shown in Fig. 10.  requires the microscopic model to be defined on a lattice.

flow, given in Fig. 3. For completeness, Fig. 11 shows inThus we first modify our off-lattice model to fit into a grid,
terms of the structure factor, the disappearance of structur%pplyn:henStalri]dizlrd prr]:)clcladuret,haqdwthern Iet/ﬂleﬂ?”d sg;’:ilrc]lngn;to
as the flow strength increases. Thus, we see that the nonlo fclo € It_eg_g T%’. smatl, so h a d?‘f eco ? € continuu
interactions lead to a coupling between flow and populatiorP'!-attice limit. This is somehow different from a macro-
dynamics, mediated by the changes in local distribution geSCOPIC limit, since only the grid size, but not the basic

2.0x10™

1.0x10™

0.0 n =
0 200 300

ometry that the flow induces. lengths in our model, such as the interaction raRgwill be
made to vanish. From the lattice approximation we can write
VI. SUMMARY the stochastic dynamics in terms of a Hamiltonian operator.

In this paper we have introduced an interacting particled® Path integral representation can then be obtained and a
model which considers birth and death rates for any indi-@ngevin equation can be derived from it. The off-lattice
vidual depending on the number of particles that are within 4'Mit i then conveniently taken. The whole process cannot
distance smaller than a given range of interaction. The moddl€ Performed exactly and we need to introduce two approxi-
can be considered as a simple nonlocal interacting extensidRations, one valid for not too large particle densities and
of the BB model, but showing, however, a very different @n0ther restricting to Gaussian fluctuations.
behavior. A striking feature is the appearance of a quasista- /e divide space in cells forming a lattice df sites and
tionary (fluctuations are presenperiodic pattern of particle describe the state of the system by the number of particles
clusters. inside each lattice ceflN;}i-; . A. The lattice model will be

In order to deepen in the understanding of the patter@quivalent to the off-lattice one ir_1 the Iimit of small lattice
forming instabilities and structures in the discrete model, wesiZ€; SO that only zero or one particles will be present at each
have derived the continuum equation describing the particl§ite- In addition it is convenient to work in continuous time,
distribution. Two main features characterize this equationSC that a continuous time Markovian Master Equation de-
(a) the presence in the deterministic part of an integral tern$Cribes the dynamics. At long times- 7) there should be no
taking into account the nonlocal interaction among the pardlfference between the discrete and the continuous time ap-
ticles, and(b) the very complex structure of the noise term, Proaches. _
which also reflects the nonlocality of the interaction. To un- ~ Since statistically independent processes are represented
derstand the pattern forming process we have studied tHey additive terms in the Master equation, we can treat sepa-
deterministic part of the equation. It coincides with otherrately particle diffusion and particle transformatiofvge do
models previously studied in the literatUte2]. At this level, n_ot consider advection here, since it is not useo_l in the a_naly-
the interpretation of the continuum field as the density fieldSis of Sec. IV, and then sum up the corresponding contribu-
of particles is valid. Periodic clustering appears as a finitdions. It is well known[8,2§] that the random walk process
wavelength instability in the density equation. Igads to a d|ﬁu3|qn term in the continuous La_ngeym equa-

In addition, we have also considered the response of th#ON, and no contribution to the noise term. This will not be
model to an external driving flow. Global properties of the rederived he_re. We focus in_the birth and de_ath of particles:
system like the total number of particles depend on the flow, At each site we have a birth rate per particle

via the influence of it in the spatial structure. 1
Future extensions of this work will include a further study \i= ma><0,)\0 -=> Nj> (A1)
of the instabilities, an explicit consideration of the noise term Nsj <ra)
in the cont_inuum dgscription, anq the cons!derat_ion of d.iffer-and a death rate per particle
ent (chemical or biologicgl species of particles interacting
through a finite interaction range. @
Bi= ma><0ﬁo— D Nj). (A2)
ACKNOWLEDGMENTS sjeR()

We acknowledge discussions with Guido Boffetta, Ste-The sum is over the cells that are within a distaRt&om
fano Musacchio, and Angelo Vulpiani. We also acknowledgethe sitei (excluding celli, so that in the continuum limit we

016216-8



CLUSTERING, ADVECTION, AND PATTERNS IN A.. PHYSICAL REVIEW E 70, 016216(2004)

recover the original prescription&4) and (5)). Defining d|)
P(Ny,N,, ... Ny ;) =P({N};t) as the probability of having ot =—H[yp, (A10)
N, bugs in site 1, ...\, bugs in siteA at timet, we have the
following Master Equation: with the Hamiltonian
2 H(al\.a) = -2 ([(@)’a - ala]h + [a, - alalB).
dP({N};t a,a &) - &g
%=E(Ni—1)7\iP(...,Ni—l,---;t) i ' |
=1 (A11)
A ~ ~
+ D (N +DBPG..N+1,--:) \i and B, are the operator versions &f and g;, that is,
i=1 expressiongAl) and (A2) with all the particle numbersl,

A replaced by the number operat(a@k. They can be defined
—SUNAPCLNG o) from a power series representatifd2] of a conveniently

i regularized version of expressio(&l1) and(A2).

To obtain a path integral representation, a first step is to
use the commutation relations k until obtaining normal
ordering(i.e., creation operators to the left and annihilation
to the righ). We call the resulting expressidityo. Then an
The Fock space representation starts by defining thaction depending on the classical complex variabjeg)

A
- > NBP(..N, ... (A3)

i=1

many-particle state vector: and ¢(t) is computed as:
A t
= > PANEDIT @)N|oy, (A4) S=J dtZ [ s + Hyola! — 7 + L — )]
Np..Ny i=1 0 i
+ . L (A12)
wherea, andg; are the creation and annihilation operators at
lattice sitei, that is, The “arrow” notation means that the operatca;E and g
. should be replaced by the indicated classical variables. The
&Ny - Ni--Ny) =[Np---Ni+1---Ny),  (A5)  action allows to calculate average of lattice quantities such as

N; as adequate path integrals owgrand 1//: involving the
alNg---Ni--- Ny =Ni|N;---N; = 1---N,), (A6)  weight e"S. For Hamiltonian(A11), it turns out that normal
ordering leads to intricate expressions in any regularized ver-

verifying bosonic commutation rules sion of (A1) and(A2). We note that for low enough densities
o (or large Ng), the maximum condition would be rarely
[a,a/]= 4, (A7) needed. In consequence, a sensible approximation at low
density is:
a0)=0. (A8) . 1 )
Thus we have: A~ No- ﬁsj g(i)ai 8 (A13)
A
dy) _ < dPUN};D _ and
=2 ———Il@)"o)
dt N} dt i=1 ~ o t
B=Bo- 2 aa. (A14)
Nsj R

=2 | (N = DNPC-Ni=1-+)

N In regions where densities are not small, these expressions

would need corrections. We will comment more on this later.

The fact that; and B, do not depend on bosonic operators
on sitei (the sumj € R(i) excludes the cell) makes trivial
the normal-ordering procedure. The action is

A
X1 @)M]0) = NNiP(--Ni-++)
i=1

A

<IL @™o+ (N + DAPIN + 1) s= f o {wf[cw F (B o+ wj}
i= o | N SR
A

XTT @)N[0)= NiBP(-+N; ) +(¢:>2{—xo¢i+i¢i2 w,—]+1_“|¢i|22 |l?
i=1 Ns i crai) Ns 0
A

xIT @)Noy |. (A9) +Ni|¢i|2¢?2 |wj|2}. (A15)
i=1 S jeR(i)

After simple algebra we have a Schrédinger-type equation An extra term(not writter) should be added to implement
in Euclidean time: the particular initial condition used fd?({N},t). One could
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approach the continuum limit at this step but, for clarity, we The off-lattice continuum limit is performed by introduc-
will perform it after writing down the Langevin equation. By ing the density$(x,t) by the changel; — ¢(x,t)A% and tak-
introducing Gaussian noises at each diig(t)}, as Gaussian ing the lattice spacing going to zetb— 0. d is the spatial
integrals in averages involving E¢A15), one realizes that dimension(d=2 through this papgrWe have some freedom
averages of physical quantities, such{bg) can be obtained in performing this limit. For example, if we take the interac-
as averages over stochastic procedsgét)! satisfying ito  tion rangeR to be a fixed number of lattice spacings, then
stochastic differential equations. Terms in the action linear ifR— 0 in the continuum limit. In this case non-locality is lost,
{y1} give rise to deterministic terms in the stochastic equa@nd by properly scaling the interaction parametéfsind
tion, terms quadratic in these variables determine the corréV® et & continuous equation related to Reggeon field theory
lations of the Gaussian noisés,(t)}. Terms of higher order that has been thoroughly studi¢d1,2q. But we want to
give rise to non-Gaussian noise statistics. As usual we néi€scribe the macroscopic behavior of the off-lattice models
glect these termghis is our second approximation, by which mtroduced_ln Sec. I_I,_|n which the interaction range is finite.
we neglect the last term i#A15)) and obtain an approximate Thus, we fixR to a finite value when going to the continuum

Tto Langevin equation: and obtain
l-«
A (®) = (No— Bo) i — Qlﬂ' > g+ ) a(X,t) = (Ao = Bo) (X, 1) = N (x,t) - dr(r,t)
| LN ilmay s x-r|<R
(A16) +7(x,1), (A20)
where the Gaussian noiség(t)} obey: with
(my=0, (A17) (n(x,0)=0, (A21)
(mOnt") = 25(t—t’){5 K)\ ER ¢>4 (m(x,H7(x",t')) = 24t —t’){5(x -x")(x,1)
i(1) 7 = i 0T L= N
sjeR(i)
1
_ v L dr &i(r,
) aij(R)lN_alpilﬁj . (AL8) X{ ° Ns 0<[x-r|<R o t):|

6;(R) is a function with value 1 if cell$ andj are different -
and each one is within a distan&from the other. Noise
correlations are multiplicative, nonlocal, and rather involved. (A22)

I iti h isfi | hasti - . - .
n addition, they cannot be satisfied by real stochastic pro The continuum description of the BB model is recovered

t that th ise t th i t . . . . .
cess{z(V} so that the noise terms, and the variaiggt)}, if R—0. As in the discrete case, correlations(k22) are

are in general complex valued. Despite this, the particle star—nulti licative. nonlocal. and lead to complex valued pro-
tistics is encoded in the lattice stochastic process. For exéessgs The aiﬁusion térmvqu should alsopbe incIudedFi)n
3;n|[02k;] the probability for the occupation numbers is 9V€Mhe rh.s. of(A20) to account for the random walk of the

particles.

= 4 01 axxm)}.

A e—wi(ow(t)Ni We see that the deterministic part @20) with the dif-
PUNLY ={ [ ——— , (A19) fusion term is what one would guess as a mean-field descrip-
iz N

{0} tion for the particle density when taking into account the

, . finite range of the interactions, and it has been obtained here
where the average is over the statistics of the proce{sﬁz}es by a more systematic approach. Since we expect the simple
Consequences ofA19) are (Ni()=(¢i(t) and (Ni())  mean field approach to be correct for high enough densities
=(%i()?)+(i(1)). The term dependent on the initial condi- and far from transition points, we conclude that the terms
tion that was omitted fron{A15) can now be taken into neglected in the low density approximatiohl3) and(A14)
account by providing adequate initial conditions {@i(t)},  are just correcting fluctuation statistics in a regime, high den-

linked to the initial particle statistics b§A19). sities, in which they are already not very relevant.
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