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Chaotic properties of a time-modulated barrier
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Some chaotic properties of a classical particle interacting with a time-modulated barrier are studied. The
dynamics of this problem is obtained by use of a two-dimensional nonlinear area-preserving map. The chaotic
low energy region is characterized in terms of Lyapunov exponents. The time that the particle stays trapped in
the well is such that the distributions of successive reflections, and of the corresponding successive reflection
times, obey power laws with the same exponent. Using time series analysis, we show that the chaotic sea
exhibits an interesting scaling property over a large range of control parameters. Our results indicate that the
particle experiences unlimited energy growth when the barrier behaves randomly.
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[. INTRODUCTION ing barrier[12,13, and diffusion across a randomly fluctu-
. . . . . ating barrieff14]. The notion of the time dependent potential
The problem of a parur;le interacting W'.th a time- may be also extended to encompass the class of problems
modulated barrier has received clqse attentlpn in _recer‘lgnown as billiardg15-19.
years. In the quantum case, a question of particular interest | this paper we revisit the problem of a classical particle
relates to the time involved in the tunneling process. Al-interacting with an infinitely deep potential well containing a
though this subject is quite well understofil, some con-  time-dependent potential barrier, seeking to understand some
troversial results were pointed out j8]. Since then, differ-  chaotic properties of this system. First, we consider the case
ent approaches have been used and much attention has begima periodically varying barrier and then, second, we con-
concentrated on both the quanty®-7] and classical ver- sider one that is stochastically perturbed. For the periodic
sions of the probleni8,9]. In the quantum case, several im- case, we derive a two-dimensional map that describes the
portant results were obtained, including the frequency deperdynamics of the particle. As we will see, the phase space is
dence of the tunneling timg2], the transmission probability extremely complex and shows a set of invariant spanning
spectrum in a driven triple diode in the presence of a periodicurves in the high energy regime, and KAM islands sur-
external field [3], photon-assisted tunneling through arounded by a chaotic sea at low energies. For intermediate
GaAs/ALGa_,As quantum dot induced by an external mi- values of energy it is possible to observe some chaotic re-
crowave field[4], sequential tunneling in a super-lattice in- gions limited by two different invariant spanning curves. We
duced by an intense electric fiefdl], electron transmission concentrate on the low energy region located below the first
resonance above a quantum well due to dissipdidrand invariant spanning curve, and we evaluate the Lyapunov ex-
the probability of dissipative tunneling in Josephson junctionponents for the chaotic region using a large range of control
circuits[7]. The corresponding classical problem was studiechbarameters. Using roughening concepts, we obtain a scaling
by Mateos and Josg8], and Mateoq9]. In these latter pa- function as well as the critical exponents for chaotic time
pers they showed that the dynamics of a particle inside aseries located in the chaotic sea. The scaling function is sup-
infinite potential box that contains a periodically oscillating ported by a very good collapse of the roughness data for
barrier presents a rich hierarchy of behaviors. With an approelifferent control parameters onto a single curve. We also
priate adjustment of control parameters and initial condistudy the distribution of successive reflections in terms of
tions, periodic, quasi-periodic and chaotic motion may all beboth reflection number and reflection time for a particle
observed. The authors studied the dynamics using an arettapped in a well created by the oscillating potential. For a
preserving map in energy—time variables. The most signifistochastic perturbation, we will show that the particle may
cant finding presented in those papers was that the travershdve unlimited energy growth once the stochastic perturba-
time, i.e., the length of time taken by the particle to traverseion destroy the invariant spanning curves and KAM islands.
the oscillating barrier, obeys a power law distribution of ex- The paper is organized as follows. In Sec. I, we describe
ponent —3. This distribution provides clear evidence of chahow the map is constructed. We discuss how to obtain suc-
otic behavior, and the authors suggest that the exponent maessive reflections and how to evaluate their corresponding
be indicative of scale invariance. It is also interesting totimes for a particle trapped in the well created by the oscil-
study the problem of a classical particle interacting with alating barrier. We also discuss briefly the method used to
static or time-dependent multi-well potential in the presencepbtain the Lyapunov exponents. The numerical results and
of noise. Recent investigations include population changes iscaling properties for the periodic case are discussed in Sec.
the presence of an external figlt0], the escape flux from a 1ll. The stochastic version for the problem is developed in
multi-well metastable potential preceding the formation ofSec. IV. In Sec. V we summarize the main results and present
quasi-equilibrium[11], activation over a randomly fluctuat- concluding remarks.
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II. NUMERICAL TECHNIQUES: THE MODEL AND
LYAPUNOV EXPONENT CALCULATIONS

A. The model with periodic oscillations

We consider a particle inside an infinite potential box that
contains an oscillating barrier. It consists basically of a one-
dimensional system that may be described by a time-
dependent Hamiltonian. Let us define the Hamiltonian for
this system asH(x,p,t)=p?/2m+V(x,t), where V(x,t) is
given by V(x,t)=Vy(x) +V;(x,t). The potentialVy(x) is de-
fined as

0, ifo<x<landl+b<x<l+b+Ll;
Vo(X): Vo, |f|$X$|+b,
o, ifxs0andx=Il+b+L;

andV,(x,t) is written as

0, if x<landx>1|+b;

Vi(x,t) = . . ;
1Y {Vlsln(t), if l<x<I|+b; : oy

whereV; is constant and gives us the height of the static
potential barrier.V; is the amplitude of oscillation in the | [ o
regionl <x=<I+b. We analyze the casé, <V,. The param- 0
etersl, b andL are, respectively, the widths of well |, of the
barrier and of well Il as shown in Fig. 1. The dynamics of a
particle interacting with an oscillating potential barrier may I I
be described by a two-dimensional maghat gives the total
energy of the particle and the time at which the particle col-
lides with an infinite potential wall located a=0, i.e.,

(Ens1,the1) =T(E,,t,). To derive the magd, we will follow a 1 b L
similar procedure to that used in R¢®]. Suppose that the _ o
particle start fromx=0 at timet, with initial energy E, FIG. 1. A sketch of the potentiad(x,t) for the periodic case; the

:Kn:mvﬁ/2>V0—V1. If E,<V,y—Vj, the particle will never ~Z€roes ofx andV are in the bottom left-hand corner.

fzflf:sp?ofrrc;rgcwilr:el' Ig;ta:\tg]r?dfrsci)(r;:gf :22 It()ez;]rgritgxc:ttlirsnf’ It +t/)]. After traveling a distancé at the constant velocity
n /: “J ! H H - + H "
=1/v,, wherev,=V2K,/m. In this situation, two different Z’B/;?_erggi;he tﬂgrugfrtgzveci;ﬁg;s bit:lftekirnztitclmz:]%rgy
kinds of behavior may occur, depending on the energy of th%bru;r)ltly to a ,new valuE =K" =K' +Vo+V; sin(t, +t/+t).
particle. If E,>Vo+V; sin(ty+ty), then the particle is trans- It then travels within w?ell IT atna constant nveI(r;cit;/”
mitted past the potential and we will use an application that. V"ZKﬁ/m. After a timet” =L /v" the particle will be reflectned

we call Tg; otherwise, it is reflected with the same initial with the same kinetic energy towards the left-hand side of

energy to the left side of the barrier and we Use Let us the : . . iy )
. . L . potential after suffering an elastic collision with the wall
first deriveT,. When the patrticle is reflected to the left side of the potential located at=1+b+L. When the particle ar-

with the same initial energy and hfs a kick from the wall g o5 o the right-hand side of the barriet=I+b), two pos-
located ax=0, the new energy iy, =E, and the new time sibilities arise: (a) it will be transmitted if E' >V,

i =t .+ i i . y . .~ 10
is the1=ty+ 2 /v,. After that, the particle starts again from +V] sin(t, +t+17+2"); or otherwise(b) the particle will be

=0 and travels to the right with the same velocity until it . . .
arrives at the left side of the potential barrie=1). If reflected with the same velocity back towards the right hand
: side of the well Il until it satisfies the conditioR;, >V,

En1<Vo+Vy sin(tp.1+t,,,), the particle will be reflected ; Lo e O .
L . P + +{.+1.+ .
again to the left side, and so on, until it is able to traverse the Vi Sinta 1, +1,+ 21ty ). Here, i is the smallest integer for

. . L . which the last equation is true.
. + : . .
SZ;”E; J\Tri':thelrS] gzse, the applicatian, at the (n+1)th kick We emphasize that for>1, the number of successive

reflections made by a particle inside well Il prior to exit is

= = (i=1). We will show that the distributions of successive re-
A t . =t +2/\2E . /m flection nqmbers and t?mes obey power laws with same ex-

el e ponent. Ifi=1, the particle has not yet suffered a reflection,
Next, we deriveTg. If the particle has total enerdgy, >V, but if i=2 the particle, still trapped inside well 1, has suf-
+V;sin(t,+t,) when it arrive atx=I, then it will be transmit-  fered 1 reflection. The time associated with the reflections is
ted. The particle experiences an abrupt change in its kinetitf=(i—1)2t;. If condition (a) is satisfied, then the particle is
energy, and the new expression K$=E,—-[Vy+V, sin(t,  transmitted across the barrier with kinetic eneigy=E;
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=[Vo+Vy sin(ty+ti+ti+2it7)] in a time t°=b/v; where
vp=\2K!'/m, exiting the barrier with total energ¥,.;
=K +Vo+Vy sin(t,+t,+t’+2it)'+t/"). Since the total energy

of the particle is constant until its next passage across the

barrier, Tg giving the new energy and the new time for the
(n+1)th kick from the wall of infinite potential located at
=0 is written as

Env1 = En+ Va[ = sin(t, +ty) +sint, +t; +t.")
—sinlt, +t,+t" +2it,"")
+sinlt, +t, +t," +2it,)"" + /)],

ther =t + U+ 8+ 20t + 877+ 1/\2E,,/m.

Tg:

We may use the following dimensionless variables:
:V]_/VO; en:En/VQ; en’ :K;]/V01 e;;:K:,;/Vo, e;;,_K;;’/VO; ¢n
=27/ Dt,; w=v2Vy/m; andM=I/wr. Here,  gives the pe-
riod of oscillation of the potential barrier, and the prodwet
gives the distance that a particle travels with velogitin a

time 7. So the parametavl gives the number of oscillations

that the oscillating barrier has completed after the particle

starts fromx=0 with kinetic energyK=V, by the time it

arrives at the left-hand side of the potential barrier located at

x=I [8,9]. Using these variables, the applicatidg is given
by
€n+1= Ens
$ni1 = ¢+ 4TMIVe,, ., mod(27),
and the applicatiofg is
€n+1= €y (= SIN(A ) + SiN(A )
- sin(Agy) + sin(iqﬁd)],
Pne1=Acpg + 277M/\§en+1 mod2),

A

Tg:

where the auxiliaries variables are

27M
Ada= o+ ——,
\fen
1 b1
A¢b:¢n+27TM =+,
Ve, e,
1 b 1 L1
Ape=p+27M| =+ ——=+2i—— |,
V€, \eé I \e/r;
1 b 1 L1 b 1
Ady= ¢p+27M =t = I——=+ -
ve, e, Ive ey
The expressions for the new energése, ande) are given

by
e =e,~1-rsin(Ag,),

g =e +1+r sin(Ady),

" o_

€'=€-1-rsin(A¢.).

The coefficients of the Jacobian matrices Torand Tg ap-
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Phase

FIG. 2. Iteration of different initial conditions for the parameters
M=4.7,r=0.5,b/1=0.2, andL/I=1. In the low energy regime it is
easy to see KAM islands surrounded by a chaotic sea that is limited
by one spanning curve. For intermediate energies it is possible to
observe a small chaotic region that is enclosed by two different
spanning curves. The high energy domain shows many different
spanning curves.

maps are area-preserving, becauselgdgt 1.

Iteration of T for the parameterm=4.7,r=0.5,b/1=0.2
andL/l=1 yields the phase space shown in Fig. 2. To facili-
tate a comparison with previous results in the literature, Fig.
2 was obtained with the same control parameters used in Ref.
[9]. In the low energy regime we can see KAM islands sur-
rounded by a chaotic sea. The chaotic sea is limited by the
first invariant spanning curve. For intermediate values of en-
ergy, we see a small chaotic region that is limited by two
different invariant spanning curves. As the map is area-
preserving, a chaotic orbit enclosed by two different span-
ning curves will never exit them and, similarly, a chaotic
orbit located below the first invariant spanning curve will
never rise above the curve nor visit the interior of a KAM
island. For high values of energy, we mostly see invariant
spanning curves. We focus our attention on the low energy
regime.

The successive reflection number consists basically of the
number of the iteration for which the patrticle is still trapped

plications are shown in the Appendix. They ensure that thén well II. It is obtained using the following condition:
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oF Lyapunov exponent is positive. If the Lyapunov exponent is
107+ negative, the orbit may be either periodic or quasi-periodic.
Let us now describe briefly the procedure used to obtain
10000 [ Lyapunov exponents numerically. They are defitigél,2q
af as
100E n
I N=lim 2 =In[AY, j=1,2,
E n—o =1 N
| . v
1 10 100 1000 k ; e ;
Successive Reflections (m) whereA| are the e!genvalues on=II;_, Jk(e_k, &) andJy is
the Jacobian matrix evaluated on the ogjt, ¢,). In order
of T T to evaluate the eigenvalues b, we use the fact that can
107 (b) 1 be written as a product af=0OT, where® is an orthogonal
matrix andT is a triangular one. We now define the elements
_10°F 3 of these matrices as
2D
. (cos(e) - sin(ﬁ)) _ <T11 le)
16000F 7 “\sin(@) cogd) )T\ 0 T/
100? L ... % SinceM is defined asM =J,J,,_;...J,J;, we can introduce the
1 10 100 1000 identity operator, rewritéM asM=J,J,,_1.. .J2®1®11J1, and
Successive Reflection Time (t) define®;1J,=T,. The product,0, defines a new matrig.

In a following step, we may writeM as M
— -14* ;
(b) times. The parameters used here &te4.7,b/I=L/I1=1 and :‘]”l]f‘}""]3®2®2 Ty The same procedure ylgldifz
i o _ =057, The problem is thus reduced to the evaluation of the
r=0.5. The power law fits yieldP,,ocm”m and P, t", where y,,= . R . .
_ __ diagonal elements of;: T}, T,,. Using the® and T matri-
3.032) and y,=-3.002). \ . )
ces, we find the eigenvalues bf, given by

FIG. 3. Distributions of successive reflectioa) numbers and

.2 .2 . . . .
47M L + -
€ >1+r sin(A¢b+i%—), (1) T = —lel ]221 , T22=—111J,%2l
Ve, | Vinntla: Vit

wherei is the smallest integer for which E(l) is true. Note ~ We can then evaluate the Lyapunov exponent using the rela-
that fori>1, the successive reflection number is given bytion

m=(i—1). As the particle travels at constant velocity inside n g
well Il it is easy to obtain its reflection time as A = lim s H|n|-|-}<|’ j=1,2.
n—o k=1
s _ m4'n’M L
m \Fr |- It is interesting to observe that=-\,, because the map is
n

area-preserving. Figure 4 shows the asymptotic convergence
The distributions of successive reflection numbéts, and  of the positive Lyapunov exponent for the same parameters
successive reflection timeB, are shown in Fig. 3. In each as in Fig. 2. The ensemble average of 5 different initial con-
case, the straight line represents a power law fit to the nugjtions givesk=1.675+0.003, where the error represents the

rr_1erica| data. In Fig..@, the power law fit forPneem™ o “4ard deviation of the five samples.
yields y,,=—3.032). It is interesting to note that large values

of m have low occurrence, and small valuesiohave a high

probability of being observed. The distribution of the aver- 1. NUMERICAL RESULTS

age successive times is shown in Figh)3The power law fit _

suggests to us tha®,«t” with y=-3.002). The control A. Lyapunov exponent evaluation

parameters used in Fig. 3 weké=4.7,r=0.5,b/I=L/I=1. In this section we present and discuss our numerical re-
Note that both distributions are fitted well by power laws sults for the deterministic case. Our first step is to choose
with the same exponent of —3. control parameters, and then we investigate the correspond-

ing dynamical properties. The Lyapunov exponent is evalu-
ated for a large range of control parameters. Figure 5 shows
the behavior of the Lyapunov exponent for a large range of
One tool used to characterize sensitivity to initial condi-M. We note that, for three different values 0fr=0.25,r
tions is the well known Lyapunov exponent. In effect, it cor- =0.5 andr=0.75 and for two different combinations di/|
responds to evolving the system over a long time from twoand L/I (the symmetrical casé/I=L/I=1, and an asym-
slightly different initial conditions. If the two trajectories di- metrical oneb/1=0.5 andL/I=1) the Lyapunov exponent
verge exponentially in time, the behavior of the system isgrows slowly and monotonically for 4 decades in tepa-
considered to be chaotic, the orbit is called chaotic, and theameter. Each point in Fig. 5 was obtained by the averaging

B. Lyapunov exponents
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L b/l=1
M=4.7
b/1=0.2 ] 4
175 Ll - I
< 3
—o1=().25 |
1.70 2t - 1=().5 7
7 o-o1=().75 i
< ST T R BRI
1 10 100 1000 10000
1.65 (@) M
5 T IIIIIII| T T T T TTITT T T T T TTIT T T

1.60 | _
4
< 3
155 0 ey
0 1 2 3 405 —o1=0.25
Tterations x10 2 e e 1=().5 -
FIG. 4. Convergence of the Lyapunov exponent in the low en- :1 > 1=0.75 1
ergy domain. The parameters usedMe4.Lr:0.5,b/I:O.2, and 1 T BT BT BT
L/I=1 and the Lyapunov exponent valueNs 1.675+0.003. 1 10 100 1000 10000
(b) M

over 5 different initial conditions on the chaotic sea, iterated

5% 10° times. This iteration number guarantees good conver- FIG. 5. Log linear plot of the Lyapunov exponextas a func-

gence of the Lyapunov exponent, as shown in Fig. 4. Theéion of M. The parameters used are0.25,r=0.5,r=0.75, L/I|

error bars indicates the standard deviation of the 5 samples.l and(a) b/I=1, i.e., the synmetrical case; atig) b/1=0.5, i.e.,

It is interesting to observe that there are no abrupt transitionthe asymmetrical case.

in A as a function ofM within the huge parameter range

studied. f,=0.67 above. After the transition, just one initial condition
Next we investigate how the Lyapunov exponent varies ags sufficient to fill the chaotic region, now representing a

a function ofr. We choose the symmetrical case with fixed merging of regiond and Il, as can be seen in Fig({.

M=4.7. The behavior of as a function of is found to be as  Using the relation proposed if21], we can estimate the

shown in Fig. 6. We observe one very pronounced and abruptyapunov exponent after the transition from the values of the

transition, and 4 other smaller transitions. These transitiongyapunov exponent in the two different chaotic regions prior

are associated with the destruction of the first invariant spano the transition as

ning curve and the consequent merging of different larger

chaotic regions. Each region has its own characteristic

Lyapunov gxponent. Irj.a rgcent paged] the autho_rs ob- N=f N\, + )\, =2.008,

served a similar transition in the context of a particle con-

fined within an infinite potential box containing an oscillat-

ing square wel[22]. They proposed that, after the transition, that is in a good accord with Fig. 6. It is interesting to note

the Lyapunov exponent is given by an average of the previthat, after the transition, the Lyapunov exponent convergence

ous exponents scaled by the relative sizes of the correspong slower and the error bars are larger. The other transitions

ing regions of the phase space. We emphasize that this coghown in Fig. 6 may be characterized in the same way.
jecture works well here too. To illustrate this, let us use the

most pronounced peak, which occurs neaf.0075. Before

the transition, it is easy to observe different chaotic regions B. Resonances on the chaotic sea

that are separated by an invariant spanning curve, as is

shown in Fig. Ta). The Lyapunov exponents for regions be- Let us now discuss the distribution of successive reflec-
low and above the first invariant spanning curve age tion energies. The range of energies that allow the particle to
=4.44+0.06 and \,=0.811+0.001, respectively. These stay trapped i e [€yin,€mads Where eyin=1-r and enax
Lyapunov exponent values were obtained from a long run of1+r. This is the same range of energies within which the
2x 10 iterations using 10 different initial conditions. A na- phenomenon of resonance occurs. Resonance is associated
ive estimation of fraction occupied i§=0.33 below, and with the time that the particle spends traveling inside well 11,
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T

FIG. 6. Log linear p|ot of the variation of the Lyapunov expo- FIG. 7. (a) Iteration of three different initial conditions that Iie,
nent\ with r. The parameters used welé=4.7 andb/I=L/1=1. respectively(i) below, (i) inside, and(iii ) above the first invariant
spanning curve(b) Iteration of only one initial condition. The pa-
. rameters used wegl=4.7,b/I=L/I=1 and(a) r=0.0075 andb)
147M L r=0.0076.

— .

Ve

If this time is a multiple of Zr, the particle will not be ) o .
trapped within well Il and takes the value=1. It is possible ~ characterize the behavior in terms of the variance of the av-

to estimate the number of oscillations of the barrier for thiserage energy, which we will refer to as theughness w

t/l/ —

range of energy since we have that [23]. The scaling does not work well for the dependence on
r because, as varies, it is easy to identify where merging
ﬂk = 2kt takes place between the different large chaotic regises
ve' | ’ Figs. 6 and Y. Our results clearly work well for the depen-

dence onM, however, since merging events between the
large chaotic regions are not observed. We choose to study
the same range dfl as in Fig. 5, just excluding the first

where k gives the number of oscillations of the potential
barrier. The minimum and maximum values bffor the

rangee  [€nin, Emay is decade. We consider the case of a symmetrical system and
M L M L setr=0.1, but similar behavior can, in fact, be observed for
Kmin = Nk Kmax= Nk other values of.
Vemax VEmin Given the time series, it is easy to evaluate both average

For the symmetrical case withl=4.7,r=0.5, we find that and average squared energies, defined, respectively, as
kmin=8 andk,.,=13. The corresponding energies and times

of flight, t;, within well 1l are shown in Table I. The distri-

bution of successive energies in well Il is shown in Fig. 8.  TABLE I. Resonance energies and flight times inside well 11 for
The resonance energies are indicated in the figure. the control parametefs|=4.7,r=0.5 andb/I=L/I=1.

k €, ty

C. Scaling properties

Let us now discuss the main idea of scaling properties for 8 1.3806... 50.2654....
chaotic time series in this problem. Figure 9 shows the evo- 9 1.0908... 56.5486...
lution of one chaotic time series for the parametbr$ 10 0.8836 62.8318...
=L/lI=1, r=0.5, andM=4.7. The amplifications in Fig. 9 11 0.7302... 69.1150...
allow us to suppose that some scaling property can be de- 12 0.6136. .. 75.3982. ..
rived from this time series, once that it has basically the 13 0.5228. . 81.6814. ..

same behavior for very different time scales. We choose te
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to localize the first invariant spanning curve in a higher po-

sition. As an immediate consequence of this, the variance
FIG. 8. Normalized distribution of successive reflection energiedVill saturate at a higher value. Thus, we can start to study the

for parametersM=4.7,r=0.5,b/I=L/|= roughness scaling, supposing following:

(i) After the brief initial transient, the roughness grows as
function of iteration number according to

1 — 1o
=NElen, e’ (N.M)= =2 € w(N,M) o NB, ()
n= n=
. This growth can be seen in region | of Fig. 1®is called the
After that, we can define the roughness as growth exponent. Equatiof®) is valid for N<N,.
(i) As the iteration number increases, the roughness
- reaches saturation, as can be seen in region Il of Fig. 10. The
W(NM) = = Ve2(NM) ~SZNM), g g

behavior of the roughness within the saturation regime fol-
lows the equation

where we use an ensemble Bfdifferent initial conditions. a

) . wsa(N,M) o« M¢, €)]
The average oveB is used in order to smooth the roughness
evolution. Figure 10 shows one roughness evolution. It wasvhere « is the roughening exponent. Equati¢®) is valid
constructed using an ensemble of 10 000 different initiafjust for N>N

phases and the same initial eneggyl +r, all of them giving

(iii) The crossover iteration numbhl, that tells us when
rise to chaotic evolution. We can see in Fig. 10 two differentthe roughness growth slows and saturation is approached is
kinds of behavior as a function of the iteration number. Fol-given by

lowing a brief initial transient, the roughness grows accord- z
) : . Ny(M) o M?,
ing to a power law, but it eventually reaches a regime of

(4)
saturation for a large enough number of iterations. The Herezis called the dynamical exponent

change in behavior is characterized by a typical crossover Let now us discuss the procedure used to obtain the satu-
iteration numbemN,, as shown in Fig. 10.

ration value. Even for a maximum iteration number of
This saturation of the roughness curves is a consequend®0M,, our simulation exhibits a final roughness evolution

of the limited time series amplitude. It is well known that the showing that it has still not reached saturation. To solve this
amplitude depends on the position of the first invariant spanproblem, we can choose two different options. The first one
ning curve since, in the deterministic model, the chaotic se# increase the iteration number yet more, and start all simu-
is limited by such a spanning curve. For the range of controlations again. This choice obviously carries the disadvantage
parameter studiesee Fig. 11, one effect of increasiniyl is  of very much longer simulations. The second, and more de-
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IO_IIHIIIII -t - 3 IOO:HHI[ T L N I B UL R
i I o=0.670(1)
r 7 8§ 10 E E
I | L > Numerical data
| | - — Best fit ]
1 el L el £
@) 100 1000 10000
1F : ) M
3 [ ] le+06L 2=1.331(6) ]
s ] Z" 1e+05k .
9.4464 i ]
i 1 7 L »--> Numerical data||
IOOOO§ — Best fit E
S9.4462 - RO
0.1- | X | 100 1000 10000
Ar e—o Fit linear | . (b) M
I 9.446 |- — Data v ]
I ' . ' . ' . i FIG. 11. The dependencies dhof (a) the saturation roughness
/ 5.00x107 5.01x10" 5.02x10° | wsar and (b) the crossover iteration numbik,.
‘éllllllll | L I L | | RN
1 100 10000 1e+06 We can now proceed to “collapse” the roughness curves
N onto a universal plot. The first step is to take the ratio

o(N,M)/ws,{M). This relocates all curves to the same satu-
FIG. 10. Roughness behavior for an ensemble of 10 000 differration value, as can be seen in Fig(d)2 The second step is
ent initial phasesp and the same initial energy=1+r. Both initial  to take the ratidN/N,. It collapses the curves onto the same
conditions give rise to chaotic orbits. The inset shows the procedurgharacteristic iteration number, as can be seen in Fi)12
used to obtain t.he roughness in the saturation regime after applying The success of these procedures in producing a single,
the transformatioN — 1/N. universal, roughness plot allows us to describe the roughness
according to the following scaling function:
sirable, option is to extrapolate the saturation roughening to a
an infinite iteration number. It consists basically in applying @(N,M) = {w(£°N,£M),
the fO”OWing transformation to the iteration numbér Whereé’ is the Sca“ng factor. Choosir@: N_l/a, we obtain
—1/N, and it is applicable because the saturation increases
slowly and linearly for sufficiently large values of. After o(N,M) = N"g, (N"9aM).

performing this transformation, the saturation roughness isrhe functionw,(N"M) = w(1,N"¥2M) and it is supposed to
given by be constant foN<N,. Using Eq.(2), we can obtain

5) N™2=NE, (6)

o(N,M) = wgo(M) + b—
N where B=-1/a. From our numerical simulations, we find
WhenN— ¢ in Eq. (5), we have thato(c,M) — wg,, Tech-  that=0.5006). .
nically, the saturation roughness can be obtained as the linear The second step is to chooseM™* and it follows that
coeffi_cient of Eqa(5), g_iven by Iir_lear regression. This proce- w(N,M) = M@, (M 3N).
dure is shown in the inset of Fig. 10.
Next, we obtain the intercept of the power lgin region ~ Here, the functionw,(M2N)=w(M #°N, 1) and it is sup-
| of Fig. 10) with the saturation value obtained from E§). posed to be constant &> N,. Using the equatiori3), we
In order to obtain the exponents andz, we plot wg, X M obtain that
andN, X M, as shown in Fig. 11. These power law fits yield
a=0.6701) and z=1.3316). The meanB=0.5006) is ob-
tained from an average of all the roughness curves. and we havex=-1/c.

M—l/C: Ma, (7)
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From a combination of equations=N"12, ;=M= and 100 grrrm
(4) and using conditiong6) and (7) it is easy to show that s ]
M# oM, Thus, we find that there is a relationship between 10;‘ 3
the critical exponents given by 2 lf— ]

z=2. (8) 0.1 =° oo v | 3
B £ M=4000| 3
L | 4w | 4w [T
Using the numerical results far and 8 and evaluating Eq. 0‘011 100 10000 100 108
(8), we are able to compare the result with the valuez of (a) N
obtained from the numerical fit shown in Fig.(bL From
(8) we obtainz=1.341), which is gratifyingly close to the 1 grrmm UL AL L

numerical value o£=1.3316) obtained from Fig. 1().

IV. STOCHASTIC VERSION

o
/M
o
o 2
— p—
Ty
K
FERTTTT IRTEERTTTT R RTTTT MR

Next, we discuss the stochastic version of the problem. 0-001?"
We Suppose that the pOtentMi(th) IS ertten aSVl(X)f(t), 0 0001 L Lo [ [ [
wheref(t) gives us random numbers uniformly distributed in ’ 1 100 10000 100 108
[-1,1]. The variables are now total energy and time, and the (b) N
applications are given by i
; ] TTTTImT I TTTTIm" TTTTITT I TTTTImr I T III|E
Ta €1~ 6, 015_ _:
o th1=th 477M/V’a1 3 . § §
if e,<1+rf(t,+27M/\e,), otherwise, the applicatiofig is 2 0'01? o 3
N {em: e+ (A g + F(Ady) + f(Acb) + F(Agg)], 0.001F
> thi1=Adg+ 2mM/Vens 1, 0.0001 00|001 Ol()l I1 I(I)O IO(I)OO
where ©) N/M”

FIG. 12. (a) Roughness evolutions for differekt. (b) Collapse
Ve of the curves onto the same saturation valggTheir collapse onto
both the same saturation value and the same characteristic crossover

b 1 iteration number.
A¢b:tn+27TM ,—_+—/—_ ,
Ve, |ye|

"

H !
where the energieg, €., € are

e =e-1+rf(Ady),
e=e +1+rf(Ady),

e =e —1+rf(Ady).

It is interesting to note thatis the smallest integer number

for which the equation

" ATM L
e >1+rf| Agy+i—=—
\r’e;_,l I

is true.

Iterating the application$, and Ty for the stochastic ver-
sion we may study the behavior of the energy as a function
of the iteration number and time. It is interesting to observe
thatn andt are not proportional to each other, since a particle
of high energy is described with a larger number of iterations
n than a particle of lower energy in the same interval of time.
We evaluate the average energy for an ensemble of particles
with the same initial energy,=1. We find that the total
energy grows agxn’ where §,=0.496+0.001 andk«t®
with §=0.649+0.001. Figure 13 shows the energy growth
for an ensemble of 10 000 particles with initial energy
=1.

V. SUMMARY AND CONCLUSIONS

We have considered the classical problem of a particle
interacting with a time-modulated potential barrier in two
different circumstancegi) deterministic andii) stochastic.

In the deterministic case, where we used an area-preserving
mapT to study some dynamical properties of this model, we
found that the phase space has a complex structure including
KAM islands surrounded by a chaotic sea that is limited by

016214-9



E. D. LEONEL AND P. V. E. McCLINTOCK PHYSICAL REVIEW E70Q, 016214(2004)

1500 ——T1 ' T sive reflection timesP,, are very well fitted by a power law
tail. Our results indicates th&,,ccm” and P, t” with ex-
ponents v,=y%~—3. These results, like those shown in

. 1000 | 7 [8,9,2T may be an indication of some kind of universality

5 1 class.

- For the stochastic version, our results indicate that, after
500 - — Best Fit 7

all invariant spanning curves are broken, it is possible to
observe unlimited energy growth. The behavior of the aver-
age energy for an ensemble of different initial conditions

L 1 L 1 L 1 L 1 L
% 2 4 6 8 10 indicates thaeon® with &,~0.5 andext’ with §~2/3.
@) Tteration Number x 106 These exponents are different because a particle of high en-
1500 ———7 T 1 " T ergy is described by more iterations than a slow one in the
same interval of time.
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The parameters used here dfe4.7,r=0.5,b/I=L/1=1. Note that )
b/1=L/I=1 is the symmetrical case. The power law gives us that APPENDIX: JACOBIAN COEFFICIENTS
exn andext?, where,=0.496+0.001 and;=0.649+0.001. The coefficients for the Jacobian matrichsand Jg that
refer to the application3, and Tg, respectively, for the pe-

the first invariant spanning curve. Lyapunov exponents were [OdIC oscillation are given by

used to characterize the chaotic sea below the first invarian
spanning curve for a large range of control parameters. The A aem A 0€n
behavior of\ as a function ofM for both the symmetrical Jan=—"_— Je v J127 W
and asymmetrical cases shows a slow growth in the " "
Lyapunov exponent; similar behavior does not occufars
a function ofr. We analyzed the behavior of the roughness as A _ 9 b - 2mM jh= 9 b1 =1
function of M for a chaotic time series located in the chaotic J€, eﬁ/fl LR &n ’
sea. Our results indicates that the roughness obeys a scaling
function with very well defined exponents. After a brief tran- 5en+1
sient, the roughness grows with iteration number according 111~ Je
to a power law of exponenB=0.5006). After passing a
characteristic crossover iteration number, however, the
rou i ; cos{A¢c)

ghness growth slows and approaches a saturation regime. e,
The crossover iteration number increases with the control
parameterM according to a power law with a dynamical 961 Ay
exponentz=1.3316). The regime of saturation also depends  j5,=——=r| - 05(A¢a) CogA¢y)——
on the control parameters and it too increases according to a ¢“ 9 én
power law asM increases. The roughening exponent is ob- d;c dAdy
tained ase=0.6701). The two exponents are closely related —Co S(Ad)c) 0 cogA¢py)——— o ]
via a scaling function. We found thatXxr exhibits abrupt " "
transitions as the result of a merging of different chaotic 0 IAd
regions of varying size. We were able to obtain the Lyapunov l21= e o
exponent after the transition by making use of a conjecture €y
proposed in21]. It uses the Lyapunov exponent before the
transition in the two different chaotic regions scaled by the B _ IPn1 aA¢d M aen+1
fraction of the phase space that they occupy. It is especially 122= J by =1+ 9 by 3/2 Py
gratifying that this conjecture still gave good results here too. Gre1 O En
Depending on the energy of the particle in the chaotic sea, #vhere the partial derivatives to the phases are
is possible for it to stay trapped in well 1l for some interval IAG M
of time. The distribution of successive reflection numbers, a_-_

. .. K 3/2

P, and the corresponding distribution of the average succes- J€, €n

01

¢

[COS(Ada—,J cogA ¢>b)

cogA ¢d) ]

™ o"en+1

3/2 !
oe, e de,

016214-10



CHAOTIC PROPERTIES OF A TIME-MODULATED BARRIER PHYSICAL REVIEW EO, 016214(2004)

IA¢y, AP, b 1 Je IA¢y, AP, b 1 de]
e T a7 32 5o - TV 3 ’
dey dey Ien e, d ¢, d én | e/*'%d ¢y
&e’ rcos(Aqﬁa) e _ s(AqS) Ada
&e” €n é’¢n 2 &‘ﬁn
dA JA L 1 (99” "
I _IAdy_, i T ae 0Ade oAy L 1 d¢
de, de, | 3206, 9 by 9 &, |eﬁ3/2 9y’
Je! (991 A¢ 1" ’
(9_en_c7e S(Ad’b b’ ﬁ:&_e S(Ad’b) ¢
o6 9€n I D Iy

M:M_WMEL& J Ay (9A¢C b 1 o€’
e,  de, ler¥2ge,’ — =

I by I”ma%
oe" Je dA
=—"-rco ¢°, aey a6
Jde, de, den S(Ad’c)
a9y d d>n
9 A, -1 These entangled coefficients show that the applications
d ¢, ' andTg preserve the phase space area, becausg,detl.
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