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Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor
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A method for controlling unstable periodic orbitdPOs9 that have not been controllable before is presented.
The method is based on detecting UPOs that are situated outside the skeleton of a chaotic attractor. The main
idea is to exploit flexible parts of the attractor, which under weak external perturbations allow variable
excursions of the trajectory away from its originally determined path. After the perturbation, the trajectory of
the autonomous system seeks its path back to the chaotic attractor and reveals additional UPOs that are
otherwise not used by the system. It is shown that these UPOs can be controlled as easily as the UPOs that
form the basic chaotic attractor. The effectiveness of the proposed method is demonstrated on two different
chaotic systems with very distinct response abilities to external perturbations. Additionally, some applications
of the method in the fields of laser technology, information encoding, and biomedical engineering are
discussed.
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[. INTRODUCTION posed by Plapp and Hueblgg], which consists of construct-
L . L ing control forces based upon the knowledge of the model

Deterministic chaotic systems are by definition extremelysqyations and the goal dynamics. All these methods belong
sensitive to changes in |n|t|al_ conqlmons. Th!s implies thatiy the so-called closed loop or feedback methods, which
the distance between two trajectories emerging from nearlyayve the property that their action is completely goal ori-
identical initial conditions grows exponentially in the course ented and thus the outcome is exactly known. On the other
of time. Since in real-life systems, initial conditions are hand, there exist the so-called open loop or non feedback
never known perfectly, it is impossible to predict the exactmethods. These strategies consider the effects of external
evolution of a chaotic system. The most prominent examplgerturbations, such as periodic inp(i%s8] or noise[9], on
of such a chaotic system is the weather, which can be, in the evolution of a chaotic system. Unlike the closed loop
simple form, modeled by the well-known Lorenz equationsmethods, the outcome of the open loop methods is not
[1]. known, thus their action is not goal oriented in the sense that

Another important property of chaotic systems, besideghe exact output dynamics cannot be predicted. Nevertheless,
there extreme sensitivity to changes in initial conditions, isin our previous paper we showed that with certain periodic
that the skeleton of every chaotic attractor consists of infiforcing, the frequency of the resulted system state can be
nitely many unstable periodic orbité/POS. Since the dy- Precisely defined and controll€8].
namics of a chaotic attractor is ergodic the neighborhood of 1N€ strategies for chaos control were recently enhanced

every point in each one of the UPOs is ergodically visited b)ﬁ)nndi zfgif? 1t5]’ r}grr]a:;grrlr%?eouEsfa)ijtZ[r?go_plear{-Igc?pr)mg]c?ri\-trol

the trajectory during the Femporal evol_ution of the system. heme in order to enhance or suppress the spectral response
Consequently, the dynamics of a chaotic system can be se tﬁthreshold-crossing events triggered by a time-periodic sig-

as cqnstantly shadowing some periodic behavior, .erraticlallylal in background noise. Later on, several other external
{L;]mplntg from one_t_JP_tO t?c anort]he:._ This Iact, tcomblr;led Wt'thfeedback strategies were analyzed for their effectiveness in
€ extreme sensitivity of a chaotic system to small per ur'enhancingl or depressing natural stochastic resonance effects

bat_:%ns%_ Ietd ﬁo th.fh'd?a of CTacl)f COSE%" bedded withi [11]. In particular, these noninvasive control techniques were
€ hirst aigorithm for controfling S embedded within recognized to be especially valuable for noisy bistable sys-

tr;etr(]:haatlp attrilcto; v,\\//las cloncezlve_(lj_hmore t.ha.r:ja de;:atﬂe a98ms that are difficult or impossible to modify internally.
at the uUniversity ot vary and2]. The main | ea ol € wioreover, possible applications of these results for the effect
method is to wait for a natural passage of the trajectory closgf synchronization control were discussed12]

to the desired periodic behavior and then judiciously perturb In the present paper, we extend the applicability of chaos

a system parameter ir_1 order to stabilize the chosen, initiall3(':ontrol techniques by introducing a method that enables the
unstablg, periodic orbit. Later on, several other methods fo(:ontrol of UPOs that have not been controllable before. The
controlling UPOs embedded within the chaotic attractor wer resented method reveals additional UPOs that are not part

proposed. Among them were the occasional proportion f the basic chaotic attractor, but which can be controlled as
feedback method proposed by HUi, the delayed feed- easily as the UPOs that form the skeleton of the chaotic

back me(;ht?dBpropols?tq bydiyraqa& the de}[ﬂaptiv?hm;thod attractor. These UPOs extend the richness of dynamical
proposed by Boccaletti and Arecd], an € Method Pro- - giates that are available for control. The main virtue of con-

trolling chaotic systems is the permanent accessibility of in-
finitely many dynamical states that are incorporated in a cha-
*Corresponding author. Email address: marko.marhl@uni-mb.si otic attractor. However, these dynamical states usually differ
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from one another very little and thus the true richness of the The paper is structured as follows. Section Il is devoted to
available dynamics is often not as prospective as one woulthe description of mathematical methods used for the bifur-
expect. For example, in chaotic regimes that emerge via theation analysis, determination of flexibility and robustness,
period doubling root, only period one, period two, etc.,as well as methods for detecting and controlling UPOs. In
cycles differ from one another considerably, whereas alparticular, is method, which enables us to detect and control
other UPOs more or less resemble them, i.e., have nearly th@yditional UPOs that have not been controllable before, is
same shape and frequency of oscillations as the integer Mykointed out. In Sec. 11l we present the results, and in the last

tiples. This fictitious richness of diverse dynamical states igection we discuss the merits and limitations of our method.
even more expressed in intermittent chaotic systems that bes; e applications of the method in the fields of laser tech-

have almost regularly with only intermittently occurring de- nology, information encoding, and biomedical engineering

viations [13]. Therefore, particularly in .SUCh Cases, OUrre also discussed. Mathematical models with complete sets
method can greatly increases the repertoire of genuinely di-

verse dynamical states and can thereby extend the applic?x‘f quel equations and parameter values are given in Ap-
bility of chaos control techniques. Pendices A and B.

The main idea of our method is to achieve an excursion of
the trajectory away from its originally determined path with
a short pulsatile external forcing. Afterwards, the autono- Il. METHODS
mous system reveals additional UPOs as it resettles onto the A. Bifurcation analysis
basic chaotic attractor. The virtue of the method lies in the ) , . . )
fact that when resettling and revealing additional UPOs the 1 N€ bifurcation analysis was carried out by the continua-
system is not subjected to any external influences, i.e., it i§On SoftwareAuTtoe7 [19]. In addition to the bifurcation
completely autonomous, and therefore these UPOs can Kalysis of the whole system, a method proposed by Rinzel
controlled as easily as the unstable periodic orbits that are &0l was used. This method can only be applied to systems,

part of the basic chaotic attractor. Due to the noninvasivéVhich can be separated into a fast and a slow subsystem.
nature, our method is particularly valuable for chaotic Sys_Therefore, we refer to it as the fast-slow subsystem analysis.

tems that are difficult or impossible to modify internally, i.e., E&ch variable that changes rapidly in time is a part of the fast

with hard parameter changes. Our method is noninvasive iguPsystem, whereas the variables that vary slowly represent

so far that additional UPOs can be detected without changin§'€ Slow subsystem. The bifurcation analysis of the fast sub-

the internal parameter values of the system. We demonstraiy/Stem, whereby taking the variables of the slow subsystem

the effectiveness of the method on a particular mathematic&$ Pifurcation parameters, gives evidence of local properties

model for intracellular C¥ oscillations[14] that for certain  Of the trajectory in the complete phase space.

parameter values exhibits intermittent chaotic behajigt.

Hence, the frequency interval that contains all UPOs thaE b - . .

form the skeleton of the chaotic attractor is rather narrow™: P€termining flexibility and robustness of dynamical systems

Especially in such cases, the proposed method can largely Flexibility and robustness are very important properties of

expand the frequency interval of UPOs without modifying dynamical systems since they constitute the response abili-

internal parameters of the system. ties of a system to various external perturbations, such as
It should be noted that the proposed method exploits flexperiodic functions[8,21], steplike forcing[15], and noise

ible parts of the chaotic attractor, which under weak external16]. Let us consider a dissipative dynamical system

perturbations enable considerable deviations of the trajectory

away from its originally determined path. Therefore, the d—X:F(X,,u), (1)

multitude of additional UPOs that exist outside the skeleton dt

of a chaotic attractor can be predicted, i.e., estimated in ad: - : -

vance. In our previous studies we showed that the local d?—Nhere X=04.%, - X, Xp) - and FE(FyF, .o

: . “Fi,...,Fp) are aD-dimensional vector and the governing
vergence, calculated along the trajectory, largely determines : . . .
- . vector field, respectively, and is a set of fixed control pa-
the flexibility of the corresponding attractqd5-11. We rameters. Previously, we showed that the local divergence of
found that close to zero local divergence characterizes fle ' Y. 9

ible attractors, whereas highly negative local divergence isihe vector fieldr, calculated according to the equation

characteristic property of very rigid systems. Here, we show aF, dF, aF; JFp
that the flexibility of a particular chaotic regime can be used V-F=——=+—"—=+ ot t o b
to estimate the richness of additional UPOs that exists out-
side the skeleton of a chaotic attractor. We emphasize thas$ the crucial system property that determines the flexibility
flexible chaotic attractors possess many more additionadnd robustness of a dynamical systglB,17. The local di-
UPOs, i.e., UPOs that do not form the basic skeleton, than deergence determines attraction properties of an attractor at a
rigid chaotic regimes. In order to demonstrate this, we applygiven point. Therefore, extensive close to zero local diver-
the method to another mathematical mogiE8] in which  gence parts largely facilitate response abilities of the system
very rigid chaotic regimes can be found. We show that in thisand characterize flexible systems, whereas on the other hand,
case, additional UPOs can be found only in a moderate exXiighly negative local divergence areas characterize very rigid
tension of the frequency interval that contains all UPOs ofdynamical states that are almost impossible to modify even
the basic chaotic attractor. with strong external signals.

(2)

X, 9% I%; IXp
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C. Adaptive method for chaos control D. Method for detecting UPOs outside the skeleton

. . . f a chaotic attract
The control of UPOs was carried out with the algorithm ot & chaotic attractor

proposed by Boccaletti and Areccfi], which is based on On the basis of our previous studies regarding flexibility

the delayed feedback method originally proposed by Pyragaand robustness of dynamical systefBsl5-17,2] we here

[4]. Here, we will briefly summarize the algorithm, whereasintroduce a method for detecting additional UPOs that are
its complete description can be found[B22—-24. In order ~ not part of the basic chaotic attractor. The method exploits
to determine the period of a particular UPO embedded in théexible regions of the attractor by perturbing the path of the

attractor, the algorithm exploits local expansion and contractrajectory so that it leaves the skeleton of the basic chaotic

tion rates of a dynamical system, which are calculated acattractor and after the excursion resettles onto the attractor,
cording to the equation thereby using regions of the phase space that are normally

not visited by the unperturbed dynamics. With this proce-
dure, UPOs that lie outside the skeleton of the basic chaotic
' (3 attractor become visible and as such available for control.
We detect UPOs by perturbing one of the fast variables of
the system with a steplike flux, characterized by randomly
selected intervalgh), duration(d), and amplitudga), given
by the function

) = 741 — tanfio (th,) 1} (4) a, if tmodh=h-d
ft)=1-a, if (t—-d)modh=h-d (7)
0, else.

Xi (tn+1) =X (tn)

1
)\i(tn+l) =—In Xi(tn) - Xi(tn—l)

Tn

wherer, is the minimum of allrfj) calculated for ali dimen-
sions of the dynamical system according to the equation

whereo is a strictly positive constant chosen in such a way
as to forbidrg',)r1 from going to zero. On this basis a sequence
of observation time intervalgr,) is obtained, which enables f(t) is a symmetric function, which for large enouphand

us to determine the periods of UPOs embedded within themall enoughd and a assures that the trajectory, after the
chaotic attractor. This is done by constructing return mapgerturbation and before completely resettling onto the attrac-
Tnek VETsust, for k=1,2,3,... ancalculating the rms error  tor, is completely determined by the autonomous, i.e., unper-
(1) of the point distribution around the diagonal for edch  turbed dynamical system. All three parameters that define the
With increasingk, the correlation between two successiye perturbation(h, d, anda) are chosen randomly within given
decreases and thugk) is a predominantly increasing func- ranges. This enables highly variable perturbing of the basic
tion. More precisely, whenever the trajectory of the systenmsystem and herewith the most efficient exploiting of all flex-
shadows the neighborhood of a particular UPO, the correlaible areas of the studied chaotic regime. The trajectory here-
tion is rebuilt, which manifests as a local minimum of the with, after the perturbation and before completely resettling
function 7(k). For example, if the trajectory gets close to anonto the attractor, reveals as many new UPOs as possible.
UPO of periodT, the functionz(k) has a local minimum at Parameter$, d anda have to be chosen carefully, with re-
k=T/7, where is the average value of all,. After deter- Spect to the system’s dynamics. Paramétéas to be large
mining the period of a particular UPO embedded within theenough in order to allow the trajectory to resettle onto the
chaotic attractor, the latter can be stabilized by introducing attractor before the next perturbation takes place. Parameters
correction term(U) to each of theD differential equations of d anda determine how strong the path of the trajectory will
the system. The relative weight of the correction term apbe perturbed. It should be noted that for each particdlar

plied to a particular differential equation of the system, i.e.,only oneais randomly selected. In practice some testing and
U;, whereU=(U;,U,, ... U, ... ,Up), is calculated accord- experience with the studied dynamical system is necessary in

ing to the equation order not to collapse the whole system, but nevertheless
achieving large enough perturbations to prevent the trajec-
1 tory to resettle onto the attractor immediately. As already
Ui(tnea) = —[Xi(thea = T) = Xi(then) 1, (5)  noted in the subsection B, the local divergeifisee Eq(2)]
Tn of attractors in the phase space is an appropriate indicator for
the system susceptibility to external perturbations and thus

where eachr, is calculated according to E¢4), whereas the (r)}elps to determine parametatsanda.

local expansion and contraction rates are, for the purpose
chaos control, calculated with respect to a particular UPO
that was chosen to be stabilized according to the equation ll. RESULTS

For the mathematical model proposed by Maetlal.

Ni(trg) = iln Xi(thrd) = Xi(th = T) _ 6) [1_4_], we first demo_nstrate the standarq pro_cedure of recog-

Th Xi(tp) = xi(t, = T) nizing and controlling UPOs as described in subsection C.

Since the biological particularities of the model are not of

Note that these local variation rates also determine the timparticular interest in this paper, the model is not described in
interval during which the correction term has a constantdetail. However, the complete set of model equations and
value, thereby reflecting the necessity to perturb the dynanparameter values is given in Appendix A, whereas a detailed
ics more or less often in order to stabilize the desired UPOanalysis of the system’s dynamics can be found in
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FIG. 1. Analysis of the basic chaotic regime with the adaptiverated by well-expressed terminates, like main spikes in our
recognition method. For equations and parameter values see Appen:-, . ' oo
dix A. (a) Time series okcacye (b) Corresponding power spectra. Qase[see Fig. 18)]. In general, such oscillation patterns are

Y characteristic for intermittent chaotic systems, whereas for
(c) Return map of the observation timeg,; vs 7,. (d) The rms . . L . L
error 5(k) of the point distribution around the diagonal for return .perIOd .dOUblmg Chaqs this is often not the case, i.e., it is
MapST, .y VS 7. ImDOSSIb|e' to determlne where one L{PO ends and t_he other
starts by simply looking at the oscillations or calculating the

[13,14,25,28 For the parameter values listed in Appendix distance between consecutive spikes.
A, the dynamical system exhibits intermittent chaotic oscil- The ISIH for the time series in Fig.(d) is presented in
lations, as shown in Fig.(4). This can also be well observed Fig. 2 and was calculated for approximately 10 000 main
in the power spectra presented in Figb)l where the pre- spikes. The histogram is fully in agreement with Fig. 1,
dominant oscillation frequency with its higher harmonics isshowing that the predominant oscillation frequency of the
well expressed. system isT=15 s, and the span of oscillation periods of all

In order to determine the periods of UPOs embeddedJPOs embedded within the chaotic attractor ranges between
within the chaotic attractor, we make use of the algorithm=13.4 and 16.9 s in a noncontinuous manner, i.e., for ex-
described in subsection C. Figuréjlshows the return map ample, there does not exist an UPO within the chaotic attrac-
Th+1 VErsust, of the obtained observation times, which in tor that has an oscillation period of 13.8:§ <14.6 s. This
this case have an average valre0.0189 s. The correlation also matches with the results obtained by the funcijtk) in
between two successivg is well expressed since all points Fig. 1, which does not have a local minimum of
cluster along the diagonal. In this casgk) of the point  719<k<775[see inset of Fig. @)]. Moreover, in addition
distribution around the diagonal is nearly zero. However, ago 7(k), the ISIH provides more accurate information about
k increases the correlation betweepn, and 7, decreases, the precise periods of UPOs embedded within the chaotic
which results in an increase af. Nevertheless, there exist attractor, and it also shows how frequently a particular UPO
local minima at eaclk for which the examined chaotic re- occurs during the simulation time. The latter information is
gime has an UPO with the perioB=kr, as shown in Fig. not explicitly provided by»(k). Therefore, UPOs that are
1(d). Note that the first few minima belok=500 correspond rare can remain completely undetected by the adaptive rec-
to shadowing the small-amplitude spikes between two maimgnition method. For example, UPOs that hdve 16 s oc-
successive spikes of the systésee Fig. {a)] and cannot be cur rather rarely; therefore, they were not detected by the
taken as UPOs. We should focus on the well-expressed minadaptive recognition method.
mum atk=790, which indicates that the system has a pre- To demonstrate the effectiveness of the adaptive method
dominant oscillation period =15 s. This is fully in agree- for chaos control, we select an UPO wiflx13.5 s, which is
ment with the power spectrum in Fig(k, which has the marked by the left arrow in Fig. 2. Note that the period of the
main spike atv=0.067 Hz. By enlarging the area aroukd chosen UPO occurs frequently but is nevertheless not the
~790[see insert of Fig. )], we can determine the periods most dominant one. The results of the UPO control are pre-
of UPOs embedded within the chaotic attractor, which rangaented in Fig. 3. It can be well observed that the system can
between~13 and 16 s. be easily forced to shadow the selected UPO. The maximal

In order to determine the periods of UPOs embeddedequired correction fluxJ, is three orders of magnitude
within the chaotic attractor even more accurately, we calcusmaller than the totalcc,c, dt flux (not shown, which is in
late the normalized interspike interval histograi8IH) of  best agreement with other theoretical studies demonstrating
the chaotic time series presented in Fi¢p)1lt is important  the delayed feedback control of UP(B-6]. Moreover, the
to note that the ISIH can be used to extract periods of UPOsorrections are rarely required, i.e., only at the maifcy,
embedded in the chaotic attractor only if the UPOs are sepaspikes(there the fluxdce,c,/ dt is maxima), whereas during
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tee) FIG. 4. Control of a periodic orbit obtained by changing the
FIG. 3. Control of the unstable periodic orbit marked with the System parameters. For equations and parameter values see Appen-
left arrow in Fig. 2. For equations and parameter values, see Apdix A. (&) Time series ofccacyr (D) The corrections required for
pendix A.(a) Time series otc,cyr (D) The corrections required for forging the basic chaotic system to shadow the desired periodic
controlling the desired UPO. orbit.

the small-amplitude spikes the required corrections are muchhow that in fact the examined dynamical system possesses
smaller, as shown in the inset of Figb additional UPOs that are not part of the basic chaotic attrac-

For comparison, we force the basic chaotic systea O bu_t can be controlled as easily as those em_b_edded in the
rameter values as in Appendix)Ao shadow the trajectory c_hqotlc attractor. In order to make these additional UPOs
that has the same oscillation period as one of the UPOs VISIble. and' available .for control, we will deploy the method
=16.8 s, which is marked by the right arrow in Fig.@nd  described in subsection D.
lies physically within the region of the chaotic attractor; For the model studied herfd4] we take, in accordance
however, it is not a part of the attractor. The orbit was ob-With Eq. (7), the following intervals from whicth, d, anda
tained by changing the following parameteks;=4285 s*,  are chosen randomly: 80sh<120s, 0s<d<1s, and
k=0.006625 3, andk,,=132.5 s%. Figure 4 shows thatin 0 uM s™'<a<1 uM s™%. To present and explain the effects
this case it is also principally possible to slave the system t®f the external perturbation we carry out the bifurcation
shadow the desired periodic orbit, however, the correctionalysis using the fast-slow subsystem analysis as described
fluxes required to achieve this are very large and reach vain subsection A. In the examined dynamical system, the fast
ues up to the same order of magnitude as the tigglc,/dt ~ changing variables were identified to Iogacy: and Ccagy
flux. Moreover, the corrections needed to slave the dynamicwhereas the slow changing variable, which is used as the
are very large also in regions between the main spjkes  bifurcation parameter, iscovi- The obtained bifurcation dia-
inset of Fig. 4b)], especially when compared to the correc-grams for the unperturbed and perturbed dynamics, together
tions required for slaving the dynamics to shadow one of thavith the two-dimensional2D) projection of the trajectory in
UPOs that form the basic skeleton of the chaotic attractothe whole phase space, are presented in Figs.ahd §b),

[see inset of Fig. ®)]. respectively. Note that the 2D projection of the whole phase

The above analysis shows that the periods of UPOs, enpace for the perturbed dynamics does not contain those os-
bedded in the chaotic attractor of the examined dynamicatillation cycles that were directly perturbed yt); thus,
system, are all confined to a rather narrow interval thaonly those oscillation cycles were considered that were ob-
ranges from approximately 13.4 to 16.9see Fig. 2 Fur-  tained by resettling of the trajectory onto the chaotic attrac-
thermore, we showed that any other randomly selected orbipr. The solid line represents stable foci; the dashed line rep-
obtained with hard parameter changes, even with the sanesents unstable foci, whereas the dash-dotted lines that
oscillation period as one of the UPOs embedded in the chamerge out of the supercritical Hopf bifurcatiGiB) repre-
otic attractor, cannot be easily controll¢see Fig. 4, i.e.,  sent stable periodic orbits. In the bifurcation diagram of the
such a trajectory cannot be considered as an UPO of thenperturbed dynamics a very important system property can
given chaotic system. However, in the following we will be well observed, namely, the slow passage effect
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FIG. 6. Normalized ISIH of the&c,cy time series for the basic
chaotic regime with the applied method. For equations and param-
eter values, see Appendix A.

In order to measure the multitude of additional UPOs ob-
tained by our method, we calculate the ISIH for the per-
turbed dynamics of the system varialig,c,» Results are
presented in Fig. 6. By comparing Fig. 6 with Fig. 2, it is
evident that the oscillation period distribution is much

0.1 02 03 04 05 08 broader and continuous in the case of the perturbed dynamics
Ceaur (M) than in the unperturbed case, approximately<7Ts< 33 s. It
should be noted, however, that the predominant oscillation

FIG. 5. Bifurcation diagram obtained with the fast-slow sub- period remainsT =~ 15 s, which shows that the basic system
system analysis together with the 2D projection of the trajectory i”dynamics was not altered due to perturbations.
the whole phase space. HB denotes the Hopf bifurcation. For equa-  Now we show that the additional UPOs that are not part
tions and parameter values see Appendix(@.Basic chaotic re- 4 the pasic attractor can be controlled as easily, i.e., with
_gime.(b_)_Basic chaotic regime with the applied method for reveal-very small correction fluxes added to the basic dynamics, as
ing additional UPOs. the UPOs that form the skeleton of the basic attractor. We
[25,27-30. The latter manifests as a delayed transition of thechoose an UPO with an oscillation peride 29.1 s(marked
trajectory to the lower stable periodic branch after the superwith an arrow in Fig. 6, which lies far outside the oscillation
critical Hopf bifurcation is exceeded in the clockwise direc- period interval of UPOs that can be found in the basic cha-
tion. Despite the fact that the stable foci branch turns unotic attractor(see Fig. 2, additionally, the chosen UPO ap-
stable after the supercritical HB is exceeded, the trajectorpears quite rare even in the perturbed time series. The results
remains close to the rest state for a considerable amount showing the control of the chosen UPO are presented in Fig.
time before it unfolds to the lower stable periodic branch,7. It can be well observed that the system can easily shadow
which is a clear indicator for the slow passage effect. the selected UPO with control fluxes of the same order of

The most characteristic property of the slow passage efmagnitude as in the case of controlling UPOs from the un-
fects is its extreme sensitivity to external perturbations. Sevperturbed chaotic attractgcompare Figs. 3 and)7In both
eral authors have reported that the length of the slow passagases the maximal required control flux is three orders of
phase can be altered by any kind of external perturbationsnagnitude smaller than the tot@dc,c, dt flux (not shown.
such as stochastic influences and periodic environmental peMoreover, the control is practically required only at the time
turbations[27] or external influences from neighboring os- the main ccacy Spike occurs, whereas during the small-
cillators [31-33, and even by precision of numerical algo- amplitude spikes the required corrections are minute as
rithms used for integration of differential equatiofi34]. shown in the inset of Fig. (D).

Recently, we proposed a more general view, showing that the At the end, let us test the method for detecting additional
local divergence represents the key system property that d&POs on an example of a rigid intermittent chaotic behavior
termines sensitivity of dynamical systems to external perturthat can be found in the mathematical model proposed by
bations [35]. We showed that well-expressed areas withShen and Lartef18]. We studied this model previously
close-to-zero local divergence, which are also characteristif8,25 and found that the outlay of the local divergence os-
for dynamics with the slow passage effect, largely facilitatecillates heavily around zero with several well-expressed
responses of a system to weak external forcing. For detailfiegative dell48], which is characteristic for a rigid system.
see subsection B. With this in mind, it is easy to understand he rigidity of the system can also be well demonstrated
that for the case studied here the steplike perturbaftion  with the fast-slow subsystem analysis performed as de-
reveals many additional UPOs that do not appear in the basicribed in subsection A. In the examined dynamical system,
chaotic attractofcompare Figs. @) and b)]. the fast changing variables were identified todagc,: and

Coagyt (MM)
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FIG. 9. Normalized ISIH of th&c,cytime series. For equations

arrow in figure 6. For equations and parameter values, see AppendiXasic chaotic regime with the applied method. Note that the y axis

A. (a) Time series Oftcacy: (D) The corrections required for con-
trolling the desired UPO.

has a logarithmic scale.

making it nearly impossible to achieve any noticeable devia-

Cip, Whereas the slow changing variable, which is used as thgons with the external perturbation.

bifurcation parameter, isc,z» The obtained bifurcation dia-

For perturbing the examined dynamical systgh8] by

gram for the unperturbed dynamics, together with the 2Df(t), we take the following intervals from which, d, anda
projection of the trajectory in the whole phase space, is preare chosen randomly: 30sh<40s, 0s<d<1s, and
sented in Fig. 8. It can be well observed that the trajectory i9 ;M st<a<4 uM s™%. We calculate ISIHs for the unper-

caught between two stable node brancheslid lines,

turbed and for the perturbed dynamics of the system variable

whereas the transitions between the two are determined t%acyt [Figs. 9a) and 9b), respectively. Both histograms

the two fold bifurcationgup triangle$. There is no sign of

were calculated for approximately 10 000 main spikes. From

any slow passage effect. The trajectory is tied to one of thene ISIH calculated for the perturbed dynamiig. 9(b)] it
two stable branches most of the oscillation cycle, therebys evident that the oscillation period distribution remained

44
21

— 13

=

2
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& \

8 N

©  0.25

0.1254

0.06254
o 1 2 3 4 5 6 7

Cooer (MM)

FIG. 8. Bifurcation diagram obtained with the fast-slow sub-

nearly unaffected by the applied method, which is a clear
indicator that the examined chaotic attractor is very rigid
[compare Figs. @ and 9b)]. It should be noted that the
multitude of additional UPOs is small in spite the fact that
we have chosen parametatsand a in Eqg. (7) so that the
system was perturbed maximally. For example, if weaset
=5 uM s7%, the system collapsed immediately.

Our results show that the method for detecting and con-
trolling additional UPOs that are not part of the basic chaotic
attractor is applicable to any chaotic system. It should be
noted, however, that the multitude of additional UPOs de-
tected depends on the flexibility of the system. In particular,
the multitude of additional UPOs is much larger in case of a
flexible attractor, whereas for a rigid attractor it might turn
out that the number of additional UPOs is rather small.

IV. DISCUSSION

system analysis together with the 2D projection of the trajectory in
the whole phase space. For equations and parameter values, seeln the paper, a method for detecting and controlling UPOs

Appendix B.

that were not possible to control before is presented. These
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additional UPOs are not part of the basic chaotic attractorfrom physics, biology, chemistry, medicine, and economics
They can nevertheless be controlled as easily as the tradid7—39. Particularly in the field of nonlinear optics and laser
tional UPOs of the system. The method exploits flexibletechnology, the need for stabilizing the irregular intensity
parts of the attractor, which under weak external perturbatiofluctuations due to nonlinear couplings of several longitudi-
enable considerable deviations of the trajectory away fromrmal and transverse modpt0] has been present from the very
its originally determined path. The main idea is to tempo-beginning of development. Accordingly, several works have
rarily destabilize the system and after the perturbation to waibeen devoted to the control of chaos in lageis-47. Es-
for a natural resettling of the trajectory onto the basic chaotipecially in the case of controlling nonautonomous lasers
attractor. During the resettling, which is defined by the samg43,44,46,47, we see a possible implementation of our
deterministic equations that form the attractor of the unpermethod, since the intracavity electro-optic crystal of the laser
turbed dynamics, the trajectory moves through phase spaés already driven by an external sinusoidal or periodic impul-
areas that are normally not visited in the unperturbed caseive voltage in order to modulate the cavity losses. Thus, by
Thereby, additional UPOs become visible and available fomodifying the external voltage in accordance with our
control. The frequency interval occupied by these UPOs isnethod, the behavior of the laser could be temporarily desta-
often considerably wider than the frequency range containingilized in order to evoke a new, perhaps more desirable, op-
UPOs of the basic chaotic attractor. Our method can thusration state, which could then be controlled and maintained
greatly increase the repertoire of genuinely diverse dynamiwith the same methods and techniques as the basic operation
cal states that are available for control and herewith extendsode.
the applicability of traditional chaos control techniques. More recently, nonlinear optics and laser technology have
The key system property that determines the flexibility ofalso been used for information encodipt8, 49 and digital
a dynamical system, and thereby the range to which a pacommunication[50,5]]. In several studie$52-53, it has
ticular frequency interval containing UPOs of the basic chabeen shown that chaos control techniques can be used to
otic attractor can be expanded, is the local divergencgrovide a secure information flow between a sender and a
[15-17,35. In order to point out the important role of the receiver. In this context, our method could prove to be useful
local divergence, we tested our method on two differentsince it enables the acquisition of new dynamical states that
mathematical modelgl4,19 that differ considerably in their can be used as additional digital information souf&&s57.
flexibility. When the method was applied to the more flexible Because these states are not used by the unperturbed dynam-
system[14], the multitude of additional UPOs was very large ics, a possible spy has basically no possibilities to recon-
and the frequency interval of the UPOs expanded extenstruct the underlying dynamics of a signal and decode the
sively. On the other hand, when the method was applied tonessage. On the other hand, the required external perturba-
the rigid systenj18] additional UPOs could be found only in tions that are necessary to make these additional dynamical
a moderate extension of the frequency interval that containstates available as information sources, and later visible to
the UPOs of the basic chaotic attractor. the receiver, are very simplsee Eq.7)] and can thus be
Recently, various chaos control techniques have beeancoded very efficiently with low powered microelectronic
used not just to regularize chaotic behavior but also to conelements.
trol regular systems that are subjected to n¢E@-12,36. Another field of research that has benefited considerably
Our method has some similarities with controlling the behav{from the chaos control theory is the biomedical engineering.
ior of noisy systems since, in both cases, the dynamics of thEollowing the pioneering experiment in this field from
system is externally perturbed. It should be noted, howeveiGarfinkel et al. [58], chaos control techniques were used to
that in noisy systems the noise acts continuously on the sygontrol noisy neuronal activitieg36], epileptiform bursting
tem, whereas our method is based on short pulsatile forcinfb9], and even to anticontrol the periodic behavior observed
that is applied intermittentlysee Eq(7)]. Thus, in our case, during an epileptic seizurgs0]. Moreover, it has been sug-
the controlled system is still autonomous in the sense that thgested that certain chaos control techniques could be suc-
perturbation is required only to make the additional UPOscessfully implemented in biological pacemakers, which
visible, whereas the actual control starts after the perturbavould not impose its own frequency, but would re-adjust its
tion. However, since noisgnonautonomouyssystems can be frequency in accordance with the system ne@d$. Since it
successfully controlled with external feedback techniquess often the case that internal parameters of real-life biologi-
[11], our method can be applied to them as well. More precal systems cannot be changed, the method proposed here
cisely, with the proposed method the basic idea of controllingorovides a good alternative to noninvasively detect and con-
noisy oscillationg[36] as well as noise-induced oscillations trol UPOs that possibly assure optimal functionality of the
emerging from initially nonoscillatory regimé40,17 is ex-  tissue. Note that the method is noninvasive insofar that ad-
tended to the control of additional UPOs that can be foundlitional UPOs can be detected without changing the internal
by temporarily destabilizing a chaotic system. Since the locaparameter values of the system.
divergence of attractors is the crucial system property that In conclusion, with the proposed method, a wealth of
determines the response of a system to ngi€elqg and genuinely new dynamical states, accessible with extremely
pulsatile forcing[17], it can be used for estimating the rich- small control influences to the basic dynamics, can be de-
ness of additional dynamical states that can be made availected and controlled. The method is general and can be ap-
able for control due to any kind of external perturbations. plied to any chaotic system; nevertheless, the system needs
Since the seminal work of O#t al. [2], chaos control to be flexible, i.e., susceptible to external perturbations, in
techniques have been applied in various fields of researcbrder to enable a productive implementation of the method.
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In further studies, we are going to examine nonchaotic, yek,,=125 s,

PHYSICAL REVIEW E 70, 016204(2004)

=0.006255!, k,=0.1uMsl k.
Km M

flexible, dynamical systems in order to determine if there as=0.01 s, K;=5.0 uM, K,=0.8 uM, Cpy1o=90 uM, Ccator
well a hidden wealth of dynamical states outside the basie 120 uM, p,=0.01, 8,=0.0025,p,,=0.01, 3,,=0.0025.

attractor can be found.

APPENDIX A

The mathematical model proposed by Maghlal. [14] is
described by the following differential equations:

dccacy
d? ‘= Jen— qump+ Jieak™ Jout = Jin + Jcapr— Jpr,
(A1)
dccaer_ B
dta = p_::(‘]pump Jen = Jiear s (A2)
decamic _ B
d—aMlt = m( Jin = Jowd» (A3)
t Pm
where
CaCyt
kch KQ(CCaEr_ Ccacyds (A4)
CaCyt
qumpz kpumppCaCytv (AS)
Jieak= kleal&CCaEr_ CCaCyt)a (A6)
Pr= k+CCaCprra (A7)
JCaPr: k—CCaPn (A8)
Clac
In=Kng =25 (A9)
Cacytt K3
CZac
‘]out: (koutz—a)Lz + km) Ccawmit- (AlO)
CCaCyt+ Kl
Cpr= Cpr1ot~ Ccapn (A11)
— Pm
Ccapr= CcaTot™ Ccacyt™ CCaEr — Ccamit- (A12)
,Ber Bm
Parameters values, if not stated otherwise, dg
=4230 S7, Keu=0.05 ST, kymp=20 S, k=300 uM s77,

APPENDIX B

The mathematical model proposed by Shen and Larter
[18] is described by the following differential equations:

dec
T;er =Jeh * Jieak— qump"’ Jin = Jouts (Bl)
dec
dtaEr qump Jeh = Jieaks (B2)
dop

—=J,-J, B3
gt = (B3)

where

km( CIP ) ( KaCcacyt )SCC .
b+ K7/ \ (Ccacytt Ka)(Ceacyrt Ks) =
(B4)
\]Ieak: kleal@CaEn (85)
C% Cyt
al
Jpump= kpumpc(%aCYtJr <2 (B6)
‘Jin = kin1 r+ kin2= (87)
‘]outz kout CCaCytv (Bs)
C
=k 2 (B9)
Ccacytt K3

J_= KC”::. (BlO)
Parameters values, if not stated otherwise &g
=3000uM st Kieak=1.0 st kpump— 50.0 uM st Kin1
=4.0uM s, Kin,=1.0 uM s7%, Kou=10.0 S 1 K,
=4.0 /.LM S_l, k.=2.0 /.LM S_l, Kl_KZ 0.2 ,lLM K3

=1.0 uM, K,=K5=0.69 uM, r=0.62.
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