
Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor

Matjaž Perc and Marko Marhl*
Department of Physics, Faculty of Education, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia

(Received 14 October 2003; published 12 July 2004)

A method for controlling unstable periodic orbitssUPOsd that have not been controllable before is presented.
The method is based on detecting UPOs that are situated outside the skeleton of a chaotic attractor. The main
idea is to exploit flexible parts of the attractor, which under weak external perturbations allow variable
excursions of the trajectory away from its originally determined path. After the perturbation, the trajectory of
the autonomous system seeks its path back to the chaotic attractor and reveals additional UPOs that are
otherwise not used by the system. It is shown that these UPOs can be controlled as easily as the UPOs that
form the basic chaotic attractor. The effectiveness of the proposed method is demonstrated on two different
chaotic systems with very distinct response abilities to external perturbations. Additionally, some applications
of the method in the fields of laser technology, information encoding, and biomedical engineering are
discussed.
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I. INTRODUCTION

Deterministic chaotic systems are by definition extremely
sensitive to changes in initial conditions. This implies that
the distance between two trajectories emerging from nearly
identical initial conditions grows exponentially in the course
of time. Since in real-life systems, initial conditions are
never known perfectly, it is impossible to predict the exact
evolution of a chaotic system. The most prominent example
of such a chaotic system is the weather, which can be, in a
simple form, modeled by the well-known Lorenz equations
[1].

Another important property of chaotic systems, besides
there extreme sensitivity to changes in initial conditions, is
that the skeleton of every chaotic attractor consists of infi-
nitely many unstable periodic orbitssUPOsd. Since the dy-
namics of a chaotic attractor is ergodic the neighborhood of
every point in each one of the UPOs is ergodically visited by
the trajectory during the temporal evolution of the system.
Consequently, the dynamics of a chaotic system can be seen
as constantly shadowing some periodic behavior, erratically
jumping from one UPO to another. This fact, combined with
the extreme sensitivity of a chaotic system to small pertur-
bations, led to the idea of chaos control.

The first algorithm for controlling UPOs embedded within
the chaotic attractor was conceived more than a decade ago
at the University of Maryland[2]. The main idea of the
method is to wait for a natural passage of the trajectory close
to the desired periodic behavior and then judiciously perturb
a system parameter in order to stabilize the chosen, initially
unstable, periodic orbit. Later on, several other methods for
controlling UPOs embedded within the chaotic attractor were
proposed. Among them were the occasional proportional
feedback method proposed by Hunt[3], the delayed feed-
back method proposed by Pyragas[4], the adaptive method
proposed by Boccaletti and Arecchi[5], and the method pro-

posed by Plapp and Huebler[6], which consists of construct-
ing control forces based upon the knowledge of the model
equations and the goal dynamics. All these methods belong
to the so-called closed loop or feedback methods, which
have the property that their action is completely goal ori-
ented and thus the outcome is exactly known. On the other
hand, there exist the so-called open loop or non feedback
methods. These strategies consider the effects of external
perturbations, such as periodic inputs[7,8] or noise[9], on
the evolution of a chaotic system. Unlike the closed loop
methods, the outcome of the open loop methods is not
known, thus their action is not goal oriented in the sense that
the exact output dynamics cannot be predicted. Nevertheless,
in our previous paper we showed that with certain periodic
forcing, the frequency of the resulted system state can be
precisely defined and controlled[8].

The strategies for chaos control were recently enhanced
and applied to nonautonomous systems[10–12]. Gammai-
toni et al. [10], for example, used an open-loop control
scheme in order to enhance or suppress the spectral response
of threshold-crossing events triggered by a time-periodic sig-
nal in background noise. Later on, several other external
feedback strategies were analyzed for their effectiveness in
enhancing or depressing natural stochastic resonance effects
[11]. In particular, these noninvasive control techniques were
recognized to be especially valuable for noisy bistable sys-
tems that are difficult or impossible to modify internally.
Moreover, possible applications of these results for the effect
of synchronization control were discussed in[12].

In the present paper, we extend the applicability of chaos
control techniques by introducing a method that enables the
control of UPOs that have not been controllable before. The
presented method reveals additional UPOs that are not part
of the basic chaotic attractor, but which can be controlled as
easily as the UPOs that form the skeleton of the chaotic
attractor. These UPOs extend the richness of dynamical
states that are available for control. The main virtue of con-
trolling chaotic systems is the permanent accessibility of in-
finitely many dynamical states that are incorporated in a cha-
otic attractor. However, these dynamical states usually differ*Corresponding author. Email address: marko.marhl@uni-mb.si
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from one another very little and thus the true richness of the
available dynamics is often not as prospective as one would
expect. For example, in chaotic regimes that emerge via the
period doubling root, only period one, period two, etc.,
cycles differ from one another considerably, whereas all
other UPOs more or less resemble them, i.e., have nearly the
same shape and frequency of oscillations as the integer mul-
tiples. This fictitious richness of diverse dynamical states is
even more expressed in intermittent chaotic systems that be-
have almost regularly with only intermittently occurring de-
viations [13]. Therefore, particularly in such cases, our
method can greatly increases the repertoire of genuinely di-
verse dynamical states and can thereby extend the applica-
bility of chaos control techniques.

The main idea of our method is to achieve an excursion of
the trajectory away from its originally determined path with
a short pulsatile external forcing. Afterwards, the autono-
mous system reveals additional UPOs as it resettles onto the
basic chaotic attractor. The virtue of the method lies in the
fact that when resettling and revealing additional UPOs the
system is not subjected to any external influences, i.e., it is
completely autonomous, and therefore these UPOs can be
controlled as easily as the unstable periodic orbits that are a
part of the basic chaotic attractor. Due to the noninvasive
nature, our method is particularly valuable for chaotic sys-
tems that are difficult or impossible to modify internally, i.e.,
with hard parameter changes. Our method is noninvasive in
so far that additional UPOs can be detected without changing
the internal parameter values of the system. We demonstrate
the effectiveness of the method on a particular mathematical
model for intracellular Ca2+ oscillations[14] that for certain
parameter values exhibits intermittent chaotic behavior[13].
Hence, the frequency interval that contains all UPOs that
form the skeleton of the chaotic attractor is rather narrow.
Especially in such cases, the proposed method can largely
expand the frequency interval of UPOs without modifying
internal parameters of the system.

It should be noted that the proposed method exploits flex-
ible parts of the chaotic attractor, which under weak external
perturbations enable considerable deviations of the trajectory
away from its originally determined path. Therefore, the
multitude of additional UPOs that exist outside the skeleton
of a chaotic attractor can be predicted, i.e., estimated in ad-
vance. In our previous studies we showed that the local di-
vergence, calculated along the trajectory, largely determines
the flexibility of the corresponding attractor[15–17]. We
found that close to zero local divergence characterizes flex-
ible attractors, whereas highly negative local divergence is a
characteristic property of very rigid systems. Here, we show
that the flexibility of a particular chaotic regime can be used
to estimate the richness of additional UPOs that exists out-
side the skeleton of a chaotic attractor. We emphasize that
flexible chaotic attractors possess many more additional
UPOs, i.e., UPOs that do not form the basic skeleton, than do
rigid chaotic regimes. In order to demonstrate this, we apply
the method to another mathematical model[18] in which
very rigid chaotic regimes can be found. We show that in this
case, additional UPOs can be found only in a moderate ex-
tension of the frequency interval that contains all UPOs of
the basic chaotic attractor.

The paper is structured as follows. Section II is devoted to
the description of mathematical methods used for the bifur-
cation analysis, determination of flexibility and robustness,
as well as methods for detecting and controlling UPOs. In
particular, is method, which enables us to detect and control
additional UPOs that have not been controllable before, is
pointed out. In Sec. III we present the results, and in the last
section we discuss the merits and limitations of our method.
Some applications of the method in the fields of laser tech-
nology, information encoding, and biomedical engineering
are also discussed. Mathematical models with complete sets
of model equations and parameter values are given in Ap-
pendices A and B.

II. METHODS

A. Bifurcation analysis

The bifurcation analysis was carried out by the continua-
tion software AUTO97 [19]. In addition to the bifurcation
analysis of the whole system, a method proposed by Rinzel
[20] was used. This method can only be applied to systems,
which can be separated into a fast and a slow subsystem.
Therefore, we refer to it as the fast-slow subsystem analysis.
Each variable that changes rapidly in time is a part of the fast
subsystem, whereas the variables that vary slowly represent
the slow subsystem. The bifurcation analysis of the fast sub-
system, whereby taking the variables of the slow subsystem
as bifurcation parameters, gives evidence of local properties
of the trajectory in the complete phase space.

B. Determining flexibility and robustness of dynamical systems

Flexibility and robustness are very important properties of
dynamical systems since they constitute the response abili-
ties of a system to various external perturbations, such as
periodic functions[8,21], steplike forcing[15], and noise
[16]. Let us consider a dissipative dynamical system

dx

dt
= Fsx,md, s1d

where x=sx1,x2, . . . ,xi , . . . ,xDd and F=sF1,F2, . . . ,
Fi , . . . ,FDd are a D-dimensional vector and the governing
vector field, respectively, andm is a set of fixed control pa-
rameters. Previously, we showed that the local divergence of
the vector fieldF, calculated according to the equation

= ·F =
] F1

] x1
+

] F2

] x2
+ ¯ +

] Fi

] xi
+ ¯ +

] FD

] xD
, s2d

is the crucial system property that determines the flexibility
and robustness of a dynamical system[15,17]. The local di-
vergence determines attraction properties of an attractor at a
given point. Therefore, extensive close to zero local diver-
gence parts largely facilitate response abilities of the system
and characterize flexible systems, whereas on the other hand,
highly negative local divergence areas characterize very rigid
dynamical states that are almost impossible to modify even
with strong external signals.
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C. Adaptive method for chaos control

The control of UPOs was carried out with the algorithm
proposed by Boccaletti and Arecchi[5], which is based on
the delayed feedback method originally proposed by Pyragas
[4]. Here, we will briefly summarize the algorithm, whereas
its complete description can be found in[5,22–24]. In order
to determine the period of a particular UPO embedded in the
attractor, the algorithm exploits local expansion and contrac-
tion rates of a dynamical system, which are calculated ac-
cording to the equation

listn+1d =
1

tn
lnUxistn+1d − xistnd

xistnd − xistn−1d
U , s3d

wheretn is the minimum of alltn
sid calculated for alli dimen-

sions of the dynamical system according to the equation

tn+1
sid = tn

sidh1 − tanhfslistn+1dgj, s4d

wheres is a strictly positive constant chosen in such a way
as to forbidtn+1

sid from going to zero. On this basis a sequence
of observation time intervalsstnd is obtained, which enables
us to determine the periods of UPOs embedded within the
chaotic attractor. This is done by constructing return maps
tn+k versustn for k=1,2,3, . . . andcalculating the rms error
shd of the point distribution around the diagonal for eachk.
With increasingk, the correlation between two successivetn
decreases and thushskd is a predominantly increasing func-
tion. More precisely, whenever the trajectory of the system
shadows the neighborhood of a particular UPO, the correla-
tion is rebuilt, which manifests as a local minimum of the
function hskd. For example, if the trajectory gets close to an
UPO of periodT, the functionhskd has a local minimum at
k=T/ t̄, where t̄ is the average value of alltn. After deter-
mining the period of a particular UPO embedded within the
chaotic attractor, the latter can be stabilized by introducing a
correction termsUd to each of theD differential equations of
the system. The relative weight of the correction term ap-
plied to a particular differential equation of the system, i.e.,
Ui, whereU=sU1,U2, . . . ,Ui , . . . ,UDd, is calculated accord-
ing to the equation

Uistn+1d =
1

tn
fxistn+1 − Td − xistn+1dg, s5d

where eachtn is calculated according to Eq.(4), whereas the
local expansion and contraction rates are, for the purpose of
chaos control, calculated with respect to a particular UPO
that was chosen to be stabilized according to the equation

listn+1d =
1

tn
lnUxistn+1d − xistn+1 − Td

xistnd − xistn − Td
U . s6d

Note that these local variation rates also determine the time
interval during which the correction term has a constant
value, thereby reflecting the necessity to perturb the dynam-
ics more or less often in order to stabilize the desired UPO.

D. Method for detecting UPOs outside the skeleton
of a chaotic attractor

On the basis of our previous studies regarding flexibility
and robustness of dynamical systems[8,15–17,21] we here
introduce a method for detecting additional UPOs that are
not part of the basic chaotic attractor. The method exploits
flexible regions of the attractor by perturbing the path of the
trajectory so that it leaves the skeleton of the basic chaotic
attractor and after the excursion resettles onto the attractor,
thereby using regions of the phase space that are normally
not visited by the unperturbed dynamics. With this proce-
dure, UPOs that lie outside the skeleton of the basic chaotic
attractor become visible and as such available for control.
We detect UPOs by perturbing one of the fast variables of
the system with a steplike flux, characterized by randomly
selected intervalsshd, durationsdd, and amplitudesad, given
by the function

fstd = 5a, if t mod h ù h − d

− a, if st − dd mod h ù h − d

0, else.

s7d

fstd is a symmetric function, which for large enoughh, and
small enoughd and a assures that the trajectory, after the
perturbation and before completely resettling onto the attrac-
tor, is completely determined by the autonomous, i.e., unper-
turbed dynamical system. All three parameters that define the
perturbation(h, d, anda) are chosen randomly within given
ranges. This enables highly variable perturbing of the basic
system and herewith the most efficient exploiting of all flex-
ible areas of the studied chaotic regime. The trajectory here-
with, after the perturbation and before completely resettling
onto the attractor, reveals as many new UPOs as possible.
Parametersh, d anda have to be chosen carefully, with re-
spect to the system’s dynamics. Parameterh has to be large
enough in order to allow the trajectory to resettle onto the
attractor before the next perturbation takes place. Parameters
d anda determine how strong the path of the trajectory will
be perturbed. It should be noted that for each particulard
only onea is randomly selected. In practice some testing and
experience with the studied dynamical system is necessary in
order not to collapse the whole system, but nevertheless
achieving large enough perturbations to prevent the trajec-
tory to resettle onto the attractor immediately. As already
noted in the subsection B, the local divergence[see Eq.(2)]
of attractors in the phase space is an appropriate indicator for
the system susceptibility to external perturbations and thus
helps to determine parametersd anda.

III. RESULTS

For the mathematical model proposed by Marhlet al.
[14], we first demonstrate the standard procedure of recog-
nizing and controlling UPOs as described in subsection C.
Since the biological particularities of the model are not of
particular interest in this paper, the model is not described in
detail. However, the complete set of model equations and
parameter values is given in Appendix A, whereas a detailed
analysis of the system’s dynamics can be found in
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[13,14,25,26]. For the parameter values listed in Appendix
A, the dynamical system exhibits intermittent chaotic oscil-
lations, as shown in Fig. 1(a). This can also be well observed
in the power spectra presented in Fig. 1(b), where the pre-
dominant oscillation frequency with its higher harmonics is
well expressed.

In order to determine the periods of UPOs embedded
within the chaotic attractor, we make use of the algorithm
described in subsection C. Figure 1(c) shows the return map
tn+1 versustn of the obtained observation times, which in
this case have an average valuet̄=0.0189 s. The correlation
between two successivetn is well expressed since all points
cluster along the diagonal. In this case,hskd of the point
distribution around the diagonal is nearly zero. However, as
k increases the correlation betweentn+k and tn decreases,
which results in an increase ofh. Nevertheless, there exist
local minima at eachk for which the examined chaotic re-
gime has an UPO with the periodT=kt̄, as shown in Fig.
1(d). Note that the first few minima belowk=500 correspond
to shadowing the small-amplitude spikes between two main
successive spikes of the system[see Fig. 1(a)] and cannot be
taken as UPOs. We should focus on the well-expressed mini-
mum atk<790, which indicates that the system has a pre-
dominant oscillation periodT<15 s. This is fully in agree-
ment with the power spectrum in Fig. 1(b), which has the
main spike atn=0.067 Hz. By enlarging the area aroundk
<790 [see insert of Fig. 1(d)], we can determine the periods
of UPOs embedded within the chaotic attractor, which range
between<13 and 16 s.

In order to determine the periods of UPOs embedded
within the chaotic attractor even more accurately, we calcu-
late the normalized interspike interval histogramsISIHd of
the chaotic time series presented in Fig. 1(a). It is important
to note that the ISIH can be used to extract periods of UPOs
embedded in the chaotic attractor only if the UPOs are sepa-

rated by well-expressed terminates, like main spikes in our
case[see Fig. 1(a)]. In general, such oscillation patterns are
characteristic for intermittent chaotic systems, whereas for
period doubling chaos this is often not the case, i.e., it is
impossible to determine where one UPO ends and the other
starts by simply looking at the oscillations or calculating the
distance between consecutive spikes.

The ISIH for the time series in Fig. 1(a) is presented in
Fig. 2 and was calculated for approximately 10 000 main
spikes. The histogram is fully in agreement with Fig. 1,
showing that the predominant oscillation frequency of the
system isT<15 s, and the span of oscillation periods of all
UPOs embedded within the chaotic attractor ranges between
<13.4 and 16.9 s in a noncontinuous manner, i.e., for ex-
ample, there does not exist an UPO within the chaotic attrac-
tor that has an oscillation period of 13.8 s,T,14.6 s. This
also matches with the results obtained by the functionhskd in
Fig. 1, which does not have a local minimum of
719,k,775 [see inset of Fig. 1(d)]. Moreover, in addition
to hskd, the ISIH provides more accurate information about
the precise periods of UPOs embedded within the chaotic
attractor, and it also shows how frequently a particular UPO
occurs during the simulation time. The latter information is
not explicitly provided byhskd. Therefore, UPOs that are
rare can remain completely undetected by the adaptive rec-
ognition method. For example, UPOs that haveT.16 s oc-
cur rather rarely; therefore, they were not detected by the
adaptive recognition method.

To demonstrate the effectiveness of the adaptive method
for chaos control, we select an UPO withT=13.5 s, which is
marked by the left arrow in Fig. 2. Note that the period of the
chosen UPO occurs frequently but is nevertheless not the
most dominant one. The results of the UPO control are pre-
sented in Fig. 3. It can be well observed that the system can
be easily forced to shadow the selected UPO. The maximal
required correction fluxU1 is three orders of magnitude
smaller than the totaldcCaCyt/dt flux (not shown), which is in
best agreement with other theoretical studies demonstrating
the delayed feedback control of UPOs[3–6]. Moreover, the
corrections are rarely required, i.e., only at the maincCaCyt
spikes(there the fluxdcCaCyt/dt is maximal), whereas during

FIG. 1. Analysis of the basic chaotic regime with the adaptive
recognition method. For equations and parameter values see Appen-
dix A. (a) Time series ofcCaCyt. (b) Corresponding power spectra.
(c) Return map of the observation timestn+1 vs tn. (d) The rms
error hskd of the point distribution around the diagonal for return
mapstn+k vs tn.

FIG. 2. Normalized ISIH of thecCaCyt time series for the basic
chaotic regime. For equations and parameter values, see Appendix
A.

M. PERC AND M. MARHL PHYSICAL REVIEW E70, 016204(2004)

016204-4



the small-amplitude spikes the required corrections are much
smaller, as shown in the inset of Fig. 3(b).

For comparison, we force the basic chaotic system(pa-
rameter values as in Appendix A) to shadow the trajectory
that has the same oscillation period as one of the UPOs(T
=16.8 s, which is marked by the right arrow in Fig. 2) and
lies physically within the region of the chaotic attractor;
however, it is not a part of the attractor. The orbit was ob-
tained by changing the following parameters:kch=4285 s−1,
km=0.006625 s−1, andkout=132.5 s−1. Figure 4 shows that in
this case it is also principally possible to slave the system to
shadow the desired periodic orbit, however, the correction
fluxes required to achieve this are very large and reach val-
ues up to the same order of magnitude as the totaldcCaCyt/dt
flux. Moreover, the corrections needed to slave the dynamics
are very large also in regions between the main spikes[see
inset of Fig. 4(b)], especially when compared to the correc-
tions required for slaving the dynamics to shadow one of the
UPOs that form the basic skeleton of the chaotic attractor
[see inset of Fig. 3(b)].

The above analysis shows that the periods of UPOs, em-
bedded in the chaotic attractor of the examined dynamical
system, are all confined to a rather narrow interval that
ranges from approximately 13.4 to 16.9 s(see Fig. 2). Fur-
thermore, we showed that any other randomly selected orbit
obtained with hard parameter changes, even with the same
oscillation period as one of the UPOs embedded in the cha-
otic attractor, cannot be easily controlled(see Fig. 4), i.e.,
such a trajectory cannot be considered as an UPO of the
given chaotic system. However, in the following we will

show that in fact the examined dynamical system possesses
additional UPOs that are not part of the basic chaotic attrac-
tor but can be controlled as easily as those embedded in the
chaotic attractor. In order to make these additional UPOs
visible and available for control, we will deploy the method
described in subsection D.

For the model studied here[14] we take, in accordance
with Eq. (7), the following intervals from whichh, d, anda
are chosen randomly: 80 s,h,120 s, 0 s,d,1 s, and
0 mM s−1,a,1 mM s−1. To present and explain the effects
of the external perturbation we carry out the bifurcation
analysis using the fast-slow subsystem analysis as described
in subsection A. In the examined dynamical system, the fast
changing variables were identified to becCaCyt and cCaEr,
whereas the slow changing variable, which is used as the
bifurcation parameter, iscCaMit. The obtained bifurcation dia-
grams for the unperturbed and perturbed dynamics, together
with the two-dimensional(2D) projection of the trajectory in
the whole phase space, are presented in Figs. 5(a) and 5(b),
respectively. Note that the 2D projection of the whole phase
space for the perturbed dynamics does not contain those os-
cillation cycles that were directly perturbed byfstd; thus,
only those oscillation cycles were considered that were ob-
tained by resettling of the trajectory onto the chaotic attrac-
tor. The solid line represents stable foci; the dashed line rep-
resents unstable foci, whereas the dash-dotted lines that
emerge out of the supercritical Hopf bifurcationsHBd repre-
sent stable periodic orbits. In the bifurcation diagram of the
unperturbed dynamics a very important system property can
be well observed, namely, the slow passage effect

FIG. 3. Control of the unstable periodic orbit marked with the
left arrow in Fig. 2. For equations and parameter values, see Ap-
pendix A.(a) Time series ofcCaCyt. (b) The corrections required for
controlling the desired UPO.

FIG. 4. Control of a periodic orbit obtained by changing the
system parameters. For equations and parameter values see Appen-
dix A. (a) Time series ofcCaCyt. (b) The corrections required for
forcing the basic chaotic system to shadow the desired periodic
orbit.
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[25,27–30]. The latter manifests as a delayed transition of the
trajectory to the lower stable periodic branch after the super-
critical Hopf bifurcation is exceeded in the clockwise direc-
tion. Despite the fact that the stable foci branch turns un-
stable after the supercritical HB is exceeded, the trajectory
remains close to the rest state for a considerable amount of
time before it unfolds to the lower stable periodic branch,
which is a clear indicator for the slow passage effect.

The most characteristic property of the slow passage ef-
fects is its extreme sensitivity to external perturbations. Sev-
eral authors have reported that the length of the slow passage
phase can be altered by any kind of external perturbations,
such as stochastic influences and periodic environmental per-
turbations[27] or external influences from neighboring os-
cillators [31–33], and even by precision of numerical algo-
rithms used for integration of differential equations[34].
Recently, we proposed a more general view, showing that the
local divergence represents the key system property that de-
termines sensitivity of dynamical systems to external pertur-
bations [35]. We showed that well-expressed areas with
close-to-zero local divergence, which are also characteristic
for dynamics with the slow passage effect, largely facilitate
responses of a system to weak external forcing. For details,
see subsection B. With this in mind, it is easy to understand
that for the case studied here the steplike perturbationfstd
reveals many additional UPOs that do not appear in the basic
chaotic attractor[compare Figs. 5(a) and 5(b)].

In order to measure the multitude of additional UPOs ob-
tained by our method, we calculate the ISIH for the per-
turbed dynamics of the system variablecCaCyt. Results are
presented in Fig. 6. By comparing Fig. 6 with Fig. 2, it is
evident that the oscillation period distribution is much
broader and continuous in the case of the perturbed dynamics
than in the unperturbed case, approximately 7 s,T,33 s. It
should be noted, however, that the predominant oscillation
period remainsT<15 s, which shows that the basic system
dynamics was not altered due to perturbations.

Now we show that the additional UPOs that are not part
of the basic attractor can be controlled as easily, i.e., with
very small correction fluxes added to the basic dynamics, as
the UPOs that form the skeleton of the basic attractor. We
choose an UPO with an oscillation periodT=29.1 s(marked
with an arrow in Fig. 6), which lies far outside the oscillation
period interval of UPOs that can be found in the basic cha-
otic attractor(see Fig. 2), additionally, the chosen UPO ap-
pears quite rare even in the perturbed time series. The results
showing the control of the chosen UPO are presented in Fig.
7. It can be well observed that the system can easily shadow
the selected UPO with control fluxes of the same order of
magnitude as in the case of controlling UPOs from the un-
perturbed chaotic attractor(compare Figs. 3 and 7). In both
cases the maximal required control flux is three orders of
magnitude smaller than the totaldcCaCyt/dt flux (not shown).
Moreover, the control is practically required only at the time
the main cCaCyt spike occurs, whereas during the small-
amplitude spikes the required corrections are minute as
shown in the inset of Fig. 7(b).

At the end, let us test the method for detecting additional
UPOs on an example of a rigid intermittent chaotic behavior
that can be found in the mathematical model proposed by
Shen and Larter[18]. We studied this model previously
[8,25] and found that the outlay of the local divergence os-
cillates heavily around zero with several well-expressed
negative dells[8], which is characteristic for a rigid system.
The rigidity of the system can also be well demonstrated
with the fast-slow subsystem analysis performed as de-
scribed in subsection A. In the examined dynamical system,
the fast changing variables were identified to becCaCyt and

FIG. 5. Bifurcation diagram obtained with the fast-slow sub-
system analysis together with the 2D projection of the trajectory in
the whole phase space. HB denotes the Hopf bifurcation. For equa-
tions and parameter values see Appendix A.(a) Basic chaotic re-
gime. (b) Basic chaotic regime with the applied method for reveal-
ing additional UPOs.

FIG. 6. Normalized ISIH of thecCaCyt time series for the basic
chaotic regime with the applied method. For equations and param-
eter values, see Appendix A.
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cIP, whereas the slow changing variable, which is used as the
bifurcation parameter, iscCaEr. The obtained bifurcation dia-
gram for the unperturbed dynamics, together with the 2D
projection of the trajectory in the whole phase space, is pre-
sented in Fig. 8. It can be well observed that the trajectory is
caught between two stable node branches(solid lines),
whereas the transitions between the two are determined by
the two fold bifurcations(up triangles). There is no sign of
any slow passage effect. The trajectory is tied to one of the
two stable branches most of the oscillation cycle, thereby

making it nearly impossible to achieve any noticeable devia-
tions with the external perturbation.

For perturbing the examined dynamical system[18] by
fstd, we take the following intervals from whichh, d, anda
are chosen randomly: 30 s,h,40 s, 0 s,d,1 s, and
0 mM s−1,a,4 mM s−1. We calculate ISIHs for the unper-
turbed and for the perturbed dynamics of the system variable
cCaCyt [Figs. 9(a) and 9(b), respectively]. Both histograms
were calculated for approximately 10 000 main spikes. From
the ISIH calculated for the perturbed dynamics[Fig. 9(b)] it
is evident that the oscillation period distribution remained
nearly unaffected by the applied method, which is a clear
indicator that the examined chaotic attractor is very rigid
[compare Figs. 9(a) and 9(b)]. It should be noted that the
multitude of additional UPOs is small in spite the fact that
we have chosen parametersd and a in Eq. (7) so that the
system was perturbed maximally. For example, if we seta
=5 mM s−1, the system collapsed immediately.

Our results show that the method for detecting and con-
trolling additional UPOs that are not part of the basic chaotic
attractor is applicable to any chaotic system. It should be
noted, however, that the multitude of additional UPOs de-
tected depends on the flexibility of the system. In particular,
the multitude of additional UPOs is much larger in case of a
flexible attractor, whereas for a rigid attractor it might turn
out that the number of additional UPOs is rather small.

IV. DISCUSSION

In the paper, a method for detecting and controlling UPOs
that were not possible to control before is presented. These

FIG. 7. Control of the unstable periodic orbit marked with an
arrow in figure 6. For equations and parameter values, see Appendix
A. (a) Time series ofcCaCyt. (b) The corrections required for con-
trolling the desired UPO.

FIG. 8. Bifurcation diagram obtained with the fast-slow sub-
system analysis together with the 2D projection of the trajectory in
the whole phase space. For equations and parameter values, see
Appendix B.

FIG. 9. Normalized ISIH of thecCaCyt time series. For equations
and parameter values, see Appendix B.(a) Basic chaotic regime.(b)
Basic chaotic regime with the applied method. Note that the y axis
has a logarithmic scale.
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additional UPOs are not part of the basic chaotic attractor.
They can nevertheless be controlled as easily as the tradi-
tional UPOs of the system. The method exploits flexible
parts of the attractor, which under weak external perturbation
enable considerable deviations of the trajectory away from
its originally determined path. The main idea is to tempo-
rarily destabilize the system and after the perturbation to wait
for a natural resettling of the trajectory onto the basic chaotic
attractor. During the resettling, which is defined by the same
deterministic equations that form the attractor of the unper-
turbed dynamics, the trajectory moves through phase space
areas that are normally not visited in the unperturbed case.
Thereby, additional UPOs become visible and available for
control. The frequency interval occupied by these UPOs is
often considerably wider than the frequency range containing
UPOs of the basic chaotic attractor. Our method can thus
greatly increase the repertoire of genuinely diverse dynami-
cal states that are available for control and herewith extends
the applicability of traditional chaos control techniques.

The key system property that determines the flexibility of
a dynamical system, and thereby the range to which a par-
ticular frequency interval containing UPOs of the basic cha-
otic attractor can be expanded, is the local divergence
[15–17,35]. In order to point out the important role of the
local divergence, we tested our method on two different
mathematical models[14,18] that differ considerably in their
flexibility. When the method was applied to the more flexible
system[14], the multitude of additional UPOs was very large
and the frequency interval of the UPOs expanded exten-
sively. On the other hand, when the method was applied to
the rigid system[18] additional UPOs could be found only in
a moderate extension of the frequency interval that contains
the UPOs of the basic chaotic attractor.

Recently, various chaos control techniques have been
used not just to regularize chaotic behavior but also to con-
trol regular systems that are subjected to noise[10–12,36].
Our method has some similarities with controlling the behav-
ior of noisy systems since, in both cases, the dynamics of the
system is externally perturbed. It should be noted, however,
that in noisy systems the noise acts continuously on the sys-
tem, whereas our method is based on short pulsatile forcing
that is applied intermittently[see Eq.(7)]. Thus, in our case,
the controlled system is still autonomous in the sense that the
perturbation is required only to make the additional UPOs
visible, whereas the actual control starts after the perturba-
tion. However, since noisy(nonautonomous) systems can be
successfully controlled with external feedback techniques
[11], our method can be applied to them as well. More pre-
cisely, with the proposed method the basic idea of controlling
noisy oscillations[36] as well as noise-induced oscillations
emerging from initially nonoscillatory regimes[10,11] is ex-
tended to the control of additional UPOs that can be found
by temporarily destabilizing a chaotic system. Since the local
divergence of attractors is the crucial system property that
determines the response of a system to noise[15,16] and
pulsatile forcing[17], it can be used for estimating the rich-
ness of additional dynamical states that can be made avail-
able for control due to any kind of external perturbations.

Since the seminal work of Ottet al. [2], chaos control
techniques have been applied in various fields of research

from physics, biology, chemistry, medicine, and economics
[37–39]. Particularly in the field of nonlinear optics and laser
technology, the need for stabilizing the irregular intensity
fluctuations due to nonlinear couplings of several longitudi-
nal and transverse modes[40] has been present from the very
beginning of development. Accordingly, several works have
been devoted to the control of chaos in lasers[41–47]. Es-
pecially in the case of controlling nonautonomous lasers
[43,44,46,47], we see a possible implementation of our
method, since the intracavity electro-optic crystal of the laser
is already driven by an external sinusoidal or periodic impul-
sive voltage in order to modulate the cavity losses. Thus, by
modifying the external voltage in accordance with our
method, the behavior of the laser could be temporarily desta-
bilized in order to evoke a new, perhaps more desirable, op-
eration state, which could then be controlled and maintained
with the same methods and techniques as the basic operation
mode.

More recently, nonlinear optics and laser technology have
also been used for information encoding[48,49] and digital
communication[50,51]. In several studies[52–55], it has
been shown that chaos control techniques can be used to
provide a secure information flow between a sender and a
receiver. In this context, our method could prove to be useful
since it enables the acquisition of new dynamical states that
can be used as additional digital information sources[56,57].
Because these states are not used by the unperturbed dynam-
ics, a possible spy has basically no possibilities to recon-
struct the underlying dynamics of a signal and decode the
message. On the other hand, the required external perturba-
tions that are necessary to make these additional dynamical
states available as information sources, and later visible to
the receiver, are very simple[see Eq.(7)] and can thus be
encoded very efficiently with low powered microelectronic
elements.

Another field of research that has benefited considerably
from the chaos control theory is the biomedical engineering.
Following the pioneering experiment in this field from
Garfinkelet al. [58], chaos control techniques were used to
control noisy neuronal activities[36], epileptiform bursting
[59], and even to anticontrol the periodic behavior observed
during an epileptic seizure[60]. Moreover, it has been sug-
gested that certain chaos control techniques could be suc-
cessfully implemented in biological pacemakers, which
would not impose its own frequency, but would re-adjust its
frequency in accordance with the system needs[47]. Since it
is often the case that internal parameters of real-life biologi-
cal systems cannot be changed, the method proposed here
provides a good alternative to noninvasively detect and con-
trol UPOs that possibly assure optimal functionality of the
tissue. Note that the method is noninvasive insofar that ad-
ditional UPOs can be detected without changing the internal
parameter values of the system.

In conclusion, with the proposed method, a wealth of
genuinely new dynamical states, accessible with extremely
small control influences to the basic dynamics, can be de-
tected and controlled. The method is general and can be ap-
plied to any chaotic system; nevertheless, the system needs
to be flexible, i.e., susceptible to external perturbations, in
order to enable a productive implementation of the method.
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In further studies, we are going to examine nonchaotic, yet
flexible, dynamical systems in order to determine if there as
well a hidden wealth of dynamical states outside the basic
attractor can be found.

APPENDIX A

The mathematical model proposed by Marhlet al. [14] is
described by the following differential equations:

dcCaCyt

dt
= Jch − Jpump+ Jleak+ Jout − Jin + JCaPr− JPr,

sA1d

dcCaEr

dt
=

ber

rer
sJpump− Jch − Jleakd, sA2d

dcCaMit

dt
=

bm

rm
sJin − Joutd, sA3d

where

Jch = kch
cCaCyt

2

cCaCyt
2 + K1

2scCaEr− cCaCytd, sA4d

Jpump= kpumpcCaCyt, sA5d

Jleak= kleakscCaEr− cCaCytd, sA6d

JPr = k+cCaCytcPr, sA7d

JCaPr= k−cCaPr, sA8d

Jin = kin
cCaCyt

8

cCaCyt
8 + K2

8 , sA9d

Jout = Skout
cCaCyt

2

cCaCyt
2 + K1

2 + kmDcCaMit. sA10d

cPr = cPrTot− cCaPr, sA11d

cCaPr= cCaTot− cCaCyt−
rer

ber
cCaEr−

rm

bm
cCaMit. sA12d

Parameters values, if not stated otherwise, arekch
=4230 s−1, kleak=0.05 s−1, kpump=20 s−1, kin=300mM s−1,

kout=125 s−1, km=0.00625 s−1, k+=0.1 mM−1s−1, k−
=0.01 s−1, K1=5.0 mM, K2=0.8 mM, cPrTot=90 mM, cCaTot
=120mM, rer=0.01,ber=0.0025,rm=0.01,bm=0.0025.

APPENDIX B

The mathematical model proposed by Shen and Larter
[18] is described by the following differential equations:

dcCaCyt

dt
= Jch + Jleak− Jpump+ Jin − Jout, sB1d

dcCaEr

dt
= Jpump− Jch − Jleak, sB2d

dcIP

dt
= J+ − J−, sB3d

where

Jch = kchS cIP
4

cIP
4 + K1

4DS K4cCaCyt

scCaCyt+ K4dscCaCyt+ K5dD
3

cCaEr,

sB4d

Jleak= kleakcCaEr, sB5d

Jpump= kpump
cCaCyt

2

cCaCyt
2 + K2

2 , sB6d

Jin = kin1 r + kin2, sB7d

Jout = kout cCaCyt, sB8d

J+ = k+r
cCaCyt

cCaCyt+ K3
, sB9d

J− = k−cIP. sB10d

Parameters values, if not stated otherwise, arekch
=3000mM s−1, kleak=1.0 s−1, kpump=50.0mM s−1, kin1
=4.0 mM s−1, kin2=1.0 mM s−1, kout=10.0 s−1, k+
=4.0 mM s−1, k−=2.0 mM s−1, K1=K2=0.2 mM, K3
=1.0 mM, K4=K5=0.69mM, r =0.62.
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