
Directed anomalous diffusion without a biased field: A ratchet accelerator

Jiangbin Gong* and Paul Brumer
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Canada M5S 3H6

(Received 20 January 2004; published 8 July 2004)

Directed classical current that increases linearly with time without using a biased external field is obtained
in a simple model Hamiltonian system derived from a modified kicked rotor model, by breaking the spatial
symmetry of the transporting regular islands in the classical phase space. A parallel study of the corresponding
quantum dynamics suggests that although quantum coherence effects suppress the directed current and can
even induce a current reversal, directed quantum current that increases linearly with time can nonetheless be
realized in a quantum system that is far from the classical limit.
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I. INTRODUCTION

Ratchet effects, i.e., directed transport without a biased
field due to a broken spatial-temporal symmetry, are of great
interest to the understanding of molecular motors in biologi-
cal systems and have been under intense investigation in a
variety of simple model systems[1,2]. Early studies focused
on the role of external noise, which was then replaced by
deterministic chaotic dynamics with dissipation[3–6]. Re-
cently, it was shown that even purely Hamiltonian dynamics
with both regular and chaotic phase space structures[7–10]
or with complete chaos[6,11–13] is capable of generating
ratchet effects. As such, there has been a great interest in
studying simple model Hamiltonian systems in an effort to
observe and understand ratchet effects.

The kicked rotor(KR) model [14] and its variants are
ideal systems for such studies. For example, delta-kicked
systems with an alternating kicking period and an asymmet-
ric potential[9,11,12], or with multiple external fields[10],
have been considered in connection with ratchet effects.
These studies are stimulating since the classical dynamics of
the KR (i.e., the standard map) and the associated quantum
dynamics have long served as paradigms for classical and
quantum chaos[14]. Indeed, the KR has been realized in
several atom optics experimental groups[15], and is also of
considerable interest in other fields such as condensed matter
physics[16,17], molecular physics[18–21], and quantum in-
formation science[22,23].

Although not often thought of as such, the basic idea that
underlies the above-mentioned studies of ratchet effects in
the KR, i.e., to manipulate symmetry properties to induce a
directed current, is not new from a coherent control perspec-
tive. Indeed, 15 years ago Kurizki, Shapiro, and Brumer[24]
proposed a simple coherent control scenario that can gener-
ate photocurrents in semiconductors without a biased volt-
age. This proposal and its various extensions[25,26] have
been experimentally realized[27–29].

In this paper we introduce a totally different type of
Hamiltonian ratchet effect in a simpled -function kicked

model system, which we call a “ratchet accelerator.” Without
a net external force(i.e., the external force averaged over
space is zero), the ratchet accelerator can generate directed
classical anomalous transport, with the net current(defined
below) that accelerates linearly with time. This is made pos-
sible by taking advantage of the large transporting islands in
the classical phase space of a modified kicked rotor system
recently proposed by Gong, Wörner, and Brumer[30,31], in
conjunction with a second kicking field that breaks the spa-
tial symmetry. The corresponding quantum dynamics is also
studied, shedding considerable light on quantum-classical
differences and correspondence in the presence of anomalous
diffusion. For example, we show that due to the tunneling
between a chaotic sea and a relatively large regular region of
the classical phase space, the quantum directed current can
be in the opposite direction of the classical directed current.

This paper is organized as follows. In Sec. II we describe
the background and the motivation of our model as a ratchet
accelerator. The classical results of directed anomalous dif-
fusion are presented in Sec III, followed by the analogous
quantum results in Sec. IV. Concluding remarks are given in
Sec. V.

II. MODEL SYSTEM

Consider the following model Hamiltonian:

Hsp,x,td = p2/2m+ l1cossx/x0do
n

fsndd st/T − nd

− l2sins2x/x0do
n

d st/T − nd, s1d

wherep is the momentum,m is the particle mass,x is the
conjugate position,l1 andl2 are the strength of the first and
second kicking fields,T is the time interval between kicks,
and the functionfsnd will be determined below. The associ-
ated classical map is given by

p̃N = p̃N−1 + k1fsNd sinsx̃N−1d + 2k2 coss2x̃N−1d;

x̃N = x̃N−1 + p̃N, s2d

wherex̃=x/x0 is the scaled dimensionless position variable,
p̃;pT/ smx0d is the scaled dimensionless momentum vari-
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able, k1=l1T
2/ smx0

2d, k2=l2T
2/ smx0

2d, and sp̃N, x̃Nd repre-
sents the phase space location of a classical trajectory at
sN+1−0+dT. The corresponding quantum unitary evolution
operator for propagating from timesN−0+dT to time sN+1
−0+dT is given by

F̂ = expFi
t

2

] 2

] x̃ 2Gexpf− i f sNdk1cossx̃dgexpfik2sins2x̃dg,

s3d

with dimensionless parametersk1=l1T/", k2=l2T/", t

="T/mx0
2. Let p̂̃; p̂T/ smx0d, where p̂=−i"] /]x, then one

has fx̃, p̂̃g= it, and p̂̃=−it] /]x̃, indicating thatt plays the
role of an effective Planck constant. Note thatk1=k1t and
k2=k2t.

Clearly, if l2=0 and fsnd=1 then Eq.(1) reduces to the
standard kicked rotor model[14] and the classical map of
Eq. (2) becomes the standard map. Ifl2=0, fsnd=gsnd,
where gsnd=1 for n=4j +1, 4j +2, andgsnd=−1 for n=4j
+3, 4j +4, wherej an integer, then the system becomes that
in our previous work[30,31]. Our accelerator, introduced
here, assumesl2Þ0 and fsnd=gsnd. That is, the system is
kicked by two fields, one of which reverses the sign of its
kicking potential after every two kicks.

Note first the existence of “accelerating trajectories” in
the classical delta-kicked dynamics. In particular, for particu-
lar values ofk1, the standard map[k2=0, fsnd=1] can gen-
erate trajectories whose momentum increases(or decreases)
linearly with time(at least on the average). These trajectories
are a class oftransporting trajectories[8]. To see this con-
sider the initial conditions:sp̃=2pl1, x̃= ±p /2d for k=2pl2,
wherel1 andl2 are integers. Clearly, these phase space points
are shifted by a constant value(±2pl2) in p̃ after each itera-
tion, resulting in a quadratic increase of rotational energy.
These accelerating trajectories are rather stable insofar as
they may persist for values ofk close to 2pl2 (with their
average momentum shift after each iteration oscillating
around the constant value ±2pl2), thus giving rise to trans-
porting regular islands[8], also called the “accelerator
modes” in the standard map case[32,33]. Dramatically, if
fsnd=gsnd andk2=0, then there can exist much larger trans-
porting islands[30]. These islands are associated with the
marginally stable pointssp̃=s2l1+1dp , x̃= ±p /2d for k
=s2l2+1dp. Trajectories on these islands will be shifted by a
constant valuef±s2l2+1dpg in p̃ after each kick.

If classical trajectories are launched from the transporting
regular islands, they simply jump to other similar islands
located in adjacent phase space cells. For trajectories initially
outside the transporting regular islands, the “stickiness” of
the boundary between the islands and the chaotic sea induces
anomalous diffusion over the phase space. For example, the
square of the variance of momentum increases nonlinearly,
but not quadratically. This is intrinsically different from the
case of normal chaotic diffusion in which the square of the
variance of momentum increases linearly with the number of
kicks.

As in previous studies on delta-kicked systems, one needs
to break the spatial symmetry of the kicking potential to

induce ratchet effects. More specifically, our choice of the
above model Hamiltonian is motivated by the desire to have
large transporting islands in the classical phase space[30]
and to break the spatial symmetry of the transporting regular
islands. As shown below, the symmetry can be indeed broken
by a second kicking field, and yet the remaining transporting
islands are still of a significant size and have unidirectional
transporting properties. This being the case, the mechanism
of the Hamiltonian ratchet effects described below becomes
transparent without using previous analyses of the relation-
ship between broken spatial-temporal symmetries and ratchet
effects[6,34–37].

III. CLASSICAL RESULTS

To demonstrate the feasibility of our basic idea, in this
section we present our results using some specific computa-
tional examples. Figure 1(a) displays the classical phase
space structure of the standard map withk1=3.8,k2=0, and
fsnd=1. The regular islands in Fig. 1(a) are not transporting
since the momentum of the trajectories launched from these
regular islands is bounded and oscillates periodically. Figure
1(b) shows that if the first kicking field reverses its potential
after every two kicks, then the regular nontransporting is-
lands in the standard map are destroyed and new regular
islands emerge. A simple computation reveals that those is-
lands seen in Fig. 1(b) are transporting. In particular, classi-
cal trajectories launched from regular islands on the left side
sx̃,pd of the phase space cell will accelerate, with theirp̃
increased by<p after each kick. Due to the spatial symme-
try, these islands always have partners with the opposite
transporting property: trajectories launched from those is-
lands on the right sidesx̃.pd of the same phase space cell
will accelerate in the opposite direction, with theirp̃ de-
creased by aboutp after each kick. These properties of the
transporting regular islands seen in Fig. 1(b) indicate that
they are associated with the marginal stable pointsp̃=p, x̃
= ±p /2 in the case ofk1=p. Dramatically, upon introducing
the second kicking field in Eq.(2), e.g., l2/l1=k2/k1
=0.2/3.8, the transporting islands no longer appear in pairs
as in Fig. 1(b). Rather, as seen in Fig. 1(c), the spatial sym-
metry of the phase space structures is clearly broken, but the
size of the main transporting islands that persist remains sig-
nificant. Specifically, all the trajectories launched from the
regular structures clearly seen in Fig. 1(c) will still accelerate
linearly with time; the remaining part of the phase space is
exclusively occupied by the chaotic sea. That is, there does
not exist similar transporting islands that decreasesp̃ in a
linear fashion.

For a classical ensemble that uniformly covers the entire
phase space cell shown in Fig. 1(c), the spatial and temporal
periodicity of the system requires that the average accelera-
tion rate is zero[7,8], i.e.,

ac Ac + ar Ar = 0, s4d

whereAc andAr denote the areas of the chaotic sea and the
regular transporting region, respectively, with their associ-
ated average acceleration rate denoted byac andar. Consider
now an initial classical ensemble withp̃=0 andx̃ uniformly
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distributed between −̀ and +̀ . Such an ensemble is easy to
simulate both classically and quantum mechanically. Since
this initial ensemble is entirely located in the chaotic sea[see
Fig. 1(c)], Eq. (4) predicts that the average acceleration rate
of this classical ensemble is given by −ar Ar /Ac. This also
indicates that the larger the transporting island is, the faster
the directed acceleration would be. In the case of Fig. 1(c),
ar =p, so more trajectories travel to the regime of negativex̃.

That is, even though the average force of the kicking fields is
zero and the initial classical ensemble is both spatially sym-
metric and time-reversal invariant, all the trajectories tend to
be accelerated in one direction. Note that, by changing the
strength of the second kicking field or varying the relative
phase between the two kicking fields[e.g., the second kick-
ing field is replaced byl2sins2x/x0+bdond st /T−nd, where
b is a relative phase factor], one can also obtainar =−p.
Hence the acceleration can be also obtained in the reverse
direction.

For an initial classical ensemble withp̃=0 and x̃ uni-
formly distributed from −̀ to +`, Fig. 2(a) displays the time
dependence of the classical net currentkp̃l, wherek·l denotes
the ensemble average. It is indeed seen that the classical net
current is in the negative direction, and accelerates linearly
with time. The acceleration rate is also consistent with Eq.
(4). Figure 2(b) displays a log-log plot of the time depen-
dence of the associated momentum varianceDp̃;skp̃2l
−kp̃l2d1/2. A linear fit of the result in Fig. 2(b) gives Dp̃

,N0.65, whereN is the number of kicks. This confirms that
the diffusion dynamics is anomalous and immediately gives
Dp̃/ kp̃l,1/N 0.35. Hence, as far as the first and second order
statistical moments are concerned, the momentum fluctua-
tions of the classical ensemble become less and less impor-
tant as time increases. In this sense, for sufficiently large
times, almost all trajectories in the classical ensemble are
accelerated in the negative direction.

FIG. 1. Classical phase space structures of(a) the standard map
[k1=3.8, fsnd=1, k2=0], (b) a modified kicked rotor model[k1

=3.8, fsnd=gsnd, k2=0], and (c) a ratchet accelerator[k1=3.8,
fsnd=gsnd, k2=0.2]. All variables are in dimensionless units. Note
that the regular islands seen in(b) and (c) are transporting while
those in(a) are not.

FIG. 2. (a) The linear time dependence of the classical directed
current defined as the ensemble averaged value of the momentum,
with the initial conditionp̃=0 andx̃ uniformly distributed between
−` and +̀ . (b) The associated time dependence of the momentum
variance in a log-log plot. The system parameters are the same as
those in the case of Fig. 1(c). All variables are in dimensionless
units.
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IV. QUANTUM RESULTS

How then does this ratchet accelerator manifest itself in
the corresponding quantum system and how small the effec-
tive Planck constant should be in order to observe the analo-
gous ratchet effects in the quantum dynamics? To carry out
the quantum calculations we impose a periodic boundary
condition on the system, i.e.,ucsx̃dl= ucsx̃+2pdl, where ucl
is the wave function of the system. This periodic boundary
condition suggests thatx̃ is now to be understood as an angle
variable, and is consistent with the fact that the classical
dynamics is invariant ifx̃→ x̃+2p. Further, our previous
work [30] suggests that this choice of boundary conditions
should not affect the essence of the quantum dynamics.

Figure 3 shows the net quantum current, i.e., the expecta-

tion value of p̂̃ for two values of the effective Planck con-
stantt, with the initial state given byucst=0dl= u0l. Compar-
ing the results here with that in Fig. 2(a), one sees that the
magnitude of the quantum directed current can be much
smaller than that of the classical directed current. Interest-
ingly, the directed current in the quantum case displays much
more complicated behavior than the linear acceleration seen
classically(some slow oscillatory behavior of the quantum
current over much longer time scales is also observed, but
should be of much less experimental interest). This can be
qualitatively explained in terms of a combination of a dy-
namical localization effect[14] and the quantum tunneling
between the chaotic sea and the transporting islands[30,37].
In particular, since the dynamical localization in quantum
delta-kicked systems always suppresses the diffusion, the
quantum directed current is not expected to grow all the
time. More importantly, since the chaotic sea and the trans-
porting islands have opposite acceleration signs[see Eq.(4)],
the quantum tunneling between them[30] necessarily de-
creases the directed current. Indeed, in the case oft=0.2,
one sees that for most of the time the quantum current is in
the opposite direction of the classical current. Note that, un-
like a previous observation of tunneling-induced current re-
versal in quantum Brownian motion[38], here the tunneling
is between a chaotic sea and a regular region and the system
is totally isolated from the environment.

The results in Fig. 3 also suggest thatt=0.1 is small
enough to observe the signature of a ratchet accelerator in a
quantumd-kicked system. For example, the quantum current

for t=0.1 does increase almost linearly for as many as 2000
kicks, with the average increase rate about three times
smaller than in the classical case. This means that for experi-
ments using cold sodium atoms[15] the directed and rela-
tively large quantum current obtained with 2000 kicks would
correspond to an average drift velocity on the order of
1 m/s. Note, however, this value oft is about one order of
magnitude smaller than what is being examined in atom op-
tics experiments[15], but may be achievable in the future.

It is also interesting to examine the lineshape of dynami-
cal localization with the spatial symmetry of the transporting
regular islands broken by the second kicking field. Figure 4
displays the associated distribution functionPsmd after 4000
kicks for the same two values oft. It is clearly seen that for
both casesPsmd is asymmetric. Due to the stickiness of the
boundary between the transporting islands and the chaotic
sea and the associated quantum tunneling, the probability of
finding the system in stateuml with a large and positivem
can be much higher than that of finding the system in state
u−ml. This does not contradict the previous observation that
after an initial stage the quantum current fort=0.1 is nega-
tive, because the tail of the statistical distribution function
Psmd has little effect on the net current, the statistical mo-
ment of the lowest order. The huge difference inPsmd be-
tween the two cases shown in Fig. 4 with slightly different
values oft is also noteworthy. This extreme sensitivity of
Psmd to the value oft is more or less related to the fact that
the values oft we consider are quite comparable to the area
of the main transporting island seen in Fig. 1(c).

V. CONCLUDING REMARKS

Using a simple model Hamiltonian system we have dem-
onstrated a new ratchet effect by considering directed classi-
cal anomalous diffusion. We have shown that it is possible to
achieve directed acceleration with a fixed acceleration rate
with two kicking fields that have zero average gradient. This
is the case even though the initial classical ensemble is both
spatially symmetric and time-reversal invariant. We have
also presented some computational examples of the quantum
dynamics with different values of the effective Planck con-
stant. It is found that quantum coherence effects may induce

FIG. 3. The time dependence of the quantum dimensionless di-

rected current defined as the expectation value ofp̂̃ for two values
of the effective Planck constantt, with the initial condition given
by u0l and other parameters are the same as in Fig. 1(c). Results
here should be compared with those in Fig. 1(c).

FIG. 4. The probabilityPsmd of finding the quantum system in
stateuml after 4000 kicks, with the initial state given byu0l. The
solid line is for t=0.1 and the dashed line is fort=0.2. Other
parameters are the same as those in the case of Fig. 1(c).
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a reversal of directed current. It is also found that directed
quantum current that accelerates linearly with time without
using a biased external field should also be achievable in a
quantum system that is still far from the classical limit.

We have previously shown that quantum anomalous dif-
fusion in a simple delta-kicked system can be faster than the
underlying classical anomalous diffusion[30]. However, the
spatial symmetry therein always gives a zero momentum ex-
pectation value and therefore one necessarily considers the
momentum variance in order to make a meaningful
quantum-classical comparison. By contrast, our ratchet ac-
celerator model here allows for a study of the quantum-
classical differences in the momentum expectation value it-
self. As such, the role of the quantum tunneling between a
chaotic sea and transporting regular islands becomes even
more clear: while it can enhance the increase rate of the
momentum variance[30], it suppresses the net acceleration
rate of the average momentum in our ratchet accelerator
model.

It would be of great interest to consider a molecular real-
ization of the ratchet accelerator, where the variablex is
understood as an angle variable andp is understood as an
angular momentum variable. Since a microwave field[18,39]

will create a kicking potential of the form cossxd and an
off-resonance laser field[19,21] can create a kicking poten-
tial of the form cos2sxd, a diatomic subject to both micro-
wave and off-resonance laser fields, with their polarization
direction perpendicular to one another, is a possible candi-
date for realizing the ratchet accelerator we propose. How-
ever, since in this case the diatomic should be at least de-
scribed by a three-dimensional rigid rotor, which differs from
the planetary kicked rotor in a number of aspects[39], de-
tailed calculations should be carried out to guide the experi-
mental studies. Nevertheless, we believe that this ratchet ac-
celerator model may be of importance for manipulating the
rotational motion of diatomics and may provide a means of
orienting molecules while accelerating rotation without using
a biased external field.
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