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Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data,
several cellular automaton models for traffic flow are compared. We find three levels of agreement with the
empirical data(l) models that do not reproduce even qualitatively the most important empirical observations,
(2) models that are on a macroscopic level in reasonable agreement with the empiri¢3) amatlels that
reproduce the empirical data on a microscopic level as well. Our results are not only relevant for applications,
but also shed light on the relevant interactions in traffic flow.
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I. INTRODUCTION interactions only, excluding models as the Galilei-invariant

For a long time the modeling of traffic flow phenomena Model introduced in Refl14]. We compare simulations of _
was domina?ed by two theoretigal approactfes s review, the CA model proposed by Nagel and Schreckenberg, that is
see e.g., Ref§1—4]). The first type of models, the so-called to date the most freque_ntly use_d CA approach for traffic flow,
car-following models, are based on the fact that the behavidi'® VDR model[15] which realizes a so-called slow-to-start
of a driver is determined by the leading vehicle. This asTulé, the TOCA-model of Briloret al. [16], the model of
sumption leads to dynamical velocity equations which inEmmerich and Rankl7] based on the use of velocity-gap
general depend on the distance to the leading vehicles and atrlceﬁl, ﬁnd the approach gylHejIlra]lng and Schrﬁpk_enbe(;g
the velocity difference between the leading and the foIIowingdi8]‘ which represents a model with a more sophisticate

. X S stance rule. Finally we discuss the recently introduced
vehicle. An alternative approach, which is also well estab- : ; X
lished in traffic research, does not treat the individual car brake light mode[19,2( that was suggested in order to give

X . . . reliable reproduction of the microscopic empirics and the
but describes the dynamics of traffic networks in terms o P b P

g i X model by Kerner, Klenov, and Wol[R1], focusing more on
macroscopic variables. Here traffic flow phenomena argne macroscopic properties of the three phases of traffic flow.
treated in analogy to the dynamics of compressible viscous \ye will compare the ability of these models to reproduce

fluids. o _ _ the empirical findings. This requires using a measurement

Both approaches are still widely used by traffic engineersprocedure in the simulations which models the detectors on
but for practical purposes they are often not suitable. One ofhe highway. Analogous to the empirical setup of RéR]
the main problems of present car-following mod@sy., see  the simulation data are evaluated by a virtual inductive loop,
Refs. [5-9)) is that they are difficult to treat in computer j.e., speed and time headway of the vehicles are measured at
simulations of large networks. On the other hand also the given link of the lattice. The measurement process is ap-
macroscopic approaches lead to some difficulties althoughlied after the update of the velocity has been carried out, but
large networks can be treated in principle. First of all, presentight before the movement of the vehicles. This implies that
macroscopic models use a large number of parameters whithe gap to the preceding vehicle does not change signifi-
have partly no counterpart within empirical investigations. Incantly during the measurement. These simulation data are
addition to that, the information that can be obtained usinganalyzed regarding individual and aggregated quantities, as it
macroscopic models is incomplete in the sense that it is ndtas been done in recent empirical investigatif2-24.
possible to trace individual cars. Although most of the empirical data sets have been col-

In order to fill this gap cellular automatai©A) models lected at multilane highways, we have performed our simu-
have been invented10,1]. CA models are microscopic lations on a single-lane road in order to reduce the number of
models which are by design well suited for large-scale comadjustable parameters. This approach is justified because the
puter simulations. A comparison of the simulations with em-empirical data sets are selected such that multilane effects
pirical data shows that already very simple approaches givare of minor importance. They might play a role for synchro-
meaningful results. In particular they can be used in order tmized traffic of types(i) and (ii), as it has been recently
simulate dense networks such as citi#g] which are con- argued in Ref[25], but in any case these types of synchro-
trolled by the dynamics at the intersections. For highwaynized traffic are much rarely observed than synchronized
traffic, however, a more detailed description of the dynamicgraffic of type (i) [22,24.
seems to be necessary. We will also not consider effects by a mixture of different

In this work we want to discuss the realism and the limi-vehicle types, e.g., there are no trucks in our simulations.
tations of a number of CA models. Our choice is restricted toThe fraction of slow cars has not been determined from the
models that are discrete in space and time, which, e.g., exempirical data. Furthermore these data have been collected
cludes the approach by Krauss al. [13], and have local on a highway with speed limit such that disorder effects
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through slower cars are expected to play a minor role. Wéundamental diagram. There exists a longstanding contro-
believe that inclusion of disorder will not change our resultsversy (see, e.g., Ref§26,27, and references thergiabout
qualitatively, but can lead to a better quantitative agreemerthe “correct” functional form of the fundamental diagram
in some cases. and a large number of possible forms have been suggested to

Before we start the analysis of the above mentioned CAe compatible with empirical dati28]. A more consistent
models, we will introduce an empirical test scenario. It will picture was established after the work of Kerner and cowork-
be microscopic and local to make it easily comparable tcers who distinguished at least three different phases of traffic
online data provided, e.g., by inductive loops. In contrast, thdlow [29], i.e., free flow, synchronized traffic, and wide jams,
detection of complex spatiotemporal structuf2s] is more  which have to be analyzed separately. We will follow this
difficult to achieve in an automated way. It would require thescheme and summarize the empirical findings accordingly.
investigation of interface dynamics whereas in our scenario Usually these measurements are stored as averaged values
only bulk properties are studied. This test scenario also verief certain time intervals. We discuss results for the funda-
fies the reproduction of empirical traffic states on a micro-mental diagram, i.e., the flow density relation, in the different
scopic level, a task that cannot be fulfilled by macroscopidraffic phases that are based on one-minute data. The results
models. The empirical results have been chosen with respefdr the functional form of the flow are shown, as far as pos-
to their reproducibility and the ability to distinguish between sible, in dependence of the spatial dengify). The density
the different states of traffic. This scenario will be discussectan be calculated from
in the following section.

J(t)
Il. EMPIRICAL FACTS p(t) = E, 1)

In order to probe the accuracy and the degree of realism
of the different models one has to introduce a test scenariohereJ(t) denotes the number of cars passing the detector
that includes the most important empirical findings. The dif-with an average velocity(t) in the corresponding time in-
ficulty in defining such a scenario is due to the fact that theerval.
empirical results may depend strongly on the particular en- Free flowtraffic is characterized by a large value of the
vironment. Therefore one has to try to extract the results thadverage speed. One basically observes two qualitatively dif-
really characterize the behavior of the vehicles. As an addiferent functional forms of the fundamental diagram, i.e., that
tional difficulty mostly aggregated data have been analyzethe linear regime extends up to the observed maximum of the
which are known to be largely dependent on the road condiflow or that one has a finite curvature in particular for den-
tions, e.g., the capacity of an upstream bottleneck. A numbesities slightly below the density of maximum floj24,30.
of results, however, is of general nature as we will discus§he finite curvature is a consequence of an alignment of
below. speeds, i.e., close to the optimal flow it is no longer possible

Even more conclusive are empirical investigations thato drive systematically faster than the trucks. This point of
use single-vehicle data. These measurements can be comiew is supported by the empirical results taken from high-
pared directly to the simulation results and include importanivays where a quite restrictive speed limit is applied that can
information concerning the microscopic structure of vehicu-be reached even by truckg2].
lar traffic. Unfortunately only a small number of empirical  In this case the whole free flow branch is linear. For our
investigations based on single-vehicle data exists so far. Oyurposes the linear form of the fundamental diagram is rel-
discussion refers to the empirical studies of REZ2-24. In  evant, because we use a single type of cars in the simula-
particular, in order to reduce the effects of disorder, the retions, with a maximal velocity that is given by the slope of
sults of[22] (except for the time-headway distributions, seethe free flow branch. When simulating a section of the high-
below) are used for the comparison with simulation data.way where no speed limit is applied, one has to take a dis-
These data have been collected on a highway where a spe@ibution of maximal speeds. This distribution can be ob-
limit applies. This facilitates the comparison with modeling tained from the empirical velocity distributions at very low
approaches. densities, where interactions between cars can be neglected.

The empirical findings that are taken as a basis for the In the congested regimene distinguishes between syn-
comparison with the model results have been obtained frorshronized traffic and wide jams. In tteynchronized phase
inductive loops. Measurements by inductive loops, whichthe mean velocity of the vehicles is reduced, compared to the
represent the most frequently used measurement devicefsee flow, but the flow can take on values close to the maxi-
give information about the number of cars passing, their vemum flow. Moreover, strong correlations between the density
locities and the occupation times. These direct measuremends different lanes exist caused by lane changing.
are also used in order to calculate other quantities, e.g., the The synchronized state has been subdivided into three
spatial distanced, via d,=v,-1it;, (wherev,_; denotes the types, which differ in the characteristics of the time series of
velocity of the preceding can—1, t, the time headway be- density and flow: In synchronized traffic of tygie constant
tween cam—1 and cam). values of the density and the flow can be observed during a
long period of time. In synchronized traffic of tyge) the
flow depends linearly on the density similarly to free flow,

The most important empirical quantity is the relation be-but the mean velocity is reduced considerably. In synchro-
tween the averaged observables flow and density, i.e., theized traffic of type(iii) irregular patterns of flow and den-

A. Temporally aggregated data
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BO—— T 1 T T T ' ' - Figure 1 includes a typical measurement of the fundamen-

- o—o synchronized traffic . tal diagram that correspond wide jams Surprisingly these

3000 |- W= wide jam _ measurements reveal quite small values of the density, al-
though the road is almost completely covered by cars. This

I 1 seemingly incorrect result is due to the local nature of the

2500 — measuremenisee Ref[22] for a detailed discussignThus,

L i the form of the fundamental diagram in the jammed state is
= 2000 | similar to free flow traffic, but with a small average ve]ocity.
3 The jammed branch of the fundamental diagram is often
% i 1 not reproduced by CA models, because they use the inverse
= 1500 — density of a jam in order to calibrate the unit of length.
- i i Within these approaches jams are compact. In this ¢ase

mosb no internal flux is observed. The modeling of jams can
1000 = N however be meaningful, if the upstream velocity and other
- 8 macroscopic characteristics of jam are reproduced.
500 |- —
B 7 B. Single-vehicle data
0, 0 Nowadays some empirical studies exist that have ana-
p [vehicles/km] lyzed single-vehicle data from counting logj@2—-24. These

studies are of great importance for the modeling of traffic
FIG. 1. Time-traced fundamental diagram of the two congestedlow because they give direct information about the “micro-
states(from Ref. [30]). Synchronized traffic is characterized by scopic structure” of traffic streams. The data usually include
strong fluctuations of the density and flow. The measurements foglirect measurements of the time headways and the velocities
wide jams are similar to measurements in free flow but with muchof the vehicles as well as the occupation time of the detector.
smaller average velocity. Similar to the time-averaged observables the results for the
microscopic quantities differ qualitatively in the different
sity can be observeFig. 1). In our paper we concentrate on phases.
synchronized flow of typeiii ), because the two other types  The first quantity we look at is the time-headway
of synchronized traffic have been rarely observed and it iglistribution! i.e., the time elapsing between two cars passing
not confirmed whether they are generic phases of traffic flowthe detector. This quantity is the microscopic analog to the
An identification of synchronized traffic by means of the inverse flow. In free flow traffic it is found that the distribu-
fundamental diagram may be misleading, because the resulion at short times and also the position of the maximum is
often depend on the averaging procedure. A more sensitividdependent of the densityig. 2).
check is to identify the different types of traffic states by The cut offat small time headways as well as tiypical
means of the cross-correlatiaa(p,J) of the densityp and  time headway in free flow traffic are important observables
the flow J [22]: which have to be reproduced by the microscopic models. The
exact shape of the distribution may also depend on the rela-
_{p®J(t+ 1) = (p()){I(t + 7)) tive frequency of slow vehicles, because this determines the
- VAp()VAI(t + 7) fraction of interacting vehicles at a given density.
The time-headway distributions in synchronized traffic
with AA=(A?)-(A)? denoting the variance of the observable differ systematically from the free flow distributiokigig. 3).
A. The linear dependency of the flow and the density in thdn synchronized traffic the distributions have a maximum
free flow state as well as in the wide jam state leads to crosthat is much broader than that in free flow traffic. The maxi-
correlations of=1, whereas irregular patterns of the flow andmum is less pronounced and its position depends signifi-
the density in the synchronized traffic of typié) lead to  cantly on the density.
cross correlations o&0. In the presence of wide jams one has to distinguish be-
It is worth pointing out that the notion of “synchronized tween the jam itself and its outflow region. In the jam one
traffic” is still very controversial[26,27. We emphasize
.here' that we use ambje.cwecntg”on’ namely, th‘?."a’?'Sh' ISince the time-headway distribution of RE22] in free flow as
Ing qf the Cross-.c.orrela_uon funct_u:(ﬂ) for the CIaSS|f|§:at|on. well as in the synchronized state shows some peculiarities due to an
Within the empmcgl single-vehicle data sets aval'lable_ 'theerror of the measurement softwa4], new measurements at the
other two s_ynchronlzed states could not be clearly |dent|f|¢dSame location have been conducted.
Therefore it was not reasonable to include these states int®nsortunately, new measurements taken from the detector loca-
the test scenario. The characteristics of synchronized traffigon ysed in Ref[22] do not provide a sufficient amount of data of

of type (iii ), however, have been clearly distinguished fromne synchronized state. Since the time-headway distributions of Ref.
free flow and jammed states by the criterion(p,J)=0.  [22] cannot be used, the distribution is calculated from data sets
Therefore any detailed model should be able to reproduceken from Ref[24]. This is justified because the effects of a speed
this class of synchronized states. limit can be neglected at larger densities.

cclp,J) 2
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FIG. 2. Empirical time-headway distributions, i.e., the relative  FIG. 4. Empirical optimal-velocitfOV) functions, i.e., speed-
frequency of a given time headway, in free flow traffic. The distri- distance relations. The figure shows the mean velocity for a given
butions are normalized, i.€P(t,)At,=1. The data are classified in spatial distance in free flow and congested traffic for different
different density regimes by the corresponding one-minute data ofiensities.
the density. For a given road section one obtains a maximum that is
independent of the density and a minimal headway of 0.2 s. to negligible values in the time series. Moreover traffic jams

move upstream with a surprisingly constant velogitypi-
finds evidently a broad distribution of time headways, be-cally 15 km/h[31]). The upstream velocity is intimately re-
cause cars are blocked for quite long times. In the outflow@ted to the outflowdy, from a jam which also takes on
region of a jam, however, one observes that the typical tim&onstant values for a given situation. This allows for the
headway is of the order of 2 s. observed coexistence of jams. The coexistence is facilitated

The characteristics of traffic jams are one of the extenPecause the outflow from a jam is considerably smaller than

sively studied phenomena in traffic flow. Wide traffic jams E)huetfgzxig]gﬁlc)ﬂog‘;‘]g%;uCg&gﬁggl;%"r‘]’ gaé?)isrvéasrgteh;nr;rt]ﬁ)
can be identified by a sharp drop of the velocity and the romeaX/JOUt%1_5 [32]. The outflow and the upstream velocity

12— 7 of a jam can therefore also be used to calibrate_ _the model.
The precise data for the average upstream velocitieslgpnd
- o—o p =24-36 vehicles/km T may also serve to evaluate the average spadhat is occu-
Lol == p = 36-48 vehicles/km _| pied by a car in a jam. Usually and not the average length

e+ p = 48-60 vehicles/km of the vehicles, represents the Iepgth of a cell in the CA

- . models.l may also be used to assign a reasonable value of
the velocity of cars in a jam, i.ev,, =1/t

The final test of the models comes from the velocity dis-
tance relation in the different traffic phas@sig. 4). This
relation, also called optimal-velocitfOV) function, charac-
terizes in great detail the microscopic structure of the differ-
ent phases. Some models use OV curves directly as an input
[33]. In any case this quantity is a sensitive test concerning
the reproduction of the microscopic structure of highway
traffic. In the free flow regime the asymptotic velocity does
not depend on the density, but is given by the applied speed
limit. In the congested regime this asymptotic velocity is
much smaller than in free flow, i.e., cars are driving slower
than the distance headway allows. This is a direct effect of
the vehicle-vehicle interactiorf22] and should therefore be
reproduced by any realistic traffic model.

P(t,)

FIG. 3. Same as Fig. 2 but for synchronized traffic. The func- Il SIMPLE STOCHASTIC CA MODELS
tional behavior of the distribution at short times depends on the Throughout this paper we investigate microscopic traffic
density. models that are discrete in space and time. The discreteness
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of the model has the advantage of allowing direct and verygiven empirical quantity. In this case we have chosen the
efficient computer simulations, and in particular without anyvalue that leads to an optimal agreement with the related
further discretization errors. The discreteness of the modegpservable to avoid ranking the importance of the empirical

describing congested traffic, e.g., in congested traffic & CONye reproduction of a certain quantity might be of special
tinuous range of typical velocities exists that depend strongly. .o oot and therefore a calibration of the model different
on the density. This velocity interval is mapped on a discret

set of velocity variables. So even for an optimal reproductionefrom ours might be more appropriate.
of the traffic state an upper limit for the accuracy of the
model exists. Therefore, one has to find a compromise be-
tween the degree of realism and the level of complexity by
choosing an appropriate discretization of the velocity.
Moreover, the temporal discretization introduces a char-
acteristic time scale. This time scale can be understood, if a The model introduced by Nagel and Schreckenljé&(
parallel update is applied, as the effective reaction time othereafter cited as “NaSch modglis the prototype of mi-
the drivers, which is included explicitly in car-following croscopic models that we discuss. The important role of this
models. Furthermore, the temporal discretization becomegodel is mainly due to its simplicity which allows for very
obvious as peaks in the measurement of the time headwaysge; jmplementations. In fact the NaSch model is a minimal

ty. The finer the discretization the less pronounced the peakg, e in the sense that every further simplification leads to a
In order to increase the resolution the time headways in th?oss of realism. We will also use it as a reference for other

simulations are calculated via the relatiggrd/v with the . . o .
velocity v of the vehicle and the distance headwahjo the mggslhs r:]hoa(;evlwll be introduced by giving the relation to the

preceding vehicle. Nevertheless, the minimal resolution is . . i
restricted by the discretization that determines the mintgal Thg N‘?‘S.Ch ”?Ode' is a discrete mode_l for traffic flow. The
road is divided into cells that can be either empty or occu-

difference in free flowl /v,y With the lengthl and the maxi- X ) )

mum velocityv» of a vehicle. In order to facilitate a com- Pied by carn with a velocityv,=0,1, ... pyayx Cars move

parison with the empirical time-headway distribution the dis-Tom the left to the right on a lane with periodic boundary

tributions are normalized Vi&P(t,)At,=1. conditions and the system update is performed in parallel.
Below we discuss a number of traffic models in detail and FOr completeness we repeat the definition of the model

with respect to their agreement with the empirical findings ofthat is given by the four following rule&t<t; <t,<t+1):

our test scenario. Beyond that we demand that each modé}) accelerationv,(t;) =min{v,(t) + 1,044, (2) deceleration:

reproduces some basic phenomena, such as spontaneous jatt,) =min{v,(t),d(H)}  (3) randomization: v, (t+1)

formation, and fulfills minimal conditions as, e.g., being free=maxu,(t,)—1,0 with probability pye. [otherwisev,(t+1)

of collisions. These conditions are generally understood asy,(t,)] (4) motion: x,(t+1) =x,(t) +v,(t+1) with the veloc-

fulfilled, if the opposite is not explicitly stated. In particular, jty 3, the maximum velocity g, and the positiorx, of car

deterministic modelge.g., Refs[34,39) are not a subject of g (1) specifing the number of empty cells in front of ceat

this study. They cannot reproduce the spontaneous formati

of jams[11] which are the result of an inherent stochasticity For a given discretization the model can be tuned simply

of traffic flow rather than a consequence of perturbations. by varying the two parametets, ., and pa., The value of

Our simulations are performed on a periodic single-lane : . .
C L vmax Mainly affects the slope of the fundamental diagram in

system. This simple structure of the system is in sharp con; ) : S
the free flow regime while the behavior in the congested

trast with realistic highway networks. It is nevertheless jus-" ™~ "™~ lied by the braki : Each ti
tified, because it has been shown for a large class of model§9/Me Is controlled byt € braking NoIPgec =ac time step
At corresponds to 1.2 s in reality in order to reproduce the

that different boundary conditionselect different steady = . - -
states rather than changing their microscopic strudiBég empirical jam velocity at a given cell length of 7.5 m. The
Therefore the boundary conditions are of great importance ifength of a cell corresponds to the average space occupied by
one tries to reproduce the spatiotemporal structure on a maé-Vvehicle in a jam, i.e., its length and the distance to the next
roscopic level. However, in Comparison with local measure.VEhiC'E ahead. This choice is in accordance with measure-
ments an appropriate traffic model should be able to reproments at German highways on the left and middle lane,
duce the empirical results also if periodic boundarywhere the density of trucks is loyd2]. Due to the parallel
conditions are applied. Furthermore the restriction to a singleipdate an implicit reaction time is introduced which has to
lane is of minor importance for the empirical test scenariobe considered when choosing the unit of time. This time is
which has been discussed in the preceding section. In theot the reaction time of the driveithat would be much
simulations system sizes &f=10 000 cells have been used shortej but the time between the stimulus and the actual
which is sufficient to reduce finite-size effects. Typical runsreaction of the vehicle. The value we have chosen allows us
used 50 000 time steps to reach the stationary state and mea-reproduce the typical upstream velocity of a jam.
surements. We tune the two free parameters of the model by adjust-
We also want to emphasize that for each model all simuing the slope in the free flow regime and the maximum of the
lations have been performed withsangle set of parameters. fundamental diagram. Figure 5 shows the resulting funda-
Some of the model parameters can be directly related to mental diagram using,,.,=112 km/h=>5cells/timestep and

A. The CA model of Nagel and Schreckenberg
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FIG. 5. Local fundamental diagram of the NaSch model for
Umax=112 km/h=>5cells/At, At=1.2 s andpge~0.16. A cell has a
length of 7.5 m.

FIG. 6. Normalized time-headway distribution of the NaSch
model in free flow and congested traffic for different densities.

velocity of the cars the distribution function has a peaked

3

Pgec=0.16 which has to be compared with the empirical re-Structure. _ .
sults. But more important than that is the absence of time head-

By tuning the parameters we could reproduce quite wellVays shorter than the chosen unit of tlme._Thls implies that
the free flow branch of the fundamental diagram: Both, theV€ canno: ”E_Proczt!ce the C#t off at short times and the up-
slope as well as the maximum is in agreement with the emstream velocity of jams at the same time.
pirical findings. For congested traffic, however, the model Fmally, we also discuss the 0pt|mal velocity curves of the
fails to reproduce the two distinct phases, in particular themOdel(F'g' 7). In congested traffic one observes only a very

. : : .weak dependence of the “optimal velocity” on the density.
characteristics of synchronized traffic are not matched. Thi his is due to the short range of interactions in the model and

£ th lation f ion that i e in th t(fhe strong acceleration of the cars. So we neither observe a
of the cross-correlation function that Is negative in the COsignificant density dependence nor a sensitivity to the traffic
responding density regime. In the presence of wide jams th

§tate. This is a serious contradiction to the empirical findings,

flow is proportional to the densities as found by empirical g|ated to an incomplete description of the microscopic struc-
observation. But also for wide jams differences exist. In reak;re of the model.

measurements the branch extends up to quite large densities
(~70 vehicles/kny, while the simulation results are re-
stricted to lower densitie6~40 vehicles/km

Next we discuss the model on a microscopic level. As
mentioned above the upstream velocity of wide jams can be o )
tuned by choosing the appropriate discretizationof the A step towards a more realistic CA model of traffic flow
time. We have verified our calibration by initializing the sys- Was done by the so-called velocity-dependent-randomization
tem by a large jam and measuring the velocity of the up{VPR) model[15] that extends slightly the set of update
stream propagation of the jam front. As expected our result §U/€S of the NaSch model. In this model, a velocity-
in agreement with the empirical data. Nevertheless, the dydePendent randomizatiguse{v) is introduced that is calcu-
namics of jams in the NaSch model is in contradiction tolatéd before application of step 1 of the NaSch model. As
empirical findings since its outflow from a jam equals the
maximal possible flow. This implies that the observed paral- 3the time-headway distributions have a resolution that is finer
lel propagation of jams cannot be reproduced by the NaScthan the unit of time, which was assigned to an update step. This is
model. possible because we calculate the exact passing time of the car from

The time-headway distributions of the NaSch mo@ele  its position and velocity after executing the time step. An example
also Ref.[37]) also mismatch with empirical dafdig. 6). of a direct measurement of time headways can be found in Ref.
Due to the discreteness of the model and the uniqgue maxim#s7].

B. VDR model
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FIG. 7. QV function in free flow and congested traffic of the

NaSch model for different densities.

simplest version, a differeny..for cars withv =0 was stud-

ied,

()= Po for v=0
Paed®) =1 5 for >0

with py>p (slow-to-start rule

®3)

p [vehicles/km]

FIG. 8. Local fundamental diagram of the VDR model for
Umax= 108 km/h=3cells/At, At=0.75 s,p;=0.58, andp=0.16.

detector is located close to the exit of the highway section.
This effect is due to the smaller length scale of jams close to
the exit, which leads to a larger weight of accelerating cars.
Due to the coarsening of the jam size this effect vanishes in
the bulk of the systenj40,41].

But in any case, this way of generating synchronized
states by the boundary conditions does not agree with the
empirical situation, because one cannot reproduce the large

The additional rule of the VDR model has been intro- Spatial and temporal extension of the synchronized state. The
duced in order to reproduce hysteresis effects. This is indeg@issing synchronized traffic phase leads to quite large posi-

tive values of the cross correlatiaa(J, p) of the density and

possible, because the new paramgigmllows to tune the

velocity and outflow of wide jams separately. As a side effectthe flow.

it is now possible to reproduce the observed short time head-
ways by keeping the unit of time smadind the empirical
observed downstream velocity of jams. The parameters of
the model were chosen in the following way: The unit of
time was adjusted in order to match the position of the maxi-
mum of the time-headway distribution. Then we have chosen
the parametep, such that we could reproduce the measure-
ments of the upstream velocity of a jam. Finally the values of
vmax @ndp ensure a good agreement in the free flow branch.

The behavior found in the VDR model is typical for models g‘: 0

with slow-to-start ruleg38,39.

Figure 8 shows the local fundamental diagram of the
VDR model. For the parameter values obtained by the above
procedure only very weak hysteresis effects are observed
Obviously the model fails to reproduce the empirically ob-
served congested phase correctly. Compared to the NaSc
model the mismatch of the fundamental diagram in the con-
gested regime is even more serious, i.e., we cannot identify
at all a density regime as synchronized traffic. The reason for
this is a stronger separation between free flow and wide
jams, which are compact. Therefore one does not observe
any flow within a jam if a stationary state of a periodic sys-
tem is analyzed. In case of open boundary conditions a slight

06— =—a p=13 vehicles/km |
L *—= p=20 vehicles/km -
04— 7]
i Free |
02 I

o—o p=6 vehicles/km

0.8 o—o p=26 vehicles/km _|
L »—a p=33 vehicles/km
0.6 +—» p=40 vehicles/km _|
041 Congested
02 _
0 =
0 2 3 4 5 6

FIG. 9. Normalized time-headway distribution of the VDR

t. [s]

broadening of the free-flow branch has been observed, if thmodel in free flow and congested traffic for different densities.
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FIG. 11. Fundamental diagram of the TOCA model. As discreti-
zation we used a cell length of 7.5 m and a time-step corresponding
to At=1 s in reality. The parameters of the model are choseg as

The time-headway distribution of the VDR model differs =1-2: Pac=Pdec=0.9 andvma,=4 cells/At=108 km/h.
in two points from the empirical observatioBig. 9). (i) C. The time-oriented CA model
The unit of time is a sharp cut off, i.e., the short time char-
acteristics of the time-headway distribution is not in agree- Based on the CA model of Nagel and Schreckenberg,

ment with the empirical findinggii) We do not observe a Brilon et al. [16] proposed a time-oriented CA modglere-

- : : . after cited as TOCAthat increases the interaction horizon of
density dependence of the maximum in congested trafﬂc.he NaSch modeiwhere cars interact only fod<v) and

Similar results are obtained for the OV functions, that do no{herefore chanaes the car-following behavior
erend on the density or the traff|c'stel¥ﬂg. 10. Th'S- result .., Compared t% the NaSch modegl the accéleration step is
is a consequence of the microscopic structure of high densit odified, i.e., a car accelerates only if its temporal headway

states. At large densities compact wide jams and zones of - ; .
free flow traffic coexist, separated by a narrow transition h=d()/v(t) is larger than some safe time headwiayBut

layer. Now, our virtual “detector” measures only moving cars€Ven for sufficiently large headways the acceleration of a
and therefore almost freely moving cars even at large densl€hicle is not deterministic, but is applied with probability
ties. Pac AS & ;eco_nd modification also the randomlzathn step is
The major achievement of the VDR model is the correct0dified. i.€., itis performed only for cars moving with short
description of the dynamics of wide jams which is similar to :mg Zfsd\?é?:ﬁh EtrS)éT?\?elr']m\;ﬁSéntgraigo; rrggl'ﬁig:] tg'fs
the so-called local cluster effept2] found in hydrodynami- the s onF:aneou:s A fgrmation Plieo
cal models. The outflow from a jam is lower than the maxi- Th% undate ruIJes then read .as follofEs:t, < t,< t+1):
mal flow, and therefore jams do not emerge in the outflow _ . b o 1o o
region. This effect leads to the increased stability of jams(H) iIf (th>19) thenuv,(ty) =min{on()+ 1 ,vma,d with probabil-
including the empirically observed parallel upstream motion™ Peo (2) Un(t) =min{on(ty), da()}, (3) if (th <ty thenuy(t
of two jams. +1):max{vn(t2)—_1,0} with probability pgeo (4) X, (t+1)
The analysis of the VDR model showed even more clearly”n(t) +vn(t+1) with t;=1.2, p,;=0.9 andpgec=0.9[16]. For
the effect of a missing synchronized traffic phase. While inthe comparison with the NaSch and VDR model we use
the NaSch model the density can be chosen such that a sclra=4- . S
tered structure in the fundamental diagram appears, we ob- With this choice oft; the update rules can be simplified
tain rather pure free flow states and wide jams for the VDRIO umax=4, because of the discrete nature of the modsl:
model. Contrary the VDR model gives a much better den(t)=min{vn(t)+1,0ma¢ with probability pye (2) vn(ty)
scription of the dynamics of jams. In contrast to the NaSch=Min{vy(ty),dy(D)},  (3) if  (vp(t+1)<dy(t) v,(t+1)
model, the VDR model is able to reproduce, e.g., the parallef maxd,(t)—1,0 with probability pge, (4) Xa(t+1)=X(t)
motion of coexisting jamg40,41]. Although this phenom- +uv,(t+1).
enon is rarely observed it should be reproduced by a realistic As expected for this parametrization of the model we ob-
traffic model, because it is a sensitive for the correct descriptain results for the fundamental diagram that are similar to
tion of the motion of jams. In case of the NaSch model thisthe NaSch modelFig. 11).
pattern is not observed, because new jams can form in the The absence of spontaneous velocity fluctuations at low
downstream direction of a jam. densities, however, implies that. has to be chosen quite

FIG. 10. OV function of the VDR model in free flow and con-
gested traffic for different densities.
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FIG. 12. Normalized time-headway distribution for the TOCA
model in free flow and congested traffic for different densities.

FIG. 13. OV functions of the TOCA model in free flow and
congested traffic for different densities.

large in order to obtain realistic values of the maximal flow.|arge in order to obtain reasonable results for the fundamen-
At the same time large values of the braking probability leadal diagram. Such a choice pf, however, reduces signifi-
to the formation of jams at low densities, such that it iscantly the density of jams. This implies that, although the
difficult to obtain density fluctuations with amplitudes com- typical time headway in the outflow region of a jam has the
parable to the empirically observed values. correct value, the downstream velocity of jams is too large.
The time-headway distributions of the TOCA model,  Our analysis revealed several shortcomings of the TOCA
however, differ significantly from the results of the NaSchmodel. However, we believe that the TOCA model is an
model (Fig. 12. For free flow traffic the position of the interesting advancement of the NaSch model if a finer spatial
maximum is different from the minimal time headway for discretization is applied. We will illustrate this for the ex-
the chosen set of parameters. The maximum coincides Withmple of the density of a wide jam: The inverse density of
tp, while the minimal time headway is determined by the unitwide jams was used in order to fix the size of a cell. This
of time. For congested traffic the distribution has twochoice is correct, as the jams in the model are basically com-
maxima, one corresponding to the typical time headway irpact, which is not true in case of the TOCA model. In this
free flow traffic and the other corresponding to the typicalcase more accurate results could be obtained if each cell
temporal distance in the outflow region of a jam. would be divided into three cells. Using this finer discretiza-
The OV functions of the TOCA and the NaSch modeltion cars occupy two cells which would finally lead to a quite
differ in two respectgFig. 13. (i) Due to the fact that the realistic dynamics of jams. A more elaborate discussion of
randomization step is applied for a finite range of the interthe discretization effects can be found in Appendix A.
actions, all cars move deterministically with,,, at low den-
sities and therefore spatial headways smaller thap cells
are completely avoided. This result is at least partly a conse- IV. CA MODELS WITH MODIFIED DISTANCE RULES
quence of our simulation setup, i.e., choosing exactly the
same maximal velocity for every cdii) The second differ-
ence is found in the density dependence of the OV function The CA model introduced by Emmerich and Rajik]
for congested traffic. Because of the retarded acceleration iER modeJ is another variant of the NaSch model with an
step 1 and the deceleration of vehicles witked, at very  enhanced interaction radius. Precisely speaking the braking
large densities the system contains only one large jam with gule of the NaSch model is replaced by applying a velocity
width comparable to the system size. As a consequence, tifgependent safety rule that is implemented via a gap-velocity
mean velocity at a given distance is reduced considerablgnatrix M. The entries;; of M denote the allowed velocities
compared to free flow. The transition to a completelyfor a car with gap and velocityj. Replacing the braking rule
jammed system occurs at densities of about 66 vehicles/krl;; <] holds because otherwise the car would accelerate. For
and leads to the abrupt change of the OV curve. the NaSch model the elements of the gap-velocity matrix
The main difference between the NaSch model and th&1™3S%" simply readM;;=min{i, j}.
TOCA approach is the structure of jams. Due to the restricted Emmerich and Rank tried to improve the NaSch model by
application of the randomization stepg. must be quite introducing a larger interaction horizon, i.e., by an earlier

A. The model of Emmerich & Rank
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FIG. 14. Fundamental diagram of the ER model. As suggested

in the original work we have chosen 7.5 m as the length of a cell, FIG. 15. Normalized time-headway distribution for the ER
At=1 s, Pgec=0.3 andvy,=5=135 km/h. model in free flow and congested traffic for different densities.

adaption of the speed. This partly avoids the unrealistic efthe cars is smaller than 10 cells. Therefore, the free flow
fect, that drivers stop from a high speed within one time stepbranch of the fundamental diagram in Fig. 14 has in contrast
Compared to the NaSch model their choice of the maitix to the empirical data two different slopes, one corresponding
only modifies the distance rule for cars moving with velocity to v,a=5 cells/At if p<15 vehicles/km and the other to
Umax |If 4=<d=<9 the carn has to slow down to velocity 4. v,=5 cells/At at larger densities.

For all other combinations off and v the NaSch distance For the present choice ®fl we recover basically the dis-
rule is left unchanged. tance rule of the NaSch model with,,=4 cells/At, be-

As a second modification of the NaSch model a differentcause the speed limit applies only for larger distances. There-
update scheme is applied. The ER model uses an unusufare the structure of the congested part of the fundamental
variant of the ordered sequential update, i.e., all rules, indiagram is quite similar to the NaSch model. However, im-
cluding the movement of the vehicles, are directly appliedportant differences concerning the microscopic structure of
for the chosen car. A unit of time corresponds to one updatéhe traffic state exist, mainly due to the modified update
of all cars. Ordered sequential updates use normally a fixedcheme. The ordered sequential update allows motion at high
sequence of cars or lattice sites. This has the disadvantagpeeds and small distances. This could in prinaifdesmall
that some observables, e.g., the typical headway, may depepg.y lead to very short time headways. For the chosen value
on the position of the detection device, even for periodicof pge, however, the typical time headways are quite large in
systems. In order to reduce this effect the car with the largeghe free flow regime and do not match the empirical findings.
gap is chosen first and than the update propagates against tNevertheless, the ordered sequential update changes qualita-
driving direction[17]. tively the form of the time-headway distribution, i.e., the

As a consequence of the ordered sequential updatgosition of the maximum and the short time cut off are dif-
scheme, the gaps are used very efficiently and very largterent, as empirically observeéig. 15).
flows can be achieved3]. (Now, it is allowed that two cars The OV function of the ER model differs strongly from
are driven withv,ox andd=0, so that flowsl>1 vehicle/At  the empirical findinggFig. 16). For this quantity the modi-
are possiblg. Therefore large deceleration probabilities arefied distance rule is of great importance. In the congested
necessary to decrease the overall flow to realistic valuesegime, we observe plateaus of almost constant average ve-
Nevertheless, due to the sequential update scheme, the spdoeitiesv <v s The density dependence of the OV function
taneous jam formation is reduced considerably. The applicas, as for the NaSch model, very weak. In free flow traffic
tion of a sequential update is crucial. If it is replaced, e.g., bysmall headways simply have not been observed, in contra-
a parallel update, one may observe an unrealistic form, i.e., diction to the empirical results.
nonmonotonous behavior, of the fundamental diagram at low The most important weakness of the ER model is its de-
densities[1]. scription of the jam dynamics. First of all for small values of

Due to the special choice dlER, the velocity of cars pgecthe possibility of downstream moving jams exist, which
with d=9 is restricted taw <4. This means, that a generic contradicts all empirical studies. But even for the large value
speed limit with v,,,=4 is applied for all densitiep  of pgecWe applied, jams are not stable, i.e., often branch into
=1/11~12 vehicles/km, where the mean distance betweem number of small jams. Therefore it is impossible to repro-
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40 : : | ' | ' | ' time continuous OV model. In the continuous version of the
- 8 OV model the parametexr determines the time scale of the
351 acceleration. However, for time-discrete models it is well
known that a simple rescaling of time is not possible. There-
fore the meaning of the parameteremains unclear.

The deterministic update is followed by a randomization
step as known from the NaSch model, i.e., the velocity of a
car with v,(t+1/2)>0 is reduced with probability by one
unit.

Although the definition of the model seems to be quite
similar to the models discussed in the preceding sections,
important differences exist. In all other models discussed so
1 far acceleration is limited to one velocity unit per time step
_ while breaking fromu,,, to zero velocity is possible. This is
4—a Cong., p=40 vehicles/km not true for the HS model where a standing car may accel-
o0 Cong., p=60 vehicles/km erate towardgAVo,()|>1 in a single time step. On the
other hand, in particular for small values bf the braking
capacity of cars is reduced. A reduced braking capacity, how-

0 20° 40 60 80 100 ever, may lead to accidenisee the discussion in Refs.
d [m] [13,44,49), a certainly unwanted feature of a traffic model.
It also implies that the model is not defined completely by

FIG. 16. OV function of the ER model in free flow and con- the dynamics. This becomes a problem especially in simula-

gested traffic for different densities. tions. Here further rules are necessary to determine how to
deal with accidents.

duce the empirically observed parallel moving jams with the e will discuss the possibility of accidents in some more

ER model. detail in Appendix B. This discussion concentrates on a cri-

In summary, the gap-velocity matrix allows for a more tenqn which ensures that fany possible initial conditiomo
detailed modeling of the interaction horizon. But keeping theRccident occurs. _ _ .
parallel update scheme, unrealistic behavior at low densities /" R€f. [18] for comparison with empirical data the fol-
is observed. Using a special variant of the sequential updat@Wing OV function is suggested:

leads to a very unrealistic structure of the microscopic trafﬂcd[AX] OV(d)[AX/At] d[AxX] OV(d)[AX/At]

30—

25—

20—

v [m/s]

15

&—o Free, p=10 vehicles/km

0—0 Cong., p=30 vehicles/km
10

L 4

states.

0,1 0 11 8
B. A discrete optimal velocity model 2.3 ; 12 190
Helbing and Schreckenbe(S) [18] have introduced a 6, 3 14.15 11

CA model for the description of highway traffic based on the '
discretization of the OV model of Bandet al. [33]. The 4 16-18 12
model was introduced in order to provide an alternative8 5 19-23 13
mechanism of jam formation. In certain density regimes they 6 24-36 14

HS model is very sensitive to external perturbations due LT 7 =37 15

its intrinsic nonlinearity. So in contrast to the previous ap- . .

proaches the pattern formation is of chaotic rather than of 1N€ length of acellis set thx=2.5 m,At=1is chosen as
stochastic nature, although the definition of the model inthe unit of ime =773 and we used the randomization prob-

cludes a stochastic part as well. ability pgec=0.001 as suggeste.d in RELY]. Avehi_cle ha_s a
The deterministic part of the velocity update is done by!e€ngth ofl=2 cells corresponding to 5 m. For this choice of
assigning the following velocity to the cars: )\ gnd the OV fqnctlon_ thg model is not §tr|ctly free of col-
lisions as our discussion in the appendix shows, but at the
vn(t+ 1/2) = vp(t) + IN[Vopddy) —va(D)]], (4)  same time it does not lead to accidents if an appropriate

initial condition is chosen and the density is not too high.
The optimal velocity function that governs the determin-
istic part of the vehicle dynamics, leads to speed limits in

whereV,(d) denotes the “optimal” velocity of cam for a
given distancel, to the vehicle ahead,,(t) the discrete ve-

locity at timet and|---| the floor function. The constantis certain densit ; :
. . y regimed/(dmat!) <p<<I/(dmin+!) with
a free parameter of the modeThe acceleration step is the VoG = VopOna). These different optimal speeds be-

naive discretization of the acceleration step of the space ang‘(;me visible in different slopes in the free flow branch of the

fundamental diagrantFig. 17). For congested traffic two dif-
“In contrast to the original work we consider here only the case oferent traffic regimes can be identified, as empirically ob-
one type of cars. Furthermore we denote the OV functiovfyso  served. For very high densities, one observes a reasonable
that it can be better distinguished from the velocities of the cars. agreement with the empirical data, i.e., the form of the
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FIG. 17. Fundamental diagram of the HS model. As suggested FIG. 19. Distance headway distributions in the congested re-
in the original work we have chosen 2.5 m as the length of a cell, &jime. Obviously noncompact jams coexist with free flow regimes,
vehicle has a length of 2 cells\t=1's, pye=0.001, vn5=15  where the distance between two cars is rather large.
=135 km/h and\=1/1.3.

The main difficulties of the model are visible when com-
aring it with empirical results on a microscopic level. The
imulations for the time-headway distributigiig. 18 show

strong density dependence of the maximum for the free
flow states. This is due to the long-ranged interactions that
) S ) . Rend to generate traffic states that are very homogeneous.
of synchronized traffic is ra.ther poor. First, one ObV'Ou‘glyTherefore short time headways are suppressed at low densi-
\?vasi(?rzviesscgnt?gsc,)tnt% fﬁérzﬁg?r?ca?imﬁgsdggzltge?g: q ﬂ?h ies. The second_ p_roblgm is the _quasideterminis_tic character

o o Lo + Nt the model. This implies that drivers obey the distance rule
range of densities which is observed in local measuremenﬁﬁ almost any case. As a result the peak values of the time
IS quite narrow. headway distribution have extremely high weights. In con-
gested traffic we observe a density independent position of

6 ' : — 1 T T T the maximum of the time-headway distribution. The maxi-

5

jammed branch is reproduced qualitatively. This branch og
the fundamental diagram is, however, observed only in q
very narrow interval of global densities.

o—o p=6 vehicles/km _| mum carries almost the whole weight of the distribution, in
s—a p=12 vehicles/km - contradiction to the empirical findings. The reason for this
#— p=18 vehicles/km 7] can be read off from the distance headway distributions for
different global densitiegFig. 19. Within a large density
regime we observe coexistence of noncompact jams and free
flow traffic. Therefore we can state that both high density
states correspond to stop-and-go traffic, i.e., the model fails
to reproduce synchronised traffic at all.

The mismatch of the model and empirical structure of
traffic states is also obvious for the OV functigrig. 20). It
shows almost no density dependence and is basically inde-
pendent of the traffic state. The difference between the dif-
ferent curves is only in a density dependent cut off of the
distribution, i.e., at high densities large distances simply do
not occur.

The simulations show that HS model fails to reproduce

| the microscopic structure of the empirical observed traffic
0 1 2 3 4 5 states. From our point of view the problems describing the
t, [s] empirical observation are due to the nature of the model. It

introduces a static rule that leads to a reasonable agreement

FIG. 18. Normalized time-headway distribution for the HS with the empirical fundamental diagram. For a proper choice
model in free flow and congested traffic for different densities.  of A the vehicles take instantaneously a velocity close to the
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40 ' | ' | ' | - | T the randomization parametpge for the nth car can take on
- A three different valuep,, pgy, andpy,, depending on its current

351 j««««M»H velocity v,(t) and the statud,,,; of the brake light of the
- ——— . preceding vehicle+1:

30+

T Pdec= PdedUn(t),bns1(t), th,ts)

p, if bp=1 and t,<tg

| =1Po if v,=0 (5)

i pg in all other cases.

25—

20—

v [m/s]

o V()

15 ont N The two timest,=d,/v,(t) andts=min{v,(t),h}, whereh

#—e Free, p=10 vehiclesfkm 4 determines the range of interaction with the brake light, are
10 0—o Cong., p=30 vehicles/km — the timety, needed to reach the position of the leading vehicle
4—4 Cong., p=50 vehicles’km - which has to be compared with a velocity-dependgern-
5 o—a Cong., p=70 vehicles/km — poral) interaction horizontgtg introduces a cutoff that pre-
. vents drivers from reacting to the brake(lif%ht of a predecessor
. . . eff)
0 — 4I0 ! 6|() - 8I0 o which is very far away. Finally d,~'=d,+maxXuvan

—Osecuriy O denotes  the effective gap where v,y

=min{d,,1,vn+1} iS the expected velocity of the leading ve-
FIG. 20. OV function of the HS model in free flow and con- hicle in the next time step. The effectiveness of the anticipa-

gested traffic for different densities. tion is controlled by the parametel,, Accidents are

avoided only if the constraintse,ir,=>1 is fulfilled. The

update rules then are as follows<t; <t,<t+1):

(0) Determination of the randomization parameter:

d [m]

optimal velocity, i.e., the dynamical aspects of highway traf-
fic are extremely simplified. Therefore inhomogeneous traf-

fic states are only observed in the presence of quenched dis- Pdec=Paed n(1), Bnea(D) . t]
order [18], e.g., different types of cars, and not produced bn(t+1)=(,)'
spontaneously. (1) Acceleration:
if {{b,+1(t)=0] and[b,(t)=0]} or (t,=ty) then
V. BRAKE LIGHT VERSION OF THE NASCH MODEL on(ty) =minfun(t)+1,Umas-
(2) Braking rule:
Quite recently a brake lightBL) version of the NaSch vn(tz):min{d;eﬁ),vn(tl)} if [va(ty) <v,(t)] then
model has been introducgd9,2Q in order to give a more by(t+1)=1.
complete description of the empirically observed phenomena (3) Randomization, brake:
in highway traffic. In contrast to the models we considered in if [rand) < pged then
the preceding sections, which represent already well-known {v,(t+1)=maxv,(t,)-1,0
modeling approaches, we also discuss the basic features of if {(Pgec=Pp) and[v,(t+1)=v,(t)-1)]} then
the model that have not been presented so far. In the devel- by (t+1)=1}
opment of the model the main aim was the reproduction of

g . ) . (4) Car motion:
the empirical microscopic data in a robust way. X,(t+ 1) =x(t) + 0 (t+1).

Here rand) denotes a uniformly distributed random num-
ber from the interval0, 1].

The BL model combines several elements of older mod- The new velocity of the vehicles is determined by steps
eling approaches, e.g., velocity anticipatip46,47 and a  1-3, while, step O determines the dynamical parameters of
slow-to-start rule[15,39. In addition, a dynamical long- the model. Finally, the position of the car is shifted in accor-
ranged interaction is included: In their velocity dependentdance with the calculated velocity in step 4.
interaction horizon drivers react on brakings of the leading In order to illustrate the details of the approach we now
vehicle that are indicated by an activated brake lig#8].  discuss the update rules step wise.

The interaction, however, is limited to nearest neighbor ve- (0) The braking parametepgy, is calculated. For a
hicles[49]. The update rules are formulated in analogy to thestopped car the valugy..= P is applied. Thereforg, deter-
VDR model. In particular the interactions are strictly local mines the upstream velocity of the downstream front of a
and a parallel update scheme is applied. jam.

In order to allow for a finer spatial discretization for a  If the brake light of the car in front is switched on and it
given length of a car, we include the possibility that a caris found within the interaction horizopge=p, is chosen. A
may occupy more than a single cell. Therefore the gap besar perceives a brake light of the vehicle ahead within a
tween consecutive cars is given 8y=x,.;—x,—| (wherel is  time-dependent interaction horizdg= min{v,(t),h}, where
the length of the cays The brake lighto, can take on two vy(t) is the current velocity anth an integer constant. The
states, i.e., orfoff) indicated byb,=1(0). In our approach velocity dependence takes into account the increased atten-

A. Definition of the BL model
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tion of the driver at large and reduces the braking readiness 3500 : ' : | '
at small velocities. This reaction is performed only with a - «  synchronized traffic
certain probability ofp,. In order to obtain a finite range of 3000 — o iams _
interactions a cutoff at a horizon df seconds is made. !
Finally, pgec=Pg is chosen in all other cases.

(1) The velocity of the car is increased by one wuftit 2500
does not already move with maximum velogityrhe car -
does not accelerate if its own brake light or that of its pre-

r O free flow b

£ 2000 .

decessor is on and the next car ahead is within the interactior | 4 1
horizon. 5 LA .

(2) The velocity of the car is adjusted according to the = 1500 P N

effective gap. -

The brake light of a vehicle is activated only if the new 1000 — 3
velocity is reduced compared to the preceding time step. | Lo % 0o 6
Note that the application of the braking rule does not neces- RS
sarily lead to a change of the velocity, as it can compensate ¢

500 —

previous acceleration. The restriction stabilizes dense traffic S 4 S © .
flows. Lo ® |° | | . | .

(3) The velocity of the car is reduced by one unit with a 0 20 40 60 80
certain probability pyec=Pged vn(t) ,bre1.th tsl. If the car p [vehicles/km]

brakes due to the predecessor’s brake light, its own brake ) ) ) )
light is switched on. We also stress the fact that even for FIG. 21. Local fundamental diagram obtained by the simulation
distancesd, < h the action of the brake light is restricted to of the brake light version of the NaSch model. The parameters are:
brakings that are induced by the vehicle in frgetther by ~ Po=0-51=6,Uma=20, pgec=0.1, Pp=0.94, dsecuriyy=7- A time step
the braking rule or by an activated brake lighnd not by corresponds tat=1 s, a cell has a length=1.5 m and a vehicle
spontaneous velocity fluctuations. covers 5 cells.

(4) The position of the car is updated. slope of the free flow branch of the fundamental diagram.
The upstream velocity of a jam can be tuned by the param-
eterp, and the strength of fluctuations that are controlled by
. the parametep, determine the maximal flow.
~ The following parameters of the model allow one to ad-  The other parameters of the model are connected with an
just the simulation data to the empirical findings: the maxi-interaction that have not been included in the models we
mal velocityumay, the car length, the braking parametems,  giscussed so far. The parameterdescribes the horizon
P, Po. the cutoffh of interactions, and the minimal security ghove which driving is not influenced by the leading vehicle.
gap dsecuiity The parameters of the have been chosen sucBeyeral empirical studies reveal tiiatorresponds to &em-
that they can easily be related to the empirical findings. As imoral headway rather than to a spatial one. The estimates for
the previous models a single set of parameters is used for gl vary from 6 s[51], 8 s [52,53, 9 s [54] to 11 s [55].
traffic states. _ o _ Another estimation foh can be obtained from the analysis

In order to obtain realistic values of the acceleration bey the perception sight distance. The perception sight dis-
havior of a vehicle, the cell length of the standard CA modekgnce is based on the first perception of an object in the
is reduced to a lengthof 1.5 m. Since the time step is kept yjsyal field at which the driver perceives movemeéargular
fixed at a va!ue Qf 1 s this leads to a velocity discretization Ofvelocity). In Ref. [56] velocity-dependent perception sight
1.5 m/s which is of the same order as the “comfortable’gjstances are presented that, for velocities up to 128 km/h,
acceleration of somewhere about 1 [50]. Like in the g larger than 9 s. We therefore have chdséa be 6 s as
standard CA model a vehicle has a length of 7.5 m that cory |ower bound for the time headway. Besides, our simula-
responds to 5 cells at the given discretizatisae Appendix  tions show that a good agreement with empirical data can
A for a discussion of the discretization effects only be obtained foh=6. This corresponds to a maximum

Some of the parameters can be fixed as, e.g., in the VDRorizon of 6x 20 cells or a distance of 180 m at velocity
model: The maximum velocity ., iS determined by the Urmase

The next parameter one has to fixgg This parameter

Sindeed, increasingye.to py is the simplest possible response to contrqls.the propagation of.the brake Ilght. A braking car in
the stimulus brake light. More sophisticated response functiondront is indeed a strong stimulus to adjust the own speed.
such as a direct reduction of the velocity or the gap are conceivabld hereforep, has typically a high value. Finallgsecyriytunes
but lead to some problems in combination with anticipation. Inthe degree of the velocity anticipation and has a strong in-
addition, one can think of different implementations of the brakefluence on the cut-off of the time-headway distribution.
noise py,, for example, we have tried more sophisticafgdfunc- L
tions, such as a linear relationship betwgwgrand the velocity, the C. Validation of the full mode|
difference velocity to the predecessor or the gap, but for the sake of With this parameter set we have calibrated the model to
simplicity in this paper we well focus on a constamt the empirical data. Leavingy, h andv,y fixed, we got the

B. Calibration of the model
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FIG. 22. Cross correlation of the flow and the density in free

flow and congested traffic for different densities and homogeneous FIG. 23. Autocorrelation function of the density, the velocity
initialization. and the flow forp=67 vehicles/km with a random initialization.

best agreement with the empirical data fog..=0.1, p, sity indicating that the average velocity is nearly constant.
=0.94, anddgecyrity=7- Also for large densities, when wide jams are measured, the

As one can see in Fig. 21 the slope of the free flow branclilow is mainly controlled by density fluctuations. In the mean
and the maximum flow coincides with the empirical datadensity region there is a transition between these two re-
indicating thatv 5, and pyec have been chosen properly. gimes. At cross covariances in the vicinity of zero the fun-

However, the simulated densities are less distributed thadamental diagram shows a plateau. Traffic states with
in the empirical data set. The width of the density distribu-cc(J, p) =0 were identified as synchronized flg22]. In the
tion is of the same order as it was found for the NaSch andurther comparison of our simulation with the corresponding
ER model. The mismatch between simulation and empiricaémpirical data we used these traffic states for synchronized
results of the density can be related to discretization effect§low data and congested states wittiJ, p) > 0.7 for data of
which introduce an upper limit for the density if simghdr-  wide jams. The results show that the approach leads to real-
tual) counting loops are used as detection devices. istic results for the fundamental diagram and that the model

A second lower branch appears for small values of thés able to reproduce the three different traffic states.
flow which represents wide jams. Because only moving cars To characterize the three traffic states, we calculated the
are measured by the inductive loop large densities cannot bgutocorrelation of the flow, the density as well as the velocity
calculated, as in the empirical data of Fig. 1. for different global densities.

The next parameter that can be directly related to an em- |n free flow, the density and the flow show the same os-
pirical observable quantity, namely, the upstream velocity otillations of the autocorrelation function, whereas, the speed
the downstream front of a wide jam, is the deceleration probis not correlated in time.
ability po. In contrast to the NaSch model, the autocorrelation func-

We used the calculation of the density autocorrelatiortion at large densities shows a strong coupling of the flow
function in the congested state of a system that was initialand the velocity. Now, the velocity of a car not only depends
ized with a mega jam for the determination of the velocity ofon the gap but also on the density, so that the flow and the
the jam front. One obtains an average jam velocity ofvelocity are mainly controlled by the densitig. 23.

2.36 cells/$=12.75 km/H) for p,=0.5. This jam velocity is Next we compare the empirical data and simulation re-
independent of the traffic condition and holds for all densi-sults on a microscopic level.

ties in the congested regime. Thus, although metastable traf- In Fig. 24 the simulated time-headway distributions for
fic states can be achieved by the finer discretizatege different density regimes are shown.

Appendix A) the slow-to-start rule is necessary for the re- Due to the discrete nature of the model, large fluctuations
duction of the jam velocity from about 20.45 to 12.75 km/h. occur and the continuous part of the empirical distribution
This velocity is also in accordance with empirical resultsshows a peaked structure at integer-numbered headways for
[32]. the simulations. In the free flow state extremely small time-

In Fig. 22 the cross covariance(J, p) of the flow and the  headways have been found, in accordance with the empirical
local measured density for different traffic states is shown. Irresults. This is qualitatively different from the other CA mod-
the free flow regime the flow is strongly coupled to the den-els with parallel update scheme.
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Therefore we can state that properties such as the width as
well as the smoothness of the time-headway distribution are
strongly dependent on the choice of the simulation setup. In
contrast, the short-time cut off of the distribution is model
dependent. Time headways shorter than the chosen unit of
time are in case of a parallel update only observed if antici-
pation effects are included. The actual value of the cut off for
a given unit of time is tuned by the parametkgir, The
results for congested flow, however, are not influenced by
different types of vehicles.

The ability to anticipate the predecessor’'s behavior be-
comes weaker with increasing density so that the weight of
the small time headways is reduced considerably in the syn-
chronized state. The maximum of the distribution can be
found in the vicinity d 1 s in accordance with the empirical
data, the density dependence, however, cannot be repro-
duced.

Instead, with increasing density the maximum at a time of
1 s (in the NaSch model the minimal time headway is re-
stricted to 1 s because of rul¢ Becomes more pronounced.
This result is also due to the discretization of the model that
triggers the spatial and temporal distance between the cars.
Because of the exponential decay of the waiting time distri-
bution of cars leaving a jam, the peak at a time of 1 s is the
most probable in the time-headway distribution.

Nevertheless, for our standard simulation setup at small 1he OV curve of our model approach shows an excellent

densities the statistical weight of these small time headway&9réement with empirical findings. For densities in the free
is significantly underestimated. This apparent failure of thd!OW régime itis obvious that the OV curv&ig. 26 deviates
model is the result of the chosen simulation setup. If welfom the linear velocity-headway curve of the NaSch model.
introduce different types of cars and open boundary condiPue to anticipation effects, smaller distances occur, so that
tions, we observe a smooth time headway distribution, whictflVing With vma, is possible even within very small head-
is in good agreement with the empirical dasee Fig. 25  Ways. This strong anticipation becomes weaker with increas-

L 4

ing density and cars tend to have smaller velocities than the
headway allows so that the OV curve saturates for large dis-
tances.

b2 B0 periodic system The saturation of the velocity, which is characteristic for
i ¢ open sysiem synchronized traffic, was not observed in earlier approaches.
1.0 The value of the asymptotic velocities can be adjusted by the
i last free parametep,. The OV curve in the synchronized
regime is independent of the maximum velocity and is only
0.8~ determined by the dynamical behavior of the model.
- L Next, we calculated the autocorrelation of the time series
§ 06 of the single-vehicle datérig. 27). Note, that the data of the

FIG. 25. Time-headway distribution in the free flow regime of a

t [s]

free flow state was collected in an open system with 20% of
slow cars withv =15 cellds=81 km/h. In thefree flow
regime the data shows a strong coupling of the spatial and
temporal headway that supports the results obtained by ag-
gregated dat@Jo At~ and p<Ax7Y). In contrast, the auto-
correlation of the velocity shows a slow asymptotic decay.
This supports the explanation of R¢R2] that the slow de-
crease for small distances is due to small platoons of fast cars
led by one slow car. In the synchronized state, longer corre-
lations of the speed and the spatial headways can be ob-
served. So, similar to the free flow regime, in the synchro-
nized regime platoons of cars appear that are moving with

system with open boundary conditions and different types of veln€ same spee@4].

hicles. The maximal velocity of the slow vehicles was set to as

VI. THE MODEL OF KERNER, KLENOV, AND WOLF

Umax=108 km/h=20cells/s and of the fast vehicles asyay
=135 km/h=25cells/s. We considered 15% of the vehicles as fast The most recent modeling approach we include in our
vehicles(note that these are vehicles that disregard the speed.limitcomparison was introduced by Kerner, Klenov, and Wolf
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40 ' I ' | ' I ' I ' vn(ty) = maxo0, min{vmaxvvsafe(t)rvdes(t)}] (6)
35 — is applied first. The three velocities appearing are the free
L . flow or maximal speed of the caus,,, the safe velocity
30— vsatdt) and finally the desired velocityyedt). vegsdt) is the
L +—e Fiee, p=0-10 vehicles/km 4 velocity which guarantees collision-free motion and is sim-
25+ o0—o Sync., p=10-20 vehicles/km — ply the gap to the preceeding Carsafe(t):dn(t)- It is the
L A— Sync., p=30-40 vehicles/km ] introduction of vgdt) which makes the difference to the
o—a Sync., p=50—60 vehicles/km NaSch model. The velocityg.dt) is given by

20

v [m/s]

Ude&(t):{ vl +a for dy>DO)-1,

va) +A®M) for d,<D(vy 1)~

The calculation ob4.dt) replaces the acceleration step of the
NaSch model by a more complex rule. Héiis the length of
the vehicles and(v) a synchronization distance. The au-
thors suggested a linear

0 * 20 40 60 30 100
D(v) =Dg+ kv, (8)
d [m]

FIG. 26. The OV function for different densities in the free flow and a quadratic form

and congested regime. D(v) =Dy + v + Bv? (9)

(KKW) [21]. This model is a fully discretized version of the for the velocity dependent interaction range. Apart from the
space-continuous microscopic model introduced by Kernetask of choosing an appropriate function, two model param-
and Klenov[58]. It combines, as the BL model, elements of eters are introduced in both cases. So far no systematic
car-following theory with the standard distance-dependenanalysis of traffic data exist which leads empirically based
interactions. It is defined by an update rule including a defparameter values or the functional forms. This could be
terministic and a stochastic part. The deterministic ruledone, at least in principle, by an extensive analysis of
which readgt<t; <t+1): floating-car measurements. Moreover, the results in [Réf.
show that the results agree at least qualitatively for both
functions(8) and(9) which have been considered.

S L B I L The interaction range has been introduced as a synchroni-
0.8 Free — zation radius, i.e.P(v) is the distance which separates free
0.6 o—o Speed _ driving cars from cars which already adjust their velocity
04 =—a Headway h according to the vehicle ahead. For large distances to the
’ 4—2 Temporal headway _ vehicle aheadd,>D(v,(t))-I, the calculation ofvges iS

0.2 ]

equivalent to the acceleration step of the NaSch model. In-

< 00 side the enlarged interaction radius, howevggs depends
g ol on the velocity of the leading car. Explicith(t) is given by
g 0.8 b if vt > vpe(t)
2 06 At) =10 if (1) =vgea(t) (10
04 a if  v,(t) <vpe(h).
0.2 This means that within the interaction radius drivers tend to
adapt their velocity to the vehicle ahead.
0.0 i The second update rule is stochastic. It is given by
0.2 1 | 1 ] 1 ] 1 ] 1
0 20 40 60 80 100 vp(t+ 1) = max0,minfu,(ty) + 7n,04(ty) + Q, Vfreer Umax}}l

Number n of consecutive vehicles
(11

FIG. 27. Autocorrelation of the speed and of the spatial and L . .
temporal headway for free flowing vehiclgsep) and for a synchro- The stochasticity is included in the temy(t,) + 7, while
nized statgbottom). In order to obtain a slow decay of the speed the others are in order to guarantee that the new velocity is
autocorrelation function in the free flow regime the simulation wasbelow the speed limit, leads to no collisions and is in accor-
performed on a open system with 20% of slow cdrsow  dance with the chosen acceleration capaajfyof the cars.
=15 cellys=81 km/hp/3!=20 cellgs=108 km/h. The stochastic variablg can take the following values:
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— l If r < pb, 3500 T T T T T T T T T T T T
7=11 i py=<r<py+pa (12 | o free |
. 3000 » synchronized
0 otherwise. 4
¢ jam

Both probabilitiesp, and py, introduced here are velocity de-
pendent. One has

by if 0=0
= 1
Po(v) { 0 i 0>0 (13

2500

2000

1500

J [vehicles/h]

with po> p. The stochastic braking is analogous to the slow-
to-start rule known from the VDR model. Contrary the sto-
chastic acceleration is a new feature of the model which

weakens the synchronization of speeds as it applies to car: 1000 N
which reduced or kept their velocity although safe driving T
would have allowed a larger velocity. The functipg(v,) is 500 —
explicitly given by i
ao={7 1 e,

Pa2 if v= Ups p [vehicles/km]

Wherevp, Pa1 a}nd Pa2< Pa1 are_ ,"",dJUStable parameters of the FIG. 28. Local fundamental diagram of the KKW model for the
model. The dl_fferen_t probabilities haye to be Cho_sen Sucif'ollowing set of parameters: The length of a cell is set to 0.5 m.
thatp,+pp=1 is fulfilled for any velocity. The velocity Up-  gach car occupies=15 cells. The maximal velocity is given by
date is completed by this second stochastic rule and is fol; =108 km/h=60cells/At, whereAt=1 s. Also the other model
lowed by a parallel update of the positions. parameters are set to the values suggested in [R&f. a=b=1,

For further illustration of the update rules we comparep,=60, k=2.55. The parameters determining the stochastic part of
them briefly to the BL model. Both models include the up-the model take the valuesp=0.04, py=0.425, p,;=0.2, Pa»
date rules of the VDR model and enlarge the interaction=0.052, and,=28.
radius of the drivers within a velocity dependent interaction
range. The driving strategy within this larger interactionthe OV function at small distances to an asymptotic velocity
range is, however, different. While the BL model introducesfor larger distancegsee Fig. 4 which depends on the den-
an event driven interaction model, the KKW is more car-sity. This is not reproduced by the KKW model, where a
following like. Another important difference is that the ve- distance independent average velocity is observed only in a
locity anticipation is not included in the approach of Ref. narrow range of spatial headways, if it is observed at all.
[21], although such an extension is possi[38]. The comparison between empirical and simulation results

Figure 28 shows the fundamental diagram of the KKWof the time-headway distribution indicates that the model
model, obtained by local measurements flux and density in &rgely fails to reproduce the empirical results obtained for
periodic system. Compared to the other models we analyzefiee flow traffic. This is, as discussed before, partly a results
one observes two remarkable differences: In synchronizedf the simplified setup we used for our simulations. A much
traffic the flow has a local minimum for a density of better agreement would be obtained if we consider a realistic
30 vehicles/km and reaches a second maximum for a densitistribution of maximal velocities. But even in this case one
of 40 vehicles/km. The origin of this structure lies in the is left with a problem. The lack of velocity anticipation leads
stochastic acceleration of cars which reduces considerably a sharp cut off of the time-headway distributions for times
the probability to form a jam. A second important feature isless than one unit of time, i.e., 1 s. Although the position of
the complex structure of the fundamental in the presence ahe cut off can be tuned by varying the temporal discretiza-
jams. For very high global densities one observes all thre&on, it must be noted that this still does not lead to the right
traffic states at the same time and no strict phase separatidanctional form, as the maximum of the time headway dis-
as, e.g., in case of the VDR model. tribution is located at the minimal observed time headway.

Measurements of the OV functiafrig. 29 show that the  This again confirms necessity of velocity anticipation for the
microscopic structure of the model differs from the empiricalreproduction of the empirical findings at short time head-
findings. In free flow traffic small headways are almost notways.
observed and the maximum speed is reached at larger dis- Summarizing the CA model introduced by Kerner, Kle-
tances than in real traffic. This indicates that, compared tmov, and Wolf reveals three distinguishable traffic states, as
real traffic, the repulsive part of the car-car interactions isobserved in empirical studies. The reproduction of the em-
overemphasized. While the differences between empiricgbirical time-headway distribution and fundamental diagram
data and model results might be reduced for a different set aé partly satisfying and could be easily improved by the in-
model parameters, the model results for synchronized trafficoduction of velocity anticipation. The most important dif-
differ even qualitatively. In real traffic one observes for aferences between empirical findings and model results con-
given density a crossover from a density independent form ofern the OV function. This indicates that the microscopic
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FIG. 29. OV function in free flow and congested traffic of the £, 30. Comparison of the global fundamental diagram of the
KKW model for different densities. The same set of parameters agj;sch model. the VDR model. the TOCA. and the ER model for

in Fig. 28 has been used. typical parameter values and a homogeneous initialization.

structure of the model states does not match the real structure

of highway traffic. We also believe that this disagreement is

due to the very nature of the car-car interactions in the KKW

model and cannot be resolved by a better choice of the model

parameters. with the velocityv,, of vehiclen. Again, the hydrodynamical
relation allows for the calculation of the flow

1 N
Uglobal = NE Un (16)
n=1

VIl. COMPARISON OF THE FUNDAMENTAL DIAGRAMS 1 N
] ] Jglobal= Pglobal global = EE Un- (17)
The comparison of the models presented so far is based n=1
on local measurements of inductive Iqops. Therefore, the A typical fundamental diagram consists of a linear free
model par ameters have bgen chosen. In order to allow thf?ow branch that intersects with an almost linear congested
best possible accordance with the empirical setup. One of th&anch As one can see in Figs. 30 and 31 nearly all dis-
main disadvantages of local measurements is that the de ! X

tected val f the i d th locity st v fluctuat ussed models are able to reproduce this basic characteris-
eﬁ ed va lées O.t N OWt an EV%OIE' de Irongfly fuc uat €tics. The fundamental diagram of the HS model, however,
whereas, density cannot even be defined locally In a Stk pinis 1o distinct maxima. The first maximum is simply

sense. However, in .tr'affic flow simulations it ?S possible'to iven by the transition from free flow to congested traffic.
get average{j quantities that are representative for a giv he second maximum is a consequence of the chosen OV
density. Therefore, in this section global measurements of thg

. . . urve. Since vehicles with 8d=<5 have to drive with a
flow and the density of the various models are given for

tpical set of ters | der to d trate the ch avelocity of 2, the flow increases linearly for densities well
ypical Set of parameters in order to demonstrate the charaty, e 5 certain density until the average gap is smaller than
teristics of the approache; However, since denglty can b& calls. Moreover, due to the OV curve the vehicles behave
calculated exactly, the distinction between the traffic states 'aeterministically and choose their velocity according to the
omitted.

Density. d veloci b d alobally i gap, i.e.v=d. As a result of a nearly uniform gap distribu-
ensny, ow, and ve ocny_can € measured globally Ir]tion, effectively speed limits are applied for certain density
the following way: The densitygna Can directly be ob-

tained b tina th bat of vehicl hiah intervals which are reflected by the occurrence of different
aineéd by counting the numb&l of vehicles on a highway slopes in the congested branch of the fundamental diagram.
section of lengthL via

This behavior is typical for models with modified distance
rules and can also be found in the ER model. Since the
N choice of the gap-velocity matrix in the ER model leads to
Pglobal= 7~ - (15) speed limits for different density regimes, the free flow
branch shows two different slopes like in the local measure-
ments. Even more severe is the lack of a distinct maximum
The average velocitygqp, is then defined as in the fundamental diagram. This is a consequence of the

—
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FIG. 32. Fundamental diagram for different horizén@op) and

FIG. 31. Comparison of the global fundamental diagrams of thefor different p,, (bottom). All simulations have been performed with
HS model, the BL model, and the KKW model with that of the an homogeneous initialization.
NaSch model for typical parameter values and a homogeneous
initialization. o . .
Like in the VDR model, in the BL model the high flow

. . . states can simply be controlled by the deceleration parameter
prdered sequential update of the ER r_nodgl. Itis possml_e th o for vehicles at rest. However, in the congested regime two
jams can also move in downstream direction, thus leading t

many small jams with a large flow istinct slopes of the fundamental diagram become visible.
Measurements of empirical data have revealed that thThe density at which the slope changes and the shape of the

Lo . ndamental diagram can be triggered by the paraméters
outflow from a jam is reduced considerably compared to th nd py, that determine the interaction between vehicles with

maximum possible flow. As a result, metastable free flowd>v_ In particular, the higheh the smaller the density, .,

states exist and hysteresis effects can be observed in the fug, : : :
damental diagrani7], B the maximum flom(Fig. 32, top. For largeh the funda

. S b mental diagram converges very fast, so that the fundamental
(c)jbl\nously, Itlh's 'Sf thethcaTBeLfor t(?eK\IiE/)VR moddeil, thE.ITOtgAdiagram for values larger them=8 are identical. Moreover,
model as well as for the an models whtle € o\en small values ab, have a strong influence on the flow.
maximum possible flow of the NaSch model is as large aSre high flow branch of the fundamental diagraFig. 32
the outflow from a jam. '

Since the deceleration probability in the VDR model Wasbottom) and the densitya, of maximum flow are reduced.

chosen very smallpg,=0.01) the stability of the homoge- For large values the congested branch of the fundamental

i h iff | . The hi h
neous branch of the fundamental diagram is very large. Ir?lagram shows two_different slopes e highmy, the

contrast, once a jam has formed above a certain thresho Jnaller the density at which the slope changes.
density the large deceleration probability for the vehicles at
rest is responsible for the reduced outflow from a jam. As a
result, the system is phase separated into a region of free The BL model improves, compared to the other models
flow and a compact moving jam. The capacity drop can simwe discussed in this work, the agreement with the empirical
ply be tuned by varying the difference between the two dedata, especially in the case of the OV curve. Nevertheless,
celeration parameters. In analogy to the VDR model, in thehis is only possible with the application of a variety of new
TOCA model only vehicles withv<d decelerate with the update rules. Therefore, it remains an open question whether
probability p. Thus, vehicles driving witl,,,andd>v lead this set of update rules can be reduced.

to a stable high flow branch in the fundamental diagram up In the top part of Fig. 33 we successively dropped the
to a density of 1(vya+1). However, the congested regime extensions of the model. First, the slow-to-start rule has been
of the TOCA model reveals the existence of two differentomitted. Without the slow-to-start rule the model lacks the
slopes in the fundamental diagram. For densities larger thaability of a reduced outflow from a jam and the number of
1/2 vehicles have on average a gap of less than one celkrge compact jams is reduced so that the flow increases. As
Since the vehicles decelerate with a large probability, but de further reduction of the model, anticipation is switched off.
accelerate with a rate smaller than one, the system now corf-his leads to a decrement of the flow at densities larger than
tains only one large jam whose width is comparable to théhe density of maximum flow. Now headways smaller than
system size. the velocity are not possible, which manifests in the OV

A. Minimal model?
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BO——T T T T T L L essential which can be easily achieved by any kind of slow-
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— 2500 \
= r ,/ ~ < _O—0 NS+brake+anticipation+slow to start 7
ﬁ 2000_— S~e. 7 VIIl. DISCUSSION
S 1500 DRy - . . . - .
2 i ~a i The intention of our investigation was to single out the
— ~ . . ..
1000= s N models which are able to describe the empirically observed
500 — microscopic structure of traffic flow correctly. It is well
P I R R R R { known that many quite different models exist which repro-
0 T | T | T | T | T I T | - . .
- __ . duce the macroscopic propertiés.g., global fundamental
3000 — NS — . " ;
L O—0 NS+slow to start i diagrams or spontaneous jam formajioather accurately
= BOr - A—A NS+anticipation B [1-3]. However, recently single-vehicle data have become
£ 2000 O—O NS#slow fo start+anticipation | available. A thorough analysis of these data has allowed for a
5 500l ] deeper understanding of the microscopic properties which
> . . . .
= ook b now should be incorporated into the different modeling ap-
L i proaches.
500 N We have suggested a test scenario based on the compari-
S son of computer simulations in a realistic setup with empiri-
0 20 40 60 80 100 120 . . . . . .
cal data obtained using stationary inductive loops. An impor-
p [vehicles/km] tant point is that we have used only one fixed set of model

] ) . parameters which has been determined by comparison with
~ FIG. 33. Successive extension of the NaSch model with brakempirical data, e.g., with the free-flow velocity. Therefore we
lights (top) and without brake lightgbottom. Note that the system 516 gpe to determine whether a model is able to desatlbe
Is initialized in an homogeneous state to generate also high flow, 4t situations consistently without the necessity to tune
states. parameters according to the state.

curve at small densities. For large densities the anticipation Our focus was on cellular automata modgl and espe-

of the predecessors velocity becomes more and more diffeially variants of the Nagel-Schreckenberg mogi&0,11

cult until anticipation is no longer applicable. Therefore, thewhich can be considered as a minimal CA model for traffic
differences between the curves with and without anticipatiorflow. Our comparison has revealed differences between the
vanishes. models on a macroscopic scale which become even more

Applying the braking rule as the only extension leads to apronounced on a microscopic level of description.
plateaulike fundamental diagram compared to the NaSch We have seen that models with modified distance rules,
model. Additionally, the flow is reduced dramatically. It is such as the ER and the HS model, have problems on a mac-
the brake rule that changes the shape of the fundamentedscopic level. They are not able to produce a realigjio-
diagram. bal) fundamental diagram and it is difficult to make these

In bottom part of Fig. 33 the same successive reductionmodels intrinsically crash free.
of the rules have been applied to the model without braking The NaSch model, the VDR model, the TOCA model and
rule. Neither the anticipation, nor the slow-to-start rule ap-the brake light version of the NaSch model reproduce the
plied as a single extension or in combination are able tdundamental diagram quite well. This is already sufficient for
change the shape of the fundamental diagram. many applications. In urban traffic, for example, the dynam-

Considering the empirical fact that small time headwayscs of the vehicles between two intersections is predomi-
and a reduced outflow from a jam exist, the braking rule isnantly determined by traffic lights. The correct description of
the only new extension of the NaSch model. This new rulequeues at cross roads, therefore, only requires the existence
turns out to be crucial for the correct generation of the OVof two distinct traffic phases, namely, free flow and con-
curves and the occurrence of synchronized traffic. gested traffic.

So the set of rules chosen for the BL model is minimal in  More realistic applications of traffic flow simulations,
the sense that all are needed to obtain a satisfactory agree|., that allow the tracing of a jam, need a more detailed
ment with empirical data. We also believe that is essential talescription of the jamming mechanisms. For the correct re-
combine car-following-like behavior and distance basedproduction of the upstream propagation of the downstream
rules. In case of the BL model the velocity adjustment isfront of a jam it is necessary to reduce the outflow from a
event driven, i.e., the drivers react to braking cars in thgam and thus to facilitate metastable states. Here, the VDR
upstream flow. It is not excluded that the same can benodel, the TOCA model and the BL model allow the exis-
achieved with a different, but simpler set of rules. This istence of states with a flow considerably larger than the out-
highly desirable in order to reduce the complexity of theflow from a jam.
model and the number of parameters. However, it is cur- Differences between the models can be observed in the
rently unclear whether there is a similarly simple physicaljam dynamics. While the road in the VDR model is separated
mechanism behind the formation of synchronized traffic as iinto a region with free flow and a compact jam that propa-
is behind the formation of wide jams. For the latter, the re-gates upstream, the peculiarities of the update rules of the
duction of the outflow from a jam below the maximal flow is TOCA model lead to a jam that covers the whole system.
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Large compact jams appear also in the BL model since then a microscopic level. This improved realism of the BL
slow-to-start rule of the VDR model is included. However, model leads to a larger complexity of the approach compared
brake lights are responsible for the generation of synchroto other models of this type. Nevertheless, due to the dis-
nized regions, i.e., regions of vehicles that are moving with areteness and the local car-car interactions, very efficient
small velocity but high flow. . implementations should still be possible. Moreover, the ad-

This difference in the vehicle dynamics becomes mosfystable parameter of the model can be directly related to
obvious in the analysis of locally measured single-vehiclesmpirical quantities. The detailed description of the micro-
data. On a microscopic level of description the main diffi- 5copic dynamics will also lead to a better agreement of simu-
culty lies in the reproduction of small time headways thatj,iiong with respect to empirical data for macroscopic quan-
ggnebne dIaonli:r(]ado?ttrh%\/\\//glggﬁm%?sltgr]:rceeergloa\\ltvioirjsiim ?ﬁigﬁsgﬁities, e.g., jam-size distributions. Therefore we believe that
tani?[ behavior of the OV c)ljrve demonstrates thFE)i.t the dri\?in this appr(_)ach should allow for more realistic microsimula-
strategy of a vehicle depends strongly on the traffic stat 'O%S of hlgr;wayhnetwhorksh CA models for hiah i
while the vehicles in most modeling approaches adjust theif1 ur results show that the models for highway traffic
velocity directly according to their headway only, and there- ave reach'ed. a very high d.e.gree.of _reall_sm. The most com-
fore by the density. plete descrlptl_on_ of the empl_rlpal flr_ldlngs is by means of the

As a first step towards a realistic modeling of highwayBL _model._ This is not surprising since the model has been
traffic the interaction horizon of the original NaSch model designed in order to reproduce data of local measurements.
has be to enhanced such as in the TOCA, the ER, and the H&Ht anyhow it is important to know which aspects of real
model. However, in the TOCA and the HS model the celltraffic are described by a certain model, because in the end
length is not decreased which is necessary in order to reprd0@ aspired accordance of a model with empirical observa-
duce realistic acceleration values. Therefore, the benefits ${ons strongly depends on the goal of the particular applica-
the increased interaction horizon do not become visiblelion. So it is useful to use oversimplified model approaches
Moreover, vehicles do react insdatic manner to a stimulus N order to concentrate on particular aspects of traffic flow
within the horizon. In particular, the velocity gap matrix used Phenomen460]. _ .
in the ER model just leads to speed limits for certain densi- Finally we want to emphasize that the results obtained
ties. from modeling approaches also help to improve our under-

A further step is the incorporation of the idea of event-Standing of the ge_neral principles of _traffic flow. We ha\_/e
driven anticipation. In contrast to the static reaction de-Seen the complexity of human behavior becomes more im-
scribed in the previous paragraph it allows fodgnamical ~ Portant if one wants to reproduce its properties more accu-
responsehat will enable the vehicles to adjust their velocity fately. In the simplest case only the accident avoidance is
to the actual traffic situation regardless of the traffic densitysufficient to reproduce the basic properties, such as free flow
in front. This idea is realized in the BL and KKW models. It @1d jammed phases. For synchronized traffic, however, this
turns out, that in case of the BL model only the introductionis not sufficient. Here the results indicate that the dependence
of brake lights, which allow the timely adjustment of the of _the driving strategy on the traﬁ_ic state becomes essential.
velocity to the downstream speed and can propagate in uf2fivers do not only want to avoid crashes, but also dnye
stream direction, allows the reproduction of synchronizeccomfortably, e.g., by avoiding unnecessary large acceleration
traffic. Of course, there might alternative ways to model syn-Or deceleration. This has been emphasized in R€f.and is
chronized traffic, but we believe that long-ranged eventiMplemented in slightly different form in the BL and KKW
driven interactions between the vehicles are essential. models. . _ _

The use of an effective gap by means of velocity antici- The next step would be the inclusion of other modelmg
pation reduces velocity fluctuations in free flow and leads t@PProaches, not only cellular automata models. Using a dif-
platoons of vehicles driving bumper-to-bumper. It is alsoferent test scenario this has recently been done by Brockfeld

worth mentioning that this effect is of special importance in@nd Wagne(70]. They have compared travel time for vari-
multilane traffic as shown in Ref47]. ous modelge.g., NaSch, VDR, and OVMwith empirical

We have seen that the BL model allows to overcome th&ata. Using methods_ from optim_iz_ation theory to determine
problems in the reproduction of synchronized traffic encounihe best parameters it was surprisingly found that all models
tered in the other modeling approaches. It reproduces qualRroduce similar results that are not in good agreement with
tatively the observed behavior. Even the quantitative agreéh€ data. The reason for this is not understood. However, the
ment is in most cases very good although the test scenarRerformance of more sophisticated modeach as BL and
has neglected effects such as disordsiferent vehicle and KKW) has not been investigated in RgT0].
driver type$ and boundary conditions. In contrast, in most
other approaches the discrepancies between empirics and
model behavior can already be seen on a qualitative level. In
particular, in the simulations of the BL model three qualita- The authors have benefited from discussions with R. Bar-
tively different microscopic traffic states are observed in acdovi¢, S. Grabolus, D. Helbing, T. Huisinga, L. Neubert, C.
cordance with the empirical results. The deviations of theRdssel, and D. E. Wolf. L. Santen acknowledges support
simulation results are mainly due to simple discretizationfrom the Deutsche Forschungsgemeinschaft under Grant No.
artifacts which do not reduce the reliability of the simulation SA864/2-1. We also thank the Ministry of Economics and
results. We also want to stress the fact that the agreement 8mall Businesses, Technology and Transport of North-Rhine
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FIG. 34. NaSch model with different,,,, and homogeneous FIG. 35. Fundamental diagram of the NaSch model vpijly.
initialization. =0.5 for different discretizations and homogeneous initialization.

Westfalia as well as to the Federal Ministry of Education and Unlike in the VDR model, the origin of the high flow
Research of Germany for financial suppgtte latter within ~ states cannot be traced back to a reduction of the outflow
the BMBF project “SANDY"). from a jam but to the stability of the free flow state.
A system with length and deceleration probabilitggec
behaves like a NaSch model with cell length 1 and a consid-
APPENDIX A. CONTINUOUS LIMIT erably smaller deceleration probability of abomf./I. In
OF THE NASCH MODEL contrast, in the congested regime the influence of the cell

The adjustment of the acceleration of the vehicles in thd®"9th can be neglected and a system with decreased cell
original NaSch model to empirical valugthat are about ength behaves. analogou§lly to the NaSch mpdel with the
1 m/< [50]) requires the decrement of the length of a cel|Same Qeceleratlon probabll'lty, e.g., the dynamics Of_ the ve-
(see also Refg13,61,62). hlples in the qongesteq regime of Fhe:- NaSch model is main-

This, however, entails an increment of the maximum pos_tauned[unhke in the cruise _cpntrol_ limit of the NaSch m(_)del
sible velocity for a given fixed absolute valuef,, (about [65] wh_e_re cars that are driving withn.x have a deceleration
100 km/h throughout this paper probability pgedvma =01 o

It turns out, that already the increment of the number of _ For realistic traffic simulations it is important that the
states a vehicle is allowed to adopt leads to hysteresis effectdgh flow states are metastable for finite systems in the sense
of the flow. In particular, the flow can be enhanced in athat the probabll|ty for a perturbation that Iead_s to a collapse
certain density regime by initializing homogeneously the ve-Of the flow is only very small. Nevertheless, in the thermo-
hicles on the lattice compared to a pure random initial setupdynamic limit the high flow states become unstable so that
As a result, in the limiv ., — = [61-64 the system exhibits _the homogeneous branch of the fundamental diagram van-
metastable state€Fig. 34) with a flow increasing propor- Shes. - _
tional t0 v,a, but with a rapidly decreasing lifetime. In order to study the phase transition we_lntroduced an

Unfortunately, increasing only,., leads to a significant _order_ pgrameter that exhibits a qualitatively different behay-
decrement of the density of maximum flow. Thus, in order tol0" Within the two phases. Because of the mass conservation
keep the maximum velocity fixed, the limit, 5, o with in the NaSch mod_el W|th periodic boundary conditions we
Umax | = CONSt with the length of a cell has to be considered. OPserved the density of jammed cars:

Figure 35 shows fundamental diagrams for different finer
discretization. Since the acceleration step of a vehicle is de-
creased considerably, velocity fluctuations and vehicle inter-
actions in free flow are reduced. A random initialization of
the system does not allow the high flow states so that hysin the NaSch modef, decays exponentially in the vicinity of
teresis can be observed. On one hand, with increasing decehe transition66] whereas a sharp drop occurs in the VDR
eration probabilitypye. the stability of the homogeneous flow model [67]. Due to the finite braking probability in the
branch of the fundamental diagram decreases, but on thdaSch model cars with zero velocity do exist even at densi-
other hand the capacity drop increases. ties below the transition density. In contrast, due to the small

1 N
n= [E 5vi,0' (Al)
i=1
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20 T T L I E— — front plus the numbep,,4(t+1) of cells the preceding car
moves in the next time-step. E@B1) has to be comple-
- mented by the inequality €uv,(t+1) that ensures that ve-
hicles do not move backwards.

Consider now the case where the vehicle approaches the
end of a jam, i.e., the preceding car is standing and will not
move in the next time stefp,;41(t+1)=0]. Using the accel-
eration rule Eq(4), condition Eq.(B1) can be rewritten as

10— N Un(t +1)+ D\[Vopt(dn) - Un(t + 1)]J = dn -1 (B2)

0) [vehicles/km]

In order to be intrinsically free of collisions, conditigB2)
has to be satisfied for all and allv. ForA=1 the inequality
(B2) is always satisfied iVy,(d,) <d,—1. For general,
however, this is not the case.
L=25000 This can easily be verified by initializing the system in a
L=50000 | compact jam. In our simulations jansways occurred for
& L=100000 global densities larger than 20 vehicles/km when the first car
. | . | . arrived at the jam. This simulation result has to be discussed
0 10 20 30 40 50 in the context of the empirical results of the jam dynamics.
p [vehicles/km] Empirically one observes quite often a jam surrounded by
FIG. 36. Order parametep for the NaSch model with a cell free flow traffic. This inclu_des the fact that cars e_lpproach the
length of 1.5 m and different system sizkesfor py.=0.5 and a upstream front of jams with a ra.ther large YeIOC'Fy' Unfortu-
homogeneous initialization. The inset zooms into the transitionn""t(,aly for the _HS_mF’de' these kind of Conflgurathns Igad to
region. accidents, which is in sharp contrast to thg real situation.
But how does one have to choasdor a given OV func-
deceleration probabilitypge in the VDR model one macro- tion? Using the inequalities=|x|>x-1 (for x<0) one can
scopic jam forms only at densities above the transition deneerive sufficient conditions on the sensitivity paramatéor

p(v

sity. With increasingoge the transition smears out. the model to beealistic in the sense that no collisions occur
Analogously to the VDR model, the order parameter of

the NaSch model with a finer discretizati@fig. 36 shows a d-v-1

transition from zero to a linear dependence of the density. A > max{m:v > Vopt(d)}r (B3)

With increasing system size the high-flow states become un-
stable and the jump in the order parameter vanishes whichng vehicles do not move backwards
demonstrates the metastability of the high flow states.

APPENDIX B. ACCIDENTS IN THE HS MODEL: PSS min{;:v > Vopt(d)}. (B4)
A STATIC CRITERION v = Vop(d)
In order to ensure collision-free motion in a model with We checked these two conditions for the OV function given
parallel update the condition in Ref. [18]. It turns out that for the chosev,, function A
pat+ 1) =d -1 +o,(t+1) (B1) =1 is the only possible choice. The upper limit forholds

for a quite general class of OV functions, i.e., it is the upper
must always be fulfilled, i.e., the new velocity(t+1) of a  limit for all OV functions havingV,,=0 for some value of
car has to be smaller than the numbgr 1 of empty cellsin  the gap.
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