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The Restricted Primitive Model of ionic systems is studied within a field-theoretic approach in order to
provide a theoretic basis for the qualitative difference in the phase diagrams obtained in simulations fors /a
=1,s /a=2, ands /aù3 (a is the lattice constant ands is the ion diameter). The evolution of the phase
diagrams from the cases /a=1 to the cases /a=Î2 [nearest-neighborsNNd occupancy excluded] is studied in
the model with NN repulsion, 0øJø`, supplementing Coulomb forces. The boundary of stability of the
charge-disordered phase with respect to short-wavelength charge fluctuations and the tricritical point are found
in a mean-fieldsMFd approximation. Next, the effect of fluctuations is studied and we find that forJ exceeding
a particular valueJ0 a fluctuation-induced first-order phase transition should be expected instead of the con-
tinuous transition found in MF. AtJ=J0 the line of continuous transitions splits into two lines enclosing the
two-phase region, whose thickness increases from zero whenJùJ0 increases. We argue that this transition
corresponds to formation of a bcc ionic crystal. For high densities the ions form an fcc crystal, for which we
find a fluctuation-induced first-order charge-ordered–charge-disordered transition, in agreement with recent
simulation studies. Our results also shed light on the simulation results obtained for an off-lattice ionic system,
for which a schematic phase diagram is constructed.
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I. INTRODUCTION

In the simplest model of ionic systems, the restricted
primitive model sRPMd, ions are modeled by uniformly
charged hard spheres of chargee and diameters. In con-
tinuum space the RPM system phase separates into uniform
ion-poor and ion-rich phases and the critical point(CP) as-
sociated with this phase transition belongs to the Ising uni-
versality class, as predicted theoretically[1–4] and con-
firmed by experiments[5] and simulations[6]. Thanks to the
universal nature of critical phenomena, lattice models have
been extensively used in simulations and calculations aimed
at determination of local properties of phase diagrams of
uncharged systems. It was natural to expect that a lattice
version of the RPM should give results for the phase diagram
near the critical point that mirror those of the continuum-
space RPM, just as the Ising-model results accurately de-
scribe the criticality of simple fluids. This turned out not to
be true[7,8]. Quite surprisingly, when in the RPM the posi-
tions of the ions are restricted to the lattice sites of the simple
cubic (sc) lattice with the lattice constanta=s, then instead
of the phase separation into two uniform phases, a line of
continuous transitions(l-line) to a charge-ordered phase
(with two oppositely charged sublattices) occurs. The con-
tinuous transition terminates at a tricritical point(TCP) and
becomes first-order at lower temperatures[1,7–9]. Such
phase behavior has also been verified by simulation studies
[8,10].

The effect of space discretization on the phase behavior
was further studied in Ref.[10], where the ions occupied sites
of a finely discretized lattice, with integers /aù1. When
s /a changes from 1 to 2 and then from 2 to 3, the phase
diagrams change character completely. The phase diagram
for s /a=2 resembles neither the sc-lattice phase-behavior,

nor the off-lattice model phase-diagram. Only first-order
transition lines between a diluted, uniform phase and a
dense, charge-ordered phase were found, therefore it might
be possible that neither critical nor tricritical point is present.
For s /aù3, the behavior characteristic of the continuum
case was observed, with a critical-point location converging
quickly to the values ofkTs /e2 and rs3 found in the con-
tinuum model for increasings /a, and neither a TCP nor a
line of charge-ordered–charge-disordered transition were de-
tected for the considered range of densities. So far the evo-
lution of phase diagrams whens /a increases has not been
predicted within any theoretical approach. It is important to
explain this evolution in order to understand the fundamental
differences between critical phenomena and phase equilibria
in uncharged and in ionic systems. This is the purpose of our
study here, which was begun in[11].

The lattices with 1,s /a,2 were not studied in Ref.[10],
and it was not clear from that work how the diagrams evolve
when s /a increases from 1 toÎ2, then toÎ3, etc. When
s /a=Î2, the occupancy of the nearest-neighbor sitessNNd is
excluded, and whens /a=Î3, the NN and the second
nearest-neighbor sites cannot be occupied simultaneously.
We shall refer to the casess /a=Î2,s /a=Î3 ands /a=2 as
model I, II, and III, respectively. The values ofs /a on the sc
lattice and in model I are closer to each other than the cor-
responding values on the sc lattice and in the other models.
However, it is not only the size, but also the shape of the
region occupied by an ion, which is important. In model I
each ion can have 12 neighbors at the distance of the closest
approach, as in continuum, while in model III there are only
6 such neighbors, as on the sc lattice. The above observation
suggests that one might expect model I to be closer in be-
havior to the continuum model. The crossover between the
order-disorder transition with the associated TCP, and the
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gas-liquid phase separation with the associated CP may oc-
cur between the sc lattice and model I, therefore, in the
present work we focus on the change of character of phase
diagrams between these two models. In order to study the
evolution of phase diagrams, we shall consider ions on the sc
lattice with repulsive interaction +J between nearest neigh-
bors added to the Coulomb interactions. The model with the
soft shell enables us to study the change between the sc
lattice and model I in a continuous way whenJ changes from
0 to `, since the infinite repulsion is equivalent to exclusion
of simultaneous occupancy of the NN sites.

There is another, important property of model I—the un-
charged reference system undergoes a transition to a phase in
which only one sublattice(with the fcc structure) is occupied
[12–14], which means one can hope to study in this model
both its disordered “fluid” and its solid phases. This property
of model I is particularly important in view of recent simu-
lation results for the RPM[15–17], which show weakly first
order order-disorder transition(between charge-disordered
and charge-ordered phases) in the fcc solid. No theoretical
description of this transition has been proposed yet. It is
partially because direct lattice-gas methods based on the for-
mation of two identical, oppositely charged sublattices[18],
valid on bipartite lattices, cannot be applied to the fcc lattice.
There are no such limitations within our field-theoretic
method used here, however. In order to verify whether the
order-disorder transition in the fcc solid is of the same origin
as the order-disorder transition observed previously in the sc
and the bcc lattice models[8,18–20], we shall study model I
for high densities, where the occupied sublattice has the fcc
structure.

The fundamental reason for the nonuniversal behavior of
the critical phenomena in the RPM has been already ex-
plained[21], but the phase diagrams obtained in simulations
have not been fully reproduced theoretically[20]. In Refs.
[1,20–22] it was shown that thel-line and the TCP result
from instability of the disordered phase with respect to
charge-density fluctuations(planar waves) [1,20–22], with
the wavevectorkb corresponding to a microscopic wave-
length 2p / ukbu<2s. Mean-field sMFd analysis[20] shows
that thel-line and the TCP should be present for any space
discretization. Beyond MF the whole spectrum of charge
fluctuations, which are coupled to number-density fluctua-
tions, induce the phase separation into uniform ion-diluted
and ion-dense phases[1,21,22]. Thus, the uniform, disor-
dered phase may become unstable either with respect to
charge ordering, or with respect to separation into two uni-
form phases. Which transition actually occurs, and which is
only metastable, depends on the efficiencies of the relevant
fluctuations for a particular space discretization. The posi-
tions of thel-line and the TCP depend very strongly on the
microscopic details of the model system and on the approxi-
mations used[1,9,20,22,23], therefore we expect that the
change of character of the phase transitions is governed by
the behavior of the order-disorder transition, and we shall
focus on this transition here.

Although MF theory predicts existence of a stable or a
metastable TCP for any discretization and in continuum
[1,20,22], the stable TCP has been observed in simulations
only in thes /a=1 case. The metastable TCP(located inside

the two-phase region) would be associated with thel-line in
the region of stability of the ion-dense phase[1,20]. No such
transition has been observed in simulations fors /aù2, sug-
gesting that even the metastable TCP disappears. Note, how-
ever, that the boundary of stability of the charge-disordered
phase is associated with finite-wavelength fluctuations, there-
fore, a fluctuation-induced first-order phase transition may
occur[24]. If this expectation is correct, then it remains to be
verified why for some discretizations the transition is
fluctuation-induced first order, whereas fors /a=1 it is con-
tinuous at high temperatures. In order to understand the evo-
lution of the phase diagrams it is necessary to determine how
the effect of fluctuations on the order of the charge-ordered–
charge-disordered phase-transition depends on the space dis-
cretization. Our goal here is to determine the order of this
transition as a function ofJ, i.e., on the path from the sc
lattice to model I, and for the order-disorder transition be-
tween two fcc solid phases.

In the next section we study the evolution between the sc
lattice and model I for low concentrations of ions. Both MF
analysis and a discussion of the effects of fluctuations on the
order of the order-disorder transition, and their dependence
on J are described. Model I at high-densities(fcc solid) is
analyzed in Sec. III. We find the boundary of stability of the
charge-disorderd phase in MF, and beyond MF we show that
the transition is fluctuation-induced first order. The phase
behavior of model I at intermediate densities is discussed on
a qualitative level in Sec. IV, where the bcc lattice is also
considered. Final section contains discussion of the results.
In particular, a schematic phase diagram of model I resulting
from our study is presented. It agrees with the diagram con-
structed from simulation results for the continuous RPM
[15,17].

II. CHARGED HARD-SPHERES COVERED BY SOFT
REPULSIVE SHELLS

A. The model

Hamiltonian of the RPM, supplemented with a repulsion
between the ions occupying the NN sites of the sc lattice, has
the form

HJ =
E0

2 o
x

o
x8Þx

Vcsux − x8udŝsxdŝsx8d

+
J

2o
x

o
x8=x±ei

ŝ2sxdŝ2sx8d − mo
x

ŝ2sxd, s1d

where ŝ= +1,−1,0 represents the anion, the cation and the
solvent respectively, andm is the chemical potential of the
ions. The lattice sites arex=xie

i, whereei are the unit vectors
on the sc lattice,xi are integer numbers,i =1,2,3,summation
convention is used and the distance is measured ina units.
The Vc is the dimensionless Coulomb interaction(see the
Appendix), and the energy unit isE0=e2ann

2 /Dv0, whereD,
ann, and v0 are the dielectric constant of the solvent, the
distance between nearest-neighbor sites and the volume per
site, respectively. The corresponding dimensionless tempera-
ture is TE=1/bE=kT/E0. J.0 is the strength of the repul-
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sive shell. ForJ=0 the initial RPM model withs=a is re-
covered. For finite values ofJ the model describes charged
particles consisting of a hard core and a soft shell—for ex-
ample, charged colloids covered with polymeric brushes. For
J=` we obtain model I, because the probability that the
nearest-neighbor lattice sites are occupied is~e−bJ; hence it
vanishes forJ=`. The Hamiltonian of model I has the form

H =
E0

2 o
x

o
x8Þx,x±ei

Vcsux − x8udŝsxdŝsx8d − mo
x

ŝ2sxd. s2d

B. Mean-field analysis

Our purpose here is a determination of the boundary of
stability of the disordered phase with respect to local fluc-
tuations of concentrations of the two ionic species. We as-
sume for both models the following form of the grand-
potential functional in the MF approximation:

V = Fhfrasxdg + Ufrasxdg − mo
a

o
x

rasxd, s3d

whererasxd is the local density of the componenta, with
a= + ,− denoting the cations and the anions, respectively. We
also introduce the dimensionless charge- and number densi-
ties (fraction of the ion-occupied sites), f=kŝl=r+−r− and
r=kŝ2l=r++r−, respectively. We assume that the total den-
sity (ions1solvent) is fixed and that the system is electrically
neutral.

Let us first discuss the second term in(3). U frasxdg
=Uffg is the electrostatic energy of the system, and in Fou-
rier representation is given by

Uffg =
E0

2
E

k
Ṽskdf̃skdf̃s− kd, s4d

where tilde refers to the Fourier transform of the correpond-
ing function,k =sk1,k2,k3d and

E
k

; E
−p

p dk1

2p
E

−p

p dk2

2p
E

−p

p dk3

2p
. s5d

In real space the functionV in (4) is related to the dimen-
sionless Coulomb potentialVc by

VsDxd = gsDxdVcsDxd, s6d

wheregsDxd is the pair distribution function for two points,
x and x+Dx. In the simplest MF approximationg=1 for
uDxuù1. However, for a strong repulsion between the NN
sites the correlations between these sites cannot be neglected.
We take into account only correlations between the NN sites,
and postulate the following form ofg:

gsx − x8d = 50 if x = x8

exps− bJd if x = x8 ± ei

1 otherwise

. s7d

For J→` the aboveg reduces to the form corresponding to
model I, namely:

gsx − x8d = H0 if x = x8 or x = x8 ± ei

1 otherwise
.

The functionV can be written as

VsDxd = VcsDxd + VcsDxdsgsDxd − 1d. s8d

The second term in(8) vanishes except from a very small
region. From(8) and(7) and the form of the lattice Coulomb
potential in Fourier representation(see the Appendix) we
obtain

Ṽskd = 2pF 1

3s1 − f̃ scskdd
− V0

sc− 6V1
scf̃ scskdpG , s9d

where

p = 1 − exps− bJd, s10d

and where the lattice characteristic functionf̃ scskd and the
two constantsV0

sc, V1
sc are given in the Appendix.

Let us now discuss the first term in Eq.(3). Fh is the
Helmholtz free energy functional of the uncharged reference
system, containing the entropy of mixing of the two kinds of
ions with the solvent and the energy associated with the NN
repulsionJ. We assume the simplest local-density approxi-
mation

Fh = o
x

fh„r+sxd,r−sxd…, s11d

and use the relation

b
]2fh

] ra ] rb

=
da,b

Kr

ra

− chsrd, s12d

whereda,b
Kr is the Kronecker delta, the first term in(12) arises

from the ideal-entropy of mixing andchsrd is the integral of
the reference-system Ornstein-Zernike direct correlation
function over excluded volume. From(12) we obtain the
second derivatives offh with respect to the variablesf ,r at
f=0,r=r0:

Ub
]2fh

] f2U
f=0,r=r0

=
1

r0
, s13d

Ub
]2fh

] r2U
f=0,r=r0

=
1

r0
− chsr0d, s14d

and

Ub
]2fh

] f ] r
U

f=0,r=r0

= 0. s15d

Consistent with the approximation for the pair-distribution
functiong in Eq. (7), we assume for the reference system the
Bethe approximation[25], so that the correlations between
the NN sites are not neglected. In the considered case the
Bethe approximation leads to the equation[25]

ebm =
r

1 − r
F sBsrd − 1 + 2rds1 − rd

sBsrd + 1 − 2rdr G3

, s16d

where

CRITICALITY, TRICRITICALITY, AND … PHYSICAL REVIEW E 70, 016114(2004)

016114-3



Bsrd = Î1 − 4rs1 − rdp. s17d

Thus, forb]2fh/]r2=]sbmd /]r we obtain

Ub
]2fh

] r2U
f=0,r=r0

=
1

r0s1 − r0d
S 3

Bsr0d
− 2D . s18d

The Eqs.(3)–(18) define the grand-potentialV introduced in
(3).

The equilibrium charge and number densities in the uni-
form phase,fsxd=0,rsxd=r0, correspond to the global
minimum of V. Local deviationsfsxd ,hsxd=rsxd−r0, from
the average values of the charge- and number densities, re-
spectively, can induce the instability of the uniform phase,
when the determinant of the second-derivative ofV with
respect to the fieldsfsxd ,hsxd is not positive. In this model
d2V /dhsxddfsx8d=0. The density deviations from the aver-
age value,hsxd, cannot induce the instability of the uniform
phase in the absence of the charge fluctuations, since from
(3), (18), and(17) we find

C̃hh
0 skd =

d2bV

dh̃skddh̃s− kd
=

d2bFh

dh̃skddh̃s− kd
. 0. s19d

The uniform phase is unstable with respect to charge fluctua-
tions f̃skd when

C̃ff
0 skd =

d2bV

df̃skddf̃s− kd
=

1

r0
+ bEṼskd, s20d

vanishes. Boundary of stability of the uniform phase corre-
sponds tok =kb such that the Eq.(20) is satisfied first when
the temperature is decreased. At the wave vectork =kb the

Ṽskd assumes a minimum. The corresponding line of insta-
bility is

S= Sl, Sl = − Ṽskbd . 0. s21d

where we have introduced the quantity

S=
TE

r0
. s22d

Note that the form ofṼskd and its value at the minimum
depend significantly on the form ofgsDxd (i.e., on discreti-
zation) through the second term in(8).

While for S.Sl the global minimum ofV is assumed at
f=0,r=r0, for S,Sl the V assumes the minimum at non-
vanishingf andh. For S−Sl→0− the order parameters are
[1]

fsxd = F cosskb ·xd s23d

and

hsxd =
fsxd2

2r0
2C̃hh

0 s0d
+ OsF4d. s24d

For S−Sl→0− we find that at the minimum ofV

1

4!
A4F2 =

bE

2
sSl − Sd, s25d

where termsOsF4d have been neglected. For all models sat-
isfying (12) we have[20]

A4 =
1

r0
3F2 −

3

r0C̃hh
0 s0d

G . s26d

When the coefficientA4 on the l.h.s. of Eq.(25) becomes
negative, the transition between the two phases becomes first
order. The TCP is thus given by

A4 = 0, S= Sl. s27d

The density at the TCP as a function ofp can be easily
obtained from(18) and(26), and the relation betweenrtc and
p is given by

p =
s7 − 3rtcd2 − 36

4rtcs1 − rtcds7 − 3rtcd2 . s28d

rtc as a function ofp is shown in Fig. 1. Forp=1, corre-
sponding to model I, we obtain herertc<0.0601.

Ṽskd given by Eq.(9) assumes a minimum for the wave
vectors that satisfy the equation

f̃scskbd = 51 − 2Îp0

p
if p ù p0

− 1 otherwise

, s29d

where

p0 =
1

72V1
sc < 0.08 and J0 = − kT logs1 − p0d. s30d

For pøp0 Ṽskd assumes the lowest value at the domain
boundary kb=ps±1, ±1, ±1d, as on the sc latticesp=0d,
whereas forpùp0 the Eq.(29) can be written in the form

FIG. 1. Density at the TCP,rtc as a function ofp=1−exps
−bJd. All quantities are dimensionless.
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o
i

3

coski
b = 3S1 − 2Îp0

p
D . s31d

For pøp0 a unique, well defined structure, i.e., two oppo-
sitely charged sublattices, is more stable forS,Sl than the
disorderd fluid. Forpùp0 there is a continuum of structures,
incommensurate with the lattice, and each of them is equally
probable forS→Sl

−, sinceV assumes the same value for any
kb satisfying Eq.(31) [up to termsOsF4d]. Averaging over
all these structures may lead back to the disordered phase.
The continuum of incommensurate structures forpùp0 is
related to the fact that the bifurcation vectorskb
=sk1

b,k2
b,k3

bd occupy a surface, whose area increases from
zero whenpùp0 increases. The region occupied by the bi-
furcation vectors in thek-space plays a major role in the
effects of fluctuations on the phase transitions, as will be
discussed in the next subsection in more detail.

The slope of the bifurcation line is given by

Sl = − Ṽskbd = 5− 2pF1

6
− V0

sc+ 6V1
scpG if p ø p0

− 2pf2Î2V1
scp − V0

sc− 6V1
scpg if p ù p0

.

s32d

Sl is shown as a function ofp in Fig. 2. For model I we
obtain the sameSl as forp=1, by definition of the function
g.

It is interesting to compare the results obtained for model
I (i.e., p=1) in the Bethe approximation with the results ob-
tained with the help of the more rigorous treatment of the
reference system described in Ref.[13]. The reference sys-
tem (excluded occupancy of the NN sites) undergoes a tran-
sition to a nonuniform state atr0<0.18 [13]. In the nonuni-
form phase two sublattices are formed, with different density
at each sublattice; forr0.0.3 the second sublattice is prac-
tically empty. We consider here the low-density regime, i.e.,
r0,0.18 and the case of high densitiesr0.0.3 is described
in Sec. III. The intermediate-density region is discussed in
Sec. IV.

The form ofC̃hh
0 for low densities is(see Ref.[13])

C̃hh
0 s0d =

Isyds1 − yd
r0s1 − r0d

, s33d

wherey is a function ofr0 given byFsr0,yd=0 with

Fsr0,yd = Isyd −
1 − r0

1 − r0 + r0y
, s34d

where

Isyd =E
k

1

1 − yf̃scskd
. s35d

From the conditionA4=0, Eq. (25) and from the above the
density at the TCP can be obtained numerically and the re-
sult is

rtc = 0.0608, s36d

i.e., it is very close to the result obtained within the Bethe
approximation.

In the standard reduced RPM unitsT* =kTDs /e2 and r*

=rv /v0, wheres should be identified with the distance of
the closest approach between the ions,ann, andv is the vol-
ume per ion, respectively. In the system described by the
Hamiltonian (2) the distance of the closest approach iss
=Î2a and the volume per ion isv=2a3=2v0, thus the stan-
dard dimensionless quantities defined for the RPM are re-
lated toTE and r0 defined above byT* =Î2TE and r* =2r0,
hence

rtc
* < 0.12. s37d

Note thatrtc
* is quite close tortc

* <0.1, the value obtained
within analogous theory[20] for the continuum RPM using a
Percus-Yevick reference-system approximation. The bifurca-

tion line is (see(32)) TE/r0=Sl=−Ṽskbd<2.29 and in the
RPM reduced unitsSl

* <1.62, i.e., very close toSl
* <1.61

found in the continuous RPM[20]. Thus, for model I the
l-line and the TCP are very close to the results obtained in
the continuous system on the same level of the MF approxi-
mation.

C. Role of fluctuations

The actual instability with respect to charge-density
waves occurs at the highestSsuch that for some wave vector
kb the charge-charge correlation functionkf̃skbdf̃s−kbdl di-

verges, where the probability distribution forf̃skd is propor-
tional to the Boltzmann factor exps−bVd. In the MF approxi-

mation kf̃skdf̃s−kdlMF=G̃ff
0 skd=1/C̃ff

0 skd with C̃ff
0 skd

defined in(20), i.e., terms beyond the Gaussian part ofV are
neglected in calculatingkf̃skdf̃s−kdl. V is a functional of
two fields, fsxd and hsxd=rsxd−r0. Following Refs.
[1,21,22], we minimizeV for fixed f with respect toh and
expandV about the minimum athsxd=h0sxd~f2sxd. We
obtain a functional offsxd and Dhsxd=hsxd−h0sxd. The
correlations,DhsxdDhsx8d. are strictly short-range, and
the dependence ofV on Dhsxd can be neglected when the
order-disorder transition is studied. The resulting effective

FIG. 2. Slope of the bifurcation lineSl=TE/r as a function of
p=1−exps−bJd. All quantities are dimensionless.
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functional Veffffg=Vff ,h0g, contains in addition to the
Gaussian part the dominant contribution of the form
Vintffg=sA4/4!dox f4sxd. Inclusion of the higher-order

terms in Veff leads to additional contributions tokf̃skdf̃s
−kdl beyond MF. Let us focus on termson anG0

n, where

G0 =E
k

G̃ff
0 skd, s38d

and neglect the remaining contributions tokf̃skdf̃s−kdl in
the perturbation expansion about the Gaussian solution. The
position of thel-line beyond MF can be obtained within
self-consistent Hartree approximation[24,26,27], but our
purpose here is a determination of the order of the transition.
kf̃skdf̃s−kdl cannot be expanded about the MF solution
whenG0 diverges, and the MF approximation breaks down in
this case. For divergingG0 a first-order phase transition is
expected[24,26,27] instead of the continuous transition. This
expectation has been verified by MC simulations for the
Coulomb-frustrated Ising ferromagnet[28,29]—a model
very similar to the present model, except that instead of NN
repulsion a NN attraction is present. In order to verify
whether the transition to the charge-ordered phase is
fluctuation-induced first-order, we shall estimateG0 for S

→Sl. The integrandG̃ff
0 skd [Eq. (20)] can be written in the

form [see(21) and (22)]

G̃ff
0 skd =

TE

S+ Ṽskd
=

TE

t0 + DṼskd
, s39d

where the critical parameter is defined by

t0 = S− Sl, s40d

and DṼskd=Ṽskd−Ṽskbd. The integrandG̃ff
0 skd diverges

when t0=0 andk →kb, and G0 can be regular or singular,

depending on the form ofDṼskd.
SinceṼskd depends only on coski, the integral ink space

can be reduced to a smaller domain 0øki øp, i.e., ek
;8e0

p sdk1/2pde0
p sdk2/2pde0

p sdk3/2pd=8ek8. In order to
see whetherG0 is finite, we should estimate the contribution
to the integral coming from the neighborhood ofkb, where

G̃ff
0 skd diverges whent0=0.

D. G0=ek G̃ff
0

„k… for pÏp0

In the domain 0øki øp there is a single bifurcation vec-

tor kb=kbs1,1,1d in this case, and becauseṼskd assumes a

minimum atk =kb, for k <kb G̃ff
0 skd can be written in the

form

G̃ff
0 skd =

TE

t0 + DkiaijDkj + Osk4d
, s41d

whereDki =ki −ki
b and 2aij is the second-derivative matrix of

Ṽskd at kb. It is easy to see thatG0 assumes a finite value for
t0=0. Hence, the expansion about the MF result remains
valid, the Brazovskii argument[24] cannot be applied and

the transition may remain continuous beyond MF. More de-
tailed renormalization-group(RG) analysis[30] shows that
the fixed point of the RG flow equations is stable, and the
transition indeed remains continuous as long aspøp0.

E. G0=ek G̃ff
0

„k… for p.p0 and in continuum case

Consider a general case with the bifurcation vectors form-
ing a surface of finite area, given by the equation

Psk1,k2,k3d = pb. s42d

For example, in continuum Eq.(42) becomes the equation of
a sphere, and for model I Eq.(42) is explicitly given by Eq.
(31). In this case we can write

G0 <E dpSspd
t0 + csp − pbd2 , s43d

whereSspd is the area of the surface given byPsk1,k2,k3d
=p, c is a constant and terms of higher order in the expansion

of DṼ have been neglected. WhenSspd is continuous atpb

andSspbd is finite, as is the case for sufficiently largep−p0,
model I and in continuum, the integral diverges fort0→0.
The Brazovskii argument can be directly applied, and the
transition is fluctuation-induced first order forp.p0. More-
over, the transition should occur forS,Sl, i.e., below the
line of instability found in MF[24,27,29].

III. MODEL I IN THE HIGH DENSITY REGIME–fcc
SUBLATTICE

For high densities,r0.0.3, the reference system forms an
ordered structure, and only one sublattice is occupied, i.e.,
only the lattice pointsx=xie

i whose coordinates ina-units
are

si + j ,i + k, j + kd, sfccd, s44d

wherei , j ,k are integer, are not empty. The empty sublattice,
formed by the nearest-neighbors of the above points, can be
disregarded. The occupied lattice has the fcc structure, with
the linear size of the unit cellafcc=2a. At the fcc lattice
ann=Î2a=s andv0=2a3=v, hence the temperature and den-
sity in reduced units areT* =Î2TE and r* =rfcc. At the fcc
sublattice the sites are occupied independently of each other,
and for the reference system we can assume the form ofFh
corresponding to the ideal entropy of mixing. Hence,

C̃hhs0d=frfccs1−rfccdg−1 and the density at the TCP isrfcc

=1/3 [see(26)]. The density at the TCP on the original sc
lattice would ber0=rfcc/2=1/6,which lies outside the con-
sidered density interval, hence the transition remains con-
tinuous in the solid phase in MF. In this case, for the lattice
sites (44) only multiple occupancy is excluded, and we as-
sume

gsx − x8d = H0 if x = x8

1 otherwise
. s45d

The form of Ṽskd is thus
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Ṽskd = 2pF 1

3s1 − f̃ fccskdd
− V0

fccG , s46d

where f̃ fccskd andV0
fcc are given in the Appendix.

The bifurcation vector is determined by the lowest value

of f̃ fccskd. Simple algebra shows that the lowest value of

f̃ fccskd is assumed for

kb = s0,p,qd. s47d

All the vectors obtained by permutations of the coordinates
of the abovekb are also the bifurcation vectors and induce
the instability of the disordered phase. All wave vectors lead
to the same value ofV for S→Sl from below. The slope of

the l-line is Sl=TE/rfcc=−Ṽskbd<1.245, andSl
* <1.76.

Let us examine the structure given by the vectorkb
=s0,p ,qd and −kb in real space. The general form of the
corresponding charge-density is

fsxd = FE
k

e−ik·xfwdsk − kbd + w*dsk + kbdg, s48d

wherew* is the complex conjugate tow andww* =1. On the
fcc lattice the charge densityf for kb=s0,p ,qd, in the real
space representation has the form

fsxd = s− 1di+kfwr cosfqs j + kdg + wi sinfqs j + kdggF,

s49d

wherewr andwi denote the real and the imaginary part ofw,
respectively, and the coordinates ofx are given in Eq.(44).
Note that the structure is incommensurate with the lattice
except forq=p /n, wheren is integer. For a particular choice
of q, namelyq=p /2 and forw=s1+id /Î2, the structure is
the same as the one obtained in the continuum RPM[15] for
the charge-ordered phase(Fig. 3). Thus, although our analy-
sis concerns only the boundary of stability of the charge-
disordered fcc phase, we have shown that the charge-
ordering leading to the structure found in simulations
induces instability of the charge-disordered phase.

Let us determine the effect of fluctuations on the order of
the considered phase transition. We need to find out whether

G0=ek G̃ff
0 skd diverges or not. ForṼfcc given by (A1) with

(A3) and the line of bifurcation vectors given by(47) we
obtain fork close to this line the approximation

G̃ff
0 skd =

TE

t0 +
p

32
s1 − cos 2a cosqdk2 + Osk4d

, s50d

where k =sk cosa ,p−k sin a ,qd, 0øaøp /2 and k is
small. By using the cylindrical variablessk,a ,qd one can
easily verify thatG0 diverges fort0→0. This indicates that
the transition is fluctuation-induced first order.

IV. MODEL I AT INTERMEDIATE DENSITIES; bcc
SUBLATTICE

Let us focus onT→0. In an open system the ground state
depends onm and is determined by the minimum of

Uffg /V− mr0. Herer0 denotes a fraction of occupied cells.
If the NN occupancy is excluded, the high-density, charge-
ordered structure corresponds to the fraction of occupied
cells r0=1/2 and isshown in Fig. 3. Atr0=1/4 another
ordered structure occurs forT→0, namely only the sites
with coordinates

si + j − k,i − j + k,− i + j + kd, sbccd, s51d

wherei , j ,k are integer, are occupied. These sites form a bcc
sublattice, with the lattice constant of the unit cellabcc=2a
=2. The bcc lattice splits into two sublattices, one positively,
the other one negatively charged. The first sublattce contains
the sites0,0,0d, the sites1,1,1d belongs to the other one. At
very low T and for r0<1/4 one should expect stability of
the bcc charge-ordered solid, whose electrostatic energy is
low, then bcc–gas(vacuum) phase coexistence at lower den-
sities, and bcc–fcc phase coexistence at higher densities.

Since the stability of the charge-ordered bcc structure can
be expected at lowT for intermediate densities, it is instruc-
tive to consider the order-disorder transition on the bcc sub-
lattice. In MF we can find the boundary of stability of the
charge-disordered phase on the bcc lattice easily. We shall
assume that only the lattice sites(51) are occupied, and the
remaining, empty sites will be disregarded. We find the
l-line in the same way as in the case of the fcc sublattice,
with rbcc denoting the fraction of the occupied bcc sites. The
fraction of the occupied sites on the original, sc lattice is thus
r0=rbcc/4. The bcc sites are occupied independently of each

other, henceC̃hhs0d=frbccs1−rbccdg−1 and the density at the

FIG. 3. Structure of the charge-ordered phase on the fcc lattice,
with the wavevectorkb=s0,p ,p /2d and with w=s1+idÎ2. Black
and open circles represent the positive and the negative charges,
respectively. See Sec. III A 2 for more details.
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TCP is rbcc=1/3 [see(26)]. The density at the TCP on the
original sc lattice would ber0=rfcc/4=1/12. As on the fcc
sublattice, only multiple occupancy of lattice sites is ex-

cluded, andgsxd is given by Eq.(45). The form of Ṽskd is
thus

Ṽskd = 2pF 1

3f1 − f̃bccskdg
− V0

bccG , s52d

where f̃bccskd andV0
bcc are given in the Appendix. The bifur-

cation vector is determined by the lowest value off̃bccskd,
which for f̃bccskd given in Eq. (A4) is f̃bccskbd=−1, and is
assumed for

kb = s0,0, ±pd, s0, ± p,0d, s±p,0,0d, s±p, ± p, ± pd.

s53d

The slope of thel-line is Sl=TE/rbcc=−Ṽskbd<1.87, and

Sl
* = T* /r* =

3Î2Sl

2
< 3.98, s54d

where we have usedann=Î3 andv0=4 for the bcc lattice,
and s=Î2 and v=2 for model I; hence,T* =3Î2TE/4 and

r* =rbcc/2=2r0. Note that for the bcc lattice the value ofSl
*

is larger than the corresponding values for the fcc and sc
lattices and in off-lattice model.

In the context of model I we can compare stability of the
disordered, “fluid” phase and the two bcc solid phases, one
charge-ordered, the other one charge-disordered. This phase
is stable, whoseV /V assumes the lowest minimum. The
locus of points on the phase diagram where two minima are
of equal depth corresponds to the phase transition(the third
minimum vanishes or is higher). At T higher than the order-
disorder transition temperature on the bcc sublattice the bcc
charge-disordered phase is more stable than the charge-
ordered phase. However, the stability of the charge-
disordered phases is entirely determined by the uncharged
reference system for model I. In the latter the stability of the
bcc solid(bcc sublattice occupied) is not expected. We can
conclude that the charge-ordered–charge-disordered transi-
tion line on the bcc lattice forms an upper bound for the
stability region of the charge-ordered bcc solid. Moreover,
the actual transition between fluid and the bcc charge-
ordered solid should be first order. In view of the above

FIG. 4. Schematic representation of the transition between the
charge-disorderd and charge-ordered phases.(A) The transition is
continuous above the TCP. Such a diagram is expected in a pres-
ence of weak NN repulsion 0øp,p0. (B) The transition is
fluctuation-induced first-order. Such a behavior is expected when
strong NN repulsion,p.p0, is present, in model I, in continuum
and on the fcc lattice. See text for more details.

FIG. 5. Spinodal line obtained in Refs.[1,21,22], shown sche-
matically. Dashed line is the boundary of stability of the disordered
phase with respect to charge-density fluctuations with the wave-
length kb, black dot is the MF TCP and dash-dotted line is the
boundary of stability of the disordered phase with respect to sepa-
ration into two uniform ion-diluted and ion-dense phases.(A) Such
a shape of the spinodal is expected when the fluctuations have a
weak disordering effect. We expect such a spinodal line forp,p0.
(B) Such a shape of the spinodal is expected when the fluctuations
have a strong disordering effect. We expect such a spinodal line for
p.p0 and in off-lattice system.
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discussion it is plausible that the fluctuation-induced first-
order transition between a disordered fluid and a charge-
ordered phase is identical with the liquid–bcc-solid transi-
tion.

V. CONCLUSIONS

We have shown that the line of continuous transitions to a
charge-ordered phase with an associated TCP can be trans-
formed continuously into the first-order transition. The
change of character of phase diagrams occurs on an sc lat-
tice, when the strength of the NN repulsions0øJø`d,
added to the Coulomb interactions, increases. ForJ,J0 the
uniform phase is unstable along thel-line with respect to
charge-density fluctuations leading to a unique structure, i.e.,
to two oppositely charged sublattices. The unique structure
occurs when the wave vectors of the critical fluctuations are
kb=ps±1, ±1, ±1d, i.e. form vertices of the cubic domain in
k-space. ForJ=J0 the line of continuous transitions to the
charge-ordered phase starts to split into two lines enclosing
the two-phase region, whose width increases with increasing
J.J0. The first-order transition occurs when the disordered
phase is unstable with respect to charge-density waves lead-
ing to a continuum of charge-ordered structures. Each par-
ticular structure is characterized by a wave vectorkb belong-
ing to a surface of finite area ink-space[Eq. (31)], and for
S→Sl the grand potential for all these structures assumes the
same value, hence they occur with the same probability. Av-
eraging over all those structures restores the disordered
phase. Only for sufficiently large value ofSl−S the grand
potential of a particular, ordered phase vanishes beyond MF
for a finite amplitude of the charge density, signaling the first
order transition. Such transitions were found before for dif-
ferent models, in whichkÞ0 for the critical modes[26–29].
From the analysis described in Sec. IV it follows that the
charge-ordered phase which becomes stable for a sufficiently
small value ofSshould have the bcc structure. The two types
of the order-disorder transition are shown schematically in
Fig. 4. The diagram shown in Fig. 4(A) is consistent with the
simulation result for the sc lattice, and the diagram shown in
Fig. 4(B) is consistent with the simulation results fors /a
=2. [8,10]. The effects of fluctuations on the order of the

order-disorder transitions fors /a=2 are described in Ref.
[30].

In addition to the order-disorder transition a phase sepa-
ration into two uniform, ion-poor and ion-rich phases can
take place. It is because the instability of the disordered
phase is induced either byfsxd~cosskb·xd or by the whole
spectrum of the charge fluctuations, since each charge fluc-
tuation induces the shift of the number density of ions
hsxd~f2sxd [1,21]. The latter instability can be found after
the charge fluctuations are integrated out[1,21,22], and has
not been considered in this work. The spinodal line is ex-
pected to consist of two parts. The low-density part of the
spinodal(dash-dotted line in Fig. 5) describes the instability
with respect to phase separation into two uniform(charge-
disordered) phases, as found in Refs.[1,3,22]. The position
of the spinodal line associated with the phase separation into
uniform phases depends on the presence and the kind of the
underlying lattice rather weakly[18]. In contrast, the posi-
tion of the boundary of stability of the uniform phase with
respect to the charge-ordering depends crucially on the pres-
ence and the kind of the underlying lattice. The slope of this
line is different on different lattices in MF(note that fluctua-
tions lead to lower values ofSl than found in MF). In the
presence of the NN repulsion bothSl and the density at the
TCP decrease withJ, as shown in Figs. 1 and 2. Schematic
representation of the two branches of the spinodal for small
and large values ofJ are shown in Figs.5(A) and 5(B), re-

FIG. 6. Low-density part of the phase diagram, expected for
p.p0.

FIG. 7. Schematic phase diagram for model I and for off-lattice
models. The present analysis is not sufficient to determine the high-
density part of the diagram with sufficient precision. The diagram
has the form shown either in(A) or in (B). See text for more
explanation.
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spectively. If the spinodal has the shape shown in Fig. 5(A),
then the CP remains metastable. However, when the spinodal
has the form shown in Fig. 5(B), then the critical point as-
sociated with the separation into two uniform phases be-
comes stable. For small values ofJ the phase diagram should
have the form shown in Fig. 4(A), and forJ.J0 we expect
that the phase diagram should have the form shown sche-
matically in Fig. 6.

For model I we are able to sketch a schematic phase dia-
gram for the whole range of densities, combining the MF
predictions for low and high densities presented in Secs. II B
and III, respectively, the analysis of the effects of fluctuations
(Secs. II B and III) and the analysis of the order-disorder
transition on the bcc sublattice(Sec. IV). The result is shown
in Fig. 7. At high densities the fcc solid is stable. It under-
goes a first-order transition between the high-temperature,
charge disordered phase and the low temperature charge-
ordered phase. At lower densities we expect stability of the
bcc solid when the temperature is low, and a first order tran-
sition to the liquid phase when the temperature is increased.
The bcc solid coexists with ion-diluted(“gas”) phase at very
low T and with a liquid phase at higherT. We have identified
the fluctuation-induced first-order transition between fluid
and the charge-ordered phase with the liquid - charge-
ordered bcc-solid coexistence. Further studies are necessary
to determine high-density, high temperature three-phase
equilibria for the liquid, charge-ordered bcc, charge-ordered
fcc, and charge-disordered fcc phases. Figure 7 shows two
possibilities. Note that the diagram shown in Fig. 7(A) is
similar to the diagram found in simulations for the RPM in
continuum space[17]. This shows that model I is indeed
similar to the continuum system, and that our approch per-
mits a prediction of the phase behavior for the whole range
of concentrations of ions within the same formalism.
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APPENDIX: LATTICE COULOMB POTENTIAL

The lattice Coulomb potential is a solution of the dis-
cretized Poisson-Boltzmann equation, and in Fourier repre-
sentation assumes the form

Ṽcskd =
2p

3f1 − f̃ lattskdg
, sA1d

where the index latt denotes the sc, fcc, or the bcc lattice.

The lattice characteristic functionf̃ lattskd depends on the kind

of the lattice. For the sc, fcc and bcc latticesf̃ lattskd is given
by

f̃sc=
1

3o
i=1

3

coski , sA2d

f̃ fccskd =
1

3o
i, j

coski coskj , sA3d

and

f̃bccskd = p
i=1

3

coski , sA4d

respectively. The constantsV0
latt and V1

latt are defined via
equations

V0
latt =E

k

1

3f1 − f̃ lattskdg
, sA5d

V1
latt =E

k

cosk1

3f1 − f̃ lattskdg
. sA6d

The values we need in this work are:

V0
sc< 0.5055, V0

fcc < 0.4482, V0
bcc< 0.465, sA7d

V1
sc< 0.172. sA8d
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