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Criticality, tricriticality, and crystallization in discretized models of electrolytes
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The Restricted Primitive Model of ionic systems is studied within a field-theoretic approach in order to
provide a theoretic basis for the qualitative difference in the phase diagrams obtained in simulatiefe for
=1,0/a=2, ando/a=3 (a is the lattice constant and is the ion diametgr The evolution of the phase
diagrams from the case/a=1 to the caser/a=12 [nearest-neighbdiNN) occupancy excluddds studied in
the model with NN repulsion, € J<<, supplementing Coulomb forces. The boundary of stability of the
charge-disordered phase with respect to short-wavelength charge fluctuations and the tricritical point are found
in a mean-field MF) approximation. Next, the effect of fluctuations is studied and we find thak émceeding
a particular valuely a fluctuation-induced first-order phase transition should be expected instead of the con-
tinuous transition found in MF. Ali=J, the line of continuous transitions splits into two lines enclosing the
two-phase region, whose thickness increases from zero kel increases. We argue that this transition
corresponds to formation of a bcc ionic crystal. For high densities the ions form an fcc crystal, for which we
find a fluctuation-induced first-order charge-ordered—charge-disordered transition, in agreement with recent
simulation studies. Our results also shed light on the simulation results obtained for an off-lattice ionic system,
for which a schematic phase diagram is constructed.
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[. INTRODUCTION nor the off-lattice model phase-diagram. Only first-order
transition lines between a diluted, uniform phase and a
In the simplest model of ionic systems, the restricteddense, charge-ordered phase were found, therefore it might
primitive model (RPM), ions are modeled by uniformly be possible that neither critical nor tricritical point is present.
charged hard spheres of chargeand diametero. In con-  For o/a=3, the behavior characteristic of the continuum
tinuum space the RPM system phase separates into uniforn@se was observed, with a critical-point location converging
ion-poor and ion-rich phases and the critical pai@P) as-  quickly to the values okTo/€? and po® found in the con-
sociated with this phase transition belongs to the Ising unitinuum model for increasing/a, and neither a TCP nor a
versality class, as predicted theoreticalli~4] and con- line of charge-ordered—charge-disordered transition were de-
firmed by experimentf5] and simulation$6]. Thanks to the tected for the considered range of densities. So far the evo-
universal nature of critical phenomena, lattice models havéution of phase diagrams whes/a increases has not been
been extensively used in simulations and calculations aimepgredicted within any theoretical approach. It is important to
at determination of local properties of phase diagrams o&xplain this evolution in order to understand the fundamental
uncharged systems. It was natural to expect that a latticdifferences between critical phenomena and phase equilibria
version of the RPM should give results for the phase diagrann uncharged and in ionic systems. This is the purpose of our
near the critical point that mirror those of the continuum-study here, which was begun jt1].
space RPM, just as the Ising-model results accurately de- The lattices with X o/a<2 were not studied in Rgf.0],
scribe the criticality of simple fluids. This turned out not to and it was not clear from that work how the diagrams evolve
be true[7,8]. Quite surprisingly, when in the RPM the posi- when o/a increases from 1 ta/2, then to\3, etc. When
tions of the ions are restricted to the lattice sites of the simpler/a= V2, the occupancy of the nearest-neighbor gités) is
cubic (so) lattice with the lattice constart= o, then instead excluded, and whens/a=y3, the NN and the second
of the phase separation into two uniform phases, a line ohearest-neighbor sites cannot be occupied simultaneously.
continuous transitiong\-line) to a charge-ordered phase We shall refer to the cases/a=+2,0/a=y3 ando/a=2 as
(with two oppositely charged sublattigesccurs. The con- model I, II, and lll, respectively. The values af a on the sc
tinuous transition terminates at a tricritical po{fitCP) and |attice and in model | are closer to each other than the cor-
becomes first-order at lower temperaturgds7—9. Such responding values on the sc lattice and in the other models.
phase behavior has also been verified by simulation studigdowever, it is not only the size, but also the shape of the
[8,1Q. region occupied by an ion, which is important. In model |
The effect of space discretization on the phase behaviogach ion can have 12 neighbors at the distance of the closest
was further studied in R€fL0], where the ions occupied sites approach, as in continuum, while in model 1l there are only
of a finely discretized lattice, with integer/a=1. When 6 such neighbors, as on the sc lattice. The above observation
ola changes from 1 to 2 and then from 2 to 3, the phaseuggests that one might expect model | to be closer in be-
diagrams change character completely. The phase diagrahavior to the continuum model. The crossover between the
for o/a=2 resembles neither the sc-lattice phase-behaviogrder-disorder transition with the associated TCP, and the
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gas-liquid phase separation with the associated CP may othe two-phase regigrwould be associated with theline in

cur between the sc lattice and model |, therefore, in thehe region of stability of the ion-dense phd4e20. No such
present work we focus on the change of character of phasgansition has been observed in simulationsdda=2, sug-
diagrams between these two models. In order to study thgesting that even the metastable TCP disappears. Note, how-
evolution of phase diagrams, we shall consider ions on the sgver, that the boundary of stability of the charge-disordered
lattice with repulsive interaction Jrbetween nearest neigh- phase is associated with finite-wavelength fluctuations, there-
bors added to the Coulomb interactions. The model with thgore, a fluctuation-induced first-order phase transition may
soft shell enables us to study the change between the $fcr[24]. If this expectation is correct, then it remains to be
lattice and model | in a continuous way whéehanges from \eriied why for some discretizations the transition is

0 to <, since the infinite repulsion is equivalent to exclusiong, + ation-induced first order, whereas fofa=1 it is con-

of 5|multa_neous occupancy of the NN sites. tinuous at high temperatures. In order to understand the evo-
There is another, important property of model I—the un-

charged reference system undergoes a transition to a phasell;']ﬁ'onﬁof thef [f)lhase d_|agrams r']t IS n(;acesfsar:y tohdetermlge hgw
which only one sublatticéwith the fcc structurgis occupied the effect of fluctuations on the order of the charge-ordered—
[12—-14, which means one can hope to study in this moder:ha.rge-_dlsordered phase-tr_ansmon depgnds on the space .d|s-
both its disordered “fluid” and its solid phases. This propertycretization. Our goal here is to determine the order of this
of model | is particularly important in view of recent simu- transition as a function o8, i.e., on the path from the sc
lation results for the RPNI15—17, which show weakly first lattice to model |, and for the order-disorder transition be-
order order-disorder transitiotbetween charge-disordered tween two fcc solid phases.
and charge-ordered phageés the fcc solid. No theoretical In the next section we study the evolution between the sc
description of this transition has been proposed yet It iéattice and model | for low concentrations of ions. Both MF
partia”y because direct |attice_gas methods based on the foa.naIySiS and a discussion of the effects of fluctuations on the
mation of two identicaL opposite|y Charged sub'atncbg], order of the order-disorder transition, and their dependence
valid on bipartite lattices, cannot be applied to the fcc lattice©n J are described. Model | at high-densitidsc solid) is
There are no such limitations within our field-theoretic @nalyzed in Sec. lll. We find the boundary of stability of the
method used here, however. In order to verify whether th&harge-disorderd phase in MF, and beyond MF we show that
order-disorder transition in the fcc solid is of the same originthe transition is fluctuation-induced first order. The phase
as the order-disorder transition Observed previously in the SEehaVior of model | at intermediate densities is discussed on
and the bcc lattice mode(8,18—2Q, we shall study model | @ qualitative level in Sec. IV, where the bcc lattice is also
for high densities, where the occupied sublattice has the fceonsidered. Final section contains discussion of the results.
structure. In particular, a schematic phase diagram of model | resulting
The fundamental reason for the nonuniversal behavior ofrom our study is presented. It agrees with the diagram con-
the critical phenomena in the RPM has been already exstructed from simulation results for the continuous RPM
plained[21], but the phase diagrams obtained in simulationd15,:17.
have not been fully reproduced theoreticalB0]. In Refs.
[1,20-23 it was shown that the-line and the TCP result Il. CHARGED HARD-SPHERES COVERED BY SOFT
from instability of the disordered phase with respect to REPULSIVE SHELLS
charge-density fluctuationglanar wavek [1,20-23, with
the wavevectork, corresponding to a microscopic wave- A. The model
length 27/|ky| = 20. Mean-field (MF) analysis[20] shows Hamiltonian of the RPM, supplemented with a repulsion
that the\-line and the TCP should be present for any spacéetween the ions occupying the NN sites of the sc lattice, has
discretization. Beyond MF the whole spectrum of chargethe form
fluctuations, which are coupled to number-density fluctua- £
tions, induce the phase separation into uniform ion-diluted =0 T NSy
and ion-dense phasd4,21,23. Thus, the uniform, disor- Hi=5 > 2 Vel = x'D3x)3(x")
dered phase may become unstable either with respect to 3
charge ordering, or with respect to separation into two uni- J 22/ NA2( U1 A
form phases. Which transition actually occurs, and which is " 22 2 F0(x) MEX: $), @
only metastable, depends on the efficiencies of the relevant
fluctuations for a particular space discretization. The posiwheres=+1,-1,0represents the anion, the cation and the
tions of thex-line and the TCP depend very strongly on the solvent respectively, ang is the chemical potential of the
microscopic details of the model system and on the approxiions. The lattice sites ase=x,€, where€ are the unit vectors
mations used1,9,20,22,28 therefore we expect that the on the sc latticex; are integer numbers=1,2,3,summation
change of character of the phase transitions is governed bgonvention is used and the distance is measureal units.
the behavior of the order-disorder transition, and we shallThe V. is the dimensionless Coulomb interacti¢see the
focus on this transition here. Appendi®, and the energy unit iE0=e2a§n/Dv0, whereD,
Although MF theory predicts existence of a stable or aa,,, anduv, are the dielectric constant of the solvent, the
metastable TCP for any discretization and in continuundistance between nearest-neighbor sites and the volume per
[1,20,23, the stable TCP has been observed in simulationsite, respectively. The corresponding dimensionless tempera-
only in theo/a=1 case. The metastable T@Bcated inside ture is TE=1/85=kT/E,. J>0 is the strength of the repul-

X x"#x

X x'=x+é
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covered. For finite values af the model describes charged

particles consisting of a hard core and a soft shell—for ex-

ample, charged colloids covered with polymeric brushes. Folrhe functionV can be written as

J=o we obtain model |, because the probability that the V(AX) = Vo(AX) + Vo(AX)(g(AX) - 1) )

nearest-neighbor lattice sites are occupiedds”’; hence it ¢ ¢ 9 '

vanishes ford=«. The Hamiltonian of model | has the form The second term iii8) vanishes except from a very small
region. From(8) and(7) and the form of the lattice Coulomb

H=E)E > Ve([x =x'D3(X)3(x") - u>, §(x). (2)  potential in Fourier representatiaisee the Appendixwe
X

sive shell. ForJ=0 the initial RPM model witho=a is re- 0 if x=X" or x=x'+¢
X — X .
o ) 1 otherwise

2 X x!#xxte obtain
~ 1 ~
V(K) =27 ————— = V- 6Vitkp|, (9
: . 3(1 —fsdk))
B. Mean-field analysis
. S ¥vhere
Our purpose here is a determination of the boundary o

stability of the disordered phase with respect to local fluc- p=1-exg-pAJ), (10
tuations of concentrations of the two ionic species. We as-
sume for both mode's the f0||0W|ng form Of the grand and Where the |att|Ce CharaCterIStIC funCthsQ(k) and the

potential functional in the MF approximation: two constantd/g", Vi© are given in the Appendix.
Let us now dlscuss the first term in E(B). F, is the
Q=Fp,)]+Up,(x)]— ,uE > p.(X), (3) Helmholtz free energy functional of the uncharged reference

system, containing the entropy of mixing of the two kinds of

ions with the solvent and the energy associated with the NN
Wéepulsan We assume the simplest local-density approxi-
dpa ation

where p,(x) is the local density of the componeaf with
a=+,- denoting the cations and the anions, respectively.
also introduce the dimensionless charge- and number den
ties (fraction of the ion-occupied sitgs¢=(5)=p,—p- and Fp= 2 fr(ps(X), p-(X)), (12)
p=($)=p,+p_, respectively. We assume that the total den-

sity (ions+solveny is fixed and that the system is electrically and use the relation

neutral.
Let us first discuss the second term (8). U[p,(x)] Py S o) 2
=U[ ¢] is the electrostatic energy of the system, and in Fou- 9Padpp T b Cnlp),

rier representation is given b
P g y whereéKr is the Kronecker delta, the first term (h2) arises

B =~ .~ from the ideal-entropy of mixing and,(p) is the integral of
Ule]= EJK Vik)p(k) p(=k), @ the reference- -system Ornstein-Zernike direct correlation
function over excluded volume. Froifi2) we obtain the
where tilde refers to the Fourier transform of the correpondsecond derivatives df, with respect to the variableg, p at

ing function,k=(ks,k,,ks) and $=0,p=py:
i 1
[=[ o[ dafde L @
k - - - (9(]5 $=0p=pg Po
In real space the functioW in (4) is related to the dimen- P, 1
sionless Coulomb potentisl, by B2 =—=cx(po), (14
p ¢=0,p=pg Po
V(AX) = g(AX)V(AX), (6) and
whereg(Ax) is the pair distribution function for two points, 25
x and x+Ax. In the simplest MF approximatiog=1 for ,3—“ =0. (15)
Ax|=1. However, for a strong repulsion between the NN IPIp| g=0,=p
0

sites the correlations between these sites cannot be neglect
We take into account only correlations between the NN sites
and postulate the following form af:

%fjonsstent with the approximation for the pair-distribution
functlong in Eq. (7), we assume for the reference system the
Bethe approximatiori25], so that the correlations between

0 if x=x' the NN sites are not neglected. In the considered case the
gx-x") =4 exp(- B) if x=x"te. (7) Bethe approximation leads to the equat[@5]
1 otherwise . {(B(p) ~1+2p)(1 —p)r 16
For J— o the abovey reduces to the form corresponding to 1=p (B(p) +1-2p)p

model |, namely: where
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B(p) =1 - 4p(1-p)p. (17 ) S i
Thus, for Bt/ dp?=d(Bw)! dp we obtain . ]
o1 1 3 [ ]
— :—(——2). (18) 02 ]
9P| g=0,p=p, Po(1=po) \ B(po) &0 1
0.15} .
The Eqs(3)—«18) define the grand-potenti&l introduced in 0 1' T
®). T )
The equilibrium charge and number densities in the uni- 0.05l m
form phase, ¢(x)=0,p(x)=po, correspond to the global ]
minimum of Q). Local deviationsp(x), 7(x)=p(X) = po, from I Y S T Y I
the average values of the charge- and number densities, re- p
spectively, can induce the instability of the uniform phase,
when the determinant of the second-derivative(bfwith FIG. 1. Density at the TCPp, as a function ofp=1-exgd

respect to the fieldg(x), 7(x) is not positive. In this model -pJ). All quantities are dimensionless.
Q1 67(x)4(x")=0. The density deviations from the aver-

age valuez(x), cannot induce the instability of the uniform 1 ) BE
phase in the absence of the charge fluctuations, since from ZAA(D = ?(S)\_ S, (25)
(3), (18), and(17) we find '
where term€O(d#) have been neglected. For all models sat-
~ BQ 8*BF,
c® (k)= = >0. (19 isfying (12) we have[20]
" on(k)on(=k)  n(k)én(=k)
The uniform phase is unstable with respect to charge fluctua- Ay = is 2 % _ (26)
tions ¢(k) when Po poC5,(0)
~ 58O 1 ici
C?W(k) _ B :_+ﬁg\7(k), (20) When the coefficientd, on the L.h.s. of Eq(25) becomes

o ~ negative, the transition between the two phases becomes first
S¢(k)d¢(=k) ~ Po order. The TCP is thus given by

vanishes. Boundary of stability of the uniform phase corre-

sponds tdk =k, such that the Eq(20) is satisfied first when A4=0, S=S,. (27)

the temperature is decreased. At the wave vektok,, the

V(k) assumes a minimum. The corresponding line of insta "€ density at the TCP as a function pfcan be easily

bility is obtained from(18) and(26), and the relation betwegrn, and
p is given by
S=S,, S.=-V(ky >0. 21
where we have introduced the quantity P= 4pie(1 = p)(7 = 3p0)?
S= T_E (22 Pcdsa function ofp is shown in Fig. 1. Fop=1, corre-
Po sponding to model I, we obtain hepg,~0.0601.

V(k) given by Eq.(9) assumes a minimum for the wave

Note that the form 01\~/(k) and its value at the minimum o tors that satisfy the equation

depend significantly on the form @f{Ax) (i.e., on discreti-
zation) through the second term ii®).

While for S> S, the global minimum of(} is assumed at ~ _J1-2 Po if pP=po
¢=0,p=py, for S<S, the () assumes the minimum at non- fsdkp) = p ' (29)
vanishing¢ and 5. For S-S, — 0~ the order parameters are -1 otherwise
(1]

where
P(x) =D cogky - x) (23
and Po= == ~0.08 and Jo=-KTlog(l-py). (30
V]
_ 9? 5
- 2pzao 0) + 0. (24 For p<p, V(k) assumes the lowest value at the domain
O~y boundaryk,=m(+1,+1,+1), as on the sc latticép=0),
For S-S, — 0~ we find that at the minimum of) whereas fop=p, the Eq.(29) can be written in the form
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FIG. 2. Slope of the bifurcation lin§,=TE/p as a function of
p=1-exg-pJ). All quantities are dimensionless.

{1=48)

For p<py a unique, well defined structure, i.e., two oppo-
sitely charged sublattices, is more stable $tr S, than the
disorderd fluid. Fop= p, there is a continuum of structures,

3

E coskP= (31)

incommensurate with the lattice, and each of them is equall
probable forS— S, since() assumes the same value for any j

ky, satisfying Eq.(31) [up to termsO(®*)]. Averaging over

all these structures may lead back to the disordered phas

The continuum of incommensurate structures fiee pg is
related to the fact that the bifurcation vectots,

=(k?,k5,k3) occupy a surface, whose area increases from
zero whenp=p, increases. The region occupied by the bi-

furcation vectors in thek-space plays a major role in the
effects of fluctuations on the phase transitions, as will b
discussed in the next subsection in more detail.

The slope of the bifurcation line is given by

1 _
(ke —277{5-\/8%\/?9} if p<po

- 2m2V2ViPp- Vo' - 6Vipl if p=pg
(32

S,

S, is shown as a function o in Fig. 2. For model | we
obtain the sam&, as forp=1, by definition of the function

g

| (i.e., p=1) in the Bethe approximation with the results ob-

tained with the help of the more rigorous treatment of the

reference system described in REf3]. The reference sys-
tem (excluded occupancy of the NN sijasndergoes a tran-
sition to a nonuniform state at=0.18[13]. In the nonuni-

)2
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~ (y)(1-y)
Co,(0)= =", (33
” po(1 = po)
wherey is a function ofp, given by F(pg,y)=0 with
~—Po
Flooy) =ly)-————, (34
° 1-po+ poy
where
1
I(y) = f —. (35
kl- yfsc(k)

From the condition4,=0, Eq.(25) and from the above the
density at the TCP can be obtained numerically and the re-
sult is

pe = 0.0608, (36)

i.e., it is very close to the result obtained within the Bethe
approximation.

In the standard reduced RPM unif$=kTDo/€? and p*
=pv/vy, whereo should be identified with the distance of
the closest approach between the iagg, andv is the vol-
ume per ion, respectively. In the system described by the
Hamiltonian (2) the distance of the closest approachais
y2a and the volume per ion ig=2a%=2v,, thus the stan-
ard dimensionless quantities defined for the RPM are re-
lated toTE and p, defined above by =2TE and p" =2p,,
flence

pe =~ 0.12. (37)

Note thatp, is quite close top,,~0.1, the value obtained
within analogous theorf20] for the continuum RPM using a

dercus-Yevick reference-system approximation. The bifurca-

tion line is (see(32) T&/py=S,=-V(k,) =2.29 and in the
RPM reduced unitsS ~1.62, i.e., very close t& ~1.61
found in the continuous RPNRO]. Thus, for model | the
\-line and the TCP are very close to the results obtained in
the continuous system on the same level of the MF approxi-
mation.

C. Role of fluctuations

The actual instability with respect to charge-density
waves occurs at the higheSsuch that for some wave vector

k, the charge-charge correlation functiofi(k,,) d(=ky)) di-

It is interesting to compare the results obtained for mOde(/erges, where the probability distribution fa(k) is propor-

tional to the Boltzmann factor expB(2). In the MF approxi-
mation ((k)h(—k)MF=GS,(k)=1/C5 (k) with C5,(k)

defined in(20), i.e., terms beyond the Gaussian parfbére
neglected in calculatingé(k)$(—k)). Q is a functional of

form phase two sublattices are formed, with different densitytwo fields, ¢(x) and #z(x)=p(x)—po. Following Refs.

at each sublattice; fags,> 0.3 the second sublattice is prac- [1,21,23, we minimize() for fixed ¢ with respect ton and

tically empty. We consider here the low-density regime, i.e.expandQ about the minimum aty(x) = 7,(x) = ¢?(x). We

po<<0.18 and the case of high densitjgs>0.3 is described obtain a functional of¢(x) and A#(x)=7(x)— 79(X). The

in Sec. lll. The intermediate-density region is discussed ircorrelations<A#(x)A7(x’)> are strictly short-range, and

Sec. IV. _ the dependence d® on A7(x) can be neglected when the
The form ofC?n7 for low densities igsee Ref[13]) order-disorder transition is studied. The resulting effective
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functional Qi #1=Q[ b, 15], contains in addition to the the transition may remain continuous beyond MF. More de-
Gaussian part the dominant contribution of the formtailed renormalization-groupRG) analysis[30] shows that
Qi d1=(A414N)Z, p*x). Inclusion of the higher-order the fixed point of the RG flow equations is stable, and the
terms in Qg leads to additional contributions t(f;ﬁ(k)?ﬁ( transition indeed remains continuous as longpasp,.

-k)) beyond MF. Let us focus on ternd, a,Gg, where

E. Go=Jk éf’M)(k) for p>pg and in continuum case

Consider a general case with the bifurcation vectors form-
ing a surface of finite area, given by the equation

Go= jk GYy(k), (38)

and neglect the remaining contributions (i(k)(—k)) in

the perturbation expansion about the Gaussian solution. The P(ky kz.ks) = pp. (42)
position of the\-line beyond MF can be obtained within For example, in continuum E@42) becomes the equation of
self-consistent Hartree approximatid@4,26,27, but our  a sphere, and for model | E¢42) is explicitly given by Eq.
purpose here is a determination of the order of the transition31). In this case we can write

(p(k)$(-k)) cannot be expanded about the MF solution

wheng, diverges, and the MF approximation breaks down in Go= Lp)z (43)

this case. For divergingj, a first-order phase transition is P +c(p-pp)

expecteq[24,26,2] instead (_)f the contlnuogs tran3|t|on. This whereS(p) is the area of the surface given Bk, ,k,, k)
expectation has been verified by MC simulations for the:p,cisaconstant and terms of higher order in the expansion

Coulomb-frustrated Ising ferromagnd®28,29—a model ~ . .
very similar to the present model, except that instead of NN?T AV have been neglected. Whé&Xp) is continuous ap,

repulsion a NN attraction is present. In order to verify @1dS(py) is finite, as is the case for sufficiently large-po,
whether the transiion to the charge-ordered phase ig'odel I and in continuum, the integral diverges 0.
fluctuation-induced first-order, we shall estimajg for S  The Brazovskii argument can be directly applied, and the

. ~0 . . transition is fluctuation-induced first order fpe>py. More-
— S, The integrands,,,(k) [Eq. (20)] can be written in the over, the transition should occur f@<S,, i.e., below the
form [see(21) and(22)]

line of instability found in MF[24,27,29.

E E
&, k)=———=—" (39
S+V(k) P +AV(K) IIl. MODEL | IN THE HIGH DENSITY REGIME—fcc
where the critical parameter is defined by SUBLATTICE
P=S-85, (40) For high densitiespy> 0.3, the reference system forms an

B B B N ordered structure, and only one sublattice is occupied, i.e.,
and AV(k)=V(k)-V(kp). The integrandG?M(k) diverges only the lattice pointsx=x,€ whose coordinates ia-units
when °=0 andk —ky,, andG, can be regular or singular, aré
depending on the form akV(k). (i+j,i+kj+k), (fco), (44)

SinceV(k) depends only on cds, the integral ink space
can be reduced to a smaller domaircR=<m, i.e., [
=8[§ (dk/2m) [§ (dko/2m) [T (dks/27)=8,. In order to
see whetheg, is finite, we should estimate the contribution
to the integral coming from the neighborhood lgf, where

wherei,j,k are integer, are not empty. The empty sublattice,
formed by the nearest-neighbors of the above points, can be
disregarded. The occupied lattice has the fcc structure, with
the linear size of the unit celiy.=2a. At the fcc lattice
a,n=\2a=0 andvy=2a%=v, hence the temperature and den-

Gj,,(k) diverges when=0. sity in reduced units ar@ =\2TE and p* = py.. At the fcc
sublattice the sites are occupied independently of each other,
D. Go=/i a?ﬁ¢(k) for p<py and for the reference system we can assume the forky, of

corresponding to the ideal entropy of mixing. Hence,
e - C,(0)=[prec(1-piec) " and the density at the TCP jgq,

tor kp=kp(1,1,1) in this case, and becauskk) assumes a —1;3 [see(26)]. The density at the TCP on the original sc
minimum atk =k, for k =k G?ﬁ(/)(k) can be written in the lattice would bepy=pr../2=1/6,which lies outside the con-
form sidered density interval, hence the transition remains con-
tinuous in the solid phase in MF. In this case, for the lattice

In the domain B<k; < 7 there is a single bifurcation vec-

~ TE . . .
GO (k) = , 41 sites(44) only multiple occupancy is excluded, and we as-
oK) 7+ Akay Ak; + O(K%) (4D sume
whereAkizki—kib and 2; is the second-derivative matrix of if X=X’
V(k) atky,. It is easy to see thdl, assumes a finite value for gx—x') = 1 otherwise (45)

°=0. Hence, the expansion about the MF result remains ~
valid, the Brazovskii argumer24] cannot be applied and The form ofV(k) is thus
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V(K) = 277[ % - VBCC] , (46)
3(1 - free(k))

where (k) and Vi are given in the Appendix.
The bifurcation vector is determined by the lowest value

of ?fcc(k). Simple algebra shows that the lowest value of
frec(k) is assumed for

kb: (O:W,Q) (47)

All the vectors obtained by permutations of the coordinates
of the abovek, are also the bifurcation vectors and induce
the instability of the disordered phase. All wave vectors lead
to the same value di for S— S, from below. The slope of
the \-line is S, =T%/ prc=-V(kp) = 1.245, andS, ~1.76.

Let us examine the structure given by the veckgr
=(0,m,q) and K, in real space. The general form of the
corresponding charge-density is

(x) = <I>f e walk —kp) + W Sk +kp)],  (48)
k

wherew’ is the complex conjugate o andww =1. On the
fcc lattice the charge density for k,=(0,7,q), in the real

. FIG. 3. Structure of the charge-ordered phase on the fcc lattice,
space representation has the form

with the wavevectok,=(0,7,7/2) and with W=(1+i)\s‘§. Black

d(x) = (= 1)i+k[wr codq(j +k)]+w; sinq(j + K ]]P, and open circles represent the positive and the negative charges,
respectively. See Sec. Il A 2 for more details.

(49
wherew, andw; denote the real and the imaginary parvof  U[¢]/V - up,. Herepy denotes a fraction of occupied cells.
respectively, and the coordinates>ofire given in Eq(44).  If the NN occupancy is excluded, the high-density, charge-

Note that the structure is incommensurate with the latticesrdered structure corresponds to the fraction of occupied
except forg=a/n, wheren is integer. For a particular choice cells p,=1/2 and isshown in Fig. 3. Atp,=1/4 another
of g, namelyg=/2 and forw=(1+i)/\2, the structure is ordered structure occurs foF—0, namely only the sites
the same as the one obtained in the continuum RPHifor  with coordinates
the charge-ordered phageig. 3). Thus, although our analy-
sis concerns only the boundary of stability of the charge- (i+j-ki-j+k-i+j+k), (bco, (51)
disordered fcc phase, we have shown that the charge-
ordering leading to the structure found in simulationswherei,j,k are integer, are occupied. These sites form a bcc
induces instability of the charge-disordered phase. sublattice, with the lattice constant of the unit cajl..=2a

Let us determine the effect of fluctuations on the order of=2. The bcc lattice splits into two sublattices, one positively,
the considered phase transition. We need to find out whethehe other one negatively charged. The first sublattce contains

Go=Jx E;%¢(k) diverges or not. FoW given by (A1) with  the site(0,0,0, the site(1,1,1) belongs to the other one. At

obtain fork close to this line the approximation the bcc charge-ordered solid, whose electrostatic energy is
low, then bcc—gagvacuunm) phase coexistence at lower den-
o (k)= TE (50) sitie_s, and bcc—f(_:p phase coexistence at higher densities.

b T 5 ' Since the stability of the charge-ordered bcc structure can
P+ 3—2(1 - cos 2 cosg)k® + O(k?) be expected at low for intermediate densities, it is instruc-

tive to consider the order-disorder transition on the bcc sub-

where k=(k cosa,m-k sina,q), O<a<w/2 and k is lattice. In MF we can find the boundary of stability of the
small. By using the cylindrical variablek,«,q) one can charge-disordered phase on the bcc lattice easily. We shall

easily verify thatG, diverges for°— 0. This indicates that assume that only the lattice sitésl) are occupied, and the

the transition is fluctuation-induced first order. remaining, empty sites will be disregarded. We find the
\-line in the same way as in the case of the fcc sublattice,

IV. MODEL | AT INTERMEDIATE DENSITIES; bce with ppec denoting the fraction of the occupied bcc sites. The
SUBLATTICE fraction of the occupied sites on the original, sc lattice is thus

Let us focus orT — 0. In an open system the ground state P0= Poed/ 4. The bec sites are occupied independently of each
depends onu and is determined by the minimum of other, henceC,M(O) [poed 1 -pped ]t and the density at the
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FIG. 4. Schematic representation of the transition between the FIG. 5. Spinodal line obtained in Refgl,21,23, shown sche-

charge-disorderd and charge-ordered pha@esThe transition is

matically. Dashed line is the boundary of stability of the disordered

continuous above the TCP. Such a diagram is expected in a prephase with respect to charge-density fluctuations with the wave-

ence of weak NN repulsion 9p<py. (B) The transition is

length ky, black dot is the MF TCP and dash-dotted line is the

fluctuation-induced first-order. Such a behavior is expected wheboundary of stability of the disordered phase with respect to sepa-

strong NN repulsionp>p,, is present, in model |, in continuum
and on the fcc lattice. See text for more details.

ration into two uniform ion-diluted and ion-dense phagés.Such
a shape of the spinodal is expected when the fluctuations have a
weak disordering effect. We expect such a spinodal lingpfam.

TCP is ppe=1/3 [see(26)]. The density at the TCP on the (B) Such a shape of the spinodal is expected when the fluctuations
CC .

original sc lattice would bggy=p;../4=1/12. As on the fcc
sublattice, only multiple occupancy of lattice sites is ex-

cluded, andy(x) is given by Eq.(45). The form ofV(K) is

thus

V(K) = 277[

—- v8°°] ,
31 = foed k)]

have a strong disordering effect. We expect such a spinodal line for
p>pg and in off-lattice system.

P’ =pped 2=2po. Note that for the bec lattice the value §f
is larger than the corresponding values for the fcc and sc
lattices and in off-lattice model.

In the context of model | we can compare stability of the
disordered, “fluid” phase and the two bcc solid phases, one
charge-ordered, the other one charge-disordered. This phase

wherefp.(k) and Vi are given in the Appendix. The bifur- is stable, whose)/V assumes the lowest minimum. The

cation vector is determined by the lowest value?ggc(k),
which for?bc<{k) given in Eq.(A4) is ?bc({kb):—l, and is

assumed for

kp=(0,0, £m), (0,%m0), (0,0,

The slope of thex-line is SA:TE/prC:—T/(kb)x 1.87, and

_
X x * 3“’2
S =T/ = 25

where we have used,,= V3 andvoy=4 for the bcc lattice,
and 0=y2 andv=2 for model I; henceT" =3y2TE/4 and

~ 3.98,

(xm, tm £m).

locus of points on the phase diagram where two minima are
of equal depth corresponds to the phase transitioa third
minimum vanishes or is higherAt T higher than the order-
disorder transition temperature on the bcc sublattice the bcc
charge-disordered phase is more stable than the charge-
ordered phase. However, the stability of the charge-
disordered phases is entirely determined by the uncharged
reference system for model I. In the latter the stability of the
bce solid(bce sublattice occupigds not expected. We can
conclude that the charge-ordered—charge-disordered transi-
tion line on the bcc lattice forms an upper bound for the
stability region of the charge-ordered bcc solid. Moreover,
the actual transition between fluid and the bcc charge-
ordered solid should be first order. In view of the above
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fce—d

charge—disordered

charge— fce—o

ordered

diluted dense

p (a) Y

FIG. 6. Low-density part of the phase diagram, expected for
p> po. fce—d

discussion it is plausible that the fluctuation-induced first-
order transition between a disordered fluid and a charge-
ordered phase is identical with the liquid—bcc-solid transi-
tion.

NN\

fce—o
liquid

V. CONCLUSIONS

We have shown that the line of continuous transitions to a
charge-ordered phase with an associated TCP can be trans- (b p
formed continuously into the first-order transition. The
change of character of phase diagrams occurs on an sc lat- FIG. 7. Schematic phase diagram for model | and for off-lattice
tice, when the strength of the NN repulsidf<J<), models. The present analysis is not sufficient to determine the high-
added to the Coulomb interactions, increases.Jod, the density part of the diagram vyith suffipient precision. The diagram
uniform phase is unstable along theline with respect to  1as the form shown either itA) or in (B). See text for more

charge-density fluctuations leading to a unique structure, i.eSXPlanation.

to two oppositely charged sublattices. The unique structurgrder-disorder transitions for/a=2 are described in Ref.
occurs when the wave vectors of the critical fluctuations are3.

kp=m(x1,+1,+1), i.e. form vertices of the cubic domainin ~ |n addition to the order-disorder transition a phase sepa-
k-space. Fold=J, the line of continuous transitions to the ration into two uniform, ion-poor and ion-rich phases can
charge-ordered phase starts to split into two lines enclosintpke place. It is because the instability of the disordered
the two-phase region, whose width increases with increasinghase is induced either b#(x) «cogky-x) or by the whole
J>J,. The first-order transition occurs when the disorderedspectrum of the charge fluctuations, since each charge fluc-
phase is unstable with respect to charge-density waves leatlsation induces the shift of the number density of ions
ing to a continuum of charge-ordered structures. Each pars(x) = ¢?(x) [1,21]. The latter instability can be found after
ticular structure is characterized by a wave veg&ipbelong-  the charge fluctuations are integrated fli21,23, and has

ing to a surface of finite area ik-space[Eq. (31)], and for  not been considered in this work. The spinodal line is ex-
S— S, the grand potential for all these structures assumes thgected to consist of two parts. The low-density part of the
same value, hence they occur with the same probability. Avspinodal(dash-dotted line in Fig.)sdescribes the instability
eraging over all those structures restores the disorderedith respect to phase separation into two unifaicharge-
phase. Only for sufficiently large value & —S the grand disorderegl phases, as found in Refil,3,23. The position
potential of a particular, ordered phase vanishes beyond MBbf the spinodal line associated with the phase separation into
for a finite amplitude of the charge density, signaling the firstuniform phases depends on the presence and the kind of the
order transition. Such transitions were found before for dif-underlying lattice rather weakl§18]. In contrast, the posi-
ferent models, in whiclk# O for the critical mode$26-29.  tion of the boundary of stability of the uniform phase with
From the analysis described in Sec. IV it follows that therespect to the charge-ordering depends crucially on the pres-
charge-ordered phase which becomes stable for a sufficientbhce and the kind of the underlying lattice. The slope of this
small value ofSshould have the bcc structure. The two typesline is different on different lattices in MEhote that fluctua-

of the order-disorder transition are shown schematically irtions lead to lower values d§, than found in MB. In the

Fig. 4. The diagram shown in Fig(A4) is consistent with the presence of the NN repulsion bo8) and the density at the
simulation result for the sc lattice, and the diagram shown inTCP decrease witl, as shown in Figs. 1 and 2. Schematic
Fig. 4B) is consistent with the simulation results fofa  representation of the two branches of the spinodal for small
=2.[8,1Q. The effects of fluctuations on the order of the and large values od are shown in Figs(®) and %B), re-
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spectively. If the spinodal has the shape shown in Fi§.)5 APPENDIX: LATTICE COULOMB POTENTIAL
then the CP remains metastable. However, when the spinodal
has the form shown in Fig.(B), then the critical point as-
sociated with the separation into two uniform phases be-
comes stable. For small valuesbthe phase diagram should

The lattice Coulomb potential is a solution of the dis-
cretized Poisson-Boltzmann equation, and in Fourier repre-
sentation assumes the form

have the form shown in Fig.(A), and forJ>J, we expect _ 20
that the phase diagram should have the form shown sche- V(k)y=——, (A1)
matically in Fig. 6. 31— flan(k)]

graligrf(r)nrogleel I\viilgr?aﬁgl: g; Sdkeitgglsssigemr%?:;g klﬁze'\ﬁ::a here the index latt denotes the sc, fcc, or the bcc lattice.
predictions for low and high densities presented in Secs. Il B'he lattice characteristic functidi(k) depends on the kind
and lll, respectively, the analysis of the effects of fluctuationsof the lattice. For the sc, fcc and bcc Iattlt:f%(k) is given
(Secs. 1B and 1) and the analysis of the order-disorder by

transition on the bcc sublatti¢€ec. V). The result is shown

in Fig. 7. At high densities the fcc solid is stable. It under- ~

goes a first-order transition between the high-temperature, fse= 52 cosk;, (A2)
charge disordered phase and the low temperature charge-
ordered phase. At lower densities we expect stability of the
bcc solid when the temperature is low, and a first order tran-
sition to the liquid phase when the temperature is increased.
The bcc solid coexists with ion-dilutgdgas”) phase at very

low T and with a liquid phase at high&r We have identified and
the fluctuation-induced first-order transition between fluid
and the charge-ordered phase with the liquid - charge- ~
ordered bce-solid coexistence. Further studies are necessary Focdk) = H cosk;, (A4)
to determine high-density, high temperature three-phase =

equilibria for the liquid, charge-ordered bcc, charge-orderegespectively. The constanw'a“ and \/latt are defined via
fcc, and charge-disordered fcc phases. Figure 7 shows twgquations

possibilities. Note that the diagram shown in FigAY is

~ 1
froe(K) = 52 cosk; cosk, (A3)

i<ij

3

similar to the diagram found in simulations for the RPM in \tt = 1
continuum spacgl17]. This shows that model | is indeed B <31 7 )] (AS)
similar to the continuum system, and that our approch per- lat
mits a prediction of the phase behavior for the whole range
of concentrations of ions within the same formalism. \att = f cosky . (A6)
k 3[1 = Fian(k
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