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Disordered asymmetric simple exclusion process: Mean-field treatment
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We provide two complementary approaches to the treatment of disorder in a fundamental nonequilibrium
model, the asymmetric simple exclusion process. First, a mean-field steady-state mapping is generalized to the
disordered case, where it provides a mapping of probability distributions and demonstrates how disorder results
in a new flat regime in the steady-state current—density plot for periodic boundary conditions. This effect was
earlier observed by Tripathy and Barrflghys. Rev. E58, 1911(1998)] but we provide a treatment for more
general distributions of disorder, including both numerical results and analytic expressions for the Aydth 2
of the flat section. We then apply an argument based on moving shock fxéorRepkov and G. M. Schiitz,
Europhys. Lett.48, 257 (1999] to show how this leads to an increase in the high-current region of the phase
diagram for open boundary conditions. Second, we show how equivalent results can be obtained easily by
taking the continuum limit of the problem and then using a disordered version of the well-known Cole-Hopf
mapping to linearize the equation. Within this approach we show that adding disorder induces a localization
transformationverified by numerical scalingandAc maps to an inverse localization length, helping to give
a physical interpretation to the problem.
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[. INTRODUCTION The paper is organized as follows. In Sec. Il we define the
. s o ) ] ) model and summarize relevant results for the pure case. In
_Many “real-life” nonequilibrium situations contain some gec. ||| we outline our two main methods: a steady-state
kind of randqmnes; or d|so_rder, and empirical qbservatlonsmapping and a disordered generalization of the Cole-Hopf
for example in traffic flow, illustrate that such disorder canansformation. These two approaches are then developed
lead to interesting new phenomena. In nonequilibrium statisfyther in Secs. IV and VI, respectively, allowing us to char-
tical mechanics even one-dimensioaD) models can ex-  gcterize(both quantitatively and qualitativelyhe effects of
hibit phase transitiongsee, e.g., the review by Evaifi$])  gisorder. In Sec. V we show how this affects the current-
and we are _p.artlcularly llnterested in thg effects o_f disorder ORjensity diagram for periodic boundary conditions and the
these transitions. Studies based on simple lattice-based &¥hase diagram for open boundary conditions and discuss
clusion models incorporate collective effects while offeringsinite-size effects. Finally, in Sec. VII, we summarize our
possibilities for analytic progress and easy computer simulagegits and discuss areas for future work.
tion.
In this paper we concentrate on the effect of quenched

substitutional disorder on one such lattice model—the well- Il. DISORDERED ASYMMETRIC SIMPLE EXCLUSION

known asymmetric simple exclusion procggsSEP). The PROCESS
ASEP is one of the simplest nonequilibrium models with a
boundary-driven steady-state phase transition and thus plays A. Definition of the model

a paradigmatic role in nonequilibrium statistical mechanics e general form of the bond-disordered asymmetric
much as the Ising model does in the study of equilibriumsimme exclusion procestDASEP) is summarized by the
systems. The present work is entirely within the frameworkscpematic of Fig. 1. A particle at sitehops to avacant
of a mean-field approximation and largely for the Steadynearest-neighbor site on the righeft) with ratep; (g_y). In
state_b_ut already shows many interesting effects on the phase yiscrete time version of the modg@s implemented in
transition such as an altered phase diagram and the presengg, ationg, these rates are replaced by probabilities per
of “Griffith’s phases”[2]. We hope subsequently to extend (e step and a random sequential update rule is applied.
a_md compare th|s.study with treatments.allowmg for fluctua-are we consider for simplicity only the totally asymmetric
tion effects. Previous approaches FO disorder in the ASEI:)caseq,:o; qualitatively similar results are expected in the
and related models, can be found in the work of K{Gy partially asymmetric case.
Kolwankar and Punnoodd], and others. Furthermore, field- * 1,5 obvious choices of boundary conditions are the fol-
theoretic approaches which retain the fluctuations can be aFPéwing.
pIied_ to higher-dimensional generalizations of the continuum (i) Periodic boundary conditionsA particle from siteL
version of the ASERS,6]. can hop into a vacancy at site 1 with rage
(i) Open boundary conditionsParticles are injected at
the left-hand end of the lattice and extracted at the right-hand
*Electronic address: harris@thphys.ox.ac.uk end, forcing a particle current through the system. The usual
"Electronic address: stinch@thphys.ox.ac.uk convention is to insert particles onto site 1 with raté the
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FIG. 1. DASEP with open boundary conditions. Solid circles denote particles; open circles are vacancies. The hard-core exclusion rule
means the model incorporates collective effects.

site is empty and remove particles occupying kiteith rate  might be expected from the low dimensionality, it gives in-
B. It is this case which is illustrated in Fig. 1. correct values for the two static exponents and the dynamic

Another possibility(used, for example, in the work by exponent. Similarly, we expect that a mean-field approach to
Popkov and Schuit§7]) is to have fixed “reservoir densities” the disordered problem will elucidate crucial features which
¢~ and g", respectively, at left and right ends of the chain.are not controlled by fluctuations, such as modifications to
By current conservation at the boundaries we see that thie phase diagram and the dynamics hotthe critical be-
correspondence between reservoir densities and input arwavior.

output ratese and g is given by Recent work by Enaud and Derrifld2] has looked at the
L _ N effect of disorder on the first-order phase transition; in this
a=pe, B=pl-¢), (1 paper we concentrate mainly on the effect of disorder on the

wherepy is the hopping rate from the reservoir site 0 to thesecond-order transition between low- and high-current
first proper site 1 angb, the rate from the last site to the ~ Phases.
reservoir at the right.
In the pure case fixing reservoir densities is exactly I1l. TWO PARALLEL APPROACHES
equivalent to fixing input and output rates, but in the case ) ) ) )
where thep's are disordered the two definitions are differ- N this section we outline our two basic approaches, ex-

ent. We find both types of realization in representativePl@ining their use in the pure case and indicating how we
problems—e.g., traffic flow. extend them to treat disorder.

B. Summary of results for the pure case A. Steady-state mapping

The pure ASEP with site-independent hopping raies, For general quenched substitutional disorder we can use
p,=p for all 1) can be treated by a variety of approachesour knowledge of the hopping rules to write an exact expres-
including recursive techniqugs$], the steady-state operator sion for the average current across the bond betweenlsites
algebra formalism of Derridat al. [9] and its dynamic gen- andl+1:
eralization[10], or mapping to a quantum-spin systéfd].

Recall that the exact solution for the steady state can be 1
summarized by a current-density plohe “fundamental dia-
gram”) for periodic boundary conditions and a phase dia-
gram for open boundary conditions. For later reference these | [

are shown in Figs. 2 and 3, respectively. E— )

A mean-field approximation reproduces the exact phase
diagram and also gives the essence of the dynamics through
a treatment based on moving shock fronts. However, as

B

Low o High J

J

N

FIG. 3. Phase diagram for the pure ASEP with open boundary
conditions. The second-order transition between high-current
(alp>1/2, B/p>1/2) and low-current phases is represented by a
1 ¢ solid line, while the first-order transition is shown by a dashed line.

For an infinite system the current in the high-current phag® 4s

FIG. 2. Fundamental diagragparticle current] versus density for a finite-size system a slightly larger current can be sustained.
o) for the pure ASEP with periodic boundary conditions in the The insets show sketches of the typical density profsés density
thermodynamic limit. Note the particle-hole duality. @) against lattice sité) in each region.

1
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Jis1 =P (1 =N, (2) higher o is stable and the lower one is unstable. It is clear

. . from Eq. (6) that for mapping in the opposite direction the
wheren;=1 or O for a particle of vacancy at siteand the  geapility of the fixed points is reversed and the higlglow-
angular b_rackets denote an average over histories for a ﬂxe§5 one is stable. The resolution of this apparent paradox is
{pi}. We introduce the average density for each sit§}  gimply that the steady-state selection in a given case is de-
=gy, and in the mean-field approximation ignore correlationstermined by the boundary conditions. Among the possible
between sites, so profiles are “kink’-type solutions of the steady-state pure

(N O (N = 0,0)41- 3) mean-field profile map, having the form

When the system has reached a steady state the densities are 0= 1 + }tanh 6 tanh(l g+ 6), 7)
constant in time and hence from the continuity equation the 2
current must be constant in space—iJ,;,,=J for all I. So

for the mean-field steady state we have where tanhg=/(1-4J/p) and 6 are determined by bound-

ary conditions. AtJ=p/4 the two fixed points combine in a
J=po(1-0111), (4) half-stable fixed point ap=1/2. In thehigh-current regime
J=pl/4, the mapping has no fixed points and density profiles

which then gives a mapping far,,, in terms ofg,: have the form

QI+1:1_L- (5) _1 1 ’ ’ ’
pie QI—E_Etand’ tan(l¢’ +6'), (8)

For a particular realization df’s, if we know J and one of with tan ¢,:\’/m. Since we must have o<1 for

the densitiegsay,,), we can use this mapping to obtain the all | then Eq.(8) clearly applies with nonzerap’ (i.e.,

density profile for the whole system. As we shall discuss in PN . L ; .
detail below,] is limited by the requirement that for dlwe J>p/4) only if | is confined within the boundaries of a finite

must have & g, <1 system. These mean-field profiles agree qualitatively with
| =41.

. . exact solutiong9], although the mean-field versions overex-
Note that we can also rearrange [E4). to give a mapping o .
. LT aggerate the sharpness of the shock front, which in practice
for g, in terms of g,,4. In terms of the hole densityr;=1

e ” S is broadened by fluctuations.
~ @, this "backward” mapping is In the disordered case it is straightforward to iterate Eq.
J (5) by computer. For specific realizations of disordee.,
o=1- ) (6) particular choices ofp,}) we have compared densities from
this mean-field mapping with profiles obtained by Monte
which has exactly the same form as H&) due to the Carlo simulation. As shown in the low-current example of
particle-hole duality of the system. Fig. 4 there is a reasonable qualitative fit though again the
The mappings for the pure case wherep independent mean-field shock front is sharper than the simulation result.
of | have been given previousil3]. There one finds that, Close to the pure critical current one sees that in some re-
for low currentsJ<p/4, the mapping has two fixed points. gions(corresponding to groups of “weak” bonds with Iggy
Mapping in the direction of increasirigthe fixed point with  the profile has roughly the high-current form while in other
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regions(“strong” bonds it takes the low-current form—this 1 1dlnu
is the analog of Griffith’s phases in a magri@i. We per- 0= T (13
formed comparisons for the open boundary qase[14] for
similar discussion with periodic boundary conditipmeghere  For a steady-state solution f@r then u must be separable
the simulation is controlled by parametersand 8. A com-  with time dependence ™' and w=2J.
puter fitting procedure was used to matehand 8 to the In the pure case the second term on the right-hand side of
value ofJ and one of the,'s needed to implement the mean- Eq. (12) can be absorbed into the definition of the transfor-
field mapping(for the pure case this can be done exactly mation to leave us with just the diffusion equation

Such examples for specific realizations of disorder sup- 5
port the qualitative validity of the mean-field approach. In au = a_u.
Sec. IV we develop a more general analysis to predict the at ax

typical effects of a given distribution of disordéBaussian, e . . .
uniform. etc). By considering the mapping of density distri- This diffusion equation can be trivially solved and mapping

but ble to show that h teristic. effect Pack through the Cole-Hopf transformation then gives the
utions we are ablé 1o show that a charactenstic etiect ofq_ynown pure continuum steady-state solutions which are

disorder is a shift in the average density. The physical meant. continuum versions of Eq€Z) and(8)
ing is explored further in Sec. V. X

For the disordered case, the situation is more complicated
_ o _ and in particular we have to include th®¢x)u term on the
B. Continuum limit and Cole-Hopf transformation right-hand side of Eq(12). It is not immediately obvious

Here we consider the continuum limit of the DASEP andNOW to treat this equation for geneia(x), although it might
introduce a disordered generalization of the well-knownP® Possible to solve it for specifi2(x) or to do some kind of
Cole-Hopf transformatioil5,16. WKB-type approximation. In Sec. VI we shall show how
the mean-field approximatiprwe can take the continuum ful numerical scaling approach which reveals that disorder
limit of Eq. (2), to arrive at induces a localization transition. This provides a complemen-

tary approach to the steady-state mapping outlined above and
1 Q) enables us to interpret the effect of disorder as a localization

J
J= D(X)(Q(l -0)- > 3% (9)  transition in the transformed system.

(14)

whereJ and ¢ are in general functions of continuous posi- IV. STEADY-STATE MEAN-FIELD MAPPING
tion x and timet, and we set the lattice spacing equal to 1 for FOR DISORDERED CASE
convenience. Substituting this into the continuity equation A. Mapping of distributions

ields a(noiselessdisordered Burger’s-type equation . .
y ( 4 g ype ed Here we return to look in detail at the steady-state map-

19 Qﬂ ping with a known distribution of disorder. It is convenient to

J
=L 1-g)->5= 10 i i
ﬁx{p(x)<e( 0) 2 7 (100  take the disordered variable as

n=Jp. (15)
The next step is to transform to a height variahleuch that . | _ I o _
ohlox=p-112, giving If the position-independent distributidity,) is known, then

one can use the mappiri§) to relate the probability distri-
#h d 1 [oh\2 14h butionw of g,;, to the distribution ofg,:
p(x) . (1Y

axat ax 4 20%

dX

Wiea(@14) = f vv.( z ) 2 f(ydy. (16)
This can be trivially integrated with respect xoto give a 1-0141/ (1 =014

noiseless dis_o_rdered version of the growth model studied byhe subscripts on the's in Eq. (16) indicate that we expect
Kardar, Parisi, and Zhand17]. We then puth(x,t)  the distribution to change as we map through the system. For
=\ In[u(x,t)]+f(t) and choose the arbitrary functid(t) and  example, if we start from a knowg; (i.e., w; is a & func-

the constant\ so as to remove all nonlinear terms. This tion), then the width of the distribution will obviously in-
disordered generalization of the Cole-Hopf transformatiorcrease as we look at,, ws, etc.

finally gives us After iterating the mapping for many steps the density
5 distribution will eventually converge on some fixed point

Ju _ D(x)ﬂ ~D(X)u (12) shape, the position of which will depend on the direction in

at IX? ' which we map(just as in the pure case discussion in Sec.

Il A). This stationary probability density is the distribution
where D(x)=p(x)/2. Equation(12) is a linear equation of g,'s which we would expect to see in the periodic bound-
(therefore much easier to treat numerically and analytitallyary case. However, as we shall demonstrate in Sec. V B, by
which still preserves the full dynamics of the system. Fromconsidering moving-shock-type solutions we can also gain
its solutiong is given by the inverse Cole-Hopf transforma- some information about the expected open boundary profiles
tion and phase diagram.
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Numerically, therefore, we look for the stationary prob- abouty with small varlancea2 we can perform an expan-
ability density ofp,’s for different J's (averaged over many sion of the integrand in powers 0{2 and obtain a functional
realizations of disordér In practice this involves using the differential equation
mapping of Eq(5) for large system sizesay 10 000 lattice

point9, repeating for differenpy’'s and different realizations M 5 o d? ¥
of disorder, then creating a histogram of the valueg of w(e) :W<l—) 1-0)2 + _ZYF W(l—> ,
We find that a convenient order parameter to characterize —e/(1-0) @ -e
the distributions is the asymmetry abogt1/2 given by (18)

A=(p-1/2) (where numerically we take the average over

all ¢’s in the physically accessible region between 0 apd 1 Where terms involving higher moments have been neglected.
In the pure case we find that is zero in the high-current We now wish to solve Eq(18) for normalized non-negative
regime and nonzero in the low-current regiiisee Fig. 5. W(¢). Note that in order to be able to carry out the integrals
This is just what we would expect from using the pure map-analytically we here allovp to take any real value whereas
ping (see again Sec. Il Ain the forward direction: in the in the physical problem & o<1. As we shall discuss later
low-current phase the densities in the bulk of the system wilthis is not expected to introduce much of an error providing
approach the upper fixed point, whereas for a long system id is not too high compared with the pure critical current. For
the high-current phase the densities in the bulk are all veryo2 ‘small” (in a sense to be clarifigdve assume a solution
close to 1/2. However, in the disordered case we find shat of the form

is nonzero for allJ as shown for typical examples in Fig. 5.

We now consider an analytical argument to reproduce Ei
these data basing our method on the work of Hifdi@ for w(e) =wg(e) + > wi(Q). (19

different random mapping processes. In our case, we impose
the fixed-point condition by setting,=w,;=w so that Eq.

(16) gives (dropping redundant subscripts The pure solutiorwg(g) is easily shown to be

Y Y 1
W(e)=JW<—> f(y)dy. (17) wWo(@) =A———, 20
1_9 (1_9)2 O(Q) QZ—Q+’)/ ( )

This integral equation is difficult to solve analytically but we
can find approximate solutions by considering the dominanyith A a normalization constant given byy—1/4/m. This
terms in different regimes. In Secs. IV B=IV D we pursue solution is only valid fory>1/4 which corresponds to being
this approach above, below and close to the pure critica the high-current phase of the corresponding pure model.
point. Then in Sec. IVE we consider the specific solubleNote that we can also get this result from the known high-

example of a Lorentzian distribution of disorder. current mean -field pure resyB) using the obvious relation-
. N . shipw(p) ~ 1/|de/dl|. By considering this form fowg(g),
B. Calculation of A above the pure critical point we see that to satisfy Eq18) wy(e) must have a factor

Above the pure critical point the integral in E(L7) is  (@°—e+7%)* in the denominator. Straightforward calculation
dominated by the peak if(y). For disorder sharply peaked gives
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2A  0%-7yp and 1 (and adjust the normalization correspondingand
wy(Q) = S P-e+ (21)  obtain values in better agreement with the data.

A more serious problem is the fact that our analytical
From this expression for the stationary probability distribu-expression fol tends to infinity as) tends to the pure criti-

tion we can calculatévia contour integrationthe average cal currentd2=1/(47), whereas numerically we see no di-
value ofp-1/2:

vergence inA. In fact it is easy to see why the analytical

. 1 method fails close to the critical point. %Jg, the pure
A:f (Q _ —)W(Q)dQ (22) dlstr|but|_on W(?(Q) becomes more and more sharply peaked
e 2 about p=1/2; however,w;(g) will be even more sharply
peakeddue to the cubed term in the denominatand even-
o2 tually the magnitude of this first-order correction becomes
——YT. (23 large compared withvy(o) for some values 0p. This leads
4(7‘ z)

to unphysical results such as negative probability densities. A
rough calculation shows that in order for the perturbation
This is the chief analytical result of this subsection; we nowXPansion of Eq§(18) an_q (19 to be V"’}“d we requirer,
compare it with numerics and discuss its validity. <(l_1/4) and this pond|t|on becomes |mp955|ble 0 sansjy
For comparison with data it is more helpful to write Eq. as y—1/4. Alternative approaches to obtain an expression
(23) in terms of the currend and the mean; and variance

valid near the critical point will be considered in Sec. IV D
. . " i below.
027] of the inverse hopping probability,=1/p;:
Jo?
A= —’71— (24) C. Calculation of A below pure critical point
4 In--
( 7 4)

Far below the critical point the integral in E@l7) is

dominated by the contribution from the sharp peak of
In Fig. 6 we compare the prediction of this analytical resultw| y/(1-p)]. Performing a saddle-point expansion about this

with the data from our numerical mapping with a Gaussiampeak(and for convenience assuming a Gaussian distribution
distribution of disorder. We see that E@4) reproduces well  for the disordeyr we obtain

the general trend of the data but there are a couple of obvious

problems. For high values af, the analytical expression - )

slightly underestimates the numerical result—this is due to BIW(?)2exp| - [(1-0)e-v] )

the fact that analytically == < o <o whereas in the numerics 20*2,/

(as in the physical problemwve have averaged oversOgp w(e) =

o = . (29
' ot n1/2
=< 1. As expected, this discrepancy becomes larger for high ciw'@w(e) - [w (I}
since then the density profile is steeper and is concentrated

less aboutp ~1/2, so the tails of the distribution are more Now in the saddle-point expansi@nis defined as the maxi-
important. One can numerically integratg., USiNgMAPLE

mum of w(g), so for consistency it must correspond to the
or a similar programthe expression in Eq22) between 0 maximum of the Gaussian in E(R5); i.e., we have

016108-6



DISORDERED ASYMMETRIC SIMPLE EXCLUSION. PHYSICAL REVIEW E 70, 016108(2004)

0.50

*‘I“h{. I ! i I numerical mapping data + J
+‘+‘+ e analytical prediction of (28) --------
0.45 — *I-q.* -
ot
e "
0.40 — ‘+~++ —
Ry "
L S -
0.35 ey
0.30 b *‘Isk - FIG. 7. Comparison of nu-
) Py merical and analytical results for
- 0.25 — +\*+\ - A, below the pure critical current
o oy (32=0.125. Numerical data for
0.20 *‘+\ — Gaussian disorder with=2.0 and
'*“+\ 0,=0.2. Note the discrepancy
0.15 |- +\+\ — close t0J2.
_\;*\ —
0.10 Y
0.05 [ J&.;_
0 1 ! ! | | L
0 0.02 0.04 0.06 0.08 0.10 0.12
J
(1-9)0=7, (26) Note that in order to obtain an analytic approximation for

o N . . A in the low-current regime we needed to assume a particu-
which is just the condition for the fixed points of the pure |ar distribution for the disorder. Repeating the procedure for
low-current mapping. We recall that the upper of these twayjfferent distributions(e.g., uniform, binary we find that
fixed points is stable as we map forward through the systenyp) has a different form in each case but to a first approxi-
while the lower one is unstable. So a5—0, w(e) of EQ.  mationA takes the pure value in all cases. This is in contrast
(25) tends to as function about the upper fixed point. The tg the high-current regime treated in Sec. IV B where the
addition of disorder broadens this pure distribution to aexact form of disorder is irrelevant to first ordge relevant
Gaussian with the same mean and standard deviation parameter is the standard deviation oplandw(p) takes
o,lo—ie, the universal form given by Eq$19—(21). The numerics
(0-5)? confirms these arguments.

2(a /@)
CalculatingA in this approximation is trivial and gives

w(e) = (2m)V4@lo)exp - ) : (27)

D. Calculation of A around the pure critical point
Ideally we would like an expression fax at and very
close to the pure critical current since this is the most inter-
1 _ esting regime physicallya large system cannot sustain cur-
A=y (28)  rents much above the critical point as will be discussed in
detail in Sec. V below Unfortunately in this intermediate
So we conclude that, for currents well below the pure criticalregime it is not easy to see how to treat Efj7) as both
current, disorder does not change the pure resulaforhis ~ w[y/(1-¢)] andf(y) are sharply peaked.
agrees with the numerical results fb< J2 shown in Fig. 7. One approach is to assume that the prodwEt/(1
Again our analytic prediction fails close to the critical —p)]f(y) is sharply peaked iy and perform a saddle-point
point; this is due to the breakdown of the assumption that th@xpansion on the integrand. For convenience, we define
major contribution to the integral equatioh?) is due to the  y(o)=-In[w(g)] and consider a Gaussian distribution of
sharp peak in(g). From the above analysis we can see thaigisorder. Then the saddle pofis defined by
the standard deviation iry of the peak inw[y/(1-9)] is

/3. o if thi i X(1-0)-7y 1
aboqtay(l—g)lg, so if this peak is to be sharper than the 0 :(_QH(l —0)-Z+y'(¥), (31)
one inf(y), we require o X
o (1-D)o<o (29)  Where the prime denotes differentiation with respect to the
4 7 argument of the function. Evaluating E¢L7) about this
1 saddle point yields
¢>3 (30 _Xa-0)-yP

y(e) o2 InX +y(X). (32
This condition breaks down as we approach the pure critical Y
point and a more sophisticated analysis becomes necessdryprinciple these equations are sufficient to deterriximed
(see Sec. IV D y(p) but the implicit definition ofx makes further analytic
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progress extremely difficult. Instead we consider, in the next R =1-G'/R, (36)

section, a specifid_orentziar) distribution of disorder where . _
the mapping equations turn out to be exactly soluble. ThigvhereR=g+it, G=y+il' and the dagger denotes complex
particular case helps build up a general picture of what haptonjugation. Now the fixed point of the mapping is given by

pens near the critical point. the Lorentzian distribution characterized Ry=0" +it", with
g=Ut 37
E. Exactly soluble case T oo (37)

Hirota and Ishii[19] have treatedxactlythe case where
the disorder variable in their mapping has a Lorentzian dis- t=x12, (38)
tribution. They show that the stationary probability density is h is th i t of
also Lorentzian and calculate its width and mean. Our map\fv erexis the posiive root o

ping equation has a different form but is also amenable to , (1 2 1,
analytical treatment for the case of Lorentzian disorder. This A i d L ZF =0. (39
is therefore a useful test case where we can compare numer-
ics and analyticgor the full range of J From this stationary distribution one can calculateav-
If yis drawn from the Lorentzian distribution eraging overg’s from - to +w gives
f(y) = i T (33) A= 1Fx_llz. (40)
Y m (- 2

) o _ Asdiscussed aboVsee text following Eq(24)], this exten-
and we assume a Lorentzian distribution f@ar (meang,  sjon of the range op is not expected to make much differ-
width t), then we can integrate exactly the integral mappingence unless the curredtis large. In fact for this Lorentzian
equation(17) to find thate,., also obeys a Lorentzian distri- case we can actually do the integral ogebetween 0 and 1

bution with mean and width given by analytically, yielding the proper result
—_— 1/2 1/2 2 2 3/2
. yo-Tt _x? ((x -1 +4x)_ r< 4ax )
e'=1- 2+ (39 A=5 (X2 +T)%+ 4x2 22 T2 e = x)
(41)
) o+t In Fig. 8 we compare the results of these expressions with
= R+ (35) numerical data for a Lorentzian distribution of disorder and

find as expected that E@g41) gives a noticeably better fit
Following [19] we can characterize each Lorentzian dis-than Eq.(40) for J above the critical point. The fit is still not
tribution by a complex number whose real part represents thexact due to the fact that in the numerics we have imposed
mean and whose imaginary part represents the width. Thethme physical restriction thag must be positive but this cutoff
the mapping relationship is is not incorporated in the analytics. This problem is more
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pronounced than in the Gaussian case because of the rela- ¢
tively high weight in the tails of the Lorentzian distribution. 1t

V. EFFECT OF DISORDER ON FUNDAMENTAL
AND PHASE DIAGRAMS
1/2+ ¢ T

We have seen that the shiftprovides a useful character- N
~AcH

ization of the effect of disorder; we now turn our attention to
what this shift means physically in terms of the density pro-
files, fundamental diagranffor periodic boundary condi-
tions), and phase diagraffior open boundary conditionsin
Sec. IV we presented both numerical and analytical ap-
proaches to calculat& for fixed J. However, in simulations 0
J is not held constant and we must consider how it changes
when we add disorder. We concentrate initially on the ther- g, 9. possible density profile in the maximum-current phase
modynamic limit wherel is easier to predict and then in Sec. for system with disorder. Periodic boundary conditions can be im-
V C consider the importance of finite-size effects in smallposed, for example, between poiBE, AF, or DE, leading to a
systems. range of possible densities from2—-A¢ to 1/2+Ac.

Recall that the treatment of Sec. IV was based on using
Eq. (5) to map forwards irp. If instead we had used E¢6)  ates slightly from the pure case especially close to the critical
to map backwards iwr, then by exactly the same argument point.
we would have concluded that the steady-state distribution However,in the maximum-current phaseis possible for
for the disordered case hés)>1/2—i.e.,(¢)<1/2 for all  the distribution to start near the lower unstable fixed point
J. This apparent paradox is exactly analogous to the situatioand map forward to the upper stable fixed point via a noisy
in the pure low-current phase where the stable fixed poinshock front(whose position may altgrThe periodic bound-
value of ¢ depends on which direction we mégee discus- ary conditions are maintained by stretches of decreaging
sion in Sec. lll A. The resolution in both cases is that which corresponding to weak bonds in the pure high-current phase.
fixed point is seen in the bulk depends on the boundary corA crude way to consider this is to look at the profile as a
ditions. We now consider these in more detalil. superposition of a high-current profile with a small shock-
front-type low-current profile as shown schematically in Fig.
9. This “density segregation” into sectiofreot necessarily of
equal lengthswith densityl/2-A- and 1/2+4Ac) was pre-

Perhaps the most obvious change expected when we adgbusly explained for the binary disorder case by Tripathy
disorder to a large system is a decrease in the maximumind Barmg14]. Enforcement of the periodic boundary con-
sustainable current. For an infinitely large pure system withjitions (see again Fig. 9then leads to macroscopic average
periodic boundary conditions the maximum currdt, ,is  densities in this maximum-current phase anywhere from
just the critical currenti2=p/4. Similarly for a disordered 1/2-Acto 1/2+A¢).
system, the maximum possible current is limited by stretches So the end result is a fundamental diagram which looks
of “weak” bonds(i.e., low p) so in the thermodynamic limit |ike the pure one for low currents but has a new flat regime
we expectinay ;= Jc=Pmina (Wherepp,, is the smallest value  of width 2A¢ at the maximum current as shown in Fig. 10.
of p permitted by our distribution of disorderUsing the  This flattening effect was observed [ib4] and the width of
methods of Sec. IV, we can obtail corresponding to all the flat section calculated for the particularly simple case of
possible currents up tdc. In contrast to the pure case we hinary disorder. Our method enables us to treat more general
now have a nonzero value df(J:) which we shall denote

l

A. Periodic boundary conditions

for convenience byAc. We now address how this is reflected J
in the fundamental diagram. 2A¢

Let us first consider currents below the maximum. - PR
Clearly, one possibility is for the distribution offor all sites 4 7
in the lattice to be given by the stationary distributiefp) / A\

determined from the conditio(l7). The average density is
then obviously given byl/2+A. However, the argument , \
above illustrates that it is also possible for the distribution to y \
be at the unstable fixed point of the forward density mapping /

giving {(c-1/2)=A and hence an average density of 1/2
—A. So in the low-current phase with periodic boundary con- 0
ditions the possible disordered profiles are roughly the same 0
as in the pure casge., either at the upper fixed point or the

lower fixed poinj although of course with added noise. The  FIG. 10. Schematic fundamental diagram for the DASEP in
exact position of the fixed poinigharacterized byA) devi-  thermodynamic limit.

1
2
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distributions of disorder—fronA(J) and the maximum cur-
rent then we can construct the complete mean-field funda-
mental diagram.

Figure 11 shows the fundamental diagram obtained from
Monte Carlo simulations for a system of size 5000 with a

PHYSICAL REVIEW EO, 016108(2004)

FIG. 11. Monte Carlo simula-
tion data for the DASEP funda-
mental diagram for system size
5000. The uniform disorder case
has7=2.0 ando,=0.5; flattening
with respect to the pure case is
clearly seen.

C. Finite-size effects

In this subsection we outline briefly the modifications to
the above picture for finite-size systems. The discussion is
inevitably fairly qualitative, and it is worth noting that even
in the pure case, a mean-field treatment does not correctly

partlcular realization drawn from a uniform Q|str|but|on of capture all finite-size effects.
disorder(results for the pure case corresponding to the mean In the pure case there are two main finite-size effects

of 1/p are also shown Comparison with the calculateJ) st in the open boundary case the system can sustain a
for the same width of disordeFig. 5 shows that the mean- ¢, rentg _ which is slightly larger thad2. One can obtain
field prediction is roughly correct, though the maximum cur-5 1 aan-field prediction fod, ., , by looking for the largest
rent in_the sir_nu_lation is larger than the mean-field thermos,5i,e of J for which all o, of Eq. (8) are in the physically
dynamic prediction of 0.1. applicable regime between 0 and 1. Second, in a small sys-
tem Jg is increased slightly fronp/4—this effect is due to
correlations between particle densities at adjacent sites and is

Popkov and Schutg7] have shown how to predict the therefore not reproduced by mean-field theory which predicts
phase diagram for open boundary conditions from the fundaJOC:p/4 for all system sizes.

B. Open boundary conditions

mental diagram for periodic boundary conditions. Their ar-
gument considers the motion of shock fronts through the
bulk to motivate an extremal current principle:

(42)

J= max Jp) for o > %,

eelo*o7]
(43

J= min J) for o <o*,

eele™.0']

whereg™ and ¢* are reservoir densitigsee Sec. Il A

Applying this Popkov-Schitz argument to the fundamen-
tal diagram of Sec. V A leads to a growth in the size of the
high-current phaséas compared to the pure casesulting
from the flat section on the fundamental diagram. This
growth is by an amounk in both thep™ andp™ directions.
The resulting phase diagram in tiggé—o* plane and com-
parison with the pure case are shown schematically in Fig.
12. So our numerical and analytical calculationsAgfl) in
the previous section allow us to determine quantitatively the

disordered phase diagram; compare the simulation data of FIG. 12. Phase diagram for DASEP in tpe—p* plane(black
lines) with pure case for comparisdigray lines.

Fig. 13.
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and there are alterations in the phase diagram corresponding
to the altered fundamental diagram.

So finite-size effects have a significant complicating influ-
ence on both the fundamental diagram and phase diagram. At
present we are not able to quantify these entirely even within
the mean-field theory but progress can be made by combin-
ing numerical work(e.g., self-consistently looking for the
maximum current the density mapping can sustaiith the
analysis of previous sections.

VI. RESULTS FROM DISORDERED COLE-HOPF
TRANSFORMATION

Recall from Sec. Il B that we are able to treat the con-
tinuum limit of the DASEP via a disordered generalization of
the Cole-Hopf transformatio(iL3) to obtain the linear equa-
tion (12). Here we develop this approach further and demon-
strate connections to the results from the steady-state map-

ping.

A. Scaling and localization in the steady state

Let us concentrate initially on the steady-state solution for
¢ in order to make comparisons with the discrete mean-field
mapping approach. As discussed in Sec. lll B, a steady-state
solution forp corresponds to a separable solutionderi.e.,
u(x)=T(t)X(x). The x-dependent factoX must then satisfy

(- DO IX=D(0 0% (44)
—Tw- = —,
i e
4
with w=2J.
FIG. 13. (Color onling Monte Carlo simulation results for the Our approach is to rediscretize this,
DASEP phase diagram—surface and contour plots showing current
as a function ofg~, ¢*. Uniform distribution with=2.0 ando,, (3D, — @)X = Dp(Xps1 + Xi21) s (45)

=0.5, system size 5000. Note increase in size of flat maximum- nd then empl numerical lina b d on a method d
current area compared to the pure case. a €n empioy numerical scaling based on a method de

veloped by Pimentel and Stinchcom[#g)] to treat the equa-
tion of motion of a 1D Mattis-transformed Edwards-

In the disordered cas is limited by stretches of weak Anderson Heisenberg spin glass. We write B as

bonds and the probability of finding within the system a long
stretch of consecutive weak bonds increases with system (En = £n@)Xn = Vi n-1Xn-1+ Vine1Xne1, (46)
size. Hence in mean-field theory we expégtto be greater . .

thanp,;,/4 but less than the corresponding pure result. It igVith £&,=D/Dy, E,=3D, andV,,,,=D whereD is the char-
relatively straightforward to calculate the expected mean@cteristic strength of the disorder variable. Equaii4) is
field J. for simple cases such as a binary distribut{see, of just the f(_)rm (_:on5|de_red if20] and can be exactly scaled
e.g.,[14]). However, just as in the pure case, we expect thdy P=2 decimation to give

true value ofJ; for small systems to be larger than this r_ A\ /

mean-field estimate. In addition, a novel feature of the dis- (En = £n)Xn = Vi p2Xn-2 + VipeoXova “7)
order is that it allows density profiles in the periodic bound-with

ary case such as that shown in Fig. 9 where the current flow

is larger than]g; i.e., for finite disordered systems, we can V. = Voni1Vneaneo 48
. . . . . n,n+2 ’ ( )

haveJyaxp> Jc. It is even possible to conceive of situations ’ Enii— fho

in which Jn,y , is increased abovég by adding disorder,

meaning that\ above the pure critical poirias calculated in ) Vaa V2o

Sec. IV B) can be a physically relevant quantity. Examina- En=En- : (49)

tion of the possible high-current profiles reveals that for En-17 1o Eneg = G

small systems the current varies with macroscopic densito theE, andV,, .1, which aren independent at the outset,
(with the maximumJp,., , at ©=0.5), so a flat section is not pick up correlated randomness under scaling.

seen in the fundamental diagram. Similarly in the disordered It is easy to iterate these equations numerically and check
finite-size open boundary cask,q o is increased beyond. ~ how theV’s evolve. For the pure cagee., all {,=1) we find
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an allowed energy band f@ < » <5D. Within this band the 1 1
“site potential”E and the “coupling”V evolve chaatically, o= > x 2—5 (51)
corresponding to extended states. Outside the band there are
no allowed states and decreases rapidly and monotonically i.e., a shift in the profile. So calculating the average localiza-
to zero whileE tends to a constant value. Just ag4f] this  tion length is just like calculating the average shift frgm
can be explained by writing andE explicitly in terms ofa =1/2 in theoriginal problem. In other words the average
single parametep which is related to the wave vector of localization length is just half the inverse of the quantity
excitations within the band. As expected the lower edge oflefined in Sec. IV. Of course, in genenalwill be some
the allowed bandy=D, corresponds to the pure critical cur- boundary-dependent combination ef’¢ and e™¢, corre-
rent J2=p/4. The upper band edge has no physical signifi-sponding to the fact that, in the high-current phase, the ob-
cance in our problem since this switch between continuunserved shift in density can be anywhere betweén and
and discrete representations is valid only for long wave—A—i.e., the flat section on the fundamental diagram. This
lengths corresponding to being closedep/4. relief of localization in the inverse mapping is possibly con-
Adding weak randomness, we find that for all valuesopf —nected with the work of Kopidakis and Aubi21] on the
V evolves either chaotically or cyclically to zero inside arelief of localization by non linearity in low-dimensional de-
well-defined exponentially decreasing envelope—i\4]) terministic systems.
~f(e¢ wherel is the distance between sites aads a In Fig. 15 we explicitly compare the localization length
localization length. In other words, any amount of disorderobtained by this scaling method at@i\)™* from the discrete
induces localization for all values of frequency. This is mapping method. We find an excellent agreementifoear
analogous to the fact that all states are localized in oneto the critical point where the discrete-continuum-discrete
dimensional disordered quantum problems. We developed approximations are valid, but the comparison breaks down in
computer algorithm to calculatgfor a given distribution of ~ the highd region which in any case is unphysical. Further-
more, by definingY,.;=Xy1/ X, we can cast Eq45) into

disorder(averaging over many realizationas a function of . r
w. Typical results for both pure and disordered cases aréxactly the form studied by Hirotgl8]:
shown in Fig. 14. Note that, in contrast to the spin-glass case _

Y1 = an = 1Yy, (52)

studied in[20], the localization length is not infinite at the
critical point. This is essentially due to thDtx)u term in  ith
Eq. (12) and means that we cannot easily folld20] in
defining a dynamic exponent via a relationship like an=(3 - {ho).
= (1/¢)% . . o ... We can then obtain the stationary probability distribution
To determine the signature of localization in the ongmalW(Y) in analogy with the calculation of Sec. IV and, follow-
ing [18], define the localization length by

DASEP problem we consider a localized formuof

(53

1 f ’ w(Y)InY2dY, (54)

u~ ei’df. (50) - =
£ 2

—00

Using Eq.(13) to invert the Cole-Hopf transformation gives leading eventually to
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[4-(3 - 25w)?] ferred effects. A general solution faris made up of a su-

(55 perposition of separable solutions; in the pure case this leads
to a general solution fop of the form

The resulting prediction for the localization length of the 1 1S, Ajkekeod

high-current phase agrees closely with that determined by Q(X)——:—kkl—._,

our numerical scaling methogee Fig. 15 except near the 2 2 AT

critical point where the Hirota method breaks dogunst as

in the density mapping case of Sec.)|\One subtlety in-

volves the meaning of “averaging over realizations” in find-

ing the average localization length. In the original numerical

scaling method of20] the averaging is ove¥ ~e™é (where

i labels the specific realization of disorglein contrast the

Hirota method takes the average of¢lt is clear from Eq.

(51) that averaging over %/ provides the definition of

most directly comparable witih, so this is the procedure

adopted in the computer programs used to generate the d

in Figs. 14 and 15. Averaging ovéfinstead gave less goad Disorder-induced localization in the high-current phase is

agreement with the analytical expression especially in th%rudely like adding a small imaginary pat (x~ 1/£) to the

center of _the band where the localization length is Iessrealk [in Eq. (56) this gives steady-state solutions iike
clearly defined.

Finally we note that since the variab¥can physically that in Fig. 9. The imaginary part of the resulting complex

; : : N 2240 )
take all values betweerce-and +o, we expect better agree- dispersion reIatlonw_ D.(l k K 2ikx) would be ex
ment in the numerical and analytical results fothan the pected to lead to oscillations while the small decrease in the

numerical and analvtical results farwhere the analvtics for real_ part slows dpwn_the dynamics. Indeed, it is intuitively
umerical and analytical results fdrwhere the analytics fo qbwous that adding disorder should slow down the approach

general distributions of disorder was unable to take accourl0 the steadv state. since in a 1D svstem the overall rate of
of the physical restriction & o<1, resulting in discrepan- hoDDi f % ' | dh 3(] d hich th
cies for high values ofl (see discussion of Sec. IV)BIn opping o t_e partic es_an ence the speed at whic the
addition, it is easier to get high quality data from the IinearSteady state Is reachewill pe I|m|t_ed by the bond with the
scaling computer algorithniwhere we can measure accu- smallestp,. This ;Iowdowr) IS Cor?f'”“ed by the Monte Carlo
rately localization lengths up te 10 000 than from the non- §|mylat|ons Of. Fig. 16. Within th's framework a more quan-
linear mapping. titative analysis sh_o_uld be pos_s_lble _but would be complicated

by boundary conditions and finite-size effe@t®mpare Sec.

V).

2 2
2w (o

(56)

wherek can be positive or negative and is real in the high-
current phase and imaginary in the low-current phase. The
coefficientsA, must be chosen so that is real. From Eqg.
(12) the pure “dispersion relation” is,=D(1+k?) but the
k-independent term will cancel out in the numerator and de-
nominator of Eq.(56). The solutions hence have wavelike
form in the high-current phase and multiple soliton form in
the low-current phase. As time increases, transients die away,
aI(«f,?aving the steady state corresponding to the smallest value
w.

B. Effect of disorder on dynamics

. . . VII. DISCUSSION AND OUTLOOK
One advantage of the Cole-Hopf formalism is that it pro-

vides an easy route to discuss the influence of disorder on the In this paper we have shown within a mean-field frame-
dynamics of the system. Here we mention briefly some inwork that one effect of quenched bond disorder on the ASEP
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is a flattening of the top of the steady-state current-densityvould be interesting to see if we can apply generalizations of
relation and a corresponding increase in the high-current rehe methodology of Secs. IlI-VI to other problems. In par-
gion of the phase diagram for open boundary conditions. Wécular we have studied a simple two-lane traffic mof6]
have presented various numerical and analytical approachés which the fundamental diagram can have a double-peak
(including a mapping to a localization transition in an structure(the ASEP with next-nearest-neighbor interactions
equivalent problemto quantify these changes and shownas studied by Popkov and Schi#j also has such a double
that our results compare reasonably well with Monte Carlonaximg. We would expect that disorder flattens the tops of
simulations. these maxima leading to corresponding changes in the phase
While we believe that this mean-field discussion repro-diagram but more interesting effects are also possible such as
duces qualitatively the effects of adding disorder, an exaca relative change in the height of the two peaks. Studying
treatment would be expected to provide better quantitativgluasi-1D models such as this two-lane system might also
agreement with simulations together with further physicalprovide a bridge to understanding the effects of disorder on
understanding. Some progress has already been sage higher-dimensional systems where one expects to find a
the review by Stinchcombg22]). For example a form of the wider range of possible disorder-induced effects.
Harris criterion[23] can be applied to the ASEP which sug-  In conclusion, we hope that this mean-field treatment of
gests that disorder should be relevant in the sense of intrdhe disordered asymmetric simple exclusion process provides
ducing new critical behavior. And this new critical behavior a flavor of the general phenomena present in nonequilibrium
can be elucidated by adding disorder to renormalizatiormodels with quenched substitutional disorder. There is much
schemes developed for the pure césee, e.g.[24,25). In  scope for further work on this and related models.
carrying out such scaling of distributions one reencounters
many of the concepts highlighted above such as Griffith's ACKNOWLEDGMENTS
phases and the importance of tails of the distribution. We thank Kimmo Kaski for the Monte Carlo simulation
Many of the ideas discusse&e.g., Griffith’s phases, local- data in Fig. 4. This work was financially supported by
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