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We provide two complementary approaches to the treatment of disorder in a fundamental nonequilibrium
model, the asymmetric simple exclusion process. First, a mean-field steady-state mapping is generalized to the
disordered case, where it provides a mapping of probability distributions and demonstrates how disorder results
in a new flat regime in the steady-state current–density plot for periodic boundary conditions. This effect was
earlier observed by Tripathy and Barma[Phys. Rev. E58, 1911(1998)] but we provide a treatment for more
general distributions of disorder, including both numerical results and analytic expressions for the width 2DC

of the flat section. We then apply an argument based on moving shock fronts[V. Popkov and G. M. Schütz,
Europhys. Lett.48, 257 (1999)] to show how this leads to an increase in the high-current region of the phase
diagram for open boundary conditions. Second, we show how equivalent results can be obtained easily by
taking the continuum limit of the problem and then using a disordered version of the well-known Cole-Hopf
mapping to linearize the equation. Within this approach we show that adding disorder induces a localization
transformation(verified by numerical scaling), andDC maps to an inverse localization length, helping to give
a physical interpretation to the problem.
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I. INTRODUCTION

Many “real-life” nonequilibrium situations contain some
kind of randomness or disorder, and empirical observations,
for example in traffic flow, illustrate that such disorder can
lead to interesting new phenomena. In nonequilibrium statis-
tical mechanics even one-dimensional(1D) models can ex-
hibit phase transitions(see, e.g., the review by Evans[1])
and we are particularly interested in the effects of disorder on
these transitions. Studies based on simple lattice-based ex-
clusion models incorporate collective effects while offering
possibilities for analytic progress and easy computer simula-
tion.

In this paper we concentrate on the effect of quenched
substitutional disorder on one such lattice model—the well-
known asymmetric simple exclusion process(ASEP). The
ASEP is one of the simplest nonequilibrium models with a
boundary-driven steady-state phase transition and thus plays
a paradigmatic role in nonequilibrium statistical mechanics
much as the Ising model does in the study of equilibrium
systems. The present work is entirely within the framework
of a mean-field approximation and largely for the steady
state but already shows many interesting effects on the phase
transition such as an altered phase diagram and the presence
of “Griffith’s phases” [2]. We hope subsequently to extend
and compare this study with treatments allowing for fluctua-
tion effects. Previous approaches to disorder in the ASEP,
and related models, can be found in the work of Krug[3],
Kolwankar and Punnoose[4], and others. Furthermore, field-
theoretic approaches which retain the fluctuations can be ap-
plied to higher-dimensional generalizations of the continuum
version of the ASEP[5,6].

The paper is organized as follows. In Sec. II we define the
model and summarize relevant results for the pure case. In
Sec. III we outline our two main methods: a steady-state
mapping and a disordered generalization of the Cole-Hopf
transformation. These two approaches are then developed
further in Secs. IV and VI, respectively, allowing us to char-
acterize(both quantitatively and qualitatively) the effects of
disorder. In Sec. V we show how this affects the current-
density diagram for periodic boundary conditions and the
phase diagram for open boundary conditions and discuss
finite-size effects. Finally, in Sec. VII, we summarize our
results and discuss areas for future work.

II. DISORDERED ASYMMETRIC SIMPLE EXCLUSION
PROCESS

A. Definition of the model

The general form of the bond-disordered asymmetric
simple exclusion process(DASEP) is summarized by the
schematic of Fig. 1. A particle at sitel hops to avacant
nearest-neighbor site on the right(left) with ratepl sql−1d. In
a discrete time version of the model(as implemented in
simulations), these rates are replaced by probabilities per
time step and a random sequential update rule is applied.
Here we consider for simplicity only the totally asymmetric
caseql =0; qualitatively similar results are expected in the
partially asymmetric case.

Two obvious choices of boundary conditions are the fol-
lowing.

(i) Periodic boundary conditions: A particle from siteL
can hop into a vacancy at site 1 with ratepL.

(ii ) Open boundary conditions:Particles are injected at
the left-hand end of the lattice and extracted at the right-hand
end, forcing a particle current through the system. The usual
convention is to insert particles onto site 1 with ratea if the
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site is empty and remove particles occupying siteL with rate
b. It is this case which is illustrated in Fig. 1.

Another possibility(used, for example, in the work by
Popkov and Schütz[7]) is to have fixed “reservoir densities”
%− and %+, respectively, at left and right ends of the chain.
By current conservation at the boundaries we see that the
correspondence between reservoir densities and input and
output ratesa andb is given by

a = p0%
−, b = pLs1 −%+d, s1d

wherep0 is the hopping rate from the reservoir site 0 to the
first proper site 1 andpL the rate from the last siteL to the
reservoir at the right.

In the pure case fixing reservoir densities is exactly
equivalent to fixing input and output rates, but in the case
where thepl’s are disordered the two definitions are differ-
ent. We find both types of realization in representative
problems—e.g., traffic flow.

B. Summary of results for the pure case

The pure ASEP with site-independent hopping rates(i.e.,
pl =p for all l) can be treated by a variety of approaches
including recursive techniques[8], the steady-state operator
algebra formalism of Derridaet al. [9] and its dynamic gen-
eralization[10], or mapping to a quantum-spin system[11].
Recall that the exact solution for the steady state can be
summarized by a current-density plot(the “fundamental dia-
gram”) for periodic boundary conditions and a phase dia-
gram for open boundary conditions. For later reference these
are shown in Figs. 2 and 3, respectively.

A mean-field approximation reproduces the exact phase
diagram and also gives the essence of the dynamics through
a treatment based on moving shock fronts. However, as

might be expected from the low dimensionality, it gives in-
correct values for the two static exponents and the dynamic
exponent. Similarly, we expect that a mean-field approach to
the disordered problem will elucidate crucial features which
are not controlled by fluctuations, such as modifications to
the phase diagram and the dynamics butnot the critical be-
havior.

Recent work by Enaud and Derrida[12] has looked at the
effect of disorder on the first-order phase transition; in this
paper we concentrate mainly on the effect of disorder on the
second-order transition between low- and high-current
phases.

III. TWO PARALLEL APPROACHES

In this section we outline our two basic approaches, ex-
plaining their use in the pure case and indicating how we
extend them to treat disorder.

A. Steady-state mapping

For general quenched substitutional disorder we can use
our knowledge of the hopping rules to write an exact expres-
sion for the average current across the bond between sitesl
and l +1:

FIG. 1. DASEP with open boundary conditions. Solid circles denote particles; open circles are vacancies. The hard-core exclusion rule
means the model incorporates collective effects.

FIG. 2. Fundamental diagram(particle currentJ versus density
%) for the pure ASEP with periodic boundary conditions in the
thermodynamic limit. Note the particle-hole duality.

FIG. 3. Phase diagram for the pure ASEP with open boundary
conditions. The second-order transition between high-current
sa /p.1/2, b /p.1/2d and low-current phases is represented by a
solid line, while the first-order transition is shown by a dashed line.
For an infinite system the current in the high-current phase isp/4;
for a finite-size system a slightly larger current can be sustained.
The insets show sketches of the typical density profiles(site density
%l against lattice sitel) in each region.
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Jl,l+1 = kpl nls1 − nl+1dl, s2d

wherenl =1 or 0 for a particle of vacancy at sitel and the
angular brackets denote an average over histories for a fixed
hplj. We introduce the average density for each site,knll
=%l, and in the mean-field approximation ignore correlations
between sites, so

knlnl+1l ⇒ knllknl+1l = %l%l+1. s3d

When the system has reached a steady state the densities are
constant in time and hence from the continuity equation the
current must be constant in space—i.e.,Jl,l+1=J for all l. So
for the mean-field steady state we have

J = pl%ls1 −%l+1d, s4d

which then gives a mapping for%l+1 in terms of%l:

%l+1 = 1 −
J

pl%l
. s5d

For a particular realization ofpl’s, if we know J and one of
the densities(say,%1), we can use this mapping to obtain the
density profile for the whole system. As we shall discuss in
detail below,J is limited by the requirement that for alll we
must have 0ø%l ø1.

Note that we can also rearrange Eq.(4) to give a mapping
for %l in terms of%l+1. In terms of the hole density,sl =1
−%l, this “backward” mapping is

sl = 1 −
J

plsl+1
, s6d

which has exactly the same form as Eq.(5) due to the
particle-hole duality of the system.

The mappings for the pure case wherepl =p independent
of l have been given previously[13]. There one finds that,
for low currentsJ,p/4, the mapping has two fixed points.
Mapping in the direction of increasingl the fixed point with

higher % is stable and the lower one is unstable. It is clear
from Eq. (6) that for mapping in the opposite direction the
stability of the fixed points is reversed and the high-s (low-
%) one is stable. The resolution of this apparent paradox is
simply that the steady-state selection in a given case is de-
termined by the boundary conditions. Among the possible
profiles are “kink”-type solutions of the steady-state pure
mean-field profile map, having the form

%l =
1

2
+

1

2
tanhf tanhslf + ud, s7d

where tanhf=Îs1−4J/pd and u are determined by bound-
ary conditions. AtJ=p/4 the two fixed points combine in a
half-stable fixed point at%=1/2. In thehigh-current regime
Jùp/4, the mapping has no fixed points and density profiles
have the form

%l =
1

2
−

1

2
tan f8 tanslf8 + u8d, s8d

with tan f8=Îs4J/p−1d. Since we must have 0ø%l ø1 for
all l then Eq. (8) clearly applies with nonzerof8 (i.e.,
J.p/4) only if l is confined within the boundaries of a finite
system. These mean-field profiles agree qualitatively with
exact solutions[9], although the mean-field versions overex-
aggerate the sharpness of the shock front, which in practice
is broadened by fluctuations.

In the disordered case it is straightforward to iterate Eq.
(5) by computer. For specific realizations of disorder(i.e.,
particular choices ofhplj) we have compared densities from
this mean-field mapping with profiles obtained by Monte
Carlo simulation. As shown in the low-current example of
Fig. 4 there is a reasonable qualitative fit though again the
mean-field shock front is sharper than the simulation result.
Close to the pure critical current one sees that in some re-
gions(corresponding to groups of “weak” bonds with lowpl)
the profile has roughly the high-current form while in other

FIG. 4. Comparison of mean-
field (mf) mapping and Monte
Carlo (MC) simulation data for
densities in a system of 100 lattice
points with open boundary condi-
tions (pl’s drawn from uniform
distribution 0.45−0.55, simulation
with a=b=0.2).
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regions(“strong” bonds) it takes the low-current form—this
is the analog of Griffith’s phases in a magnet[2]. We per-
formed comparisons for the open boundary case(see[14] for
similar discussion with periodic boundary conditions) where
the simulation is controlled by parametersa andb. A com-
puter fitting procedure was used to matcha and b to the
value ofJ and one of the%l’s needed to implement the mean-
field mapping(for the pure case this can be done exactly).

Such examples for specific realizations of disorder sup-
port the qualitative validity of the mean-field approach. In
Sec. IV we develop a more general analysis to predict the
typical effects of a given distribution of disorder(Gaussian,
uniform, etc.). By considering the mapping of density distri-
butions we are able to show that a characteristic effect of
disorder is a shift in the average density. The physical mean-
ing is explored further in Sec. V.

B. Continuum limit and Cole-Hopf transformation

Here we consider the continuum limit of the DASEP and
introduce a disordered generalization of the well-known
Cole-Hopf transformation[15,16].

For “smooth enough” disorder(and working once again in
the mean-field approximation) we can take the continuum
limit of Eq. (2), to arrive at

J = psxdS%s1 −%d −
1

2

] %

] x
D , s9d

whereJ and % are in general functions of continuous posi-
tion x and timet, and we set the lattice spacing equal to 1 for
convenience. Substituting this into the continuity equation
yields a(noiseless) disordered Burger’s-type equation

] %

] t
= −

]

] x
FpsxdS%s1 −%d −

1

2

] %

] x
DG . s10d

The next step is to transform to a height variableh, such that
]h/]x=%−1/2, giving

]2h

] x ] t
= −

]

] x
HpsxdF1

4
− S ] h

] x
D2

−
1

2

]2h

] x2GJ . s11d

This can be trivially integrated with respect tox to give a
noiseless disordered version of the growth model studied by
Kardar, Parisi, and Zhang[17]. We then put hsx,td
=l lnfusx,tdg+ fstd and choose the arbitrary functionfstd and
the constantl so as to remove all nonlinear terms. This
disordered generalization of the Cole-Hopf transformation
finally gives us

] u

] t
= Dsxd

]2u

] x2 − Dsxdu, s12d

where Dsxd=psxd /2. Equation (12) is a linear equation
(therefore much easier to treat numerically and analytically)
which still preserves the full dynamics of the system. From
its solution% is given by the inverse Cole-Hopf transforma-
tion

% −
1

2
=

1

2

] ln u

] x
. s13d

For a steady-state solution for% then u must be separable
with time dependencee−vt andv=2J.

In the pure case the second term on the right-hand side of
Eq. (12) can be absorbed into the definition of the transfor-
mation to leave us with just the diffusion equation

] u

] t
= D

]2u

] x2 . s14d

This diffusion equation can be trivially solved and mapping
back through the Cole-Hopf transformation then gives the
well-known pure continuum steady-state solutions which are
the continuum versions of Eqs.(7) and (8).

For the disordered case, the situation is more complicated
and in particular we have to include the −Dsxdu term on the
right-hand side of Eq.(12). It is not immediately obvious
how to treat this equation for generalDsxd, although it might
be possible to solve it for specificDsxd or to do some kind of
WKB-type approximation. In Sec. VI we shall show how
much useful information can be obtained via a more power-
ful numerical scaling approach which reveals that disorder
induces a localization transition. This provides a complemen-
tary approach to the steady-state mapping outlined above and
enables us to interpret the effect of disorder as a localization
transition in the transformed system.

IV. STEADY-STATE MEAN-FIELD MAPPING
FOR DISORDERED CASE

A. Mapping of distributions

Here we return to look in detail at the steady-state map-
ping with a known distribution of disorder. It is convenient to
take the disordered variable as

gl = J/pl . s15d

If the position-independent distributionfsgld is known, then
one can use the mapping(5) to relate the probability distri-
bution w of %l+1 to the distribution of%l:

wl+1s%l+1d =E wlS g

1 −%l+1
D gl

s1 −%l+1d2 fsgddg. s16d

The subscripts on thew’s in Eq. (16) indicate that we expect
the distribution to change as we map through the system. For
example, if we start from a known%1 (i.e., w1 is a d func-
tion), then the width of the distribution will obviously in-
crease as we look atw2, w3, etc.

After iterating the mapping for many steps the density
distribution will eventually converge on some fixed point
shape, the position of which will depend on the direction in
which we map(just as in the pure case discussion in Sec.
III A ). This stationary probability density is the distribution
of %l’s which we would expect to see in the periodic bound-
ary case. However, as we shall demonstrate in Sec. V B, by
considering moving-shock-type solutions we can also gain
some information about the expected open boundary profiles
and phase diagram.
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Numerically, therefore, we look for the stationary prob-
ability density of%l’s for different J’s (averaged over many
realizations of disorder). In practice this involves using the
mapping of Eq.(5) for large system sizes(say 10 000 lattice
points), repeating for different%0’s and different realizations
of disorder, then creating a histogram of the values of%.

We find that a convenient order parameter to characterize
the distributions is the asymmetry about%=1/2 given by
D;k%−1/2l (where numerically we take the average over
all %’s in the physically accessible region between 0 and 1).
In the pure case we find thatD is zero in the high-current
regime and nonzero in the low-current regime(see Fig. 5).
This is just what we would expect from using the pure map-
ping (see again Sec. III A) in the forward direction: in the
low-current phase the densities in the bulk of the system will
approach the upper fixed point, whereas for a long system in
the high-current phase the densities in the bulk are all very
close to 1/2. However, in the disordered case we find thatD
is nonzero for allJ as shown for typical examples in Fig. 5.

We now consider an analytical argument to reproduce
these data basing our method on the work of Hirota[18] for
different random mapping processes. In our case, we impose
the fixed-point condition by settingwl =wl+1=w so that Eq.
(16) gives (dropping redundant subscripts)

ws%d =E wS g

1 −%
D g

s1 −%d2 fsgddg. s17d

This integral equation is difficult to solve analytically but we
can find approximate solutions by considering the dominant
terms in different regimes. In Secs. IV B–IV D we pursue
this approach above, below and close to the pure critical
point. Then in Sec. IV E we consider the specific soluble
example of a Lorentzian distribution of disorder.

B. Calculation of D above the pure critical point

Above the pure critical point the integral in Eq.(17) is
dominated by the peak infsgd. For disorder sharply peaked

about ḡ with small variancesg
2, we can perform an expan-

sion of the integrand in powers ofsg
2 and obtain a functional

differential equation

ws%d = wS ḡ

1 −%
D ḡ

s1 −%d2 +
sg

2

2

d2

d%2FwS ḡ

1 −%
DG ,

s18d

where terms involving higher moments have been neglected.
We now wish to solve Eq.(18) for normalized non-negative
ws%d. Note that in order to be able to carry out the integrals
analytically we here allow% to take any real value whereas
in the physical problem 0ø%ø1. As we shall discuss later
this is not expected to introduce much of an error providing
J is not too high compared with the pure critical current. For
sg

2 “small” (in a sense to be clarified) we assume a solution
of the form

ws%d = w0s%d +
sg

2

2
w1s%d. s19d

The pure solutionw0s%d is easily shown to be

w0s%d = A
1

%2 − % + ḡ
, s20d

with A a normalization constant given byÎḡ−1/4/p. This
solution is only valid forḡ.1/4 which corresponds to being
in the high-current phase of the corresponding pure model.
Note that we can also get this result from the known high-
current mean-field pure result(8) using the obvious relation-
ship ws%d,1/ud% /dlu. By considering this form forw0s%d,
we see that to satisfy Eq.(18) w1s%d must have a factor
s%2−%+ ḡd3 in the denominator. Straightforward calculation
gives

FIG. 5. Numerical mapping
data forD;k%−1/2l versusJ in
the pure case and specimen-
disordered cases. The pure case
hash̄=2.0 (h defined as 1/p) cor-
responding to a pure critical cur-
rent JC

0 of 0.125; disordered cases
are Gaussian distributions with the
same mean and standard devia-
tions sh=0.2,0.5. Lines are pro-
vided as an aid to the eye. For ar-
bitrarily weak disorder, D is
nonzero for allJ.

DISORDERED ASYMMETRIC SIMPLE EXCLUSION… PHYSICAL REVIEW E 70, 016108(2004)

016108-5



w1s%d =
2A

ḡ

%3 − ḡ%

s%2 − % + ḡd3 . s21d

From this expression for the stationary probability distribu-
tion we can calculate(via contour integration) the average
value of%−1/2:

D =E
−`

` S% −
1

2
Dws%dd% s22d

=
sg

2

4Sḡ −
1

4
D . s23d

This is the chief analytical result of this subsection; we now
compare it with numerics and discuss its validity.

For comparison with data it is more helpful to write Eq.
(23) in terms of the currentJ and the meanh̄ and variance
sh

2 of the inverse hopping probabilityhl =1/pl:

D =
J2sh

2

4SJh̄ −
1

4
D . s24d

In Fig. 6 we compare the prediction of this analytical result
with the data from our numerical mapping with a Gaussian
distribution of disorder. We see that Eq.(24) reproduces well
the general trend of the data but there are a couple of obvious
problems. For high values ofJ, the analytical expression
slightly underestimates the numerical result—this is due to
the fact that analytically −̀,%,` whereas in the numerics
(as in the physical problem) we have averaged over 0ø%
ø1. As expected, this discrepancy becomes larger for highJ
since then the density profile is steeper and is concentrated
less about%,1/2, so the tails of the distribution are more
important. One can numerically integrate(e.g., usingMAPLE

or a similar program) the expression in Eq.(22) between 0

and 1 (and adjust the normalization correspondingly) and
obtain values in better agreement with the data.

A more serious problem is the fact that our analytical
expression forD tends to infinity asJ tends to the pure criti-
cal currentJC

0 =1/s4h̄d, whereas numerically we see no di-
vergence inD. In fact it is easy to see why the analytical
method fails close to the critical point. AsJ→JC

0, the pure
distribution w0s%d becomes more and more sharply peaked
about %=1/2; however,w1s%d will be even more sharply
peaked(due to the cubed term in the denominator) and even-
tually the magnitude of this first-order correction becomes
large compared withw0s%d for some values of%. This leads
to unphysical results such as negative probability densities. A
rough calculation shows that in order for the perturbation
expansion of Eqs.(18) and (19) to be valid we requiresg

2

! sḡ−1/4d and this condition becomes impossible to satisfy
as ḡ→1/4. Alternative approaches to obtain an expression
valid near the critical point will be considered in Sec. IV D
below.

C. Calculation of D below pure critical point

Far below the critical point the integral in Eq.(17) is
dominated by the contribution from the sharp peak of
wfg / s1−%dg. Performing a saddle-point expansion about this
peak(and for convenience assuming a Gaussian distribution
for the disorder) we obtain

ws%d =

%̃fws%̃dg2expS−
fs1 −%d%̃ − ḡg2

2sg
2 D

shw9s%̃dws%̃d − fw8s%̃dg2j1/2
. s25d

Now in the saddle-point expansion%̃ is defined as the maxi-
mum of ws%d, so for consistency it must correspond to the
maximum of the Gaussian in Eq.(25); i.e., we have

FIG. 6. Comparison of nu-
merical and analytical results for
D, above the pure critical current
sJC

0 =0.125d. Numerical data for
Gaussian disorder withh̄=2.0 and
sh=0.2. For weaker disorder the
analytic expression is valid for
currents closer to the pure critical
point—see discussion in the text.
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s1 − %̃d%̃ = ḡ, s26d

which is just the condition for the fixed points of the pure
low-current mapping. We recall that the upper of these two
fixed points is stable as we map forward through the system
while the lower one is unstable. So assg→0, ws%d of Eq.
(25) tends to ad function about the upper fixed point. The
addition of disorder broadens this pure distribution to a
Gaussian with the same mean%̃ and standard deviation
sg / %̃—i.e.,

ws%d = s2pd−1/2s%̃/sgdexpS−
s% − %̃d2

2ssg/%d2D . s27d

CalculatingD in this approximation is trivial and gives

D =Î1

4
− ḡ. s28d

So we conclude that, for currents well below the pure critical
current, disorder does not change the pure result forD. This
agrees with the numerical results forJ!JC

0 shown in Fig. 7.
Again our analytic prediction fails close to the critical

point; this is due to the breakdown of the assumption that the
major contribution to the integral equation(17) is due to the
sharp peak inws%d. From the above analysis we can see that
the standard deviation ing of the peak inwfg / s1−%dg is
aboutsgs1−%̃d / %̃, so if this peak is to be sharper than the
one in fsgd, we require

sgs1 − %̃d/%̃ ! sg, s29d

%̃ @
1

2
. s30d

This condition breaks down as we approach the pure critical
point and a more sophisticated analysis becomes necessary
(see Sec. IV D).

Note that in order to obtain an analytic approximation for
D in the low-current regime we needed to assume a particu-
lar distribution for the disorder. Repeating the procedure for
different distributions(e.g., uniform, binary) we find that
ws%d has a different form in each case but to a first approxi-
mationD takes the pure value in all cases. This is in contrast
to the high-current regime treated in Sec. IV B where the
exact form of disorder is irrelevant to first order(the relevant
parameter is the standard deviation of 1/p) and ws%d takes
the universal form given by Eqs.(19)–(21). The numerics
confirms these arguments.

D. Calculation of D around the pure critical point

Ideally we would like an expression forD at and very
close to the pure critical current since this is the most inter-
esting regime physically(a large system cannot sustain cur-
rents much above the critical point as will be discussed in
detail in Sec. V below). Unfortunately in this intermediate
regime it is not easy to see how to treat Eq.(17) as both
wfg / s1−%dg and fsgd are sharply peaked.

One approach is to assume that the productwfg / s1
−%dgfsgd is sharply peaked ing and perform a saddle-point
expansion on the integrand. For convenience, we define
ys%d;−lnfws%dg and consider a Gaussian distribution of
disorder. Then the saddle pointx̃ is defined by

0 =
x̃s1 −%d − ḡ

sg
2 s1 −%d −

1

x̃
+ y8sx̃d, s31d

where the prime denotes differentiation with respect to the
argument of the function. Evaluating Eq.(17) about this
saddle point yields

ys%d =
fx̃s1 −%d − ḡg2

2sg
2 − lnx̃ + ysx̃d. s32d

In principle these equations are sufficient to determinex̃ and
ys%d but the implicit definition ofx̃ makes further analytic

FIG. 7. Comparison of nu-
merical and analytical results for
D, below the pure critical current
sJC

0 =0.125d. Numerical data for
Gaussian disorder withh̄=2.0 and
sh=0.2. Note the discrepancy
close toJC

0.
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progress extremely difficult. Instead we consider, in the next
section, a specific(Lorentzian) distribution of disorder where
the mapping equations turn out to be exactly soluble. This
particular case helps build up a general picture of what hap-
pens near the critical point.

E. Exactly soluble case

Hirota and Ishii[19] have treatedexactlythe case where
the disorder variable in their mapping has a Lorentzian dis-
tribution. They show that the stationary probability density is
also Lorentzian and calculate its width and mean. Our map-
ping equation has a different form but is also amenable to
analytical treatment for the case of Lorentzian disorder. This
is therefore a useful test case where we can compare numer-
ics and analyticsfor the full range of J.

If g is drawn from the Lorentzian distribution

fsgd =
1

p

G

sg − ḡd2 + G2 s33d

and we assume a Lorentzian distribution for%l (mean %̄,
width t), then we can integrate exactly the integral mapping
equation(17) to find that%l+1 also obeys a Lorentzian distri-
bution with mean and width given by

%̄8 = 1 −
ḡ%̄ − Gt

%̄2 + t2
, s34d

t8 =
G%̄ + ḡt

%̄2 + t2
. s35d

Following [19] we can characterize each Lorentzian dis-
tribution by a complex number whose real part represents the
mean and whose imaginary part represents the width. Then
the mapping relationship is

R8 = 1 −G†/R, s36d

whereR=%̄+ it, G= ḡ+ iG and the dagger denotes complex
conjugation. Now the fixed point of the mapping is given by
the Lorentzian distribution characterized byR* =%̄* + it* , with

%̄* =
t* + G

2t*
, s37d

t* = x1/2, s38d

wherex is the positive root of

x2 + S1

4
− ḡDx −

1

4
G2 = 0. s39d

From this stationary distribution one can calculateD; av-
eraging over%’s from −` to +` gives

D =
1

2
Gx−1/2. s40d

As discussed above[see text following Eq.(24)], this exten-
sion of the range of% is not expected to make much differ-
ence unless the currentJ is large. In fact for this Lorentzian
case we can actually do the integral over% between 0 and 1
analytically, yielding the proper result

D =
x1/2

2p
lnS sx1/2 − Gd2 + 4x2

sx1/2 + Gd2 + 4x2D −
G

2px1/2arctanS 4x3/2

G2 + 4x2 − x
D .

s41d

In Fig. 8 we compare the results of these expressions with
numerical data for a Lorentzian distribution of disorder and
find as expected that Eq.(41) gives a noticeably better fit
than Eq.(40) for J above the critical point. The fit is still not
exact due to the fact that in the numerics we have imposed
the physical restriction thatg must be positive but this cutoff
is not incorporated in the analytics. This problem is more

FIG. 8. Comparison of nu-
merical data and analytical predic-
tions for Lorentzian distribution of
disorder with h̄=2.0 and width
=0.2. Relatively large width
means effect ofh,0 cutoff is
significant.
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pronounced than in the Gaussian case because of the rela-
tively high weight in the tails of the Lorentzian distribution.

V. EFFECT OF DISORDER ON FUNDAMENTAL
AND PHASE DIAGRAMS

We have seen that the shiftD provides a useful character-
ization of the effect of disorder; we now turn our attention to
what this shift means physically in terms of the density pro-
files, fundamental diagram(for periodic boundary condi-
tions), and phase diagram(for open boundary conditions). In
Sec. IV we presented both numerical and analytical ap-
proaches to calculateD for fixed J. However, in simulations
J is not held constant and we must consider how it changes
when we add disorder. We concentrate initially on the ther-
modynamic limit whereJ is easier to predict and then in Sec.
V C consider the importance of finite-size effects in small
systems.

Recall that the treatment of Sec. IV was based on using
Eq. (5) to map forwards in%. If instead we had used Eq.(6)
to map backwards ins, then by exactly the same argument
we would have concluded that the steady-state distribution
for the disordered case hasksl.1/2—i.e.,k%l,1/2 for all
J. This apparent paradox is exactly analogous to the situation
in the pure low-current phase where the stable fixed point
value of% depends on which direction we map(see discus-
sion in Sec. III A). The resolution in both cases is that which
fixed point is seen in the bulk depends on the boundary con-
ditions. We now consider these in more detail.

A. Periodic boundary conditions

Perhaps the most obvious change expected when we add
disorder to a large system is a decrease in the maximum
sustainable current. For an infinitely large pure system with
periodic boundary conditions the maximum currentJmax,p

0 is
just the critical currentJC

0 =p/4. Similarly for a disordered
system, the maximum possible current is limited by stretches
of “weak” bonds(i.e., low p) so in the thermodynamic limit
we expectJmax,p=JC=pmin/4 (wherepmin is the smallest value
of p permitted by our distribution of disorder). Using the
methods of Sec. IV, we can obtainD corresponding to all
possible currents up toJC. In contrast to the pure case we
now have a nonzero value ofDsJCd which we shall denote
for convenience byDC. We now address how this is reflected
in the fundamental diagram.

Let us first consider currents below the maximum.
Clearly, one possibility is for the distribution of% for all sites
in the lattice to be given by the stationary distributionws%d
determined from the condition(17). The average density is
then obviously given by1/2+D. However, the argument
above illustrates that it is also possible for the distribution to
be at the unstable fixed point of the forward density mapping
giving ks−1/2l=D and hence an average density of 1/2
−D. So in the low-current phase with periodic boundary con-
ditions the possible disordered profiles are roughly the same
as in the pure case(i.e., either at the upper fixed point or the
lower fixed point) although of course with added noise. The
exact position of the fixed points(characterized byD) devi-

ates slightly from the pure case especially close to the critical
point.

However,in the maximum-current phaseit is possible for
the distribution to start near the lower unstable fixed point
and map forward to the upper stable fixed point via a noisy
shock front(whose position may alter). The periodic bound-
ary conditions are maintained by stretches of decreasing%
corresponding to weak bonds in the pure high-current phase.
A crude way to consider this is to look at the profile as a
superposition of a high-current profile with a small shock-
front-type low-current profile as shown schematically in Fig.
9. This “density segregation” into sections(not necessarily of
equal lengths) with density1/2−DC and 1/2+DC) was pre-
viously explained for the binary disorder case by Tripathy
and Barma[14]. Enforcement of the periodic boundary con-
ditions (see again Fig. 9) then leads to macroscopic average
densities in this maximum-current phase anywhere from
1/2−DC to 1/2+DC).

So the end result is a fundamental diagram which looks
like the pure one for low currents but has a new flat regime
of width 2DC at the maximum current as shown in Fig. 10.
This flattening effect was observed in[14] and the width of
the flat section calculated for the particularly simple case of
binary disorder. Our method enables us to treat more general

FIG. 9. Possible density profile in the maximum-current phase
for system with disorder. Periodic boundary conditions can be im-
posed, for example, between pointsBC, AF, or DE, leading to a
range of possible densities from1/2−DC to 1/2+DC.

FIG. 10. Schematic fundamental diagram for the DASEP in
thermodynamic limit.
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distributions of disorder—fromDsJd and the maximum cur-
rent then we can construct the complete mean-field funda-
mental diagram.

Figure 11 shows the fundamental diagram obtained from
Monte Carlo simulations for a system of size 5000 with a
particular realization drawn from a uniform distribution of
disorder(results for the pure case corresponding to the mean
of 1/p are also shown). Comparison with the calculatedDsJd
for the same width of disorder(Fig. 5) shows that the mean-
field prediction is roughly correct, though the maximum cur-
rent in the simulation is larger than the mean-field thermo-
dynamic prediction of 0.1.

B. Open boundary conditions

Popkov and Schütz[7] have shown how to predict the
phase diagram for open boundary conditions from the funda-
mental diagram for periodic boundary conditions. Their ar-
gument considers the motion of shock fronts through the
bulk to motivate an extremal current principle:

J = max
%Pf%+,%−g

Js%d for %− . %+, s42d

J = min
%Pf%−,%+g

Js%d for %− , %+, s43d

where%− and%+ are reservoir densities(see Sec. II A).
Applying this Popkov-Schütz argument to the fundamen-

tal diagram of Sec. V A leads to a growth in the size of the
high-current phase(as compared to the pure case) resulting
from the flat section on the fundamental diagram. This
growth is by an amountDC in both the%− and%+ directions.
The resulting phase diagram in the%−−%+ plane and com-
parison with the pure case are shown schematically in Fig.
12. So our numerical and analytical calculations ofDsJd in
the previous section allow us to determine quantitatively the
disordered phase diagram; compare the simulation data of
Fig. 13.

C. Finite-size effects

In this subsection we outline briefly the modifications to
the above picture for finite-size systems. The discussion is
inevitably fairly qualitative, and it is worth noting that even
in the pure case, a mean-field treatment does not correctly
capture all finite-size effects.

In the pure case there are two main finite-size effects.
First in the open boundary case the system can sustain a
currentJmax,owhich is slightly larger thanJC

0. One can obtain
a mean-field prediction forJmax,o by looking for the largest
value of J for which all %l of Eq. (8) are in the physically
applicable regime between 0 and 1. Second, in a small sys-
tem JC

0 is increased slightly fromp/4—this effect is due to
correlations between particle densities at adjacent sites and is
therefore not reproduced by mean-field theory which predicts
JC

0 =p/4 for all system sizes.

FIG. 11. Monte Carlo simula-
tion data for the DASEP funda-
mental diagram for system size
5000. The uniform disorder case
hash̄=2.0 andsh=0.5; flattening
with respect to the pure case is
clearly seen.

FIG. 12. Phase diagram for DASEP in the%−−%+ plane(black
lines) with pure case for comparison(gray lines).
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In the disordered caseJC is limited by stretches of weak
bonds and the probability of finding within the system a long
stretch of consecutive weak bonds increases with system
size. Hence in mean-field theory we expectJC to be greater
thanpmin/4 but less than the corresponding pure result. It is
relatively straightforward to calculate the expected mean-
field JC for simple cases such as a binary distribution(see,
e.g.,[14]). However, just as in the pure case, we expect the
true value ofJC for small systems to be larger than this
mean-field estimate. In addition, a novel feature of the dis-
order is that it allows density profiles in the periodic bound-
ary case such as that shown in Fig. 9 where the current flow
is larger thanJC; i.e., for finite disordered systems, we can
haveJmax,p.JC. It is even possible to conceive of situations
in which Jmax,p is increased aboveJC

0 by adding disorder,
meaning thatD above the pure critical point(as calculated in
Sec. IV B) can be a physically relevant quantity. Examina-
tion of the possible high-current profiles reveals that for
small systems the current varies with macroscopic density
(with the maximumJmax,p at %=0.5), so a flat section is not
seen in the fundamental diagram. Similarly in the disordered
finite-size open boundary case,Jmax,o is increased beyondJC

and there are alterations in the phase diagram corresponding
to the altered fundamental diagram.

So finite-size effects have a significant complicating influ-
ence on both the fundamental diagram and phase diagram. At
present we are not able to quantify these entirely even within
the mean-field theory but progress can be made by combin-
ing numerical work(e.g., self-consistently looking for the
maximum current the density mapping can sustain) with the
analysis of previous sections.

VI. RESULTS FROM DISORDERED COLE-HOPF
TRANSFORMATION

Recall from Sec. III B that we are able to treat the con-
tinuum limit of the DASEP via a disordered generalization of
the Cole-Hopf transformation(13) to obtain the linear equa-
tion (12). Here we develop this approach further and demon-
strate connections to the results from the steady-state map-
ping.

A. Scaling and localization in the steady state

Let us concentrate initially on the steady-state solution for
% in order to make comparisons with the discrete mean-field
mapping approach. As discussed in Sec. III B, a steady-state
solution for% corresponds to a separable solution foru—i.e.,
usxd=TstdXsxd. Thex-dependent factorX must then satisfy

− fv − DsxdgX = Dsxd
d2X

dx2 , s44d

with v=2J.
Our approach is to rediscretize this,

s3Dn − vdXn = DnsXn+1 + Xn−1d, s45d

and then employ numerical scaling based on a method de-
veloped by Pimentel and Stinchcombe[20] to treat the equa-
tion of motion of a 1D Mattis-transformed Edwards-
Anderson Heisenberg spin glass. We write Eq.(45) as

sEn − znvdXn = Vn,n−1Xn−1 + Vn,n+1Xn+1, s46d

with zn=D /Dn, En=3D, andVn,n+1=D whereD is the char-
acteristic strength of the disorder variable. Equation(46) is
of just the form considered in[20] and can be exactly scaled
by b=2 decimation to give

sEn8 − znvdXn = Vn,n−28 Xn−2 + Vn,n+28 Xn+2, s47d

with

Vn,n+28 =
Vn,n+1Vn+1,n+2

En+1 − znv
, s48d

En8 = En −
Vn,n−1

2

En−1 − zn−1v
−

Vn,n+1
2

En+1 − zn+1v
. s49d

So theEn andVn,n±1, which aren independent at the outset,
pick up correlated randomness under scaling.

It is easy to iterate these equations numerically and check
how theV’s evolve. For the pure case(i.e., all zn=1) we find

FIG. 13. (Color online) Monte Carlo simulation results for the
DASEP phase diagram—surface and contour plots showing current
as a function of%−, %+. Uniform distribution withh̄=2.0 andsh

=0.5, system size 5000. Note increase in size of flat maximum-
current area compared to the pure case.
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an allowed energy band forD,v,5D. Within this band the
“site potential” E and the “coupling”V evolve chaotically,
corresponding to extended states. Outside the band there are
no allowed states andV decreases rapidly and monotonically
to zero whileE tends to a constant value. Just as in[20] this
can be explained by writingV andE explicitly in terms of a
single parameteru which is related to the wave vector of
excitations within the band. As expected the lower edge of
the allowed bandv=D, corresponds to the pure critical cur-
rent JC

0 =p/4. The upper band edge has no physical signifi-
cance in our problem since this switch between continuum
and discrete representations is valid only for long wave-
lengths corresponding to being close tov=p/4.

Adding weak randomness, we find that for all values ofv,
V evolves either chaotically or cyclically to zero inside a
well-defined exponentially decreasing envelope—i.e.,Vsld
, fslde−l/j where l is the distance between sites andj is a
localization length. In other words, any amount of disorder
induces localization for all values of frequency. This is
analogous to the fact that all states are localized in one-
dimensional disordered quantum problems. We developed a
computer algorithm to calculatej for a given distribution of
disorder(averaging over many realizations) as a function of
v. Typical results for both pure and disordered cases are
shown in Fig. 14. Note that, in contrast to the spin-glass case
studied in[20], the localization length is not infinite at the
critical point. This is essentially due to the −Dsxdu term in
Eq. (12) and means that we cannot easily follow[20] in
defining a dynamic exponent via a relationship likev
~ s1/jdz.

To determine the signature of localization in the original
DASEP problem we consider a localized form ofu:

u , e±x/j. s50d

Using Eq.(13) to invert the Cole-Hopf transformation gives

% =
1

2
±

1

2j
, s51d

i.e., a shift in the profile. So calculating the average localiza-
tion length is just like calculating the average shift from%
=1/2 in the original problem. In other words the average
localization length is just half the inverse of the quantityD
defined in Sec. IV. Of course, in generalu will be some
boundary-dependent combination ofe+x/j and e−x/j, corre-
sponding to the fact that, in the high-current phase, the ob-
served shift in density can be anywhere between +D and
−D—i.e., the flat section on the fundamental diagram. This
relief of localization in the inverse mapping is possibly con-
nected with the work of Kopidakis and Aubry[21] on the
relief of localization by non linearity in low-dimensional de-
terministic systems.

In Fig. 15 we explicitly compare the localization length
obtained by this scaling method ands2Dd−1 from the discrete
mapping method. We find an excellent agreement forJ near
to the critical point where the discrete-continuum-discrete
approximations are valid, but the comparison breaks down in
the high-J region which in any case is unphysical. Further-
more, by definingYn+1=Xn+1/Xn we can cast Eq.(45) into
exactly the form studied by Hirota[18]:

Yn+1 = an − 1/Yn, s52d

with

an = s3 − znvd. s53d

We can then obtain the stationary probability distribution
wsYd in analogy with the calculation of Sec. IV and, follow-
ing [18], define the localization lengthj by

1

j
=

1

2
E

−`

`

wsYdlnY2dY, s54d

leading eventually to

FIG. 14. Localization transi-
tion in Cole-Hopf-mapped
DASEP. The data points represent
the localization lengthj calcu-
lated by our numerical scaling
method; lines are provided as an
aid to the eye. In the pure case
(with h̄=2.0) the localization
length is effectively infinite in the
“allowed band” 0.25,v,1.25;
disorder is seen to induce
localization.
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j =
f4 − s3 − 2h̄vd2g

2v2sh
2 . s55d

The resulting prediction for the localization length of the
high-current phase agrees closely with that determined by
our numerical scaling method(see Fig. 15) except near the
critical point where the Hirota method breaks down(just as
in the density mapping case of Sec. IV). One subtlety in-
volves the meaning of “averaging over realizations” in find-
ing the average localization length. In the original numerical
scaling method of[20] the averaging is overV,e−l/ji (where
i labels the specific realization of disorder); in contrast the
Hirota method takes the average of 1/ji. It is clear from Eq.
(51) that averaging over 1/ji provides the definition ofj
most directly comparable withD, so this is the procedure
adopted in the computer programs used to generate the data
in Figs. 14 and 15. Averaging overV instead gave less good
agreement with the analytical expression especially in the
center of the band where the localization length is less
clearly defined.

Finally we note that since the variableY can physically
take all values between −̀and +̀ , we expect better agree-
ment in the numerical and analytical results forj than the
numerical and analytical results forD where the analytics for
general distributions of disorder was unable to take account
of the physical restriction 0ø%ø1, resulting in discrepan-
cies for high values ofJ (see discussion of Sec. IV B). In
addition, it is easier to get high quality data from the linear
scaling computer algorithm(where we can measure accu-
rately localization lengths up to,10 000) than from the non-
linear mapping.

B. Effect of disorder on dynamics

One advantage of the Cole-Hopf formalism is that it pro-
vides an easy route to discuss the influence of disorder on the
dynamics of the system. Here we mention briefly some in-

ferred effects. A general solution foru is made up of a su-
perposition of separable solutions; in the pure case this leads
to a general solution for% of the form

%sxd −
1

2
=

1

2

SkAkikeikx−vkt

SkAke
ikx−vkt

, s56d

wherek can be positive or negative and is real in the high-
current phase and imaginary in the low-current phase. The
coefficientsAk must be chosen so that% is real. From Eq.
(12) the pure “dispersion relation” isvk=Ds1+k2d but the
k-independent term will cancel out in the numerator and de-
nominator of Eq.(56). The solutions hence have wavelike
form in the high-current phase and multiple soliton form in
the low-current phase. As time increases, transients die away,
leaving the steady state corresponding to the smallest value
of v.

Disorder-induced localization in the high-current phase is
crudely like adding a small imaginary partik sk,1/jd to the
realk [in Eq. (56) this gives steady-state solutions for% like
that in Fig. 9]. The imaginary part of the resulting complex
dispersion relationv,Ds1+k2−k2+2ikkd would be ex-
pected to lead to oscillations while the small decrease in the
real part slows down the dynamics. Indeed, it is intuitively
obvious that adding disorder should slow down the approach
to the steady state, since in a 1D system the overall rate of
hopping of the particles(and hence the speed at which the
steady state is reached) will be limited by the bond with the
smallestpl. This slowdown is confirmed by the Monte Carlo
simulations of Fig. 16. Within this framework a more quan-
titative analysis should be possible but would be complicated
by boundary conditions and finite-size effects(compare Sec.
V).

VII. DISCUSSION AND OUTLOOK

In this paper we have shown within a mean-field frame-
work that one effect of quenched bond disorder on the ASEP

FIG. 15. Comparison of local-
ization lengthj obtained by nu-
merical scaling withs2Dd−1 from
the mapping approach. Disorder
with h̄=2.0, sh=0.2. Analytical
predictions forj ands2Dd−1 in the
high-current regime are also
shown.
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is a flattening of the top of the steady-state current-density
relation and a corresponding increase in the high-current re-
gion of the phase diagram for open boundary conditions. We
have presented various numerical and analytical approaches
(including a mapping to a localization transition in an
equivalent problem) to quantify these changes and shown
that our results compare reasonably well with Monte Carlo
simulations.

While we believe that this mean-field discussion repro-
duces qualitatively the effects of adding disorder, an exact
treatment would be expected to provide better quantitative
agreement with simulations together with further physical
understanding. Some progress has already been made(see
the review by Stinchcombe[22]). For example a form of the
Harris criterion[23] can be applied to the ASEP which sug-
gests that disorder should be relevant in the sense of intro-
ducing new critical behavior. And this new critical behavior
can be elucidated by adding disorder to renormalization
schemes developed for the pure case(see, e.g.,[24,25]). In
carrying out such scaling of distributions one reencounters
many of the concepts highlighted above such as Griffith’s
phases and the importance of tails of the distribution.

Many of the ideas discussed(e.g., Griffith’s phases, local-
ization, importance of boundary conditions) might also be
expected to apply to other nonequilibrium situations and it

would be interesting to see if we can apply generalizations of
the methodology of Secs. III–VI to other problems. In par-
ticular we have studied a simple two-lane traffic model[26]
in which the fundamental diagram can have a double-peak
structure(the ASEP with next-nearest-neighbor interactions
as studied by Popkov and Schütz[7] also has such a double
maxima). We would expect that disorder flattens the tops of
these maxima leading to corresponding changes in the phase
diagram but more interesting effects are also possible such as
a relative change in the height of the two peaks. Studying
quasi-1D models such as this two-lane system might also
provide a bridge to understanding the effects of disorder on
higher-dimensional systems where one expects to find a
wider range of possible disorder-induced effects.

In conclusion, we hope that this mean-field treatment of
the disordered asymmetric simple exclusion process provides
a flavor of the general phenomena present in nonequilibrium
models with quenched substitutional disorder. There is much
scope for further work on this and related models.
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