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Modeling traffic through a sequence of traffic lights
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We introduce a microscopic traffic model, based on kinematic behavior, which consists of a single vehicle
traveling through a sequence of traffic lights that turn on and off with a specific frequency. The reconstructed
function that maps the state of the vehicle from light to light displays complex behavior for certain conditions.
This chaotic behavior, which arises by the discontinuous nature of the map, displays an essential ingredient in
traffic patterns and could be of relevance in studying traffic situations.
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I. INTRODUCTION A car in this sequence of traffic lights can hag@ an

. . . ' . acceleratiora, until its velocity reaches the cruising speed
The complex behavior displayed in traffic patterns is an (b) a constant speeg. .. with zero acceleration, ac)

interesting field of physics that is attracting some attentiongmr?g ative acceleratiora until it stoos: hence
lately, in particular for their statisticdll,2] and dynamical 9 PS: '

[3,4] properties. There are a number references on traffic
jams, chaotic traffic flows, bus-route problems, pedestrian dv _Ja.0(vmax—v), accelerate,
flows, etc.[5-11]. dt -a 6(v), brake,

In particular, the development of complex behavior in
traffic flows determines, in a certain way, the efficiency of\\here g is the Heaviside step function.
the transportation infrastructure of a city, region, or country.  aAg the car approaches theh traffic light with velocityv
In this context, traffic flows, with and without passing, haveinhe driver must make a decision—to step on the brakes or
been studied extensively in the literatyfe,13—e.qg, cellu-  ot—at the distancéthe last stopping poipw?2/2a_ depend-
lar automaton models, mean-field theories which test the mipg o the sign of sifw,t+¢,). Note that if w2 /2a,)
croscopic evolution, hydrodynamic models which approach+(vr2naX/2a_)<Lm thenv =v,,, and the car reaches cruising

CO”eCtiV.e behavior, etq.lz_l,la. . . speed before reaching the decision point. Also in general it
In this work, we are interested in the behavior of cars, akes sense tha® 7/ 1) > (0 ), (0l &,) SO that the
moving through a sequence of street light signals. Those whp_.. - light does not ghangga)t(oo f,as??)r(om on to off. Of

have been trapped in city traffic jams .With traffic Iig'hts gourse as the vehicle brakes two things can happen: the car
should understand the relevance of studying the dynamics Van stop completely and wait until the light turns on again or

traffic patterns under these conditions and that the possibilit}{ can start accelerating before it stops completely if the light

of controlling these patterns may offer a solution to this Verychanges. Here we start observing the discontinuous nature of

common problem. For this paper, we will concentrate on thghe model

behavior of a single car moving through a sequence of traffic The car enters the sequence of traffic lights with velocity

lights, and we will see that under certain conditions unpre- ; . :
dictable behavior arises. The understanding of this proble to and timeto, The set of rules described above determine a

may help us approach the complex problem of interactin o-dimensional(2D) map M(ty,0n) that evolves the state

cars moving through a city with traffic lights. %t”’vn) at t.he_nth trafflc I|ght.to State(tn1,vnes) gt.the. (n
+1)th traffic light. This map is constructed explicitly in the

Il. MICROSCOPIC MODEL Appendix.

The types of trajectories between two traffic lights are

th Tr&etal':n offour apprﬁgtlzh, aIthpugft\hsmplgled, s to follow ?;iescribed in Fig. 1, which clearly shows the typical kinemat-
e details of one vehicle moving through a sequence of.."csqciated with this model.

traffic lights in one (_1|m_en5|_0n. The separation bemee?‘ the It is interesting to mention that this simplified model may
nj[h and(n+1)th traffic light is L“‘_The nth I'ght_'s green if still be relevant in the case of many cars going through the
sin(wpt+¢,) >0 an_d red otherwlse, Wheren s the fre-  ofic light sequence, but with the effective parameters de-
quency of the traffic light and, is the time shift. Note that o nqing on the density of interacting cars. For example, you
these two parameters are important if we were trying to CONfnay have observed while driving through a city that the
trol the traffic flow. effective averaged acceleration seems to depend on the num-
ber of cars waiting at the traffic light. Similarly, the averaged
effective cruising speed also seems to depend on the density
*Electronic address: btoledo@macul.ciencias.uchile.cl of cars going through the sequence of traffic lights.
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FIG. 1. The possible situations at the decision point—namely, (a)
(1) continuing, (2) braking to stop ax=L before the light turns
green again, and3) braking and accelerating again as the light 1
turns green before stopping completely.
AR
Ill. ANALYSIS AT

We now study the situation of a car traveling through a
sequence oN traffic lights, which in essence assumes a city
with regular city blocks. We expect that iterating this map 0.95
may reveal interesting information about the behavior of
traffic flow in a city, even with this simplified model.

The best travel time occurs when the car speed synchro- FIG. 2. The iterated map faia) the speedu, at thenth traffic
nizes with the frequency of the traffic light; hence, light and(b) the normalized time traveledit,/T.=(t .1 —t,)/ T, be-
siN(NwpLp/ Umax* @) >0 for all n. This may be done for spe- tween traffic lights, fof)=6, a=1/3, andA,=10.
cific v,y but it cannot be guaranteed for a range of cruising
speeds. complex behavior appears for certain range$)ofThe case

For now, we will concentrate on studying the dynamicsof (=6 is shown in Figs. @) and 2b) for the speed, at
for a given value ofv,. Note that this parameter is very the nth traffic light and time traveled\r,=(r,.,— 7, be-
relevant in actual city situations since different drivers aretween thenth and(n+ 1)th traffic lights, respectively. Clearly
willing to reach different values o, and traffic control  we observe a period-2 solution in which the car is caught by
strategies, achieved through and ¢, will be very sensitive  every other light, affecting the effective traffic flow.
to its distribution. Furthermore, if we assume that the traffic  Although all initial conditions in thei- plane reach this
parameters are, to first order, functions of the density operiod-2 orbit asymptotically, a range of initial conditions
number of cars, then control strategies must take this inteaches this orbit in one step due to the discontinuous nature
account especially during traffic jams. of the map.

Note that we could consider differehf=L+AL, values We then take a similar situation but with=6.11, and we
and different frequencies,= w+Aw, values as induced time observe the more complicated situation of Figg) and 3b)
phases\ = wALy/vmax @aNdAdy=AwyL /vy respectively.  for u, and A7, respectively. Note that in this case, even
That is why we concentrate for simplicity on the situation though there exists a complex traffic behavior, the averaged
L,=L and w,=w. In this case it is convenient to define the traveling time is reduced, as compared with the situation of
cruising time asT.=L/vya and normalizeu=v/vma, 7 Fig. 2b).
=t/T,, andy=x/L. The evolution equations then reduce to  The bifurcation diagram in which we va® is shown in
du {A+0(1 _u), accelerate, Fig;. 4_a) and 4b) f(_)r the speed and time traveled _between
—= traffic lights. There is a particular range of frequencies where
dr  |-A6(u), brake, the iterated speed of the car varies in a complicated manner.

. _ _ _ Clearly, the average travel time in Figh? has a larger value
with A,=a,L/v2,, A =a Llv?,, andQ=wT.. Y 9 g2 9

The decision to stop or continue is made before the traffidhan thedone fo: Fig.®). Ir? fa?]t, itis worth noti_cing that .”;]e H
signal at a distance averaged travel time in the chaotic region coincides with the

interpolation between the left and right nonchaotic regimes.
1 But given the richer dynamics in the chaotic region, it could
:K' be possible to obtain a lower travel time through a chaos
controlling strategy(e.g., Fouladi and Valdivig16]). This
depending on the sign of g€17+ ¢,). The frequency restric-  will be explored elsewhere.
tions reduce to(2m/Q)>(1/A,),(1/A_). We propose to The bifurcation diagram of Fig. 4 suggests a period-
study the traffic flow as a function ok,, A_, and(). We  doubling bifurcation to chaos as we incred3¥eAs the cha-
define the acceleration rateo=A./A_. Initially we will take  otic attractor collides with one of the velocity thresholds, it
the phasep,=0. produces an inverse period-doubling bifurcation. If we zoom
As the car, with a reasonable acceleration ratol/3  into one of the frequency ranges where the map displays
and A, =10 (corresponding td.=L/vma T =vmad &4), it- complex behavior, as shown in Figiay, we find an intricate
erates through the traffic light sequence, we can observe thatructure of steady and chaotic behavior, as expected of a
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FIG. 5. The bifurcation diagran{a) zoom for Fig. 4b) and(b)

FIG. 3. The iterated map fa@) the speedi, and (b) the time the associated Lyapunov exponent.

traveled A7, between traffic lights, fo)=6.11,a=1/3, andA,
=10.

5{1 -~ §0e)\n.
chaotic regime after a period-doubling bifurcation.

Estimating the relevance of this chaotic behavior and itsGiven an initial condition over the attractor an exponent can
sensitivity to perturbation and noise may be of importance irbe estimated by a fitting procedure in the scaling region. Of
control strategies. In this sense a finite-amplitude Lyapuno¢ourse, the discontinuous nature of the map complicates this
exponent can be estimat¢tl7]. Let us take a trajectory in calculation, where, for example, both trajectories can reach
the attractor that starts frofog, 79) and an initially perturbed the same state in one step, yielding—. Nevertheless, a
trajectory that starts fronfuy, 7o+ &), with, for example, final Lyapunov exponent can still be constructed by averag-
%=10". The error is iteratech times, producings,. Care ing many initial conditions over the attractor, as shown in
must be taken to include only the scaling region where Fig. 5b).

Another way to understand the dynamics of the system is
to plot the phase space evolution, at a given valu€pfs

v
mox /
i

5.8
(a)

At /T

0.95
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(b)

8 0

6.4

shown in Fig. 6 for four values df. It is interesting to note
that the dimension of the attractor is close to 1D in the cha-
otic situation. Here the volume contraction comes from the
dynamics itself and the fact that a range of initial conditions
goes to the same point in one iteration, hence its discontinu-
ous nature.

The bifurcation diagram can be continued to larger values
of Q) and windows with complex behavior similar to the one
displayed in Fig. 4 can be found. In Fig.ay we see the next
window in a higher-frequency range. This case corresponds
to increasingly faster light switching and may not be as
relevant in actual traffic situations as the one described in
Fig. 4.

Another parameter is=a,/a_. In the limit a— 0, with
a_— o anda, constant and finite, the driver makes the de-
cision exactly at the traffic light and stops instantaneously if
it is red. We expect that in this case the nature of the dynam-
ics changes and any separation of trajectories in phase
space—i.e.y-—can be understood in terms of the situation

FIG. 4. The bifurcation diagram fofa) the speed andb) the N which the cruising speed is synchronized with the traffic
time between traffic light as a function 6f. The other parameters light. Figure 7b) shows the bifurcation diagram for the car
are as beforea=1/3 andA,=10. The transient has been removed. Speed wherma=1/30. The curves that resemble vertical lines
The four vertical lines at the bottom ¢6) mark Q values used to  correspond to the car not being synchronized with the traffic
build Fig. 6. lights. These vertical lines should disappeaads decreased

016107-3



TOLEDO et al. PHYSICAL REVIEW E 70, 016107(2004

1.05 v
- max
/T, v,
.
0.99 0
0 v v 115 a 13.0
max
(a) (a)
1.05 Y max |
!
- |
)
i
at/T Yo i
- |
!
0 J
0.99
1.5 Q 13.0
0 A Voo
(b)
(b)

FIG. 7. (a) The bifurcation diagram for the speed similar to Fig.
4(a), but in a different frequency rangé) The bifurcation diagram

100 ] for the speed but foa=1/30.
M
at/T, the cruising speed is not exactly at the value the traffic lights
Q were designed. This should be similar to the situation in

which we vary () and study the bifurcation diagram as
shown in Figs. €a) and 4b) for the speed and time duration
0 v v between traffic lights.

An important point to clarify is the relative size of the
chaotic region which depends on the specific valued of
A_, andL (vhaxcan be rescalgdMuch larger chaotic regions
than the ones illustrated here can be obtained by adjusting

0.99

(e)

1.05

- the parameters accordingly. For example, if we BAse5,
M/T, A_=30, andT.=10, the chaotic regions are significantly
. larger from the ones previously shown and may apply in a
0.9¢9
0 \ Voo
(@

FIG. 6. The evolution in phase spaag,r plane, at the four
frequencies marked in Fig.(@ as vertical lines below=0. The
transient has been removed.

so that we obtain only two situations: either the car goes (a)
through the traffic light withv,,, Or stops completely.

We now turn to the problem of sensitivity with noise. We
impose on the above model a random phas¢aken from a
uniform distribution in[0,0.01] and study the equivalent to , ‘EE ii
Fig. 4. In Fig. 8, we can still observe the general bifurcation M, ""ﬂﬁi%ﬁ%ﬁlh.,.
structure of Fig. 4 fow, and Ar,, but this structure is, of e
course, lost as we increase the perturbation amplitude.

0.95
5.8 Q 6.4

IV. CONCLUSIONS (b)

Suppose we design a traffic system—namely, and FIG. 8. (a) The bifurcation diagram including a random phase
+—So0 that it permits a continuous traffic flow for a certain ¢, for the case shown in Fig. 4. The noise is taken from a uniform
cruising speed . We can simulate the situation in which random distribution between 0 and 0.01.
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different traffic situation. Although the parameters used inbetween origirO and next traffic light. After crossing theh
this work were chosen to illustrate this ingredient in traffic light, the car reaches;,,, at

dynamics without a specific city in mind, other parameter 5 "

sets can represent a wide range of traffic condititsteet X, = Umax~Un Vo= i(l Y

size, traffic light separation, car types, driver types,)etc. 2a, CA n

Note thaté, (see the Appendixs another important variable

determing the complexity in the behavior which defines the Umax— Un 1

chaotic region. te=t,+ ———— > =1, + —(1-u,),
Furthermore, if we want to extrapolate this model to the & Ay

situation of more than one car, théq, A_, andL may be

obtained in a statistical sense from the distribution of param- Ve = Umax— U= 1,

eters defining the traffic flow, distance between traffic lights

. L ) - ‘an ntin mov nstant velocity until th ision
the car types, specific road situations, driver attitudes, eta d continues to move at constant velocity until the decisio

And in this case the values may be expected to be quit oint
heterogeneous. Hence one could observe, for example, that a Uﬁm 1
car moving in a traffic jam, accelerates and brakes all the Xg=Ln— 23 —Ya=1 oA
time, contributing to an effectivd, andA_. This is an idea
that may be of relevance for designing traffic flow during —
traffic jams. - d— - _
It is worth noticing that the present analysis discusses the fa=le* Umax = =7t Va Yo,
effect of long trips through the city, while short trips in a city
would be affected by the transients in this model. Hence, this V4= Umax— Ug = 1.

analysis points to the difficulties that may arise when trying . . ) . )
to control the traffic flow in cities. With one car, we already At this point we have two choices depending on the sign
have a complicated situation, and as we include more thafif Sin(@nta+ én).

one car we can only expect more interesting and complicated !f sin(wytq+ ¢n) =sin(Q7y+¢,) >0, the car reaches the
situations. Controlling such systems usually requires a contraffic light with a state

trol strategy that involves a large number of interacting
agents.

Realistic situations are not as simple as the model we L
presented here; i.e., we have randomly varying street length theg = tg+ —
L, (or Q, or ¢, etc), a distribution ofa, anda_, etc. Some Umax
of these variations can be observed in a distributiogp.ofin
this sense it is worth mentioning that if we changgran- Une1= Umax— Une1 = 1.
domly the chaotic behavior can be destroyed as expected for If sin(wpty+d)=SiNQry+ ) <0, the car must start

a large enough per_turbation a”.‘p.”“ﬂde- On the other hand, glowing down witha_, and it will take an extra time\t
we chose the obvious deterministic phagg=-wnln/vmax =, 13 or A7=1/A_ to reach then+1ith traffic light and

(other parameters kept constarthen the car can make it ﬁtop. This time must be compared with the next time the light

though the traffic sequence without stopping, hence OIOtima\urns greent,, at which point the car can accelerate again.

control. But this is not realistic because in practice the cars, .. .
ST fining the ph = +p=Q 74+ h, W n com
have a distribution o, and what works for one car, g the phas€y=wytq+ dn=Q 7+ ¢y, We can compute

clearly does not work for another. If other deterministic func- d
tions are enforced, then interesting situations may also hap- &g = nlg* ¢n = 277('”"[27} + 1)-
pen and will be studied elsewhere.

We clearly understand that the presented model is a strongghere Infx] is the integer part ofx. Therefore, if tq
simplification of actual traffic situations, but it keeps some+At<tyor 7g+A7< 7, the car will cross then+1)th traffic
essential features we believe are present in real traffic. Thikght with
is just a very interesting starting point from which we can
construct and interpret more complex scenarios—i.e., a work
in progress.

X1 =Ln— Y1 =1,

d _
— Toe1=Tg T 1 =Yg,

Xn+1=Ln— Yne1 =1,

the1 = tg — Th+1= Tgs
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APPENDIX: THE M(t,v) MAP

It is convenient to construct an exact map that relates
successive crossing of the traffic lights. lLebe the distance ty=tg— 79= 17,

— ¥Yg=Ya+ Us(7g— 79) —A (74— 79712,
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vg=vg~ a(ty—tg) — Ug=Ug— A (1g— 7g), Xm=Xm— Ym = Ym

and again we have two cases before it reathéde need to

determine if the car reaches,,, before the light. We com- to=t, + Umax~ Ug
pute the distance at which the car reachgg—namely, ¢

Xm=Xg+ (Vimax—V5)/ 28, OF Y=Y, +(1-U3)/ 2A,. Therefore, if

Xm>L, then the car reaches the traffic light with Umn=Umax— Ui =1,

+1(1 Ug)
— Tm= TgT (L~ Ug),
A,

X1 =Lp— Yp1 =1, and the light at

X1 =Ln— Yne1 =1,

Un+t1 ™ Ug 1
ty =1+ — Tp1 = Tgt A_+(un+l_ Ug),
Ln = Xm
thiy =ty + v = Te1= T+ (L =Ym),
I areura— N e yara— max
Un+s1 = VUg+ 2a,(L, - Xg) — Unpsg = VUG + 2A.(1 _yg).
otherwise, it reaches,,, at Un+1= Umax— Unse1 = 1.
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