
Slow modes in passive scalar turbulent advection

Thomas Gilbert
Institut Non-Linéaire de Nice, CNRS, Université de Nice, 1361 Route des Lucioles, 06560 Valbonne, France

(Received 10 March 2004; published 8 July 2004)

This communication describes the computation of slow modes in a generic shell model of passive turbulent
advection. It is argued that the propagator for the correlation functions possesses a ladder of slow modes
associated with each zero mode. These slow modes decay algebraically fast, as opposed to exponential. Using
the explicit form of the propagator of the 2-point structure function, we show that the slow modes structure for
the generic case is analogous to the case of a Gaussian correlated advecting field, for which the differential
structure of the operator allows a direct computation of these modes. Numerical computations of the slow
modes are performed and compare very well to our results.
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Turbulent transport whereby a passive scalar or vector
field is advected by a turbulent velocity field has recently
been the subject of exciting new developments[1]. Indeed a
fundamental consequence of the passive nature of such a
transport process is that the evolution of the correlation func-
tions of decaying fields may be expressed as an initial value
problem under the form

kfsrW1,td ¯ fsrWN,tdl =E dqPr ,q
sNdstut0dkfsqW1,t0d ¯ fsqWN,t0dl,

s1d

wheref is here taken to be a scalar field andPr ,q
sNdst u t0d is a

linear operator propagating theNth order correlation function
from time t0 at positionsq;sqW1, . . . ,qWNd to time t at posi-
tions r ;srW1, . . . ,rWNd. Here the bracketsk.l indicate an aver-
age taken with respect to the statistics of both the initial
conditions of the scalar and the realizations of the velocity
field. The important point is that the right-hand side(RHS)
of Eq. (1) expresses the decoupling between the initial dis-
tribution of the scalar and the statistics of the advecting field,
a property that holds only at the initial time since correla-
tions start building up between the advected and advecting
fields at later times.

An important finding in the theory of turbulent transport
was that the operatorPsNd has zero modes whose scaling
properties determine the scaling of the correlation functions
of the steady statistics of forced advection. That is, assuming
stationary statistics for the advected field, its correlation
functions have the property that

kfslrW1d ¯ fslrWNdl f = lzNkfsrW1d ¯ fsrWNdl f . s2d

Here we dropped the time dependence and wrotek.l f to de-
note an average with respect to the steady distribution of the
forced advection problem.l.0 andzN are some numbers
that cannot be determined by dimensional arguments; they
are anomalous. It turns out the scaling exponents are a prop-
erty of the zero modes of the decaying statistics.

The existence of the zero modes has been exemplified in
[2] as follows. In the absence of a source term in the equa-

tions of motion of the passive field, its correlation functions
are decaying objects. Nevertheless there exists special func-
tions ZsNdsr d for which the quantities

I sNdstd ; E drZsNdsr dkfsrW1,td ¯ fsrWN,tdl s3d

remain constant in the appropriate limit; in other words,
these functions are statistical integrals of motion. From Eq.
(1) it follows that the functionsZsNdsr d are left eigenfunctions
of PsNd with unit eigenvalue[8]

ZsNdsr d =E dqPq,r
sNdstut0dZsNdsqd. s4d

Such functions are thezero modeswhich stems from taking
the time derivative of the RHS of Eq.(4),

E dqsd/dtdPq,r
sNdstut0dZsNdsqd = 0;

in other words, a zero mode is an eigenmode of eigenvalue
zero of the differential operator. These statements are only
equivalent providedPsNd can be written as the exponential of
a differential operator, which is generally not the case.

The structure of the operatorPsNd is rather complicated
and can be analyzed analytically only provided one makes
drastic assumptions on the correlations of the advecting field.
In particular, in the context of a Gaussiand-correlated in
time advecting field(so-called Kraichnan model[3]), it is
possible to expressPsNd as the exponential of an operator,
sayMsNd, so thatPsNd has an explicit differential structure.
As shown in[4], the zero modes ofPsNd are at the bottom of
an infinite ladder ofslow modes, which are simply eigen-
modes of eigenvalue zero of the successive powers ofMsNd.
A zero mode of thej th power ofMsNd is a slow mode of
MsNd in the sense that thej th slow mode is projected onto
the s j −1dth slow mode by the action ofMsNd and so on until
it is projected on the zero modes j =1d at the j −1th iteration.
The action ofPsNd on a slow mode thus yields an algebraic
function of time whose degree is given by the position of the
slow mode in the ladder. A consequence of this ladder struc-
ture is that the scaling exponents of the slow modes are ob-
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tained by simply taking multiples of the scaling exponent of
the zero mode, i.e., ifzN is the scaling exponent of the zero
modeZsNd, then jzN, j =2,3, . . . are thescaling exponents of
the slow modes on that ladder.

In this paper, we intend to display the ladder structure of
slow modes in a generic model of turbulent advection, ex-
tending the analysis of the zero modes done in[2]. That is to
say we do not make any simplifying assumption on the sta-
tistics of the velocity field and compute the statistics of the
passive field as generated by the advecting field with generic
statistics.

The model we consider is a shell model defined on a
space of scales associated with wave numberskn=k0ln, in-
dexed bynPZ. The advecting field consists of complex vari-
ablesun associated to each shells whose evolution is speci-
fied by the sabra shell model[5],

d

dt
un = ifkn+1un+1

* un+2 − eknun−1
* un+1 + s1 − edkn−1un−2un−1g

− nkn
2un + fn. s5d

Here it will be assumed thate=1/2 andl=2. The velocity
forcing fn is usually taken to be a Gaussiand-correlated
noise limited to two shells chosen on the large scales. This
regime displays a direct cascade of energy, with nontrivial
anomalous exponents for the structure functions of the ve-
locity statistics.

Let un be complex variables defining a scalar field ad-
vected by theu-field according to[6]

d

dt
un = iskn+1un+1un+1 + knun−1un

*d − kkn
2un + sn. s6d

Heresn is a stochastic source term for the scalar. The decay-
ing case corresponds to the absence of such term. Assuming
so, we can write Eq.(6) in the simple form

d

dt
un = Ln,mum, s7d

where the matrixL is specified by the advecting field. The
evolution of the statistics of theu-field can be expressed in a
way similar to Eq.(1) with PsNd now defined as

PnI ,mI
sNd stut0d = kRn1,m1

stut0d ¯ RnN,mN
stut0dl, s8d

Rn,mstut0d ; T+HexpFE
t0

t

dsLssdGJ
n,m

, s9d

with T+ the time-ordering operator. Here the notationnI
stands for theN-tuple sn1, . . . ,nNd.

Consider the second order structure functions. We argue
that the slow modes are given by the functionsSn

s jd,2−jz2n,
with j =1 corresponding to the zero modes,Sn

s1d=Zn
s2d,2−z2n,

which is to say

Ks jdstd ; o
n

kuunstdu2lSn
s jd = o

n,m
Pn,m

s2d stdkuums0du2lSn
s jd s10d

are polynomials int of degreej −1. Numerical computations
of these quantities are shown in Fig. 1.

In [7] the form of the propagator was shown to be(setting
t0=0)

Pn,m
s2d std , 2−sz2m+log2 tdHsz2n + log2 td, s11d

providedt is sufficiently large with respect to the local eddy
turn over time of the initial scale. In this expressionH is
some homogeneous function of its argument.

Combining Eqs.(10) and (11), and assuming the initial
condition kuuns0du2l=dn,n* , we can write

Ks jdstd = 2−z2n*o
n

2−s jz2n+log2 tdHsz2n + log2 td

= 2−z2n* t j−1o
n

2−jsz2n+log2 tdHsz2n + log2 td , t j−1,

s12d

which holds as long as we ignore boundary effects. This is
indeed the power law displayed in Fig. 1.

These results can be compared to the derivation of slow
modes in the context of a shell model where the passive
scalar is advected by a Gaussiand-correlated velocity field
[6], kunstdum

* st8dl=dn,mdst− t8d2−jn. As shown in[7], in this
context, the differential operator describing the propagation
of the second order structure function is

FIG. 1. (Color online) Numerical computation of Eq.(10) for
the model described by Eqs.(5) and (6). The parameters aree
=0.5, l=2, k0=0.25, n=k=10−9. The number of shells used was
30, with Gaussiand-correlated forcing on shells 2 and 3 for the
velocity field. The initial condition for the scalar was initiated at
shells 19 and 20 with random phases and constant amplitude. The
average is taken over 13 000 realizations. The time units are natural,
with a span corresponding to the eddy turn over the forcing scale
s<125d. The first data set is simplyonkuunstdu2l. The other data sets
correspond to the successive slow modes, starting from the zero
mode, i.e.,onkuunstdu2lFn, whereFn is the forced second order struc-
ture function, as obtained by direct numerical computation. The
vertical scale is arbitrary and the curves have been scaled so as to
cross at the same point.
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d

dt
kuunstdu2l = Mn,m

s2d kuumstdu2l, s13d

where

Mn,m
s2d = 2f− st−n + t−sn+1dddn,m + t−ndn,m−1 + t−sn+1ddn,m+1g,

s14d

wheret=2−s2−jd [9]. Note thatMs2d is not a symmetric ma-
trix. Therefore, we do not expect the left and right eigenvec-
tors to be the same.

In fact, it is readily checked thattn is a left zero mode of
Ms2d, that is Mn,m

s2d tn=0, while t−n is a right zero mode,
Mn,m

s2d t−m=0. More generally, one can check(j integer)

Mn,m
s2d t jn = 2ts j−1dms− 1 −t−1 + t−j+1 + t j−2d, s15d

Mn,m
s2d t jm = 2ts j−1dns− 1 −t−1 + t j + t−j−1d. s16d

Therefore bothtn andt2n are left zero modes ofMs2d, while
t jn s j ù3d are left slow modes in the sense that they are left
zero modes of thej −1th power ofMs2d. As far as multipli-
cation on the right goes, we have two zero modes, namely
the constant vector(this corresponds to a conservation law)
andt−n. t jn s j ù1d are right slow modes, meaning they are
right zero modes of thej +1th power ofMs2d.

The exponentiation ofMs2d is the analog of the propaga-
tor Ps2d in Eq. (1),

Pn,m
s2d std = hexpftMs2dgjn,m. s17d

Therefore, in this context, again assumingkuuns0du2l=dn,n* ,
the quantity defined in Eq.(12) becomes

Ks jdstd = o
n

Pn,n*
s2d stdt jn = o

k=0

j−1
tk

k! on

fMs2dkgn,n*t jn. s18d

Here we used the fact that the exponential series stops since
the operator is acting on a slow mode. Using Eq.(15), we
compute

fMs2dkgn,n*t jn = 2s− 1 −t−1 + t−j+1 + t j−2dfMs2dk−1
gn,n*ts j−1dn

= 2kp
i=1

k

s− 1 −t−1 + t−j+i + t j−i−1dts j−kdn* . s19d

The first fewKs jdstd are shown below and displayed in Fig. 2,

Ks1dstd = tn* , s20d

Ks2dstd = t2n* , s21d

Ks3dstd = t3n* + 2tt2n*s− 1 +t−2 − t−1 + td, s22d

Ks4dstd = t4n* + 2tt3n*s− 1 +t−3 − t−1 + t2d + 2t2t2n*s− 1 +t−2

− t−1 + tds− 1 +t−3 − t−1 + t2d, s23d

Ks5dstd = t5n* + 2tt4n*s− 1 +t−4 − t−1 + t3d + 2t2t3n*s− 1 +t−3

− t−1 + t2ds− 1 +t−4 − t−1t3d + 4
3t3t2n*s− 1 +t−2

− t−1 + tds− 1 +t−3 − t−1 + t2ds− 1 +t−4 − t−1 + t3d,

s24d

Ks6dstd = t6n* + 2tt5n*s− 1 +t−5 − t−1 + t4d + 2t2t4n*s− 1 +t−4

− t−1 + t3ds− 1 +t−5 − t−1 + t4d + 4
3t3t3n*s− 1 +t−3

− t−1 + t2ds− 1 +t−4 − t−1 + t3ds− 1 +t−5 − t−1 + t4d

+ 2
3t4t2n*s− 1 +t−2 − t−1 + tds− 1 +t−3 − t−1 + t2d

3s− 1 +t−4 − t−1 + t3ds− 1 +t−5 − t−1 + t4d. s25d

Obviously all the powers oft contribute to these expressions.
However, if we assumet to be large enough with respect to
the eddy turn over time of the initial condition, i.e.,t@tn* ,
then it can be seen that the time dependence ofKs jdstd is
essentially dominated by the leading exponent, which is con-
firmed by Fig. 2 and is exactly what we see for the sabra
advecting field in Fig. 1.

In conclusion, we have shown that shell models for pas-
sive advection offer nice grounds on which to extend analyti-
cal results derived in the framework of passive advection
with very specific and seemingly restrictive assumptions
made on the statistics of the velocity field. The same slow
modes ladder structure that was originally derived by Ber-
nardet al. [4] in the context of the Kraichnan model for the
advecting field is seen to exist also for the shell models we
considered, even though these models do not have a simple
differential operator for the evolution of the structure func-
tions. The observables introduced in this paper, which gen-
eralize the objects first defined in[2] for the sake of finding
the zero modes, provide an easy way to single out a given
slow mode among the whole ladder associated to a zero

FIG. 2. (Color online) Numerical evaluation of the slow modes
for the Kraichnan model on shells, Eqs.(20)–(25). Here j
=1, . . . ,10. The parameterj=4/3 andn* =10. The eddy turnover
time at that shell is approximately 10−2. The horizontal scale is
counted in the units of the turnover time of shell 0.
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mode. The algebraic time dependence of the observables is
indeed what one would expect should the propagator be ex-
pressible as the exponential of time multiplied by a differen-
tial operator. Despite the absence of an explicit form of the
differential operator, the knowledge of the form of the propa-
gator of the correlations functions derived in[7] is sufficient
to infer the scaling properties of the slow modes

This work confirms that the ladder structure of zero and
slow modes as described in[4] extends beyond the turbulent

scalar advection by a velocity field given by the Kraichnan
model.
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Gawȩdzki, I. Procaccia, and A. Pumir for helpful discus-
sions. This work was financially supported by the European
Union under Contract No. HPRN-CT-2000-00162. The au-
thor wishes to acknowledge the hospitality of the Chemical
Physics Department at the Weizmann Institute of Science,
where this work was completed.

[1] G. Falkovich, K. Gawe¸dzki, and M. Vergassola, Rev. Mod.
Phys. 73, 913 (2001).

[2] I. Arad, L. Biferale, A. Celani, I. Procaccia, and M. Vergas-
sola, Phys. Rev. Lett.87, 164502(2001).

[3] R. Kraichnan, Phys. Rev. Lett.72, 1016(1994).
[4] D. Bernard, K. Gawe¸dzki, and A. Kupiainen, J. Stat. Phys.90,

519 (1998).
[5] V. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia, and D.

Vandembroucq, Phys. Rev. E58, 1811(1998).

[6] R. Benzi, L. Biferale, and A. Wirth, Phys. Rev. Lett.78, 4926
(1997).

[7] Y. Cohen, T. Gilbert, and I. Procaccia, Phys. Rev. E65,
026314(2002).

[8] Note that this does not mean thatPsNd admits an eigenvetor
decomposition. For that sake one needs to properly compactify
this operator.

[9] We assume all the quantities to be nondimensional and ignore
all dissipative and finite size effects.

THOMAS GILBERT PHYSICAL REVIEW E70, 015301(R) (2004)

RAPID COMMUNICATIONS

015301-4


