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Slow modes in passive scalar turbulent advection
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This communication describes the computation of slow modes in a generic shell model of passive turbulent
advection. It is argued that the propagator for the correlation functions possesses a ladder of slow modes
associated with each zero mode. These slow modes decay algebraically fast, as opposed to exponential. Using
the explicit form of the propagator of the 2-point structure function, we show that the slow modes structure for
the generic case is analogous to the case of a Gaussian correlated advecting field, for which the differential
structure of the operator allows a direct computation of these modes. Numerical computations of the slow
modes are performed and compare very well to our results.
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Turbulent transport whereby a passive scalar or vectotions of motion of the passive field, its correlation functions
field is advected by a turbulent velocity field has recentlyare decaying objects. Nevertheless there exists special func-
been the subject of exciting new developmdiils Indeed a  tions ZN(r) for which the quantities
fundamental consequence of the passive nature of such a
transport process is that the evolution of the correlation func- (N () = (N) = =
. TR t)y= | drz™(r r,t) - ot 3
tions of decaying fields may be expressed as an initial value ® (A0 - ¢ ) ®

problem under the form . . . oo
remain constant in the appropriate limit; in other words,

these functions are statistical integrals of motion. From Eq.
(p(rp,t) -+ (M, 1) :f quﬁ']\g(t|to)(¢(d1,t0) o d(Grrto)), (1) it follows that the functiong™(r) are left eigenfunctions
of PN with unit eigenvalug8]
(1)
N)(r) = (N) (N)
where ¢ is here taken to be a scalar field aﬁﬁ\g(tho) is a Z7 f daPq ({to)2(a). @
linear operator propagating ti\¢h order correlation function
from time t, at positionsq=(q,,...,qy) to timet at posi-
tionsr=(ry,...,ry). Here the bracket§) indicate an aver-
age taken with respect to the statistics of both the initial N N
conditions of the scalar and the realizations of the velocity qu(d/dt)Pq,r (tt)Z™(q) = 0;
field. The important point is that the right-hand sideHS)
of EqQ. (1) expresses the decoupling between the initial disin other words, a zero mode is an eigenmode of eigenvalue
tribution of the scalar and the statistics of the advecting fieldzero of the differential operator. These statements are only
a property that holds only at the initial time since correla-equivalent provided®™ can be written as the exponential of
tions start building up between the advected and advecting differential operator, which is generally not the case.
fields at later times. The structure of the operatd?™ is rather complicated
An important finding in the theory of turbulent transport and can be analyzed analytically only provided one makes
was that the operatoP™ has zero modes whose scaling drastic assumptions on the correlations of the advecting field.
properties determine the scaling of the correlation functionsn particular, in the context of a Gaussiahcorrelated in
of the steady statistics of forced advection. That is, assumingime advecting field(so-called Kraichnan modgRB]), it is
stationary statistics for the advected field, its correlationpossible to expres®™ as the exponential of an operator,
functions have the property that say M) so thatPN) has an explicit differential structure.
As shown in[4], the zero modes PN are at the bottom of
(P(NFY) « -+ dINFN) ) = NND(Fy) - -+ (P (2)  an infinite ladder ofslow modeswhich are simply eigen-
modes of eigenvalue zero of the successive poweystY.
Here we dropped the time dependence and wfotego de- A zero mode of thgth power of M) is a slow mode of
note an average with respect to the steady distribution of the4™" in the sense that thgth slow mode is projected onto
forced advection problem\ >0 and ¢y are some numbers the(j—1)th slow mode by the action o#4™™Y and so on until
that cannot be determined by dimensional arguments; theiy is projected on the zero modg=1) at thej - 1th iteration.
are anomalous. It turns out the scaling exponents are a profrhe action ofP™ on a slow mode thus yields an algebraic
erty of the zero modes of the decaying statistics. function of time whose degree is given by the position of the
The existence of the zero modes has been exemplified islow mode in the ladder. A consequence of this ladder struc-
[2] as follows. In the absence of a source term in the equature is that the scaling exponents of the slow modes are ob-

Such functions are theero modesvhich stems from taking
the time derivative of the RHS of E¢4),
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tained by simply taking multiples of the scaling exponent of 10
the zero mode, i.e., ify is the scaling exponent of the zero
modezZ™, thenjsy, j=2,3,... are thescaling exponents of
the slow modes on that ladder. .
In this paper, we intend to display the ladder structure of 1°
slow modes in a generic model of turbulent advection, ex-
tending the analysis of the zero modes doninThat is to
say we do not make any simplifying assumption on the sta-3. [
tistics of the velocity field and compute the statistics of the
passive field as generated by the advecting field with generic
statistics.

The model we consider is a shell model defined on a 107 o j=0H
space of scales associated with wave numBgr\", in- < J=l
dexed byn e 7. The advecting field consists of complex vari- . jZi
ablesu, associated to each shells whose evolution is speci- x_j=4

(5]

fied by the sabra shell modgd], 0 o

time

—_
=]

—Un = i[Kna1Uns 1Unez — €Kl g Unas + (1 = €)Kn-qUn-oUn-1]

dt FIG. 1. (Color onling Numerical computation of Eq10) for

) the model described by Eq$5) and (6). The parameters are
= kU + f. (5 =0.5,\=2, ky=0.25, v=k=10"°. The number of shells used was
Here it will be assumed that=1/2 and\=2. The velocity -0 With Gaussiarb-correlated forcing on shells 2 and 3 for the
velocity field. The initial condition for the scalar was initiated at

for_cmg{_ f”.tlsd ltJSLf[a"y tr?klelzn tr? be a G;luslslaﬁqcorrelf';lted_rh_she"s 19 and 20 with random phases and constant amplitude. The
noise imited 10 two shefls chosen on the large scales. ! verage is taken over 13 000 realizations. The time units are natural,

regime displays a direct cascade of energy, _With nontrivia ith a span corresponding to the eddy turn over the forcing scale
anomalous exponents for the structure functions of the V€(~125). The first data set is simpl,(|6,(t)|2). The other data sets

locity statistics. . o , correspond to the successive slow modes, starting from the zero
Let 6, be cqmplex Va”?b|es defining a scalar field ad-mqge, i.e.2n(|6,(t)|2F,, whereF,, is the forced second order struc-
vected by theu-field according tq6] ture function, as obtained by direct numerical computation. The
d vertical scale is arbitrary and the curves have been scaled so as to
agﬂ =i (Kne1OneaUner + KnOn-1Uy) = Kkﬁan +5,. (6) cross at the same point.

Heres, is a stochastic source term for the scalar. The decay- In [7] the form of the propagator was shown to(setting

ing case corresponds to the absence of such term. Assumitigr0)

so, we can write Eq(6) in the simple form

d P (1) ~ 27™10% DK (£n + log, ), (12)

d—tan:,cn,mam, (7) _ _ N .
providedt is sufficiently large with respect to the local eddy

where the matrixC is specified by the advecting field. The turn over time of the initial scale. In this expressibhis

evolution of the statistics of thé-field can be expressed in a some homogeneous function of its argument.

way similar to Eq.(1) with PN now defined as Combining Eqgs.(10) and (11), and assuming the initial
N ~ condition(|6,(0)[>) = &, +, we can write
Pam(tlto) = (Ro, m, (tlto) -+ Ry m, (L)), (8)
t KO(t) = 272" 3} 2706M10% YH(¢5n + log, 1)
Rym(tlto) ET*{exp[ f dsC(S)H : 9 :
fo n,m

= 2—£zn*ti—12 2-i(¢ontlogy t)H(§2n +log, t) ~ i1,
with T* the time-ordering operator. Here the notatian n
stands for theN-tuple (n4, ... ,ny). (12
Consider the second order structure functions. We argue
that the slow modes are given by the fUﬂCti@%~ 27%" \which holds as long as we ignore boundary effects. This is
with j=1 corresponding to the zero mod%lﬁzn '~27&" indeed the power law displayed in Fig. 1.
which is to say These results can be compared to the derivation of slow
4 4 . modes in the context of a shell model where the passive
— — 2 . K . X
KO(t) = 2 (|6,0PS) = 2 Pt 6(01)S) (10)  scalar is advected by a Gaussiagorrelated velocity field
" nm [6], (Un(Duy(t'))=6,md(t—t")27". As shown in[7], in this
are polynomials irt of degreej—1. Numerical computations context, the differential operator describing the propagation
of these quantities are shown in Fig. 1. of the second order structure function is
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d
i = M2 (6,03, (13)

where 10

Mgzr)n = 2[_ (T_n + T_(n+1)) 5n,m + 7'_nﬁn,m—l + T_(n+l) 5n,m+1]a

(14)

where r=27279 [9]. Note thatM@ is not a symmetric ma-
trix. Therefore, we do not expect the left and right eigenvec-
tors to be the same.

In fact, it is readily checked that' is a left zero mode of
M@, that is M%) =0, while 7™ is a right zero mode,
Mfr)nf‘mzo. More generally, one can che¢kintege)

L
-2 —1 0 1

M =271 1= 7 7 2072, (15) 0 e 10

@ _im— o (~1n 1 i FIG. 2. (Color onling Numerical evaluation of the slow modes
/\/ln,mTJ =27 (—1-7 47+ 707, (16) for the Kraichnan model on shells, Eq$20)—(25). Here j
) =1,...,10. The paramet&€=4/3 andn*=10. The eddy turnover
Therefore both™ and 7" are left zero modes of1?, while  (ime at that shell is approximately 70 The horizontal scale is
7" (j=23) are left slow modes in the sense that they are leftounted in the units of the turnover time of shell 0.
zero modes of th@¢- 1th power of M@, As far as multipli-
cation on the right goes, we have two zero modes, namelk(s)(t) T Dt (— 14— L ) 22 (= 1 4
the constant vecta(this corresponds to a conservation jaw
and7". 71" (j=1) are right slow modes, meaning they are —r e A (- L+t = 7P + AT (- L+ 2
right zero modes of th¢+1th power of M@, _ 3 _ 4 -
The exponentiation oM@ is the analog of the propaga- ST T A1 T ),

tor P2 in Eq. (1), (24)
Pom(®) = {exdtM @ o (A KOy = B 4+ 245" (= L+ 75— L A) 4 22T (= 1 4 77
Therefore, in this context, again assumiig,(0)|?) =8, ., —r e A (1470t ) + AT (- L4 8
the quantity defined in Eq12) becomes S B YE P S B Y . R
o +20P2 (- 1+ 2=l (- 147 3= 7L D)

KO =X P2 M) rin=> =3 (M@, 7. (18

a % nar (¥ %klg[ Lt 18 X(=1+74=-71+ A -1+7°5-71+4. (25
Here we used the fact that the exponential series stops sin€bviously all the powers dfcontribute to these expressions.
the operator is acting on a slow mode. Using Etp), we  However, if we assumeto be large enough with respect to
compute the eddy turn over time of the initial condition, i.¢> 7",

then it can be seen that the time dependenc&dft) is
[M<2>k]n’n*rjn =2(-1-71+ 7"+ H‘Z)[M(Z)kfj]n’n* Ai=bn essentially dominated by the leading exponent, which is con-
firmed by Fig. 2 and is exactly what we see for the sabra
advecting field in Fig. 1.

In conclusion, we have shown that shell models for pas-
sive advection offer nice grounds on which to extend analyti-
The first fewK()(t) are shown below and displayed in Fig. 2, cal results derived in the framework of passive advection

with very specific and seemingly restrictive assumptions
KOt =", (20) made on the statistics of the velocity field. The same slow
modes ladder structure that was originally derived by Ber-
nardet al. [4] in the context of the Kraichnan model for the
advecting field is seen to exist also for the shell models we
considered, even though these models do not have a simple
KOM) = 2" + 2t (- 1+72-71+7), (22)  differential operator for the evolution of the structure func-
tions. The observables introduced in this paper, which gen-
KO() = 747 + 2073 (= 1 4 73— 7Lk 2) 4 22027 (= 1 4772 eralize the objects firs't defined j&] for the sqke of finding'
the zero modes, provide an easy way to single out a given
— i D(=1+73-71+ ), (23)  slow mode among the whole ladder associated to a zero

k

= (- L=t 77 Y 0 (1g)
i=1

K@(t) = 2™, (21)
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mode. The algebraic time dependence of the observables $salar advection by a velocity field given by the Kraichnan
indeed what one would expect should the propagator be exnodel.
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