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We find evidence that a certain class of reaction-diffusion(RD) systems can exhibit chemical turbulence
equivalent to Nikolaevskii turbulence. We study an extended complex Ginzburg-Landau(CGL) equation de-
rived from this class of RD systems. First, we show numerically that the power spectrum of this CGL equation,
in the neighborhood of a codimension-two Turing–Benjamin-Feir point, is qualitatively quite similar to that of
the Nikolaevskii equation. Then, we demonstrate that the Nikolaevskii equation can in fact be obtained from
this CGL equation through a phase reduction procedure.
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The onset of spatiotemporal chaos is an important subject
in the study of dissipative systems[1–3]. Several yeas ago, a
new mechanism causing the onset of spatiotemporal chaos
was discovered by Tribelskyet al. [4] for the Nikolaevskii
equation,

]tu = − ]r
2fe − s1 + ]r

2d2gu − s]rud2. s1d

This equation was originally proposed to describe the propa-
gation of longitudinal seismic waves in viscoelastic media
[5]. Its uniform steady stateu=0 is unstable with respect to
finite-wavelength perturbations when the small parametere
is positive. However, this instability does not lead to spatially
periodic steady states, because the equation possesses a
Goldstone mode, due to its invariance under transformations
of the form u→u+const., and the corresponding weakly
stable long-wavelength modes interact with the unstable
short-wavelength modes. As a consequence, spatially peri-
odic steady states do not occur, and instead spatiotemporal
chaos occurs supercritically. This chaos is called “Nikolae-
vskii turbulence.” Its properties have been investigated by
several authors[6–12]. Although it is conjectured that spa-
tiotemporal chaos exhibiting a similar onset appears in vari-
ous systems, experimentally only one such phenomenon has
been observed to this time, complex electrohydrodynamic
convection(also called “soft-mode turbulence”), discovered
in homeotropically aligned nematic liquid crystals by Kaiet
al. [13]. Similar onset has also been studied numerically in
systems exhibiting Rayleigh-Bénard convection under free-
free boundary conditions by Xiet al. [14], and the possibility
for the existence of this type of turbulence in reaction-
diffusion systems has been investigated by Fujisaka and Ya-
mada[15] and independently by Tanaka and Kuramoto[16].

In this paper, we present further evidence for the ubiquity
of the type of spatiotemporal chaos described above. We find
evidence that the chaos exhibited in a particular regime by a
complex Ginzburg-Landau(CGL) equation with nonlocal
coupling[16], called anonlocal CGL equation, is equivalent
to Nikolaevskii turbulence. This suggests that a certain class
of oscillatory reaction-diffusion systems can also exhibit this

type of chaos, because the nonlocal CGL is a reduced form
of this class of reaction-diffusion systems[16,17]. These
reaction-diffusion systems are such that the chemical compo-
nent constituing local oscillators are only weakly diffusive,
while there is an extra diffusive component introducing an
effectively nonlocal coupling between the oscillators. Such a
situation, in which the coupling between the local oscillators
is mediated by a diffusive substance, has been observed in
some systems studied experimentally: biological popula-
tions, such as cellular slime molds[18] and oscillating yeast
cells under glycolysis[19], catalytic CO oxidation on metal
surfaces[20], and the Belousov-Zhabotinsky reaction exhib-
ited by a system dispersed in a water-in-oil bis(2-
ethylhexyl)sodium sulfosuccinate(aerosol OT) microemul-
sion [21]. Because these systems possess such coupling, it is
conjectured that under certain circumstances they could ex-
hibit spatiotemporal chaos in the same class as Nikolaevskii
turbulence.

Our starting point is the following nonlocal CGL equation
with complex amplitudeA:

]tA = A − s1 + ic2duAu2A + sd1 + id2d¹2A + Ks1

+ ic1d E dr8 Gsr − r8dfAsr8d − Asrdg. s2d

HereG is a coupling function, andc1, c2, d1, d2, andK are
real parameters. In a previous paper[16], this equation was
derived as a generic reduced form of the class of reaction-
diffusion systems discussed above. A simple example that
belongs to this class is the following set of equations, de-
scribing a hypothetical extended Brusselator:

]tX = a − sb + 1dX + X2Y + D¹2X + kcXS, s3d

]tY = bX− X2Y + D¹2Y + kcYS, s4d

t]tS= − a − S+ ¹2S+ X, s5d

where the field variablesX andY represent limit-cycle oscil-
lators existing immediately above the Hopf bifurcation, and
the additional chemical componentS introduces an effective
nonlocal coupling between these oscillators. The strength
and anisotropy of this coupling are represented by the param-
etersk andcX,Y, respectively. The Hopf bifurcation parameter*Electronic address: dan@ton.scphys.kyoto-u.ac.jp
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m is written in terms of the parametersa and b as m;sb
−bcd /bc, wherebc=1+a2. The coefficientD is the diffusion
constant forX andY, and the quantityt is the time constant
of S. When these couplings are as weak as the oscillation,
i.e., whenm,OsDd,Oskd, this system can be reduced to
Eq. (2). Equation(2) is invariant under transformations of
the formA→Aeic, with real constantc, which implies that a
uniform mode is neutrally stable. This is a result of the spon-
taneous breaking of time translational symmetry correspond-
ing to the Hopf bifurcation in the original reaction-diffusion
systems. Also, the uniform oscillating solution of Eq.(2)
possesses a Turing instability[22] in a certain parameter re-
gion, as shown in Fig. 1, in contrast to the ordinary diffusive
complex Ginzburg-Landau equation, which possesses only a
Benjamin-Feir instability. Thus, Eq.(2) in this parameter re-
gion is characterized by weakly stable long-wavelength
modes and unstable short-wavelength modes, like Eq.(1).
Therefore, it has been hypothesized that Eq.(2) exhibits spa-
tiotemporal chaos similar to Nikolaevskii turbulence[16].
We confirm this hypothesis in the following. For simplicity,
we fix the parameter values asc2=1 andd2=0 and consider
only the case of one spatial dimension. In this case, the cou-
pling function Gsrd is given by Gsrd=re−rur u /2, with r=1
+ ih and 1.hù0, where the form ofGsrd is derived from
the original reaction-diffusion systems[16]. However, the
following analysis is applicable also in higher-dimensional
situations, in whichG takes other forms. A typical spatiotem-
poral pattern exhibited by Eq.(2) in the slightly Turing-
unstable regime close to the Benjamin-Feir criticality is
shown in Fig. 2, where we see long-wavelength modulation
of the Turing pattern. The corresponding spatial power spec-
trum is displayed in Fig. 3. This spectrum is found to have

characteristic peaks at the Turing wave number and its har-
monics. This feature is also seen in the spectrum of Nikolae-
vskii turbulence, shown in the inset of Fig. 3. This suggests
that in the regime we consider, the spatiotemporal chaos ex-
hibited by Eq.(2) is in the same class as Nikolaevskii turbu-
lence. However, we cannot conclude this fact only from this
similarity of the spectra. Thus, in the following, we show
that Eq.(1) can indeed be obtained from Eq.(2) by means of
a phase reduction technique[1].

In the phase reduction, the diffusion term and the
nonlocal-coupling term of Eq.(2) are treated as perturba-
tions. Using Floquet theory, we can calculate the operator
Zsfd that projects the perturbation onto the limit cycle

FIG. 1. Parameter spacesK ,Kc1d in the neighborhood of a
codimension-two Turing–Benjamin-Feir point. The uniform ocsil-
lating solution of the nonlocal CGL is stable in domainS, possesses
the Turing instablility above the curvelT, and the Benjamin-Feir
instablility above the linelBF. The parameter values arec2=1, d1

=0.3,d2=0, andGsrd=re−rur u /2, with r=1+0.905i. The inset plots
the stability eigenvalue as a function of the perturbation wave num-
ber for the uniform ocsillating solution at the pointsK ,Kc1d
=s0.05,−0.4345d, indicated by the cross. The largest eigenvalue is
nearly equal to 0.0005 at the Turing wave number, which is ap-
proximately 0.6. This dispersion curve is qualitatively the same as
that of the Nikolaevskii equation.

FIG. 2. Gray level plots ofCsr ,td;]r argfAsr ,tdg, which cor-
responds to]ru of the Nikolaevskii equation Eq.(1). The width of
the horizontal stripes corresponds to the Turing wavelength. The
parameter values are indicated by the cross in Fig. 1. The configu-
ration displayed here represents the result obtained after evolution
from an initial configuration(which is the uniform ocsillating solu-
tion with a slight perturbation) over a time interval of length 105 in
a periodic one-dimensional system consisting of 210 spatial points
separated by a distance of 0.3. For the numerical scheme, we used
a pseudospectral method with an explicit fourth-order Runge-Kutta
scheme of time step 0.01.

FIG. 3. Spatial power spectrum ofCsr ,td. This spectrum was
calculated using a system size(0.33212 spatial points) larger than
that of Fig. 2 and averaged over a long time, excluding an initial
transient of length 53104. The inset displays typical spatial power
spectra obtained from the Nikolaevskii equation, Eq.(1), with e
=0.02 (bottom) and the well-known Kuramoto-Sivashinsky equa-
tion (top), for the sake of comparison. The peaks are characteristic
of Nikolaevskii turbulence. The spectrum of the nonlocal CGL ex-
hibits similar peaks at the Turing wave number and its harmonics.
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A0sfd=e−if of the unperturbed system:Zsfd=scosf
−sin f ,−sin f−cosfd. Hence, the phase dynamics of Eq.
(2) obey

]tf = 1 +d1]r
2f − d1s]rfd2 +E dr8 Gsf − f8,r − r8d,

s6d

where fsr ,td and fsr8 ,td are abbreviated asf and
f8, respectively, Gsf ,rd=sKuau /2de−ur ufsinsf−hur u+argad
−sins−hur u+argadg, with a;f−c1−1+is1−c1dgr. In the in-
tegrandGsf−f8 ,r −r8d there is a dependence on the quantity
f−sf8+hur −r8ud; i.e., the time evolution of the phase atr
depends not on the difference between the phases atr andr8,
but on the difference between the phase atr and the phase at
r8 plus the quantityhur −r8u. This might seem paradoxical for
the following reason: If the spatial interactions are weak,
then ]tf.1, and hencefsr8 ,td+hur −r8u.fsr8 ,t+ t0d with
t0=hur −r8u. Thus the phase atr interacts with thefuture
phasefsr8 ,t+ t0d, wheret0ù0 becausehù0. To solve this
paradox, note that the original reaction-diffusion fields oscil-
late roughly as cosF with F=v0t−mf, where the Hopf
frequencyv0 is a finite positive value, and the Hopf bifurca-
tion parameterm is an extremely small positive value[16].
Thus, Fsr ,td interacts withFsr8 ,t− t1d where t1=mt0/v0 if
we ignore terms ofOsm2d. Hence, the field atr interacts with
the pastfield at r8, as t1ù0. In this sense,h producing the
imaginary part in the coupling functionG in Eq. (2) causes
the phase coupling to be implicitly delayed, with the delay
proportional to the distance between interacting oscillators.

Now we rescale the phase equation derived above. First,
we introduce a variablec defined asc;f− t. The evolution
equation forc is the same as that off, except for the ab-
sence of the term 1 on the right-hand side. Instead of Eq.(6),
we refer to the equation forc as the phase equation in the
following. In the long-wavelength limit, where the validity
of the phase description is ensured because the amplitudelike
modes can be safely ignored, the phase equation can be ex-
panded in a power series in]r

2, owing to the symmetry of the
system with respect to reflection throughr =0: ]tc=sl2]r

2

+l4]r
4+l6]r

6+¯ dc+N. Here N represents the nonlinear
terms, andln are constants derived fromc1, d1, K, and h
[28]. We consider the Turing-unstable regime close to the
Benjamin-Feir criticality, wherel2,l4,l6.0, l2,Osn 2d,
l4,Osnd, andl6,Os1d, with the scaling parametern= +0,
and 4l2l6=s1−edl4

2 with a positive constante!1. Under
these conditions, the higher-derivative linear terms,]r

nc with
nù8, are much smaller than the other linear terms and can
be ignored because the characteristic spatial scale ofc is
,Osn−1/2d. Furthermore, becausec itself has a characteristic
small magnitude depending onn, it is reasonable to assume
that the largest nonlinear term inN is gs]rcd2, whereg is a
constant derived fromc1, d1, K, andh [29]. In fact, when we
rescaler, t, andc asr → r̃ =Îsl4/2l6dr, t→ t̃=sl4

3/8l6
2dt and

c→ c̃=s−4gl6/l4
2dc, we can obtain the following scale-free

equation from the phase equation

]t̃c̃ = − ]r̃
2fe − s1 + ]r̃

2d2gc̃ − s]r̃c̃d2. s7d

This is identical to Eq.(1). Here, note thatc̃ satisfies the
scaling relation

c sr,td = n2c̃ sn1/2r,n 3td. s8d

This spatiotemporal scaling of the phase is completely dif-
ferent from the scaling relation in the case that the
Kuramoto-Sivashinsky equation is derived,c sr ,td
=jc̃ sj1/2r ,j 2td, wherej is a parameter that represents the
Benjamin-Feir criticality. The above parameter conditions re-
sulting in the derivation of Eq.(7) can be written in terms of
the parameters of Eq.(2) as follows. Usingz;arctanh,
wherep /4.zù0 because 1.hù0, Eq.(7) is derived from
Eq. (2) under the following conditions, with a sufficiently
small positive constantn when zÞ0,p /8: Ks1+ic1d
=Y expfis4z+3p /4−ndg, where

Y =
d1

Î2scoszd2Fsins2z − nd +
s1 − edssin nd2

4 sins2z + nd G−1

.

Here, the parametere is the same as that in Eq.(7), and the
critical value ofY is Yc=d1fÎ2scoszd2sins2zdg−1. In order to
observe the same spatiotemporal chaos as that of Nikolae-
vskii turbulence in our reaction-diffusion systems, we can
analytically tune these parameters to satisfy the above con-
ditions. In particular, the time constantt of the additional
chemicalS [e.g., see Eq.(5)] should be nonzero, becausez
=farctansv0tdg /2Þ0, wherev0 is the Hopf frequency[16].
This reflects the importance of the imaginary part in the cou-
pling function G of Eq. (2), i.e., the implicit delay of the
phase coupling discussed above. This contrasts with the situ-
ation found in previous studies of similar reaction-diffusion
systems, in which the limitt→0 was taken andSwas elimi-
nated adiabatically[17,23–26]. In addition to the condition
tÞ0, we should also havetÞ1/v0, becausezÞp /8. This
implies that the charcteristic time of the fieldS is not com-
parable to that of the local oscillator,sX,Yd.

In conclusion, we have found evidence that the nonlocal
CGL and the corresponding class of reaction-diffusion sys-
tems in a certain regime exhibit turbulence that is equivalent
to Nikolaevskii turbulence. This result supports the conjec-
ture of the ubiquitous nature of spatiotemporal chaos caused
by the interaction between weakly stable long-wavelength
modes and unstable short-wavelength modes. We have con-
firmed through numerical calculation that these chaotic states
are structurally stable for the nonlocal CGL not just at the
codimension-two Turing–Benjamin-Feir point, but also in a
finite neighborhood around it, at points where the CGL equa-
tion does not reduce exactly to the Nikolaevskii equation.
Furthermore, we believe that similar spatiotemporal chaos
would be found even if the phase-shift invariance were
slightly broken in the reaction-diffusion systems; i.e, this
chaos should persist even if the Goldstone mode were lost.
This conjecture is based on the observation that soft-mode
turbulence exists even if one applies a small magnetic field
that slightly breaks the arbitrariness of the azimuthal angle of
directors bent through a Freedericksz transition in homeotro-
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pically aligned liquid crystals[27]. Finally, we note that the
phase equation derived from the nonlocal CGL is a useful
model for studying quantitative features of Nikolaevskii tur-
bulence that has not yet been investigated sufficiently. Be-
cause this phase equation covers the transition region be-
tween Nikolaevskii turbulence and the well-known
Kuramoto-Sivashinsky turbulence, it can be used not only
for comparing these two types of turbulence, but also for
exploring the transition between them. This should lead to a

deeper understanding of Nikolaevskii turbulence and also a
broader class of turbulence caused by interactions among
modes with vastly different length scales.
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the manuscript.
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