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Chemical turbulence equivalent to Nikolavskii turbulence
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We find evidence that a certain class of reaction-diffugi@®) systems can exhibit chemical turbulence
equivalent to Nikolaevskii turbulence. We study an extended complex Ginzburg-L&@¢&) equation de-
rived from this class of RD systems. First, we show numerically that the power spectrum of this CGL equation,
in the neighborhood of a codimension-two Turing—Benjamin-Feir point, is qualitatively quite similar to that of
the Nikolaevskii equation. Then, we demonstrate that the Nikolaevskii equation can in fact be obtained from
this CGL equation through a phase reduction procedure.
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The onset of spatiotemporal chaos is an important subjedype of chaos, because the nonlocal CGL is a reduced form
in the study of dissipative systerfit—3]. Several yeas ago, a of this class of reaction-diffusion systenj&6,17. These
new mechanism causing the onset of spatiotemporal chaagsaction-diffusion systems are such that the chemical compo-
was discovered by Tribelskgt al. [4] for the Nikolaevskii  nent constituing local oscillators are only weakly diffusive,
equation, while there is an extra diffusive component introducing an

effectively nonlocal coupling between the oscillators. Such a
du=-le—(1+5A)u-(4u) (1) situation, in which the coupling between the local oscillators

) ) o ) is mediated by a diffusive substance, has been observed in
This equation was originally proposed to describe the propagome systems studied experimentally: biological popula-
gation of .Iongitudinal seismic waves in visc_oelastic mediations, such as cellular slime mol¢is8] and oscillating yeast
[5]. Its uniform steady state=0 is unstable with respect {0 cg|js under glycolysig19], catalytic CO oxidation on metal
finite-wavelength perturbations when the small parameter surfaceg20], and the Belousov-Zhabotinsky reaction exhib-
is positive. However, this instability does not lead to spatiallyjieq by a system dispersed in a water-in-oil (Bis
periodic steady states, because the equation pOssesseg Ry lhexy)sodium sulfosuccinatéaerosol OF microemul-
Goldstone mode, due to its invariance under transformationgjyp, [21]. Because these systems possess such coupling, it is
of the form u—u+const., and the corresponding weakly cqnjectured that under certain circumstances they could ex-

stable long-wavelength modes interact with the unstablgihit spatiotemporal chaos in the same class as Nikolaevskii
short-wavelength modes. As a consequence, spatially pefjypulence.

odic steady states do not occur, and instead spatiotemporal o starting point is the following nonlocal CGL equation
chaos occurs supercritically. This chaos is called “Nikolaeyji complex amplitude:
vskii turbulence.” Its properties have been investigated by

several author§6—12. Although it is conjectured that spa- GA=A—(L+ic)|APA+ (8, +i8,) VA+K(L
tiotemporal chaos exhibiting a similar onset appears in vari-
ous systems, experimentally only one such phenomenon has +icy) f dr’ G(r=r")[A(r") = A(r)]. (2

been observed to this time, complex electrohydrodynamic

convection(also called “soft-mode turbulencg’discovered  Here G is a coupling function, and,, c,, &, &, andK are

in homeotropically aligned nematic liquid crystals by Kdi  rea| parameters. In a previous pajeé], this equation was

al. [13]. Similar onset has also been studied numerically inderived as a generic reduced form of the class of reaction-
systems exhibiting Rayleigh-Bénard convection under freegiffusion systems discussed above. A simple example that

free boundary conditions by Xt al. [14], and the possibility pelongs to this class is the following set of equations, de-
for the existence of this type of turbulence in reaction-scribing a hypothetical extended Brusselator:

diffusion systems has been investigated by Fujisaka and Ya-

mada[15] and independently by Tanaka and Kuramgi8]. gX=a=(b+1)X+X?Y + DV2X + keyS, 3
In this paper, we present further evidence for the ubiquity

of the type of spatiotemporal chaos described above. We find dY =bX = X2Y + DV?Y +kcyS, (4)

evidence that the chaos exhibited in a particular regime by a

complex Ginzburg-LandayCGL) equation with nonlocal T9,S=-a-S+V?S+X, 5

coupling[16], called anonlocal CGL equationis equivalent where the field variableX andY represent limit-cycle oscil-

to Nikolaevskii turbulence. This suggests that a certain clas%tors existing immediately above the Hopf bifurcation, and

of oscillatory reaction-diffusion systems can also exhibit thlsthe additional chemical componeSintroduces an effective

nonlocal coupling between these oscillators. The strength
and anisotropy of this coupling are represented by the param-
*Electronic address: dan@ton.scphys.kyoto-u.ac.jp etersk andcy y, respectively. The Hopf bifurcation parameter
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",/,,—/—/ ; FIG. 2. Gray level plots of(r,t)=4, ardA(r,t)], which cor-
0.6 i Ir responds taj,u of the Nikolaevskii equation Eq1). The width of
T ] the horizontal stripes corresponds to the Turing wavelength. The
. . . . . ) . parameter values are indicated by the cross in Fig. 1. The configu-
0.4 0.2 0 0.2 0.4 ration displayed here represents the result obtained after evolution
K from an initial configuratiorqwhich is the uniform ocsillating solu-

tion with a slight perturbationover a time interval of length £an

a periodic one-dimensional system consisting 8f $atial points
separated by a distance of 0.3. For the numerical scheme, we used
a pseudospectral method with an explicit fourth-order Runge-Kutta
scheme of time step 0.01.

FIG. 1. Parameter spac&,Kc;) in the neighborhood of a
codimension-two Turing—Benjamin-Feir point. The uniform ocsil-
lating solution of the nonlocal CGL is stable in dom&possesses
the Turing instablility above the curvig, and the Benjamin-Feir
instablility above the lindgr. The parameter values ac2=1, &,
=0.3, 5,=0, andG(r)=pe'/2, with p=1+0.90%. The inset plots
the stability eigenvalue as a function of the perturbation wave NUMgngracteristic peaks at the Turing wave number and its har-
ber for the uniform ocsillating solution at the poifK,Kcy) — monjcs. This feature is also seen in the spectrum of Nikolae-

:(0'?5’_0'4??5 (;n(()j(i)%aétedt tt?]’ thTe cross. The 'argESt eigﬁ_”‘r’]a_'ue ISyskii turbulence, shown in the inset of Fig. 3. This suggests
nearly equal to .UUs at e Turing wave number, Which 1S abipat iy the regime we consider, the spatiotemporal chaos ex-
proximately 0.6. This dispersion curve is qualitatively the same a

; o . Hibited by Eq.(2) is in the same class as Nikolaevskii turbu-

that of the Nikolaevskii equation. - .
lence. However, we cannot conclude this fact only from this

w is written in terms of the parametessandb as u=(b similarity of the spectra. Thus, in the following, we show
-by)/b., whereb.=1+a% The coefficientD is the diffusion  that Eq.(1) can indeed be obtained from E@) by means of
constant forX andY, and the quantity- is the time constant @ phase reduction techniqi#].
of S. When these couplings are as weak as the oscillation, In the phase reduction, the diffusion term and the
i.e., whenu~O(D)~O(k), this system can be reduced to nonlocal-coupling term of Eq(2) are treated as perturba-
Eg. (2). Equation(2) is invariant under transformations of tions. Using Flogquet theory, we can calculate the operator
the formA— Ad°, with real constant, which implies thata Z(¢) that projects the perturbation onto the limit cycle
uniform mode is neutrally stable. This is a result of the spon-
taneous breaking of time translational symmetry correspond-
ing to the Hopf bifurcation in the original reaction-diffusion
systems. Also, the uniform oscillating solution of E®)
possesses a Turing instabilitg2] in a certain parameter re-
gion, as shown in Fig. 1, in contrast to the ordinary diffusive 0 + 7 L e
complex Ginzburg-Landau equation, which possesses only a I
Benjamin-Feir instability. Thus, Eq2) in this parameter re-

<|Wql2 >

gion is characterized by weakly stable long-wavelength <0|qUC’|2>

modes and unstable short-wavelength modes, like (Eq. 104 [0 o

Therefore, it has been hypothesized that @y exhibits spa- d

tiotemporal chaos similar to Nikolaevskii turbulenggg]. o[

We confirm this hypothesis in the following. For simplicity, 108 0%

we fix the parameter values ags=1 and8,=0 and consider 001 01 1 10 9

only the case of one spatial dimension. In this case, the cou- : : : q
pling function G(r) is given by G(r)=pe™/2, with p=1 0.01 0.1 1

+iy ar?d' > 7720,.Whe're the form of5(r) is derived from FIG. 3. Spatial power spectrum @f(r,t). This spectrum was
the original reaction-diffusion systen{d6]. However, the aicylated using a system sig@3x 212 spatial points larger than
following analysis is applicable also in higher-dimensionalihat of Fig. 2 and averaged over a long time, excluding an initial
situations, in whiclG takes other forms. A typical spatiotem- transient of length % 10%. The inset displays typical spatial power
poral pattern exhibited by Eq2) in the slightly Turing-  spectra obtained from the Nikolaevskii equation, ELy, with €
unstable regime close to the Benjamin-Feir criticality is=0.02 (bottom) and the well-known Kuramoto-Sivashinsky equa-
shown in Fig. 2, where we see long-wavelength modulationion (top), for the sake of comparison. The peaks are characteristic
of the Turing pattern. The corresponding spatial power specsf Nikolaevskii turbulence. The spectrum of the nonlocal CGL ex-
trum is displayed in Fig. 3. This spectrum is found to havehibits similar peaks at the Turing wave number and its harmonics.
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A%(p)=e7¢ of the unperturbed systemZ(¢)=(cos¢
-sin ¢, —sin ¢—cos ¢). Hence, the phase dynamics of Eq.

(2) obey This is identical to Eq(1). Here, note thay satisfies the
scaling relation

== o e= (1 +a22]p— (a)>. (7)

dp=1+8,Pp— 51(d, )%+ f dr' T(p—o',r —1"), y(r,t) = 2P, v, (8)

6) This spatiotemporal scaling of the phase is completely dif-
ferent from the scaling relation in the case that the
Kuramoto-Sivashinsky equation is derivedu(r,t)
where &(r,t) and &(r',t) are abbreviated asp and =gy (g2 ¢2), where¢ is a parameter that represents the
¢', respectively, I'(¢,r) :(K|a|/2)e“r‘_[sm(¢— 7lr|+arga)  Benjamin-Feir criticality. The above parameter conditions re-
—sin(-7|r|+arg @)], with a=[-c;-1+i(1-cy]p. In the in-  sylting in the derivation of Eq7) can be written in terms of
tegrandl’(¢—¢',r—r’) there is a dependence on the quantitythe parameters of Eq2) as follows. Using{=arctan,
¢—(¢'+7r—r']); i.e., the time evolution of the phase mt wheresw/4>{¢=0 because + =0, Eq.(7) is derived from
depends not on the difference between the phasearadr’,  Eg. (2) under the following conditions, with a sufficiently
but on the difference between the phase and the phase at small positive constantv when (#0,7/8: K(1+ic,)
r’ plus the quantityy|r —r'[. This might seem paradoxical for =Y exgi(4¢{+37/4-v)], where
the following reason: If the spatial interactions are weak,
then d,¢=1, and hencep(r’ ,t)+ n|r—r’|=¢(r’ ,t+ty) with
to=7|r—-r'|. Thus the phase at interacts with thefuture
phaseg(r’,t+t,), wherety=0 becausey=0. To solve this _ _
paradox, note that the original reaction-diffusion fields oscil-Here, the parameteris the same as that in E(), and the
late roughly as co® with d=wgt-ued, where the Hopf critical value ofY is Y= 8)[v2(cos¢)?sin(2¢)]™. In order to
frequencyw, is a finite positive value, and the Hopf bifurca- observe the same spatiotemporal chaos as that of Nikolae-
tion parametem is an extremely small positive valya6].  Vskii turbulence in our reaction-diffusion systems, we can
Thus, ®(r,t) interacts with®(r’ ,t—t;) wheret,= uto/ wy if analytically tune these parameters to satisfy the above con-
we ignore terms OD(/.LZ) Hence, the field at interacts with d|t|0nS In particular, the time constantof the additional
the pastfield atr’, ast;=0. In this sensey producing the ~chemicalS[e.g., see Eq5)] should be nonzero, becauge
imaginary part in the coupling functio in Eq. (2) causes -lLarctaitwor)]/2# 0, wherewy is the Hopf frequency16].
the phase coupling to be implicitly delayed, with the delayThis reflects the importance of the imaginary part in the cou-
proportional to the distance between interacting oscillators.Pling function G of Eq. (2), i.e., the implicit delay of the
Now we rescale the phase equa‘[ion derived above. Firsp,hase Coupling discussed above. ThIS.COI’ltraSt§ W|th the Situ-
we introduce a variablée defined asy= ¢—t. The evolution ation found in previous studies of similar reaction-diffusion
equation for,ﬁ is the same as that Qﬁ’ except for the ab- systems, in which the limit— 0 was taken an& was elimi-
sence of the term 1 on the right_hand side. Instead O(Eq nated adlabatlcall)[17,23—2@ In addition to the Conditi-on
we refer to the equation fop as the phase equation in the 7# 0, we should also have# 1/w,, because # 7/8. This
following. In the long-wavelength limit, where the validity implies that the charcteristic time of the fieflis not com-
of the phase description is ensured because the amplitudelil@rable to that of the local oscillatdiX, Y).
modes can be safely ignored, the phase equation can be ex- In conclusion, we have found evidence that the nonlocal
panded in a power series #f, owing to the symmetry of the CGL gnd the c_orresponding_c_lass of reaction-d.iffusio.n Sys-
system with respect to reflection througk0: dus=(\,57 tems in a certain regime exh|b!t turbulence that is eqqulent
+N40 + 0%+ - )y+N. Here N represents the nonlinear t0 Nikolaevskii turbulence. This result supports the conjec-
terms, and\,, are constants derived from, &, K, and 7 ture of the ubiquitous nature of spatiotemporal chaos caused

[28]. We consider the Turing-unstable regime close to thd?Y the interaction between weakly stable long-wavelength
Benjamin-Feir criticality, whereh,,As,\g>0, Ay~ O(»?) modes and unstable short-wavelength modes. We have con-

\a~O(»), andrg~ O(1), with the scaling parameter= +0 firmed through numerical calculation that these chaotic states
a£r11d A )\' :(1_;)\2 with a positive constant<1 Unde'r are structurally stable for the nonlocal CGL not just at the
26 4 R o codimension-two Turing—Benjamin-Feir point, but also in a
these conditions, the higher-derivative linear teraig; with S . . .
n=8, are much smaller than the other linear terms and caflnlte neighborhood around i, at points yvhere the__CGL equa-
be idnored because the characteristic spatial scalg f tion does not reduce_ exactly to_ the leolgevsku equation.
~0(v~Y2). Furthermore, becauseitself has a characteristic Furthermore, we believe that similar spatiotemporal chaos
small ma'nitude de en’din on it is reasonable to assume would be found even if the phase-shift invariance were
i Igrgest nonlri)near tgrm,rmis (G2 wherey s a slightly broken in _the reac_tion-diffusion systems; i.e, this
constant derived from.. 8. K. and [Zg]f In’fact thn we chaos should persist even if the Goldstone mode were lost.
1, 0L B\, Ui . )

I A This conjecture is based on the observation that soft-mode
rescaler, t, andy asr —T=\(Aa/2N)1, t—1=(Nz/8\g)tand  y,pylence exists even if one applies a small magnetic field

— = (~dyng! \3)i, we can obtain the following scale-free that slightly breaks the arbitrariness of the azimuthal angle of
equation from the phase equation directors bent through a Freedericksz transition in homeotro-

_ 5 o (1-¢(sinw)? |
Y Ttcos MM asineg e
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pically aligned liquid crystal$27]. Finally, we note that the deeper understanding of Nikolaevskii turbulence and also a
phase equation derived from the nonlocal CGL is a usefubroader class of turbulence caused by interactions among
model for studying quantitative features of Nikolaevskii tur- modes with vastly different length scales.

bulence that has not yet been investigated sufficiently. Be-

cause this phase equation covers the transition region be- The author is grateful to Y. Kuramoto for useful discus-
tween Nikolaevskii turbulence and the well-known sions, to S. Kai, Y. Hidaka, and K. Tamura for valuable dis-
Kuramoto-Sivashinsky turbulence, it can be used not onlyussions on their experimental results, to H. Fujisaka for
for comparing these two types of turbulence, but also forinteresting comments, and to H. Nakao for carefully reading
exploring the transition between them. This should lead to @he manuscript.
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