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We revisit the well-known issue of representing an overdamped drift-and-diffusion system by an equivalent
lattice random-walk model. We demonstrate that commonly used Monte Carlo algorithms do not conserve the
diffusion coefficient when a driving field of arbitrary amplitude is present, and that such algorithms would
actually require fluctuating jumping times and one clock per Cartesian direction to work properly. Although it
is in principle possible to construct valid algorithms with fixed time steps, we show that no such algorithm can
be used in more than two dimensions if the jumps are made along only one axis at each time step.
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Diffusion plays a key role in numerous physical, chemi-text of continuous time random walk&CTRW) [13,14.
cal, and biological systemd]. When an analytical solution Again, CTRW articles appear to be restricted to small biases.
to the diffusion equation cannot be obtained, it is common tdn this article, we will only consider discrete time random-
replace an overdamped continuous diffusion problem byyalks.
Monte Carlo(MC) simulations of the random walk of a par-  Drift in one dimension (1D)Our objective is to derive a
ticle on a lattice. We I’ecently derived a mathematical methodla“d LMC model that reproduces the mean dynamica' prop-
that provides the exact solution of the standard lattice Mont@tjes of a Brownian particle moving in a fluid under the
Carlo (LMC) algorithm rewritten as coupled Master equa-infyence of an external forcE. For instance, it must re-
tions [2]. The method actually calculates the exact mobilitycover’ in the overdamped limino acceleration and no tur-

w of the random walker when a vanishing external force ) ; - 1A
(F—0) is applied; the Nernst-Einstein relation between thebulence), the free-solution velocityo=F/é, and the field

e - . _ independent diffusion coefficieRty=kgT/ &, whereg, is the
diffusion coefficientD and z: then yieldsD even in th‘? Prés- - harticle’s friction coefficientkg is Boltzmann’s constant, and
ence of obstacles and complicated boundary conditions. It i

. . ) .- T is the temperaturgl5]. In order to use LMC algorithms to
important to note, however, that the Nernst-Einstein relatlorgtudy the migration of(pointiike) particles in continuous
is only valid in theF— 0 limit. Another exact method was

space, we first discretize space. In 1D, the continuous motion
also suggested by Dorfmd8]. b b

. of the particle is replaced by a series of discrete jumps be-
More recently[4], we developed a generalized LMC al- 00 sites separated by a distarceLet p, be the prob-
gorithm, and the corresponding exact calculation method, iRpilities for a particle to move to the two édjacent sités

order to compute field-dependent mobilitig$F) for arbi- and —) and 7 be the time duration of such a jump. Comple-

trary values of. However, as we will discuss belo®(F) is 5 of a jump is similar to a first-passage problem between
quite subtle. In fact, it is astonishing to note that, althoughyyg apsorbing walls, as shown in Fig. 1.F&=0, the prob-

hundreds of LMC studies have been published over th%bilitiesp,_,:% are unbiased and the mean time duratigiof

years, none of these recover the right diffusion coefficient fora jump (also called the Brownian time or the mean first-

a free particle under the influence of a strong bias. Standar, assage timeis related toD,, via rs=a2/2D,. WhenF >0
algorithms are effectively limited to small forcés e.g., this g ever, the transition probabilities are biased and the jumps

is the case for the popular repton model of gel electrophoreg; o |ess timg (F) < 7). Fortunately, exact analytical ex-
sis[5] and for a recent study of diffusion effects in a microf-

luidic device[6]. In many studies of diffusion in porous sys- p. P,

tems, however, the chosen LMC algorithm is in fact quite TN g T T

generic, because the authors are not trying to map a real - @ -

diffusion system onto a lattice random-walk problem; in such 1. ’«—ra '

cases, the time scale is generally not field dependent and it is " ‘

not clear how the quantitative results can be interpreted in 2 !

terms of real physical systems. In other cases, the simulation ’ O“’—P\Q—'+

results are apparently limited to small biases, although it is ' .

not always explicitly mentione¢see, e.g.[[7-10]). For in- 3. ‘ — ‘

stance, one can look at the problem of sugvival probabil-
ity of a biased random walker in a disordered medium

[11,12. Biased random walks can also be studied in the con- FIG. 1. Brownian particle diffusing between two absorbing
’ walls. The values of(e) andp.(€) can be obtained either exactly or

numerically. In the latter case, the simulation steps(&yeplacing

the particle at a distanaefrom each wall(2) letting it diffuse, via
*Email address: mgauthie@science.uottawa.ca Brownian dynamics, until it reaches a wall, a(®) restarting the
"Email address: gslater@science.uottawa.ca process from the new site.

1539-3755/2004/10)/0151034)/$22.50 70015103-1 ©2004 The American Physical Society



RAPID COMMUNICATIONS

M. G. GAUTHIER AND G. W. SLATER PHYSICAL REVIEW E70, 015103R) (2004

o oo o properly model diffusion in the presence of a net drift. In
fact, it is not possible to derive a time stefje) and prob-
abilities p.(e) that generate the proper free flow velocity
and diffusion coefficienD, simultaneously.

7 Time-step fluctuations in 1D This failure is due to the
fact that Eq.(4) only considers the spatial fluctuatioftsx?)

of the particles’ biased Brownian motion. However, a second
7 source of diffusion has to be considered if 0: the fluctua-
tions in the time duratiorr of a jump. In the presence of a
bias, both types of fluctuations have to be considered in the
a calculation of the diffusion coefficierjtl9,2Q

_ (&) via7)

Diffusion coefficient

m  Conventional algorithm (Egs. 1 and 2)
— Eq. 13

o Our new algorithm (Egs. 9 and 12) DO = (5)
0.00 ||--- Dp=1 27 27
ST =0 The variance of the jumping timéA7?), can also be calcu-
Scaled field € lated for the 1D first-passage probl€®],
el A i e o L tanhe — € secHe
FIG. 2. Free-solution diffusion coefficienD, (in units of (A7) = —37§' (6)

a?/27g) vs the scaled field. The points were obtained from Monte

Carlo simulations of 1 000 000 particles evolving on a square lat-
tice. Error bars are smaller than the points. The second term of Eq5) then reduces to

ﬁ@#p_¥< ¢ ) ,
pressions can be obtained for thl_s flrst-pasgage problem 27 _27-,3 sinhe coshe (7)
[16—18 (see Fig. 1 The relevant variable here is the scaled

external forcee=Fa/2kgT. At each step, the particle moves Clearly, adding Eqs(4) and (7), as suggested by Eg5),

to one of the two neighboring siteslenoted+ and — for  gives Dy=a%/2r, which agrees with the continuum result
parallel and antiparallel to the for¢g respectively follow-  [19)],
ing the probabilitied19]

@ _cakeT _vdeT _ kel

_ Do= 275 78 F F & ®
pi(f) - 1 +e1251 (1)
Therefore, a fluctuating jumping time is essential if a
while the mean time duration of each jump[i9] LMC model (or algorithn) is to be used to study the diffu-
tanhe sion of particles in the presence of a drift. This is the reason
e) = Tg. (2) why all fixed time step MC algorithms fail at high field. We
€ can introduce these temporal fluctuations using any distribu-

Remarkably, the transition timeis the same for both direc- 0N function that has the right mean value and varigis.

tions. In fact, is the duration of a successful MC jump in a (2) @nd (6)]. In a simulation, this condition can be easily

given direction(=), and not the mean time between successSatisfied by Cr@glng the fixed time stepoy the random
) (with a randomly chosen signThe

ful jumps in a fixed direction. The mean free-solution veloc-increment 7 (A

ity is then well-known problem of enhanced diffusion in porous media
) can also be solved using E¢) [20]; in such cases, the

Vo= (p.—pJa_ea_Fa”2D,_F (3  effect is due to the retardation of the particles that collide

T 5 2kgT @2 &' with obstacles during their net drift. We showed that even

without such collisions, one must take into account the natu-
ral fluctuations of the mean-first passage times of the lattice
jumps, since these jumps are like pseudocollisions intro-
duced by the process of mapping a continuous process onto a
discrete lattice. This seems to have been largely overlooked

as it should be for an overdamped systgts]. The free-
solution diffusion coefficienD, can be obtained from the
variance(Ax?) of the displacement during a time steand
the jump probabilitiesp, via the first[{(x)=a(p,—p-)] and

second (x?)=a?(p, +p_)] moments, in the field.
A 6B -(x? a2 ¢ _ Time_-step fluctuation_s in®-2D. This fluc_:tuating one-
Do= = =\ 4 dimensional LMC algorithm can be generalized to multidi-
2T 27 27\ sinhe coshe

mensional simulations. This can be done in various ways, but
However, sinceD, characterizes the spreading of the par-we suggest the following algorithm for each st@p jump).
ticles around their mean position, it cannot dependFon (1) First, an axis is selected with a probability inversely pro-
[while the velocity must increase linearly with as shown portional to the mean jumping time along this axis. Since the
by Eq. (3)]. Therefore, Eq(4) is clearly incorrect where  field e must be along a Cartesian axis, this time is given by
#0 (see also, Fig. 2 This demonstrates that, even without 7€) < along ¢, and by 7z along all other directions. In
collisions with obstacles, simple LMC algorithms fail to other words, the faster the process is along a particular axis,
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the more often this dimension is selectg¢d) The actual term of Eq.(5). Figure 2 compares conventional MC-biased
jump is then selected using Ed.) (wheree=0 if the jumpis random walkg§Eqs.(1) and(2)] and our new algorithmEgs.
1€). As usual, if the destination site is an obstacle, the par¢9) and(12)].

ticle simply remains on the same lattice sit8) Finally, in Using Egs.(9) and (12), one can design reliable LMC
order to recover the proper diffusion coefficient along thealgorithms with fixed time steps. Please remark that the
field_axis, the clock advances by the random incremenprobability to stay pufEq. (12)] is the only solution that
+\)A7) only when the jump was made alorggNote that  gives the correct results for both, and D, for arbitrary
since the second term of E¢p) is zero in the other direc- values ofe when we want the rati@,/p- to be consistent
tions, we do not really need clocks for transverse jumpswith Boltzmann statistics. Therefore, no valid fixed-time
indeed, thee clock provides the proper mean elapsed time LMC algorithm exists witts’ =0. The idea of waiting time in

for all directions. The diffusion coefficient in directionin-  a random walk was also introduced by Montroll and Weiss
cluding i=¢) is then obtained using the simple relatién [13] in the context of CTRW.
:<Ari2>/2t. An algorithm with constant time steps in=®D. In a

An algorithm with constant time steps tD. As we recent articlg4], we showed how to use Eqd) and(2) to
demonstrated above, time fluctuations must be part of btain the exact field-dependent velocitye) of a particle
LMC simulation if e#0. However, exact numerical tech- for d=2 systems. Our approagl] was to derive a unique
niques[3,4] require a fixed time step to allow us to solve the transition timeT valid for all directions, as well as the cor-
LMC algorithm exactly. A constant time step can also sim-respondingmodified transition probabilities that agree with
plify MC simulations. We now show how temporal fluctua- the net transition rates predicted for each of ¢th&D prob-
tions can be introduced without changing the time incrementtems. We found that the period between each jump must be
we simply add a probability to remain on the same lattice sitegiven by [4]
at each MC step. Usually, an LMC particle must make one a1
jump at each time step. Let us now introduce a probalslity T=mrg[d-1+ecothe]™, (14

for the particle to remain immobile. The new transition prob-yjje the transition probabilities along the field axis and in
abilities p; and time duratiory’ are given by each of the transverse directions are giver{dly

P:=(1 =8Py, 7 =(1=8)r. © P.={(1+e"2[e+(d- Dtanhel/ey, (15
Both quantities must be rescaled by the same factor in order
to conserve the value of the free-solution velocity Then, P, =[2(d-1+ecothe)]™. (16)

at each time step of fixed duratiori, the particle either

jumps to one of the: sites(with probabilitiesp}) or stays on  We showed4] that these probabilitie®, andP ) and time

the same site with probability. The idea here is to use the duration (T) give the proper orthogonal diffusion coeffi-
probability s’ as a free parameter that we fix, such that wecients. However, this approach cannot produce the right free-
obtain the desired variance for the averagal jumping  solution diffusion coefficient along, since it only uses spa-
time. The average periods of tinfe) and(7) between two tial fluctuations. We thus have to generalize the approach

successful jumps are presented in the previous section.
. Again, we will add a probability to stay puiS') for a
N il T period of time(T’) in order to introduce implicit fluctuations
(n=0=5)7 z I ET e T (10 in the net transition time in the field direction. The elements
of this LMC algorithm are thus
N P.=aP,, P, =aP,, T' =aT,
(A=(1-)72 D% = 1+s)2 (1D e=aPy PL=aby, T=a @7
i=1 with a=(1-5'). As far as motion along the field axisis
Using Egs(2), (6), (10), and(11), the required probabilitg’ ~ concerned, this is essentially a 1D problem. Indeed, lateral
is jumps (described by the probabilitieB’ for each of thed

) -1 nonbiased directionsre equivalent to staying put along
_ ()= (n*_(AP) _cothe csch e (12) &. Therefore, the total probability of nonmotion alo&dn d

!

(n?2 2 dimensions must be equal to the probabiltyto stay put in
. e . __one dimension,
We can now evaluate the free-solution diffusion coefficient
Dy using only the spatial part of E@5) (first term), =S +2d-1)P, =S +2(d-1)(1-S)P,. (18
2 2
Do= ——[p.+p.— (p. - p))?] = = (13)  Solving this relation foiS' gives
270 T T 275

/ — _ -2 _ _ -1 _
Note that we usedAxd’ =0 —(0'2, (&' =a?(p!+pl), S=(d-1)e?-(d-2)e'cothe—csce. (19

and({x)’ =a(p;—p.). Using implicit time fluctuations through The free-solution diffusion coefficient parallgl) to the di-
the probabilitys’ allows us to obtain the correct resfiiq.  rection of the field(e) is then obtained as described previ-
(8)] without relying on explicit fluctuations and the second ously in Eqg.(13) [using Egs(17) and(19)],
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a? ) , ) - a? first-order approximation of the results derived above. Other
Dofﬁ[Pﬁ' PL-(P.-P)) ]:2_7'5' (200 algorithms, such as the repton modd], use a field-

dependent time step but are valid only upQ6e).

Discussion In summary, we demonstrated that temporal

This relatiqn will be valid as long as the field is along one O.f.fluctuations must be included in lattice random-walk models
the Cartesian axes. We also stress the fact that the probabilify,a |atter are to represent continuous biased diffusion pro-

to stay put neither affects the calculation of the velocity NOrasses. These fluctuations can be introduced in LMC simu-

the diffusion coefficient along the orthogonal axes. Althoughjaiiqns if we replace the constant time step by a stochastic
this appears to be the perfect solution to the diffusion prob-one_ We showed how to do this in 1D systems, which is

lem, there is a major limiting problem: the probabill/is g ficjent to perform simulations in any dimension if the

negative ford=3. In fact, since the solution fd8' is unique 50y then advances only when the moves are along the field

when we impose a first-passage time interpretation to thgyis oyr approach allows for the study of the diffusion co-
dynamics along the field axiecessary to reproduce Kram- gicient for arbitrary fields(note that arbitrary field also

ers statistics we must conclude that is impossible to de- o ang arbitrary coarsening of the lattice mesh size, sifse

sign a fixed time-step LMC algorithm that would reproducee ejeyant fielgt However, it may be advantageous to have
both vo "’,‘”‘?' D) in more than two dimensions a constant time increment, for example, to use exact methods

This limitation can be understood when we start from the[3 4] instead of stochastic simulations. We showed how to
1D problem and the relation(@-1)P’, +S'=s". When we g0 gpyain the value of the probability to stay pist) that gives
from 1D to 2D, we reduce the probability to stay put 10 y,q right time variance for 1D systems, and we demonstrated
generate lateral motion. When we go to higher dimensionsy,a thjs solution is unique. Unfortunately, this approach can-
we reduceS' further. Obviously, this approach has to be . pe generalized to more than 2D becaSisis then nega-

limited to a maximum number of dimensions. Unfortunately, ;e This means that we have to revise the fundamental as-
this limit is d=2 for all MC square lattice algorithms with sumptions of lattice random-walk algorithms.

jumps made along a single axis per time step, which is very
restrictive indeed. We would like to thank K. D. Dorfman of the Institut

Incidentally, most LMC algorithms commonly used for Curie (Parig for helpful comments and preprints. This work
computer simulations involve low-field approximations of was supported by a Discovery Grant from the NSERC to
Eqgs.(14)—16). For example, a familiar approa¢fi istouse  G.W.S., and by funding from the NSERC, the HPCVL, and
P.x1+e and a constant time step, which is precisely thethe University of Ottawa to M.G.G.
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