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Multifractality in a broad class of disordered systems
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We study multifractality in a broad class of disordered systems which includes, e.g., the giptaddel.
Using renormalized field theory we analyze the scaling behavior of cumulant averaged dynamical v@niables
case of thex-y model the angles specifying the directions of the spatshe percolation threshold. Each of the
cumulants has its own independent critical exponent, i.e., there are infinitely many critical exponents involved
in the problem. Working out the connection to the random resistor network, we determine these multifractal
exponents to two-loop order. Depending on the specifics of the Hamiltonian of each individual model, the
amplitudes of the higher cumulants can vanish and in this case, effectively, only some of the multifractal
exponents are required.
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The physics of critical phenomena is usually characterthat are invariant under the orthogonal gradpof rotations
ized by a few critical exponents. In certain, e.g. nonlinear,jn a two-dimensional plane and the isomorphic grouf)df
systems, however, the scaling behavior can be much richer. ftansformations of the phase of a complex number. The most
can be even so complex, that its exhaustive characterizatidntuitive example here is perhaps a ferromagnet in which the
requires infinitely many critical exponenfd]. This is the spins are confined by crystal fields to lay in a certain plane.
famous phenomenon of multifractalif2]. Recently studied Other systems exhibiting-y symmetry include supercon-
examples are as diverse as heartd@8jt quantum gravity ductors, superfluid helium, the smec€icand the hexatid®
[4], and percolatior]5] type problems like random resistor phase of liquid crystals and so on. In tkey model 9; be-
networks(RRNS9 [6] and self-avoiding walks on percolation comes the angle; that specifies the orientation of the spin at
clusters[7]. sitei and is defined on the intervet#, 7r]. The bond energy

In this note we study the multifractal properties of a broadis a 2m-periodic function,U(¢)=-K cog¢), with K being
class of diluted physical systems, viz. those systems that cafe exchange integral.
be described by lattice models with a Hamiltonian that is a Since we are dealing with diluted systems, we are facing
sum of bond energied depending only on the differences basically a percolation problem. ff is small, there are only
¥ j=9;—¥; of continuous dynamical variable} andd; on  finite clusters. Ifp exceeds a certain threshold valpg on

the bondsi, j) between nearest neighboring sitesnd |, the other hand, there exists an infinite cluster. At the thresh-
old, p=p., the system undergoes an isotropic percolatibn
HIZ %,V ). (18 transition. Hence, the order paramefr (the probability
@ that any site belongs to an infinite clustand the correlation

Here, ¥ is a random variable that mimics disorder. It is length ¢ (the average diameter of a finite clugtscale as
assumed to take on the values 1 and 0 with respective proli2.~ (p—p,)? and &~ |p—p,|™, respectively, whergg and v
abilities p and 1. We focus on systems that are macro-are the well known critical exponents of the IP universality
scopically isotropic and hence the bonds are assumed to lmass. Here, we are interested primarily in physical processes
undirectedU(9)=U(-9). Moreover,U is assumed to have a taking place on the clusters like electric conduction or the
well defined minimum about which it can be expanded in ainteraction of spins. We will see that the cumulants

power series ind (the locus of this minimum is used to Do o — (/a2 \ 1»

define=0). Otherwise U is arbitrary. For example, it may Cy (6X") = {( T} )eFe (2)

be periodic or not. Given these assumptions and convention

dre adequate and convenient observables to investigate the
the bond energy has a Taylor expansion of the form q g

multifractality of such processe8§. -). stands for the cumu-

* lants of the averagé--) with respect to the Hamiltoniafl),

u(9) =2 ad? (1) e.g., (9).=(9), (9%)=(9—3(92)? and s0 on{ -}, de-

=0 notes averaging over all configurations of the diluted lattice
with a; being strictly positive. Diverse physical systems canand the star indicates the constraint tkaand x’ must be
be described by this type of Hamiltonian. The simplest ofconnected.
these systems is perhaps the RRN, whéreorresponds to To our knowledge, the scaling behavior of the cumulants
the voltageV; at sitei and is defined on the interval (2) is not known to date with 2 exceptioné) the RRN
[—o0,00]. U(V):%(TVZ, with o being the bond conductance, is Where or|1e has conventional gap scaling becddise har-
the electric power dissipated on an occupied bond. A wholdnonic,C{(x,x) ~ [x-x'['*"*, with ¢ being the resistance ex-
family of systems that can be described by the HamiltoniarPonent known to second order inexpansion andii) the
H is the family of systems witlx-y symmetry, i.e., systems diluted x-y model where CE§>(X,X’)~|X—X’|‘/”” and
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Cf)'(x,x’)~'|x—x’|¢c’” with ¢ being a critical exponent as- GO,X"IN) = (U () oy (X ) ags 7)
sociated with corrections to scaling that is known to first

order ine expansion10,11]. The purpose of this note is to where(:--),, indicates averaging with respect to the Hamil-
reveal the scaling behavior of tltié;,) for all systemgovered tonian(4), provides convenient access to the cumulﬂﬁ)s

by the Hamiltonian(1) for all . Using renormalized field Applying a standard cumulant expansion one finds

theory we will explore the intricate connection of the present
problem to the renowned noisy RRR] to arbitrary orderin
perturbation theory. We will show that tk@g) scale at the
percolation threshold as

CPx,x') = Alx— x|,

- s -
GO\ = expl 2 oSKIN e[ [ (®)
=1 (2)! ’ ¢
3) whereK,(\)==P_[\(¥]? is homogeneous polynomial ik
of degree 2 Equation(8) shows thatcg) can be calculated
with the exponentg) being identical to the noise exponents via taking the derivative with respect #(\), or in other

of the RRN[9] and with theA being amplitudes which words, thatG(x,x’;\) is a generating function for the!).
depend on the specifics of, i.e., A~a. This property will play an important role as we go along; it
Field theoretic modelin order to apply field theory and \yii| alow us to extract the scaling behavior of tm%) from

renormalization grougRG) methods we need to condense L o .
the Hamiltonian(1) into a field theoretic Hamiltonian that is that of G(x,x"; ) which in turn can be calculated by using
field theory and RG methods.

. . () . .
suitable for studying the, . This can be done by following Diagrammatic perturbation theoryAs usual, the central

the seminal work of Harris and LubenskhiL) on the RRN element of our RG analysis is a diagrammatic perturbation
and the dilutedk-y model[10] with the result X analy 9 P
calculation. Its constituting elements are the three-leg vertex

1 _ , v e
H=Jdde_{—de(V,V;)dwgdﬁ}, 4) g azld the Gau§3|an propagat@k ,\){1-6y o}, where
02 6 G(k ,\)=(r+k2+wA\?)~ and wherek is a momentum or
wave vector conjugate ta. Due to the facto{1-4; g},

where the Gaussian kernel is given by which enforces the constraingg(x)=0 stemming from
» D ) Jed(x, 5):0, the principal propagator decomposes in a rep-
K(V,Vg=7-A-wA;- 2 UI% (Vi) - (5 lica carrying partG(k,X) and a parG(k ,X)8; § not carrying

replica variables. Each principal diagram decomposes into a
. . ] sum of replica carrying diagrams consisting of these two
The order parameter field(x,6) lives on a continuous types of propagators.

d-dimensional Space—)With the Coordinabgslt is Subject to Note that none of the irre|evam‘ appears in the propa-
the constraint/;®(x,6)=0. The variabled is a replicated gators. This is important because treating thén the same
analog of the dynamic variabled and lives on a way as the relevant couplingsandw would ruin our per-
D-dimensional toru§12]. The physical situation is recovered turbation expansion, i.e., increasing orders in an expansion
in the replica limitD — 0. The parameter is proportional to  of the Feynman diagrams in terms of thdead to increasing
p.—p, i.e., it specifies the distance from the critical point.  superficial degrees of divergence. It is mandatory to truncate
is proportional toa; andv, ~ a,. For vanishingy, the Hamil-  this expansion, or in other words, we should treatdhby
tonian(4) reduces to the original field theoretic Hamiltonian means of insertions of the composite figtt briefly opera-

of HL. Theu, are dangerous irrelevant couplings as far as théor)
C(f'f are concerned. This can be seen by performing a scaling

analysis in the replica variable that leads to

[ _b _
O(x) = %J}D(X,H)E (VZ0)'®(x, ). 9
4 a=1

For the following arguments it is useful to employ the
so-called Schwinger parametrization, i.e., to rewrite the

wheref, is a scaling function. This shows that theexcly- ~ Propagators by using the mathematical identk,\)
sively appear in the irrelevant combinatiopfw'. However, — =Jgdsexgd-s(r+k?+w\?)]. Let us consider a generic rep-
it turns out the leading contribution tﬁg) vanishes upon lica carrying Feynman diagram with successive single inser-
settingu, to zero, i.e., information about the leading scalingtions of O, in each of its replica carrying propagators. The
behavior ofcg) is lost by omittingv, and this is why they, ):-dependent part of such a diagram is of the form
are dangerous. . .

Physical contentsTo fully appreciate the physical con- V'Y s> K|()\i)exp<w2 sj)\jz>. (10)
tents of the Hamiltoniai4) it is helpful to consider the rep- PR i
lica space Fourier transforg(x) =/, exp(—ix - O)®(x, 6) of  Here, the summatio; is a summation over some com-
the order parameter, whexds the replica variable conjugate plete set of independent loop replica varialés The sum-
to 6. X takes on values on a discreBedimensional torus. Mations indexed by and j are taken over all the replica
The quantityy;(x) is designed so that its correlation function carrying propagators\;=\;({«},\), where\ denotes an ex-

CYxX 5 7,W,{vid) = WH(x,X'; 7, {v W), (6)
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ternal replica variable, is the total replica variable flowing Comparison to the noisy random resistor netwoflke
through propagatoj. The summation ovefx} can be sim- noisy RRN is a generalization of the RRN in which the con-
plified by a completion of squares in the exponential andductances of occupied bonds are random variables. Thus,
eventually approximated by an integration. This integrationthere are two types of quenched disorder in this model, viz.
is Gaussian and hence straightforward. Taking the replicéhe dilution and the randomness of the conductance of indi-

limit D—0 and using thaK,():) is a homogeneous polyno- vidual bonds. To treat the two types of disorder simulta-
mial of degree Pone obtains neously, Park, Harris, and Lubensi®HL) [9] introduced a

variant of the HL model in which the role of thB-fold

o' > sci{sH2K (N) + - (11)  replicated is_taken by aD X E)-fold replicated voltages.
i The perturbation theory for the PHL model can be performed
) ) , essentially by following the steps described above. The only
whereci({s}) is a homogeneous function of the Schwingersteworthy difference is that the field theoretic operators
parameterss;} of degree zero that depends exclusively on thepRRN |eading to the noise exponents describing the current

topology of our generic diagram. . . distribution on the network contain instead}qti) the poly-
The remaining steps of calculating our generic Feynman

diagram consist of integrating out the loop momenta and th@0mials KFEN\) =25, [20_ (N #)?]', where\ is the rep-
Schwinger parameters. These steps are entirely analogouslica current conjugate to the replica voltageThough dif-
those well known from the field theory of IP and are Sk'ppedferent,K,():) and K,RRN()T) share two pivotal properties. First,

here for briefness. For background of the methods involveqhey are of sufficiently low symmetry so that the correspond-

here, e.g., dimensional regularization and minimal subtrac:rng operators®, and OIRRN are master operators. Second,

tion involving Laurent expansions in=6-d, we refer to 5y are homogeneous polynomials of degréeThus, in
Ref. [13]. both cases the perturbation theory leads to expregditn

Beyond these standard procedures there is one intrica . . > RRN, & .
involved here that warrants further comment. The ellipsis ir‘1:[)6f course with eithek,(r) or K™(M)] up to unimportant

expression(11) stands for various terms each of which con- differences residing in the eII'|p5|s, l.e., up to d|ﬁerent §Iaves.
. 2 , Therefore, the two perturbation theories lead to identical re-
tains a homogeneous polynomial in The polynomials of

! e . sults as far as the scaling behavior of the master operators is
the omitted superficially divergent terms, however, all have g, -arned.

higher symmetry thai(A). If an operator which depends  Scaling behaviarHaving made this observation we can
on \ via one of the more symmetric polynomials is inserteddraw on the noisy RRN, in particular on Ref$], for the
into one of the IP Feynman diagrams it can generate all sort&maining steps. Eventually we are led for the correlation
of polynomials, or for that matter operators, but it can nevefunctions at criticality to the scaling form

generateO,. This feature distinguishe®, and makes), a %

master operatof6] whereas the other operators are just G(x,x’;X):|x—x’|‘2B’V BO+E B|U|K|(7:)|X‘X'|WV
slaves. All slaves must be taken into account in the renormal- I=1

ization process and one has, at least in principle, to deal with

entire renormalization matrixes instead of simple renormal- e p (12)
ization factors. However, these renormalization matrices

have a particular, simple structure. Due to this simple struc- .

ture, the scaling exponent of a master operator sua,as  In writing Eq. (12) we have used tha¢,(\)=\? and we have
completely determined by a single element of the renormalsetw=v,. The B's are expansion coefficients. The multifrac-
ization matrix. Hence, for the practical purpose of calculat-tal exponents); are identical to the noise exponents of the
ing a masters scaling exponent, the slaves can be neglectd®RN and hence they are known to second ordes [6],

. € . 313 +1{3327 + 8[1556 +(2076 + 881) ]} — 6721 +1)%(1 + 2)?H(2l)
7(1+1)(1+2) 123481 +1)3(1 + 20)3 e

h=1 (13

where

H(n)=2}_,1/k. Note thatys;=¢ and y,=¢,. Figure 1 plots  the cumulant<C!)’ one might wonder about the correspond-
the dependence of thg on | for several dimensions. Our ing moments
main result(3) follows immediately from the scaling form

(12) by taking the derivative with respect tq(i) evaluated

at x=0. If the bond energyJ is harmonic, than one readily finds by
Moments vs cumulant&nowing the scaling behavior of virtue of the reIatiorm(ﬁZ'):(ZI)!/(2'I!)<1.‘)2>'c that

M) = {(82, )z (14
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1.6 causey is a strictly monotonically decreasing function lof
and henc&,_nh <l with ==_;n,.
1.5 — d=3 Concluding remarksln summary, we have studied multi-
14\ d= fractality in broad class of systems which includes the RRN
o \ and thg diluteck-y mpdel. The nymber of 'crltlcal exponents
1.3 \\ ---------- d=5 iy required to describe the scaling behavior of the cumulants
1 20 defined in Eq.(2) corresponds to the number of terms re-
\ AN quired in a power series expansion of the bond enérgin
1.1 ‘\\‘\ the RRN,U is harmonic and hence the cumulari®$ show
"\-—\--‘_:.—_:__—__-_q____g_ no multifractality. In the dilutedk-y model infinitely many
0 1 2 3 4 terms are required and one has true multifractality in this
l case. Note that only the first feyy differ significantly from

their largel limit ¢,.=1. Hence, systems where the bond
energy is not harmonic but when expanded features several
terms beyond harmonic order will be hard to distinguish ex-
MP(x,x") ~ [x = x'['¢/” (15)  perimentally from systems with true multifractality. One
9 ] ’ . . .
) ) ) ) . might say that these systems are effectively multifractal. The
i.e., the moments display conventional gap scaling. The situsajing behavior of the moments corresponding to the cumu-

ation is much more intricate i) is not harmonic because . :
then the higher moments correspond to complicated sums (I)z%nts(Z) remains a challenging open problem. We hope that

products of the cumulants. We cannot prove, but it is nofur work stimulates experiments or computer simulations to
implausible that ' ' decide whether these moments inevitably display gap scaling

FIG. 1. Dependence of the multifractal exponemgjson | in
three, four, and five dimensions.

or not.
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