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This paper focuses on modeling and analyzing the nonlinear dynamics of gene regulatory networks with the
consideration of a cell division cycle with duplication process of DNA, in particular for switches and oscilla-
tors of synthetic networks. We derive two models that may correspond to the eukaryotic and prokaryotic cells,
respectively. A biologically plausible three-gene model(lac, tetR, andcI) and a repressilator as switch and
oscillator examples are used to illustrate our theoretical results. We show that the cell cycle may play a
significant role in gene regulation due to the nonlinear dynamics of a gene regulatory network although gene
expressions are usually tightly controlled by transcriptional factors.
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I. INTRODUCTION

Recent advances in genomic science have made the quan-
titative analysis of DNA-protein interactions realistic due to
the progress of experiments and measurements, in contrast to
conventional qualitative study. Nonlinear phenomena in cel-
lular dynamics, such as biochemical oscillations and gene
expression multistability have extensively been investigated
by many mathematical models[1–4]. In particular, for syn-
thetic networks, several simple genetic networks have been
successfully constructed experimentally according to theoret-
ical models, i.e., a genetic toggle switch[5], a repressilator
[6], and other biocircuits[7,8]. Data in these experiments are
consistent with the predictions of mathematical models; this
implies that theoretical models are powerful tools for design-
ing and analyzing gene regulatory networks. Such simple
models represent a first step towards engineering cellular
control by manipulating and monitoring biological processes
at the DNA level, and not only can be used as building
blocks to synthesize the artificial biological systems, but also
have great potential for biotechnological and therapeutic ap-
plications[8–19].

On the other hand, since the proteins and genes are dy-
namically interconnected with each other in a cell, a cell
division cycle is naturally thought to have a significant influ-
ence on the cellular dynamics, which is neither clearly un-
derstood nor well investigated despite growing knowledge
about the cell division mechanism and certain qualitative
features of molecular fluctuations[8,20–22].

A typical cycle for both eukaryotic and prokaryotic cells
is growth and division. Growth implies the buildup of new
molecules in a cell and the associated increase in its mass
and volume, while division means pinching off of two almost
equally sized daughter cells, which is usually a much faster
process in contrast to the growth[23,24]. The genome to-

gether with associated proteins must be doubled in size with
extraordinary precision in preparation for cell division. A
cycle of most eukaryotes is composed of four stages: G1
(gap) phase in which size of the cell is increased by con-
stantly producing RNA and synthesizing protein, S phase in
which DNA synthesis and duplication occur, G2(gap) phase
in which the cell continues to produce new proteins and
grows in size, and M(mitosis) phase in which chromosomes
segregate and cell division takes place. In particular, the ge-
nome is constantly kept in the G1, G2, and M phases, but
duplicated in the S phase which lasts shorter than the cell
volume growth process and much longer than the cell divi-
sion instant. The time period of a cell cycle in most mam-
malian cells is on the order of 12–24 h, whereas bacteria by
contrast may divide every 20–30 min and yeast cells or
other protozoans may take 6–8 h[25]. Since the cell volume
and the DNA number must grow by a factor of 2 between
successive divisions in order to ensure that the mass of the
two daughter cells will nearly equal that of the mother cell,
the concentrations or the numbers of molecules in the cell
inevitably depend on dynamics of the cell cycle, which in
turn have a significant effect on the dynamics of gene-protein
networks owing to such dynamical fluctuations of the cell
cycle.

Recently, it was also found that there is a functional path-
way linking cell division and the circadian clock by the ex-
periment in murine-regenerating liver[26]. In addition to cell
cycles, stochastic noise[20,22,27,28] and time delays
[12,13] are also important factors, which may affect the per-
formance of the entire cellular system. Analyzing the effects
of cell cycles on gene switches and oscillators is important
not only for designing synthetic gene networks but also for
understanding cellular dynamics of biological systems, be-
cause both gene switches and oscillators are thought to be
essential minimal modules in living organisms[15].

This paper aims at modeling and analyzing the nonlinear
dynamics of gene regulatory networks with the consideration
of a cell cycle, in particular for switches and oscillators of
synthetic networks. The number of chemicals, e.g., proteins,
in a cell is partly controlled by the cell cycle, and dilution
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due to partition into daughter cells plays a significant role in
keeping the chemical numbers low[22]. Specifically, al-
though the chemical numbers may increase due to the effect
of the cell cycle, a cell division cycle mainly accelerates the
degradation of the chemical concentrations in a cell. In par-
ticular, when the gene network is near a stability boundary, a
cell cycle as a degradation factor may significantly change
the dynamics both qualitatively and quantitatively. As shown
in this paper, a cell division cycle can be viewed as an ex-
ternal periodic force for the inherent autonomous dynamics
of genetic networks. Depending on the frequencies and cou-
pling of external and internal oscillations, there may exist
periodic, quasi-periodic, or even resonant dynamics that are
generated by synchronization of the two oscillators. With
growth of a cell, the DNA or gene numbers can be approxi-
mately assumed to change rapidly or smoothly, depending on
cell types and the initial DNA or gene numbers. In this paper,
we derive two models that may correspond to the eukaryotic
and prokaryotic cells, respectively. We show that the cell
cycle may play a significant role in gene regulation due to
the nonlinear relation among the cell volume, the DNA num-
ber, and gene regulatory network although gene expressions
are usually tightly controlled by transcriptional factors.

This paper is organized as follows. We first give a general
description of gene regulatory networks with emphasis on
the transcription and translation processes by using nonauto-
nomous differential equations, and transform it into two spe-
cific models for cases with smooth and rapid changes of the
gene numbers by autonomous ordinary differential equations
sODEsd and impulsive differential equationssIDEsd, respec-
tively. Then, we briefly examine the basic properties of pe-
riodic solutions and their stability by constructing a Poincaré
map. As an implementation example, we design a biologi-
cally plausible three-gene synthetic model withlac, tetR, and
cI, and derive its differential equations. The first numerical
experiment is the analysis of a genetic switch withlac and
tetRand a genetic oscillator withlac, tetR, andcI when the
gene numbers are approximately assumed to smoothly
change with the cell growth, as in a prokaryotic cell. In con-
trast, the second numerical experiment is the case for the
rapid change of the gene numbers, as in a eukaryotic cell.
Besides, we also examine the effects of a cell cycle on the
Repressilator[6,12] by numerical simulation. Finally, we
give several general remarks to conclude this paper.

II. GENE REGULATORY NETWORKS WITH CELL
DIVISION CYCLE

A. Network model

The gene regulatory systems of living organisms are so
complicated that any mathematical model has limitations to
certain functions. Before defining gene regulatory networks,
we make several assumptions.

Assumption II.1. Transcription and translation processes
evolve on a time scale that is much slower than those of
protein binding, dimerization, phosphorylation, or other
chemical modification reactions.

In fact, for most eukaryotic and prokaryotic cells, tran-
scription and translation processes are on a time scale of

minutes, whereas the binding, dimerization, or other chemi-
cal modification reactions are generally less than a second.
Therefore for gene regulatory networks, all chemical reac-
tions are usually reduced to transcription and translation pro-
cesses[9,12,22].

Besides the transcriptional factors, transcription and trans-
lation rates are mainly affected by the numbers of RNA poly-
merases and ribosomes, which are all house-keeping mol-
ecules in a cell and are thought to increase approximately
with the cell volume.

Let mstd=(m1std , . . . ,mnstd)PRn and pstd
=(p1std , . . . ,pnstd)PRn be the numbers of mRNAs and the
corresponding proteins in a cell, respectively. In this paper,
mstd andpstd are approximately taken as real numbers. Then,
we have the following general equations[12] for gene regu-
latory networks in a cell by ODEs in terms of mRNAsmstd
and proteinspstd according to the law of mass action.

ṁstd = NustdfSpstd
vstd

D − Kmmstd, s1d

ṗstd = Spmstd − Kppstd, s2d

whereN=diagsN1, . . . ,Nnd is a positive diagonal matrix that
represents the numbers of genes at the beginning of the cell
growth phase, whileustdPR is the DNA number factor so
that Nustd is the numbers of genes at instantt, thereby 1
øustdø2. Km=diagskm1, . . . ,kmndPRn3n and Kp

=diagskp1, . . . ,kpndPRn3n are positive diagonal matrices
that represent the degradation rates for mRNAs and proteins,
respectively.fspd=(f1spd , . . . ,fnspd)PRn is a vector of syn-
thesis rates for transcription, and is generally nonlinear.Sp
=diagss1, . . . ,sndPRn3n is also a positive diagonal matrix,
representing translation rates. Define the cell volume factor
as vstd=Vstd /V0PR, whereVstd is the host cell volume at
instantt andV0 is the host cell volume at the beginning of its
growth phase, thereby 1øvstdø2. For the period from the
beginning of cell growth to the cell division, Eq.(1) repre-
sents the transcription reaction whereas Eq.(2) stands for the
translation process.ṁstd=dmstd /dt and ṗstd=dpstd /dt for all
t except division instants, while the volume and the numbers
of chemicals all halve, i.e., vstd→vstd /2, ustd
→ustd /2 , mstd→mstd /2, and pstd→pstd /2 at division in-
stantt.

According to Assumption II.1, all biochemical reactions
except transcription and translation processes are reduced
into Eqs.(1) and (2) due to the adiabatic condition of slow
and fast dynamics[12]. f is the synthesis term that is com-
bined with the effects of binding, multimerization, and other
chemical modification reactions with conservation condi-
tions, such as the numbers of binding sites on DNA, and
depends on the chemical concentrations[8], e.g., pstd /vstd
according to the law of mass action. Actually, we can easily
verify that Eqs. (1) and (2) are consistent with standard
forms of rate equations[29] whereNustd /vstd is the concen-
tration of genes. We will use a three-gene model to show this
fact in the next section. In this paper, a chemical means a
molecule a complex in a cell.
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In a eukaryotic cell, there is usually one copy for each
gene at the beginning of a cell growth phase, i.e.,N
=diags1,1, . . . ,1d. However, for bacteria, there may exist
multiple DNA plasmids per cell, e.g., as many as one hun-
dred plasmids[8,25,30,31], which impliesNi =1–100 for i
=1, . . . ,n in a host cell. We assume for the sake of simplicity
that genes or DNAs including DNA plasmids are duplicated
before cell division.

Assume the period of a cell division cycle to bet. For
instance, in what follows, we use the following piecewise
function to describevstd.

vstd = Hest/t−kdln 2, kt ø t , sk + 1dt
1, t = sk + 1dt,

s3d

wherek=0,1,2, . . .. Thecell volume factorv exponentially
increases from 1 to 2 during each cell cycle, and returns to 1
after cell division.

On the other hand, since DNA is duplicated in a much
faster manner than cell volume, we adopt the following sig-
moidal function to approximately describe the DNA number
factor ustd.

ustd = Hagst/t − kd + b, kt ø t , sk + 1dt
1, t = sk + 1dt,

s4d

where k=0,1,2, . . . andgstd=1/s1+e−gst−tddd which is cen-
tered at td for 0ø tdø1. a=1/(gs1d−gs0d) and b=1
−gs0d / (gs1d−gs0d) are chosen to ensureu=1 andu=2 just
after and before division, respectively. Clearly the DNA
number factoru is mainly constant except the time period
nearkt+ tdt during whichu rapidly increases from 1 to 2,
and returns to 1 after cell division. The period nearkt+ tdt
corresponds to the S phase in a eukaryotic cell. In this paper,
td=0.6 andg=50 are used to describeustd. Figure 1 shows
vstd andustd, where the DNA duplication occurs aroundkt
+ tdt=kt+0.6t=k+0.6 for each cell cycle periodt=1.

Define fmstdg=mstd /vstd and fpstdg=pstd /vstd as relative

concentrationsof mRNAs and proteins. In the following, the
time t for variablesfmg and fpg is dropped for simplicity.

Then by differentiatingmstd=vstdfmg and pstd=vstdfpg
with respect tot, and further by substituting into Eqs.(1) and
(2) with consideration ofv→v /2 , u→u/2 , m→m/2, and
p→p/2 at division, we obtain a model of the gene regula-
tory network in terms of relative concentrations in a closed
form.

fṁg =
ustd
vstd

Nfsfpgd − sKm + v̄dfmg, s5d

fṗg = Spfmg − sKp + v̄dfpg, s6d

wherev̄= v̇std /vstd=sln 2d /t whenvstd of Eq. (3) is adopted.
Note that there is only one factorV0 between concentration
and relative concentration, i.e., the concentration ofx is
fxg /V0.

Remark II.1. When there is no cell division cycle dynam-
ics, the last termssv̄fmg , v̄fpgd in Eqs.(5) and (6) disappear
andvstd=ustd=1.

Clearly, the gene regulatory network of Eqs.(5) and(6) is
not an autonomous system due toustd /vstd, which generally
is a periodic function.

We consider the following two situations for the numbers
of genes, i.e.,Nustd in this paper.

Assumption II.2. (1) Rapid Change:ustd is constant during
the cell growth except theS phase in whichustd is doubled,
but immediately halves after division in each daughter cell,
as indicated in Eq.(4). (2) Smooth Change:ustd proportion-
ally increases with the cell volume growth until it is doubled
at the division instant but immediately halves after division
in each daughter cell, i.e.,ustd /vstd=1.

1 of Assumption II.2 may correspond to the situation of a
eukaryotic cell, whereas 2 of Assumption II.2 is an approxi-
mation to a prokaryotic cell with a large number of plasmids.
However, 1 of Assumption II.2 may also hold for a system
with chromosomal genes in a prokaryotic cell. We assume
that all chemicals including DNAs and proteins in a mother
cell are equally distributed to two daughter cells after divi-
sion although many factors, such as stochastic noise, influ-
ence the ratio of the distribution, in particular for non-DNA
molecular species[22].

B. Dynamics with rapid change of gene numbers

We assume that 1 of Assumption II.2 holds. Such an as-
sumption mainly corresponds to a eukaryotic cell.ustd is
constant during the cell growth, is duplicated in the S phase,
and immediately halves after division in each daughter cell,
as described by Eq.(4) and Fig. 1. Therefore, by Eqs.(1)–(4)
with consideration ofm→m/2 , p→p/2, v→v /2, and u
→u/2 at the division, we can describe the dynamics in terms
of the chemical numbers andv ,u by IDEs in a closed form.

ṁ= NufSp

v
D − Kmm−

m

2 o
k=1

`

dst − ktd, s7d

FIG. 1. The cell volume factorvstd and the DNA number factor
ustd for td=0.6 andg=50.
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ṗ = Spm− Kpp −
p

2o
k=1

`

dst − ktd, s8d

v̇ = v̄v −
v
2o

k=1

`

dst − ktd, s9d

u̇ =
g

t
su − bd −

g

at
su − bd2 −

u

2o
k=1

`

dst − ktd, s10d

where the impulse functiond is defined asdstd=0 when t
Þ0, ande−`

+` dstddt=1. Noticevs0d=us0d=1. Due to the last
terms of Eqs.(7)–(10), values ofmstd , pstd , vstd, andustd all
halve att=kt. Clearly Eqs.(7)–(10) are not ODEs but IDEs
with a periodic impulse force. The effects of a cell division
cycle on the chemical numbers include two parts, i.e., a vari-
able termsv ,ud to influence the synthesis of mRNAs, and an
impulse termdst−ktd to enhance the degradation or dilution
of each chemical. As indicated in Eqs.(7)–(10), a cell divi-
sion cycle may play a significant role in gene regulation due
to the nonlinear relation among the cell volume, the numbers
of genes, and the gene regulatory network although gene
expressions are tightly controlled by transcriptional factors.

Dynamics can also be expressed by Eqs.(5) and (6) in
terms of relative concentrations, i.e., by simply substituting
Eqs.(3) and(4) into Eqs.(5) and(6). Clearly the effect of a
cell division cycle on relative concentrations is a periodic
term multiplying with the synthesis rate. Bothustd /vstd in
Eq. (5) anddst−ktd in Eqs.(7)–(10) can be viewed as exter-
nal forces.

We call Eqs.(3)–(6) or Eqs.(7)–(10) a forced system, and
an autonomous system ifvstd=ustd=1 for all t. The oscilla-
tion in an autonomous system is also called natural oscilla-
tion or internal oscillation. Usually, gene replication and cell
division cause the protein numbers to tend to a limit cycle,
but depending on the natural oscillation period, there may
exist quasiperiodic, resonance, or even chaotic dynamics
[32].

C. Dynamics with smooth change of gene numbers

When 2 of Assumption II.2 holds,ustd proportionally in-
creases with the cell volume, i.e.,ustd /vstd=1. Such an as-
sumption is actually valid only whenN is sufficiently large,
e.g., with a large number of plasmids in a bacterial cell.
Otherwise,ustd /vstd should be considered as a time varying
number and rapidly change its value as indicated in 1 of
Assumption II.2.

Therefore, by Eqs.(5) and (6), we can describe the dy-
namics in terms of relative concentrations.

fṁg = Nfsfpgd − sKm + v̄dfmg, s11d

fṗg = Spfmg − sKp + v̄dfpg, s12d

which are actually autonomous ODEs. The effect of a cell
division cycle on relative concentrations is an additional deg-
radation ratev̄, which implies that a cell cycle mainly en-

hances the dilution of chemicals in terms of concentrations
or affects gene regulation by acting as a degradation factor.

Notice that the effects of a cell division cycle on the
mRNA and protein numbers should be further transformed
from the relative concentrations bym=vstdfmg and p
=vstdfpg, e.g., the numbermstd periodically varies witht due
to the periodic functionv even if fmg is a nonzero constant.

In a real cell, there actually exist many perturbations, such
as noises, aroundustd /vstd=1, which prevent the perfect tune
of the DNA duplication with cell size, or even equal distri-
bution of DNAs in daughter cells. For the case of determin-
istic perturbations, i.e.,ustd /vstd=1+s where s is a small
real number, the stability analysis of equilibria is relatively
easy and can be investigated by perturbingN of Eq. (11) due
to Nustd /vstd=N+sN according to Eqs.(5) and (6), which
can be examined by the Jacobian matrix in the next section.

Next, we examine the effects of stochastic perturbations
on the cellular dynamics by using a small stochastic noise
model. Letustd /vstd=1+shstd wheres is a small real num-
ber corresponding to the deviation of the small noise, and
hstd is Gaussian noise with zero meankhstdl=0 and variance
khstdhst8dl=dst− t8d. Then, Eqs.(11) and (12) become

fṁg = Nfsfpgd − sKm + v̄dfmg + Nfsfpgdshstd, s13d

fṗg = Spfmg − sKp + v̄dfpg. s14d

Clearly, fluctuations of such noise mainly influence the sys-
tem through the transcription process due to Eq.(13). We
will examine Eqs.(13) and (14) for the effects of the sto-
chastic noise by the numerical simulation.

D. Stability of periodic oscillation

Local stability analysis of dynamics of Eqs.(11) and(12)
at an equilibrium point forfmg andfpg is straightforward, by
simply investigating the eigenvalues of the Jacobian matrixJ
for Eqs.(11) and (12), i.e.,

J = F− Km − v̄, Ndfsfpgd/dfpg
Sp, − Kp − v̄

G . s15d

Notice that stability offmg and fpg for an equilibrium point
is identical to that ofm andp for the corresponding periodic
solution. By including nonlinear terms, we can also analyze
local bifurcations[33].

Next, we examine the stability of a periodic oscillation for
Eqs. (7)–(10). For the sake of simplicity, Eqs.(7)–(10) are
summarized as

Ẋstd = F„Xstd… −
1

2o
k=1

`

dst − ktdXstd, s16d

where X=sm,p,v ,ud, and F=Fsm,p,v ,ud=(Nufsp/vd
−Kmm,Spm−Kpp, v̄v ,gsu−bd /t−gsu−bd2/ satd).

Let f(t ;Xsktd) denote the flow of the vector fieldF start-
ing from f(0;Xsktd)=Xsktd at t=0, i.e.,
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df„t;Xsktd…
dt

= Fsf„t;Xsktd…d. s17d

Definecstd as a fundamental solution satisfying

] cstd
] t

=
] Fsf„t;Xsktd…d

] X
cstd s18d

with cs0d=E, wherecPRs2n+2d3s2n+2d, andE is an identity
matrix.

Then integrating Eq.(16) from kt+ to t for kt, t, sk
+1dt yields

Xstd − Xskt+d =E
kt+

t

FsXstdddt

=E
0

t−kt

Fsf„t;Xsktd…ddt

= f„t − kt;Xsktd… − f„0,Xsktd… s19d

according to Eq.(17). Notice thatXskt+d=f(0,Xsktd), and
the integration range is changed forf(t ,Xsktd) in Eq. (19)
due to its initial state starting fromXsktd. On the other hand,
in the same way, by integrating Eq.(16) from kt+ to sk
+1dt for t, we have

X„sk + 1dt… − Xskt+d =E
0

t

Fsf„t;Xsktd…ddt

−
1

2
E

0

t

dst − tdf„t,Xsktd…dt

= f„t;Xsktd… − f„0,Xsktd…

−
1

2
f„t;Xsktd…. s20d

Therefore by usingf of the autonomous system and from
Eqs.(19) and(20), the orbit of the nonautonomous Eq.(16)
can be expressed withk=0,1,2, . . . ,

Xstd = f„t − kt,Xsktd…, kt ø t , sk + 1dt, s21d

X„sk + 1dt… =
1

2
f„t,Xsktd…, t = sk + 1dt. s22d

Clearly, different from the continuous dynamics of the con-
centrations, e.g., Eqs.(11) and (12), the chemical number
Xstd is continuous att=kt from the right side but generally
discontinuous att=kt from the left side. Equation(22) is a
Poincaré map of Eq.(16).

Thus the necessary and sufficient condition of a period-
one solution of Eq.(16) is the existence of a real solution for
the following equation:

Xsktd =
1

2
f„t,Xsktd…. s23d

Notice thatf is not the flow of the right-hand-side of Eq.
(16) but the flow of the vector fieldF of Eq. (17).

According to Eq.(22), the stability of the period-one so-
lution depends on the eigenvalues of the Jacobian matrix at
Xsktd:

J =
1

2

] f„t,Xsktd…
] Xsktd

=
1

2
cstd. s24d

From dynamical system theory, if absolute values of ei-
genvalues forJ are all less than 1, then the periodic solution
is asymptotically stable[33]. In a similar manner, we can
derive the existence and stability conditions for any period-k
solution.

III. IMPLEMENTATION OF A THREE-GENE NETWORK
EXAMPLE

We design a network by geneslac, tetR, andcI with the
promotersPLtetO1, PRM

p , andPLtetO1, shown in Fig. 2. All
three genes are well-characterized prokaryotic transcriptional
regulators, which can be found in bacteriumE. coli and l
phage. Protein Lac forms a tetramer to inhibit gene-tetRwith
promoterPRM

p and protein CI activates the gene-tetR as a
dimer, whereas protein TetR forms a homodimer to repress
both gene-lac and gene-cI with promotersPLtetO1. All three
genes can be engineered on plasmids, and can then be cloned
to multiple copies, e.g., by PCR. The engineered plasmids
are further assumed to grow inE. coli.

Let x, y, andz be the numbers of protein monomers TetR,
Lac, and CI, respectively. Then for gene-cI with promoter
PLtetO1, definex2 to be the number of protein dimer TetR.
Let d anddx2

be the number of free DNA and the number of
the TetR2-DNA complex, i.e.,OR bound by a protein dimer
TetR2.

Then for gene-cI, the multimerization and binding reac-
tions can be written as the equilibrium reactions[9]

x + x

k−1

k1

x2; d + x2

k−2

k2

dx2
. s25d

FIG. 2. A three-gene model of a gene regulatory network(pro-
tein Lac forms a tetramer to inhibit gene-tetR, and protein CI en-
hances gene-tetRas a dimer, whereas protein TetR forms a dimer to
repress both gene-lac and gene-cI). PRM

p is a mutated promoter of
PRM and has two binding sites(OR1 andOR2) for protein dimer CI2

and one binding sitesOR3d for protein tetramer Lac4. Affinities of
CI2 for PRM

p areOR1.OR2. Binding effects of CI2 to OR1 andOR2

for transcription ofPRM
p are neutral and positive, respectively, in

contrast to a negative binding effect ofOR3 by Lac4. On the other
hand, there is one binding site, i.e.,OR for protein TetR2, which
represses the transcription of the promoterPLtetO1. x: number of
protein TetR;y: number of protein Lac; andz: number of protein
CI.
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The basic mechanism of chemical reactions is stochastic
collisions of chemicals according to the law of mass action
[29]. Therefore the reaction of Eq.(25) can be expressed by
differential equations,

ẋ2 = VSk1
x2

V2 − k−1
x2

V
D ; ḋx2

= VSk2
x2d

V2 − k−2

dx2

V
D .

Thus the equilibrium reactions of fast dynamics Eq.(25)
can be written as algebraic equations[9]: x2=k1x

2/ sk−1Vd
=c1x

2/v ; dx2
=k2x2d/ sk−2Vd=s3x

2d/v2, wheres3=c1c2 and
ci =ki / sk−iV0d. Such algebraic equations imply that the num-
bers of the chemicals synthesized in the fast dynamics are
inversely proportional to the cell volume.

Let the copy number of plasmids with gene-cI be nzustd.
Then we have a conservation condition:nzustd=d+dx2

,
which leads tod=nzustd / s1+s3x

2/v2d. Therefore by substi-
tuting the equilibrium equations of fast dynamics, the slow
dynamics for mRNA and the synthesized protein represent-
ing the transcription and translation processes of gene-cI are

ṁz = bmz
d − kmz

mz =
bmz

nzustd

1 + s3x
2/v2 − kmz

mz, s26d

ż= szmz − kzz, s27d

where the synthesis rate ofmz is bmz
d due to the repressive

effect of TetR on the binding siteOR as indicated in Fig. 2.
x→x/2, y→y/2, z→z/2, v→v /2, andu→u/2, at division.

As the same way as the derivation of the gene-cI, we can
get the dynamics for geneslac and tetR [8,9]. By defining
the relative concentrations for proteins asfxg=x/v , fyg
=y/v, andfzg=z/v, the dynamical system of the three-gene
network is summarized in terms of the relative concentra-
tions of proteins in the following closed form:

fṁxg = bmx
nx

ustd
vstd

fxsfyg,fzgd − skmx
+ v̄dfmxg, s28d

fẋg = sxfmxg − skx + v̄dfxg, s29d

fṁyg = bmy
ny

ustd
vstd

fysfxgd − skmy
+ v̄dfmyg, s30d

fẏg = syfmyg − sky + v̄dfyg, s31d

fṁzg = bmz
nz

ustd
vstd

fzsfxgd − skmz
+ v̄dfmzg, s32d

fżg = szfmzg − skz + v̄dfzg, s33d

where fxsfyg ,fzgd=s1+cfzg2+as1c
2fzg4d / (s1+cfzg2

+s1c
2fzg4ds1+s4fyg4d), fysfxgd=1/s1+s2fxg2d, and fzsfxgd

=1/s1+s3fxg2d.
The parameters in Eqs.(28)–(32) are set as follows:s1

=2, s2=0.25, s3=7.5, s4=3.5310−4, bmx
=20/3, bmy

=100/3,bmz
=5/3, a=11, kx=5000/3,ky=3000/3,kz=5/6,

and c=0.0165. At the beginning of cell growth,nx=60, ny

=60, andnz=60. kmi
=10/3, si =100/3 for i =x,y. kmz

=1/3,
sz=5/6. Let thecell cycle bet=1 which stands for 30 min.
The parameters for Eqs.(28) and (29) are from [8,9] with
slight modification, while parameters for Eqs.(30)–(33) are
set appropriately in biologically realistic ranges, due to lack
of experimental data. Since we want to construct a relaxation
oscillator by making use of fast-slow dynamics, the RBS
(ribosome-binding site) of gene-cI is assumed to be artifi-
cially engineered so that the translation efficiency of protein
CI is significantly slower than those of proteins Lac and
TetR.

Furthermore, the binding affinity of the proteins Lac and
TetR to DNA can also be changed by introducing small mol-
ecules IPTG(isotropyl-b-D-thiogalactopyranoside) and aTc
(anhydrotetracycline), respectively, which bind to tetramer
Lac4 and dimer TetR2 and prevent them from binding to
operator sites[9]. In order to measure the behaviors of the
genetic network, a gene for GFP(green fluorescent protein)
or YFP (yellow fluorescent protein) is assumed to be incor-
porated in each plasmid under the control of a targeted pro-
moter to monitor the targeted gene in experiments[6].

IV. NUMERICAL EXPERIMENTS

A. Case for smooth change of gene numbers

Assume that 2 of Assumption II.2 holds, i.e., the DNA
number and the cell volume increase at an identical rate:
ustd /vstd=1 in Eqs.(28)–(33).

We first use geneslac and tetR of Fig. 2 to construct a
gene switch, which means that the dynamics of the gene
switch are governed by Eqs.(28)–(31) with fzg fixed.

Figure 3(top figure) shows null-clines for Eqs.(28) and
(29) (solid line) and Eqs.(30) and (31) (dotted line) when
fzg=6 andvstd=ustd=1. There are two stable equilibria and
one unstable equilibrium(middle one). Taking fzg as a pa-
rameter, it is easy to check that bistable region forfzg is
3.69ø fzgø30.1 from the analysis of the gene switch. When
fzg,3.69, there is only one stable equilibrium with highfyg
and lowfxg. On the other hand, there is also only one stable
equilibrium with low fyg and highfxg when fzg.30.1.

The second figure of Fig. 3 indicates the regions of uni-
stability (one stable equilibrium) and bistability(two stable
equilibria) with parameterskmx

and kmy
. Solid lines and

dotted lines are the boundaries between the unistable and
bistable regions without a cell cyclesv=u=1,v̄=0d and with
a cell cycle(v /u=1,v̄=sln 2d /t), respectively. Clearly with
and without a cell cycle, dynamics are almost identical for
some regions but qualitatively change for other regions. Fig-
ure 4 is an example with parameterskmx

=5 andkmy
=4.5 as

marked by an asterisk in the second figure of Fig. 3, showing
such qualitative changes. In the left two figures, the dynam-
ics without a cell cycle converge to two stable equilibria
(bistability) from two different initial conditions. In contrast,
the system with a cell cycle loses the bistability and con-
verges to a single equilibrium(unistability) for any initial
conditions as demonstrated in the right two figures. The dif-
ference with and without a cell cycle for the gene switch is
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the last terms of Eqs.(28)–(31), which are degradations at-
tributed to a cell cycle. If the original degradation rates are
far bigger thanv̄, the effect of a cell division cycle on the
dynamics of the gene switch is not significant. However,
when the system is near the stability boundary with respect
to the degradation terms or when original degradation rates
are comparable to or less thanv̄, the cell division cycle
strongly affects the performance of the system. Note that
comparing to mRNAs, proteins usually degradate much
slowly.

Next, we show that the network of Fig. 2 or Eqs.
(28)–(33) can be used as a relaxation oscillator. Since the
translation efficiency of protein CI can be significantly re-
duced by adjusting the RBS or other manipulations, Eqs.

(28)–(31) are fast dynamics and Eqs.(32) and (33) can be
slow dynamics.

Figure 3 (the third figure) shows the null-clines of Eqs.
(28)–(33), and a limit cycle on afxg−fzg plane whenvstd
=ustd=1,v̄=0, which is a typical representation of a relax-
ation oscillator. The bottom figure is the boundaries between
oscillation(OS) and steady state(SS) with and without a cell
cycle. The clear difference for OS regions indicates that a
cell cycle may also significantly affect dynamical behaviors
of periodic oscillations. Fig. 5 shows such influence of the
cell cycle on the relaxation oscillator with parameterskmx
=4.5 andkmy

=3.5, whose location is shown in the bottom
figure of Fig. 3 by an asterisk. The lower figure is the dy-
namics with a cell cycle, which has a typical relaxation os-
cillation with the periodT=4.9. However, without a cell
cycle, as indicated in the upper figure, the oscillation disap-
pears and dynamics converge to a steady state.

According to Eqs.(28)–(33), the effect of a cell division
cycle on the concentrations can be viewed as an additional
degradation ratev̄, which mainly reduces the synthesis of
each corresponding chemical. Depending on the interaction
of each chemical in gene networks, such degradation effects
of a cell cycle may significantly affect the dynamics both
quantitatively and qualitatively.

Furthermore, assuming imperfect synchronization ofu
and v, we examine the effects of stochastic perturbations
aroundustd /vstd=1 using model Eqs.(13) and(14), i.e., sub-
stitute ustd /vstd=1+shstd into Eqs. (28)–(33). Figure 6
shows the simulation results fors=0.05 and 0.2 that stochas-
tically perturb the system around a periodic orbit and a stable
equilibrium. Clearly, when the perturbation is sufficiently
small, e.g.,s=0.05, there is no qualitative change, the sys-
tem almost moves along the original trajectories, and the
deviations are also quite small, which are indicated by the
light vertical lines in the figures. However, when the noise
deviations become large, e.g.,s=0.2, dynamics exhibit wild
and unpredictable behaviors due to the strong influence of
stochastic noises, which implies that the imperfect synchro-
nization ofu andv is also an important factor when design-
ing or modeling genetic networks.

B. Case for rapid change of gene numbers

Assume that 1 of Assumption II.2 holds. Then, Eqs.
(28)–(33) can also be expressed as follows:

for w=x,y,z

ṁw = bmw
nwufw − kmw

mw −
mw

2 o
k=1

`

dst − ktd, s34d

ẇ = swmw − kww −
w

2o
k=1

`

dst − ktd, s35d

where vstd and ustd follow Eqs. (9) and (10). In the same
manner as the case with smooth change of the gene numbers,
we can construct gene switches or oscillators, and further
theoretically analyze them. For instance, when we consider
the autonomous system, i.e., without a cell division cycle

FIG. 3. Null-clines and stability regions for a switch and an
oscillator. The top figure is null-clines of switch for Eqs.(28) and
(29) (solid line) and Eqs.(30) and (31) (dotted line) when fzg=6
and vstd=ustd=1,v̄=0. The second figure is the unistable(one
stable equilibrium) and bistable(two stable equilibria) regions with
and without a cell cycle. H and L stand for the high and low stable
equilibria, respectively. The third figure is null-clines of an oscilla-
tor for Eqs.(28)–(33) and there is a limit cycle on thefxg−fzg plane
with vstd=ustd=1. The lower-right figure is the oscillatory regions(
OS) and steady state regions(SS) with and without a cell cycle.
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vstd=ustd=1, the null-clines are the same as Fig. 3. Let the
natural period of the oscillation in the autonomous system be
T. Theoretically, we can expect synchronization between the
natural oscillation with periodT and the forced oscillation
with period t for Eqs. (28)–(33), or even resonance ifTi
. jt, wherei and j are integers without a common divisor.

Figure 7 is the analysis of the effects for a cell cycle by
parameterskmy

, td, andt. The upper figure is the bifurcation
diagram without a cell cycle, which shows two Hopf bifur-
cations corresponding to the lower and upper boundaries in
the bottom Fig. 3 atkmx

=10/3. Theoretically, due to mecha-

nism of the relaxation oscillator in Fig. 3, the Hopf bifurca-
tions are singularly homoclinic provided that the time scale
difference between fast and slow dynamics is sufficiently
large[13]. Such a fact implies that the amplitude increases or
decreases almost exponentially near the bifurcation points,
which is shown in the upper figure. The middle and lower
figures are the effects oftd and t on amplitudes with a cell
cycle. The natural period isT=23.4. From the observation of
the oscillation amplitude against the cell cycle periodt, there
is no noticeable resonance due to extremely strong entrain-
ment of the cell cycle dynamics, which is quite different
from the results of[9]. Besides the different networks and
cell cycle models, one reason for such a difference is that the
cell cycle dynamicsvstd and ustd in this paper are nonlin-
early coupled with the gene network as shown in Eqs.
(28)–(33) in contrast to the linear coupling in[9]. Actually
the effect of the cell cycle mainly dilutes the concentrations
of the chemicals by acting as a degradation factor, which
usually reduces the chemical amplitude even at resonance,
comparing with the case without a cell cycle. The trend is
that the amplitude slowly increases with the cell cyclet al-
though it is rugged. Generally, the protein synthesis can be
enhanced if the DNA duplication occurs at the early stage of
the cell cycle, i.e.,td is small. However, if there are nonlinear
interactions among genes in the network, relations can be
very complicated. The middle figure is the analysis of the
oscillation amplitude variation withtd that controls the DNA
synthesis process. For smalltd, oscillations ofx have very
small amplitudes, which are caused by strong repression ofy
due to the early DNA duplication ofy. When td is around
0.4, there is a significant increase for the proteinfxg, which is
owing to the strong and dominant activation ofz. Most of the
oscillations are periodic in the middle and lower figures,
which are different from the Repressilator shown in the next
case.

FIG. 4. Time evolutions of a
switch with geneslac and tetR
with fzg=6 for the case with
smooth change of the gene num-
bers (left half figures are for the
case without a cell cycle from two
different initial conditions,
whereas the right half figures are
for the case with a cell cycle from
two different initial conditions).

FIG. 5. Time evolutions of the three-gene network without and
with a cell division cycle for the case with smooth change of the
gene numbers.(The upper figure is the case without a cell division
cycle, and the lower figure is the case with a cell division cycle,
respectively, atkmx

=4.5 andkmy
=3.5.)
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Figure 8 shows time evolutions for a case without a cell
cycle and two cases with the cell cycle corresponding totd
=0.38 andtd=0.6, respectively, where the cell cycle period
and the natural period aret=1 andT=23.4. The dynamics
are all entrained to be a forced oscillation with a periodt
=1 or its subharmonics when a cell cycle is considered,
which implies that a cell cycle has a tendency to entrain
subsystems of the cell. Comparing with the case oftd=0.6,
the synthesis of the proteinfxg for the case oftd=0.38 is
considerably inhibited by strong repression of Lacy due to
its early DNA duplication. However, comparing with the
case without a cell cycle, the proteins for the cases with a
cell cycle are significantly reduced due to the dilution or
degradation effect of the cell division as well as the interac-
tions fromy andz.

C. Case for Repressilator

We next examine the influence of the cell cycle on the
gene regulation of the Repressilator, whose periodic oscilla-

tion was experimentally investigated inEscherichia coli in
vivo [6]. For the case with cell cycle dynamics, the model
can be expressed as follows[6,12]:

fṁig =
u

v

a

1 + fpjgn − sa1 + v̄dfmig, s36d

fṗig = bfmig − sb + v̄dfpig, s37d

where i and j have the following three pairs of values:si
=1,j =2d, si =2,j =3d, andsi =3,j =1d, which representlacI,
tetR, andcI respectively.vstd and ustd follow Eqs. (9) and
(10). n is the Hill coefficient.fmigPR are the relative con-
centrations of mRNAs, andfpigPR are those of proteins.
Parameters are set asn=2, b=0.5, a1=1, anda=500. Let
the cell cycle periodt=1. Assume that there are a small
number of plasmid copies in the cell. Then the model can
also be described by the IDE form of Eqs.(7)–(10) in terms
of the chemical numbers.

FIG. 6. Time evolutions of the three-gene network with stochastic perturbations fors=0.05 and 0.2.(The bold lines are mean values and
the light vertical lines represent deviations. The upper figures are the perturbation cases of a stable equilibrium atkmx

=4.5 andkmy
=3. The

lower figures are the perturbation cases of an oscillator atkmx
=4.5 andkmy

=3.5.)
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Figure 9 is the analysis of the effects of a cell cycle by
parametersa, b, td, andt. The upper figure shows the stable
and unstable state regions for a case without a cell cycle(u
=v=1, v̄=0) and a case with a smooth change cell cycle
(u/v=1, v̄=sln 2d /t). Whena is small, there is a significant
difference for the regions, for which the system with a cell
cycle has a small oscillation region. The middle and lower
figures are the effects oftd andt on the amplitude ofp1 with
a rapid change cell cycle(v andu follow Eqs. (9) and (10),
and v̄=sln 2d /t). The trend for the effect oftd is very clear.
The earlier the DNA duplicates, the more the proteins are
synthesized. The natural period isT=27.6 for the current
parameter setting. In contrast, the maximum amplitude in-
creases with the cell cyclet. Due to the coupling of the
natural and forced oscillations, there may exist aperiodic or
chaotic attractors. Figure 10 is an example witht=1, which
shows the coexistence of a chaotic attractor with a positive
Lyapunov exponent, and a quasi-periodic attractor. Such
complex dynamics provide the suitable blend of stability and
flexibility needed by the system, and may greatly enrich the
rhythms of living organisms to facilitate sophisticated func-
tions, in particular under uncertain environments. Moreover,
the irregular behaviors of living organisms may be attributed
not to stochastic noise but to the deterministic mechanism.

As the same as the network of Fig. 2, there is no drastic
change between resonance and no-resonance cases in terms
of amplitudes of oscillations due to extremely strong entrain-
ment of the cell cycle dynamics that nonlinearly exerts on
the gene network.

V. CONCLUSION

We have presented a theoretical framework to model and
analyze the nonlinear dynamics of gene regulatory networks
with the consideration of a cell division cycle, in particular
for switches and oscillators of synthetic networks. Specifi-
cally, under the assumptions, we have derived two models
that may correspond to the eukaryotic and prokaryotic cells,

FIG. 7. Analysis of the effect for a cell cycle by parameterskmx
,

td, andt. (The upper figure is the bifurcation diagram without a cell
cycle, whereas the middle and lower figures are the effects oftd and
t on the amplitudes with a cell cycle.)

FIG. 8. Time evolutions of the three-gene network for a case
without a cell cycle and two cases with the cell cycle corresponding
to td=0.38 andtd=0.6, respectively, when the gene numbers are
rapidly changed.(The cell cycle period and the natural period are
t=1 andT=23.4.)
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respectively. For the case with the smooth change of the gene
numbers, the influence of a cell division cycle can be mod-
eled as an additional degradation rate for each chemical
when the concentrations are concerned, whereas the cell dy-
namics for the chemical numbers in gene regulatory net-
works can be expressed by IDEs with periodic degradation
terms for the case with the rapid change of the gene numbers.

In particular, when the gene network is near a stability
boundary or when the original degradation rates of the net-
work are small, a cell cycle as a degradation factor may
significantly affect cellular dynamics both qualitatively and
quantitatively.

We have used a three-gene model(lac, tetR, cI) and the
Repressilator as switch and oscillator examples to illustrate
our theoretical results.

As indicated in this paper, for the case with a smooth
change of the gene numbers, an effect of the cell division
cycle on gene regulation mainly accelerates the degradation
of the chemical concentrations. Depending on the structure
of the gene network, such an effect may change dynamics

FIG. 9. Analysis on Repressilator. The upper figure shows the
stable and unstable state regions for a case without a cell cycle(u
=v=1, v̄=0) and a case with a smooth change cell cycle[u/v=1,
v̄=sln 2d /t]. The middle and lower figures are the effects oftd and
t on amplitude ofp1 with a rapid change cell cycle[v andu follow
Eqs.(9) and (10), and v̄=sln 2d /t].

FIG. 10. Coexistence of a chaotic attractor(the top figure) and a
quasi-periodic attractor(the bottom figure) with two different initial
conditions for Repressilator(t=1 andtd=0.6).
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both quantitatively and qualitatively, as shown in the numeri-
cal simulation.

For a dynamical gene switch, the bistable region may dis-
appear due to cell division dynamics although there is a
bistable region for the autonomous system, and vice versa.

For a genetic oscillator, a cell division cycle works as an
external force to entrain or synchronize the natural oscilla-
tion.

Usually, a cell cycle entrains the system to tend to a limit
cycle, but depending on the natural oscillation period or net-
work structure, there may exist quasi-periodic, resonance or
even chaotic dynamics, stimulated by the cell cycle.

A genetic network in vivo in a cell and an artificial ge-
netic network in vitro in a cell-free system[34] actually cor-
respond our model with and without a cell division cycle,
respectively. Therefore such analyses with and without a cell
division cycle may be a theoretical basis to quantitatively
predict the essential dynamics and to successfully implement
experiments fromin vitro to in vivo.

Due to a cell division cycle, there is a wide range distri-
bution in terms of the molecule numbers of proteins at an
equilibrium of the concentrations even without noise. In
other words, a cell division cycle not only is an important
part of dynamics but also can be viewed as a major source of
fluctuation for gene networks, which affects both gene ex-
pression levels and stability of cellular dynamics.

A cell cycle is viewed as an external force to drive au-
tonomous cellular dynamics in this paper. Such a technique
or mechanism can be also applied to analyze effects of a

circadian oscillation on gene networks, e.g., cellular dynam-
ics of cyanobacteria, where surprisingly almost all of genes
are controlled by the circadian clock[35]. In contrast to
many other living organisms, with and without the periodic
clock or external force, cyanobacteria may have qualitatively
different behaviors, which imply that the gene regulation
mechanism may be quite different from others.

In addition, depending on the organisms or cells, there are
different cell cycles, which may be important factors for the
formation of cell specificity, because the cell cycles influence
entire protein dynamics and differentiation of the cell.

In this paper, although we have mainly examined effects
of a cell cycle on the cellular dynamics, there are also other
important factors, which may play crucial roles in biological
processes and should be further investigated in future works
from both theoretical and experimental viewpoints, such as
stochastic noise[20,22,28] and time delays[12,13,19]. In
addition, the cell cycle model used in this paper should be
further improved to reflect various rhythms in living organ-
isms. It is also necessary to examine the features induced by
a cell cycle and their physiological relevance in the future.
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