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Dynamics of gene regulatory networks with cell division cycle
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This paper focuses on modeling and analyzing the nonlinear dynamics of gene regulatory networks with the
consideration of a cell division cycle with duplication process of DNA, in particular for switches and oscilla-
tors of synthetic networks. We derive two models that may correspond to the eukaryotic and prokaryotic cells,
respectively. A biologically plausible three-gene modak, tetR andcl) and a repressilator as switch and
oscillator examples are used to illustrate our theoretical results. We show that the cell cycle may play a
significant role in gene regulation due to the nonlinear dynamics of a gene regulatory network although gene
expressions are usually tightly controlled by transcriptional factors.
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[. INTRODUCTION gether with associated proteins must be doubled in size with
extraordinary precision in preparation for cell division. A
Recent advances in genomic science have made the quagycle of most eukaryotes is composed of four stages: G1
titative analysis of DNA-protein interactions realistic due to (gap phase in which size of the cell is increased by con-
the progress of experiments and measurements, in contrastdeantly producing RNA and synthesizing protein, S phase in
conventional qualitative study. Nonlinear phenomena in celwhich DNA synthesis and duplication occur, @ap phase
lular dynamics, such as biochemical oscillations and gen@& which the cell continues to produce new proteins and
expression multistability have extensively been investigate@rows in size, and Mmitosi9 phase in which chromosomes
by many mathematical modef$—4]. In particular, for syn- segregate and cell division takes place. In particular, the ge-
thetic networks, several simple genetic networks have beefome is constantly kept in the G1, G2, and M phases, but
successfully constructed experimentally according to theoreduplicated in the S phase which lasts shorter than the cell
ical models, i.e., a genetic toggle switfh], a repressilator volume growth process and much longer than the cell divi-
[6], and other biocircuit§7,8]. Data in these experiments are Sion instant. The time period of a cell cycle in most mam-
consistent with the predictions of mathematical models; thignalian cells is on the order of 12—24 h, whereas bacteria by
implies that theoretical models are powerful tools for designcontrast may divide every 20-30 min and yeast cells or
ing and analyzing gene regulatory networks. Such simplé)ther protozoans may take 6-§2b]. Since the cell volume
models represent a first step towards engineering ceIIuIa"ilnd the DNA number must grow by a factor of 2 between

. : L : . successive divisions in order to ensure that the mass of the
control by manipulating and monitoring biological processes,, . daughter cells will nearly equal that of the mother cell,
at the DNA level, and not only can be used as buildin

. e T ) Ythe concentrations or the numbers of molecules in the cell
blocks to synthesize the artificial biological systems, but als‘?nevitably depend on dynamics of the cell cycle, which in

have great potential for biotechnological and therapeutic aPurn have a significant effect on the dynamics of gene-protein

plications[8-19. networks owing to such dynamical fluctuations of the cell
On the other hand, since the proteins and genes are d}é— g y

. . . ; ycle.
g?“.“'.ca”y |r|1te.rconnect|(|ed r\:‘”th ﬁachhother n a_fpell, "?‘ffe” Recently, it was also found that there is a functional path-
vision cycle is naturally t oug tto' ave asigni icant In u'Way linking cell division and the circadian clock by the ex-
ence on the cellular dynamics, which is neither clearly un

d d I ; d despi g K ed ‘periment in murine-regenerating livi26]. In addition to cell
erstood nor well investigated despite growing knowledg ycles, stochastic nois¢20,22,27,28 and time delays
about the cell division mechanism and certain qualitativ

. e[12,12«1 are also important factors, which may affect the per-
features_ of molecular fluctuatlorﬁs,zp—za. . formance of the entire cellular system. Analyzing the effects
. A typical cyclg'fo'r both eukaryotu; and prokaryoUc cells of cell cycles on gene switches and oscillators is important
is growth a_nd division. Growth |mplles the bundup O_f NEW not only for designing synthetic gene networks but also for
molecules in a cell and the associated increase in its Masgg,yerstanding cellular dynamics of biological systems, be-
and VO'U”.”G* while division means plr)chmg off of two almost cause both gene switches and oscillators are thought to be
equally sized daughter cells, which is usually a much faste

! Essential minimal modules in living organisijis).
process in contrast to the grow{d3,24. The genome to- This paper aims at modeling and analyzing the nonlinear

dynamics of gene regulatory networks with the consideration
of a cell cycle, in particular for switches and oscillators of

*ERATO Aihara Complexity Modelling Project, JST, 45-18 synthetic networks. The number of chemicals, e.g., proteins,
Oyama, Shibuya-ku, Tokyo 151-0065, Japan. in a cell is partly controlled by the cell cycle, and dilution
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due to partition into daughter cells plays a significant role inminutes, whereas the binding, dimerization, or other chemi-
keeping the chemical numbers lof22]. Specifically, al- cal modification reactions are generally less than a second.
though the chemical numbers may increase due to the effedtherefore for gene regulatory networks, all chemical reac-
of the cell cycle, a cell division cycle mainly accelerates thetions are usually reduced to transcription and translation pro-
degradation of the chemical concentrations in a cell. In pareesseg9,12,23.

ticular, when the gene network is near a stability boundary, a Besides the transcriptional factors, transcription and trans-
cell cycle as a degradation factor may significantly changedation rates are mainly affected by the numbers of RNA poly-
the dynamics both qualitatively and quantitatively. As shownmerases and ribosomes, which are all house-keeping mol-
in this paper, a cell division cycle can be viewed as an execules in a cell and are thought to increase approximately
ternal periodic force for the inherent autonomous dynamicsvith the cell volume.

of genetic networks. Depending on the frequencies and cou- Let m(t)=(my(t), ... my(t)) e R" and p(t)

pling of external and internal oscillations, there may exist=(p,(t), ...,py(t)) € R" be the numbers of mMRNAs and the
periodic, quasi-periodic, or even resonant dynamics that areorresponding proteins in a cell, respectively. In this paper,
generated by synchronization of the two oscillators. Withm(t) andp(t) are approximately taken as real numbers. Then,
growth of a cell, the DNA or gene numbers can be approxiwe have the following general equatiofi®] for gene regu-
mately assumed to change rapidly or smoothly, depending oRtory networks in a cell by ODEs in terms of mRNA%t)

cell types and the initial DNA or gene numbers. In this paperand proteing(t) according to the law of mass action.
we derive two models that may correspond to the eukaryotic

and prokaryotic cells, respectively. We show that the cell ) p(t)

cycle may play a significant role in gene regulation due to m(t) = Nu(t)f )~ Kmm(®), (1)
the nonlinear relation among the cell volume, the DNA num-

ber, and gene regulatory network although gene expressions .

are usually tightly controlled by transcriptional factors. p(t) = Sm(t) = Kyp(t), (2)

This paper is organized as follows. We first give a genera\llvhereN:dianl, ....N,) is a positive diagonal matrix that

description of gene regulatory networks with emphasis on -
the transcription and translation processes by using nonaut&EPresents the numbers of genes at the beginning of the cell

nomous differential equations, and transform it into two spe-grOWth phgse, while(t) € R is the DNA .number factor so
cific models for cases with smooth and rapid changes of thiat Nu(t) is the _nu.mbers of genes atniqstantthereby 1
gene numbers by autonomous ordinary differential equations u_(t) <2.  Kp=diagkp, ... 'kmrD_E_ R ) and K_p
(ODES and impulsive differential equatioDEs), respec- = diadkyy, ... Kkp) € R™" are positive diagonal matrices
tively. Then, we briefly examine the basic properties of pe_that represent the degradation rates for_ mMRNAs and proteins,
riodic solutions and their stability by constructing a Poincareespectivelyf(p)=(f1(p), ... fy(p)) € R" is a vector of syn-
map. As an implementation example, we design a biologithesis rates for transcription, and is generally nonlin&gr.
cally plausible three-gene synthetic model wib, tetR and ~ =diags;, ....s,) e R™" is also a positive diagonal matrix,
cl, and derive its differential equations. The first numericallepresenting translation rates. Define the cell volume factor
experiment is the analysis of a genetic switch wih and ~ asv(t)=V()/Voe R, whereV(t) is the host cell volume at
tetRand a genetic oscillator witlac, tetR andcl when the  instantt andVj is the host cell volume at the beginning of its
gene numbers are approximately assumed to smoothigrowth phase, thereby<luv(t)<2. For the period from the
change with the cell growth, as in a prokaryotic cell. In con-beginning of cell growth to the cell division, E¢l) repre-
trast, the second numerical experiment is the case for theents the transcription reaction whereas @y stands for the
rapid change of the gene numbers, as in a eukaryotic celtranslation processn(t)=dm(t)/dt andp(t)=dp(t)/dt for all
Besides, we also examine the effects of a cell cycle on théexcept division instants, while the volume and the numbers
Repressilator[6,12] by numerical simulation. Finally, we of chemicals all halve, i.e., v(t)—v()/2, u(t)

give several general remarks to conclude this paper. —u(t)/2, m(t)—m(t)/2, and p(t)—p(t)/2 at division in-
stantt.
Il. GENE REGULATORY NETWORKS WITH CELL According to Assumption II.1, all biochemical reactions
DIVISION CYCLE except transcription and translation processes are reduced

into Egs.(1) and (2) due to the adiabatic condition of slow
A. Network model and fast dynamic$§12]. f is the synthesis term that is com-
The gene regulatory systems of living organisms are sdined with the effects of binding, multimerization, and other
complicated that any mathematical model has limitations techemical modification reactions with conservation condi-
certain functions. Before defining gene regulatory networkstions, such as the numbers of binding sites on DNA, and
we make several assumptions. depends on the chemical concentrati¢8k e.g., p(t)/v(t)
Assumption 1l.1 Transcription and translation processesaccording to the law of mass action. Actually, we can easily
evolve on a time scale that is much slower than those oferify that Egs.(1) and (2) are consistent with standard
protein binding, dimerization, phosphorylation, or otherforms of rate equationg29] whereNu(t)/v(t) is the concen-
chemical modification reactions. tration of genes. We will use a three-gene model to show this
In fact, for most eukaryotic and prokaryotic cells, tran-fact in the next section. In this paper, a chemical means a
scription and translation processes are on a time scale oholecule a complex in a cell.
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25 ' ' ' ' ' concentration®f mMRNAs and proteins. In the following, the
time t for variablesm] and[p] is dropped for simplicity.
Then by differentiatingm(t) =v(t)[m] and p(t)=v(t)[p]
with respect td, and further by substituting into Egdl) and
(2) with consideration o —v/2, u—u/2, m—m/2, and
p—p/2 at division, we obtain a model of the gene regula-
tory network in terms of relative concentrations in a closed

form.
ti = “ONE([p)) - (K + 201, (5)
v(t)
[p]=S)[m] - (K, +v)[p], (6)
055 05 : 5 5 25 3 wherev=v(t)/v(t)=(In 2)/ 7 whenu(t) of Eq.(3) is adopted.

Note that there is only one fact®, between concentration

and relative concentration, i.e., the concentrationxois
FIG. 1. The cell volume factar(t) and the DNA number factor [x]/Vo. ) o

u(t) for t;=0.6 andy=50. Remark 1.1 When there is no cell division cycle dynam-

ics, the last termg$v[m],v[p]) in Egs.(5) and(6) disappear

In a eukaryotic cell, there is usually one copy for each@ndv(®=u()=1. _
gene at the beginning of a cell growth phase, iN., Clearly, the gene regulatory network of E¢S) and(6) is

=diag1,1,...,2. However, for bacteria, there may exist not an autonomous system dueut®)/v(t), which generally

multiple DNA plasmids per cell, e.g., as many as one huniS @ periodic function.

dred plasmidg8,25,30,3], which impliesN;=1-100 fori We consider the following two situations for the numbers
=1,... nin a host cell. We assume for the sake of simplicity ©f 9enes, i.e.Nu(t) in this paper.

that genes or DNAs including DNA plasmids are duplicated ~Assumption 11.2(1) Rapid Changeu(t) is constant during
before cell division. the cell growth except th& phase in whichu(t) is doubled,

Assume the period of a cell division Cyc]e to ke For but immediately halves after division in each daughter cell,
instance, in what follows, we use the following piecewiseas indicated in Eq(4). (2) Smooth Changeu(t) proportion-

t (cell division period t =1)

function to describe (t). ally increases with the cell volume growth until it is doubled
at the division instant but immediately halves after division

_JeiTRin2 s kr<t< (k+ D)7 in each daughter cell, i.eu(t)/v(t)=1.
v()= 1, t=(k+1)7, ©) 1 of Assumption 1.2 may correspond to the situation of a

eukaryotic cell, whereas 2 of Assumption I1.2 is an approxi-

wherek=0,1,2,.... Thecell volume factorv exponentially  mation to a prokaryotic cell with a large number of plasmids.

increases from 1 to 2 during each cell cycle, and returns to However, 1 of Assumption I1.2 may also hold for a system
after cell division. with chromosomal genes in a prokaryotic cell. We assume
On the other hand, since DNA is duplicated in a muchthat all chemicals including DNAs and proteins in a mother

faster manner than cell volume, we adopt the following sig-cell are equally distributed to two daughter cells after divi-
moidal function to approximately describe the DNA numbersjon although many factors, such as stochastic noise, influ-

factor u(t). ence the ratio of the distribution, in particular for non-DNA

- {ag(t/r— +b, krst<krnr molecular specief22).

1, t=(k+Dr,

wherek=0,1,2,... andg(t)=1/(1+e ") which is cen-
tered atty for O<ty<1. a=1/(g(1)-g(0)) and b=1

B. Dynamics with rapid change of gene numbers

We assume that 1 of Assumption 11.2 holds. Such an as-
) sumption mainly corresponds to a eukaryotic cellt) is
~9(0)/(9(1)-9(0)) are ‘?hose” to eqsu:ﬁzl andu=2 just constant during the cell growth, is duplicated in the S phase,
after and before division, respectively. Clearly the DNA ohq immediately halves after division in each daughter cell,
number factoru is mainly constant except the time period ;¢ qescribed by E@4) and Fig. 1. Therefore, by Eqel)~4)
nearkr+ty7 during whichu rapidly increases from 1 to 2, | ih consideration ofm— m/2, p—pl2, v—uvl2, andu

and returns to 1 after cell division. The period néartyr /5 gt the division, we can describe the dynamics in terms
corresponds to the S phase in a eukaryotic cell. In this papegs the chemical numbers andu by IDEs in a closed form.
t4=0.6 andy=50 are used to descrihgt). Figure 1 shows

v(t) andu(t), where the DNA duplication occurs arouke %
+tyr=k7+0.6r=k+0.6 for each cell cycle period=1. m= Nuf(E) -K,m- TE St —k7), (7)
Define [m(t)]=m(t)/v(t) and[p(t)]=p(t)/v(t) asrelative v 211
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p * hances the dilution of chemicals in terms of concentrations
p=Sm-K,p- 52 St-k7), (8)  or affects gene regulation by acting as a degradation factor.
k=1 Notice that the effects of a cell division cycle on the
MRNA and protein numbers should be further transformed
S from the relative concentrations byn=v(t)[m] and p
v=vv - 52 At —k7), (9 =uv(t)[p], e.g., the numbem(t) periodically varies with due
k=1 to the periodic function) even if[m] is a nonzero constant.

In a real cell, there actually exist many perturbations, such
as noises, arouna(t)/v(t)=1, which prevent the perfect tune
of the DNA duplication with cell size, or even equal distri-
bution of DNAs in daughter cells. For the case of determin-
where the impulse functio is defined ass(t)=0 whent istic perturbations, i.e.u(t)/v(t)=1+0c whereo is a small
#0, and[*2 &(t)dt=1. Noticev(0)=u(0)=1. Due to the last real number, the stability analysis of equilibria is relatively
terms of Eqs(7)—<(10), values ofm(t), p(t), v(t), andu(t) all ~ easy and can be investigated by perturllihgf Eq. (11) due
halve att=kr. Clearly Eqs(7)~(10) are not ODEs but IDEs to Nu(t)/v(t)=N+oN according to Eqs(5) and (6), which
with a periodic impulse force. The effects of a cell division can be examined by the Jacobian matrix in the next section.
cycle on the chemical numbers include two parts, i.e., a vari- Next, we examine the effects of stochastic perturbations
able term(v,u) to influence the synthesis of mMRNAs, and anon the cellular dynamics by using a small stochastic noise
impulse terms(t—k7) to enhance the degradation or dilution model. Letu(t)/v(t)=1+o(t) whereo is a small real num-
of each chemical. As indicated in Eq3)—10), a cell divi-  ber corresponding to the deviation of the small noise, and
sion cycle may play a significant role in gene regulation duen(t) is Gaussian noise with zero meés(t))=0 and variance
to the nonlinear relation among the cell volume, the numbergx(t) 7(t'))=8(t-t’). Then, Eqs(11) and(12) become
of genes, and the gene regulatory network although gene
expressions are tightly controlled by transcriptional factors. [m]=Nf([p]) = (K, +o)[m] + Nf([(p)on(t), (13)

Dynamics can also be expressed by E&.and (6) in
terms of relative concentrations, i.e., by simply substituting .

Egs.(3) and(4) into Egs.(5) and(6). Clearly the effect of a [p]=S[m] = (Kp +v)[p]. (14)
cell division cycle on relative concentrations is a periodic . . o
term multiplying with the synthesis rate. Botht)/v(t) in Clearly, fluctuations of such noise mainly influence the sys-

; : tem through the transcription process due to Eg). We
Eq. (5) and (t—k7) in Egs.(7)—«(10) can be viewed as exter- ™. .
ngl ]Eoices (t=k7) as.(N~«10) will examine Egs.(13) and (14) for the effects of the sto-
We call Eqs(3)~(6) or Eqs.(7)~(10) a forced system, and chastic noise by the numerical simulation.
an autonomous systemift)=u(t)=1 for all t. The oscilla- N o o
tion in an autonomous system is also called natural oscilla- D. Stability of periodic oscillation
tion or internal oscillation. Usually, gene replication and cell

division cause the protein numbers to tend to a limit cycle,at an equilibrium point fofm] and[p] is straightforward, by

buF dependmg' on the natural oscillation perlod,_ there m".’“éimply investigating the eigenvalues of the Jacobian matrix
exist quasiperiodic, resonance, or even chaotic dynamlci%r Egs.(11) and(12), i.e

[32].

u=2u-b)-Lu-b?-23 st-kn, (10
T ar 2k=l

Local stability analysis of dynamics of Eq4.l) and(12)

3=|” Km—v, Ndf({p])/d[p] 15
C. Dynamics with smooth change of gene numbers - Sp - Kp—v_ ) (19

When 2 of Assumption 1.2 holdsy(t) proportionally in- ) - o _
creases with the cell volume, i.ai(t)/v(t)=1. Such an as- Notice that stability of m] and[p] for an equilibrium point
sumption is actually valid only wheN is sufficiently large, IS identical to that ofn andp for the corresponding periodic
e.g., with a large number of plasmids in a bacterial Ce||_solut|on. By |_nclud|ng nonlinear terms, we can also analyze
Otherwise,u(t)/v(t) should be considered as a time varying local bifurcations[33]. N o o
number and rapidly change its value as indicated in 1 of Next, we examine the stab|llt)_/ ofe_lpenodlc oscillation for
Assumption 11.2. Eqs.(7)—_(10). For the sake of simplicity, Eqg7)—(10) are

Therefore, by Eqs(5) and (6), we can describe the dy- Summarized as
namics in terms of relative concentrations.

(] = NFCp)) = (Ko + B, (11) X() = FX() - %kz St - kXD, (16)
=1
[p]=S[m] - (Ky+v)lp], (12) where X=(m,p,v,u), and F=F(m,p,v,u)=(Nuf(p/v)

which are actually autonomous ODEs. The effect of a celt-K,m,Sm=K,p,vv, 9 (u=b)/ 7= ¢{(u-b)?/(an).
division cycle on relative concentrations is an additional deg- Let ¢(t; X(k7)) denote the flow of the vector field start-
radation ratev, which implies that a cell cycle mainly en- ing from ¢(0;X(k7))=X(k7) att=0, i.e.,
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de(t X(kn) _ F(p(t;X(kn)). (17

dt CrI? Lac# :
Define y(t) as a fundamental solution satisfying On [Om | Ow | Faw
It IF(Ht:X(k)) ()~
= t 18
P PR (18) [ o Tewor >

with .w(O):E, where iy e R2M2%(M2) and E is an identity FIG. 2. A three-gene model of a gene regulatory netwro-

matrix. ' . tein Lac forms a tetramer to inhibit getetR and protein CI en-
Then integrating Eq(16) from k7" to t for kr<t<(k  hances geneetRas a dimer, whereas protein TetR forms a dimer to

+1) 7 yields repress both genlac and genel). Py, is a mutated promoter of

. Prm and has two binding sitg®©g, andOg,) for protein dimer Ci

_ N and one binding sitéOgs) for protein tetramer Ldt Affinities of

X(O) — X(kr') = ot F(X(®)dt CI? for Pgy, are Og; > Og,. Binding effects of Cf to Og, and Og,

for transcription ofPg,, are neutral and positive, respectively, in
trkr contrast to a negative binding effect ©k; by Lac®. On the other
f Fe(t; X(kn)))dt hand, there is one binding site, i.©g for protein TetR, which
represses the transcription of the promdegtetOl. x: number of
= ¢(t —kr; X(k7)) = (0, X(k7))  (19)  protein TetR;y: number of protein Lac; and: number of protein

0

according to Eq(17). Notice thatX(k7")=¢(0,X(k7)), and
the integration range is changed f@(t,X(kn)) in Eq. (19) According to Eq.(22), the stability of the period-one so-

due toits initial state starting fromd(k7). On the other hand, lution depends on the eigenvalues of the Jacobian matrix at
in the same way, by integrating E¢16) from k7" to (k X(k7):
+1)7 for t, we have

_1ogp(r,X(kr) 1

7 =), (24)
X((k+1)7) = X(k7") = f F((t; X(kn))dt 2 dX(kr) 2
0 From dynamical system theory, if absolute values of ei-
1(" genvalues fod are all less than 1, then the periodic solution
2 o &t = 7)(t, X(kn)dt is asymptotically stabl¢33]. In a similar manner, we can
derive the existence and stability conditions for any pekod-
= ¢(7;X(k7)) = $(0,X(k7)) solution.
1
- 5(1)(7'; X(k7)). (20) IIl. IMPLEMENTATION OF A THREE-GENE NETWORK

EXAMPLE

Therefore by usingp of the autonomous system and from
Egs.(19) and(20), the orbit of the nonautonomous Hd.6)
can be expressed witt=0,1,2, ...,

We design a network by genésc, tetR andcl with the
promotersP tetOl, Pg,,, andP tetOl, shown in Fig. 2. All
three genes are well-characterized prokaryotic transcriptional
X(t) = p(t —kr,X(kr), kr<t<(k+1)r, (21 regulators, which can be found in bacteriun coli and A

phage. Protein Lac forms a tetramer to inhibit gésR with
1 promoter Py, and protein CI activates the gereR as a
X((k+1)D = =¢(r,X(kn), t=(k+1)7. (22) dimer, whereas protein TetR forms a homodimer to repress
2 both gendac and genezl with promotersP, tetOL1. All three
n.genes can be engineered on plasmids, and can then be cloned
to multiple copies, e.g., by PCR. The engineered plasmids
are further assumed to grow B coli.
Letx, y, andz be the numbers of protein monomers TetR,

Clearly, different from the continuous dynamics of the co
centrations, e.g., Eqg1l) and (12), the chemical number
X(t) is continuous at=k7 from the right side but generally

discontinuous at=kr from the left side. Equatioi22) is a Lac, and Cl, respectively. Then for geabwith promoter

Poincare map of Eq(16). - - . P tetO1, definex, to be the number of protein dimer TetR.
Thus the necessary and sufficient condition of a period-
. . . . Let d andd,_be the number of free DNA and the number of

one solution of Eq(16) is the existence of a real solution for 2

the following equation: the TetR-DNA complex, i.e.,Og bound by a protein dimer

TetR.
1 Then for geneel, the multimerization and binding reac-
X(k7) = §¢(T,X(kT))- (23)  tions can be written as the equilibrium reactid@$
k k
Notice that¢ is not the flow of the right-hand-side of Eq. X+x:lx2; d+X2:2dx ) (25)
(16) but the flow of the vector fieldr of Eq. (17). kg ko °
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The basic mechanism of chemical reactions is stochastis 60, andn,=60. k, -10/3 5=100/3 fori=x,y. k =1/3,
collisions of chemicals according to the law of mass actiors,=5/6. Let thecell cycle ber=1 which stands for 30 min.

[29]. Therefore the reaction of E¢R5) can be expressed by
differential equations,
dy
k_2v2>.

X2 Xo :
-V(k@‘k-lv); b=V (

Thus the equilibrium reactions of fast dynamics E2p)
can be written as algebraic equatiof®§: X,=k,x?/(k_,V)
:C]_XZ/U , dX2: k2X2d/(k_2V) = O'3X2d/U2, where 03=C1C» and
ci=k/(k;;Vy). Such algebraic equations imply that the num-

Xod

ko V2

The parameters for Eq$28) and (29) are from[8,9] with
slight modification, while parameters for Eq80)—(33) are
set appropriately in biologically realistic ranges, due to lack
of experimental data. Since we want to construct a relaxation
oscillator by making use of fast-slow dynamics, the RBS
(ribosome-binding siteof geneel is assumed to be artifi-
cially engineered so that the translation efficiency of protein
Cl is significantly slower than those of proteins Lac and
TetR.

Furthermore, the binding affinity of the proteins Lac and

bers of the chemicals synthesized in the fast dynamics argetr to DNA can also be changed by introducing small mol-

inversely proportional to the cell volume.

Let the copy number of plasmids with geaebe n,u(t).
Then we have a conservation condition;u(t)= d+dx ,
which leads tod=n,u(t)/(1+o3x?/v?). Therefore by substi-

ecules IPTisotropylB-D-thiogalactopyranosigeand aTc
(anhydrotetracycling respectively, which bind to tetramer
Lac* and dimer TetR and prevent them from binding to
operator siteg9]. In order to measure the behaviors of the

tuting the equilibrium equations of fast dynamics, the slowgenetic network, a gene for GRBreen fluorescent protein
dynamics for mRNA and the synthesized protein representer YFP (yellow fluorescent proteinis assumed to be incor-

ing the transcription and translation processes of gerare

M, = Bmd = kM, =77 opip? T (26)
z=s,m,- Kz, (27)

where the synthesis rate of, is ,Bmzd due to the repressive
effect of TetR on the binding sit®g as indicated in Fig. 2.
X—XI2,y—yl2,z—2/2,v—v/2, andu—u/2, at division.
As the same way as the derivation of the gehewe can
get the dynamics for gendac andtetR [8,9]. By defining
the relative concentrations for proteins &s|=x/v, [y]
=y/v, and[z]=z/v, the dynamical system of the three-gene

porated in each plasmid under the control of a targeted pro-
moter to monitor the targeted gene in experimgbis

IV. NUMERICAL EXPERIMENTS
A. Case for smooth change of gene numbers

Assume that 2 of Assumption 1.2 holds, i.e., the DNA
number and the cell volume increase at an identical rate:
u(t)/v(t)=1 in Egs.(28)<(33).

We first use genekac andtetR of Fig. 2 to construct a
gene switch, which means that the dynamics of the gene
switch are governed by Eq&8)—(31) with [Z] fixed.

Figure 3(top figure shows null-clines for Eqe28) and

network is summarized in terms of the relative concentra(29) (solid line) and Egs.(30) and (31) (dotted ling when

tions of proteins in the following closed form:

u(t)

(13 = i WD = e+, (28
(1= 5m ] - (k+ D[], (29
[131= B0 1(X) =y +Tm). (30)
(5= m] - (&, + Ty, (31
(0] = B XD = 4l (32
(2] = sfm)) - (e, + D[, 33

where fu(lyl,[z) = (1 +c[z]*+aoyc? 2] /(L +c[2]?
+o1cz]) (L +a[y]Y), f,([XD)=1/(1+a[x]?), and f,([x])
:1/(1+0'3[X]2).

The parameters in Eq$28)—«32) are set as followso
=2, 0,=0.25, 03=7.5, 0,=3.5X107% Bm,=20/3, B
=100/3, By, =5/3, a=11, k,=5000/3,k,=3000/3 k,=5/6,
and c=0.0165. At the beginning of cell growtm,=60, n,

[z]=6 andv(t)=u(t)=1. There are two stable equilibria and
one unstable equilibriunimiddle one. Taking[z] as a pa-
rameter, it is easy to check that bistable region [fof is
3.69<[z]=<30.1 from the analysis of the gene switch. When
[z] <3.69, there is only one stable equilibrium with high
and low[x]. On the other hand, there is also only one stable
equilibrium with low[y] and high[x] when[z]>30.1.

The second figure of Fig. 3 indicates the regions of uni-
stability (one stable equilibriumand bistability(two stable
equilibrig) with parameterskmx and kmy. Solid lines and

dotted lines are the boundaries between the unistable and
bistable regions without a cell cycle=u=1,v=0) and with

a cell cycle(v/u=1,v=(In 2)/7), respectively. Clearly with
and without a cell cycle, dynamics are almost identical for
some regions but qualitatively change for other regions. Fig-
ure 4 is an example with parameté«,%:S andkmy:4.5 as

marked by an asterisk in the second figure of Fig. 3, showing
such qualitative changes. In the left two figures, the dynam-
ics without a cell cycle converge to two stable equilibria
(bistability) from two different initial conditions. In contrast,
the system with a cell cycle loses the bistability and con-
verges to a single equilibriunfunistability) for any initial
conditions as demonstrated in the right two figures. The dif-
ference with and without a cell cycle for the gene switch is
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(28)—«31) are fast dynamics and Eg&2) and (33) can be
slow dynamics.

Figure 3(the third figure¢ shows the null-clines of Egs.
(28)—33), and a limit cycle on dx]-[z] plane whenu(t)
=u(t)=1,0=0, which is a typical representation of a relax-
ation oscillator. The bottom figure is the boundaries between
oscillation(OS) and steady statesS with and without a cell
cycle. The clear difference for OS regions indicates that a
cell cycle may also significantly affect dynamical behaviors
of periodic oscillations. Fig. 5 shows such influence of the
cell cycle on the relaxation oscillator with parametégs
=4.5 andk,, =3.5, whose location is shown in the bottom
figure of Fig. 3 by an asterisk. The lower figure is the dy-
namics with a cell cycle, which has a typical relaxation os-
cillation with the periodT=4.9. However, without a cell
cycle, as indicated in the upper figure, the oscillation disap-
pears and dynamics converge to a steady state.

According to Eqs(28)—33), the effect of a cell division
] cycle on the concentrations can be viewed as an additional
degradation rate, which mainly reduces the synthesis of
each corresponding chemical. Depending on the interaction
. of each chemical in gene networks, such degradation effects
of a cell cycle may significantly affect the dynamics both
4 quantitatively and qualitatively.

Furthermore, assuming imperfect synchronizationuof

6 — Wi ool oydle and v, we examine the effects of stochastic perturbations
5l - Without cell cydeL aroundu(t)/v(t)=1 using model Eqg13) and(14), i.e., sub-

4 +I'-) ----- Oscillation (0S) stitute u(t)/v(t)=1+on(t) into Egs. (28)«33). Figure 6
3

2

----- Re T A shows the simulation results for=0.05 and 0.2 that stochas-
tically perturb the system around a periodic orbit and a stable
Steady state (SS) 1 cquilibrium. Clearly, when the perturbation is sufficiently
! small, e.g.,0=0.05, there is no qualitative change, the sys-
tem almost moves along the original trajectories, and the
deviations are also quite small, which are indicated by the
FIG. 3. Null-clines and stability regions for a switch and an IighF V_ertical lines in the figures. Howeverz When.the r]oise
oscillator. The top figure is null-clines of switch for Eq@8) and ~ deviations become large, e.g:=0.2, dynamics exhibit wild
(29) (solid line) and Eqs.(30) and (31) (dotted ling when[z]=6  and unpredictable behaviors due to the strong influence of
and v(t)=u(t)=1,0=0. The second figure is the unistabjene  Stochastic noises, which implies that the imperfect synchro-

stable equilibriuny and bistablgtwo stable equilibriaregions with ~ Nization ofu andv is also an important factor when design-
and without a cell cycle. H and L stand for the high and low stableing or modeling genetic networks.

equilibria, respectively. The third figure is null-clines of an oscilla-
tor for Eqs.(28)—«33) and there is a limit cycle on tHe&]-[z] plane
with v(t)=u(t)=1. The lower-right figure is the oscillatory regiofis
09 and steady state regioS9 with and without a cell cycle. Assume that 1 of Assumption 1.2 holds. Then, Egs.

. ) (28)—<(33) can also be expressed as follows:
the last terms of Eqe28)<(31), which are degradations at-  for w=x,y,z

tributed to a cell cycle. If the original degradation rates are

far bigger thanw, the effect of a cell division cycle on the ) m,, -

dynamics of the gene switch is not significant. However, My = B, Mty = K My = ?2 at-kn, (34
when the system is near the stability boundary with respect k=t

to the degradation terms or when original degradation rates

B. Case for rapid change of gene numbers

are comparable to or less than the cell division cycle . B W . B

strongly affects the performance of the system. Note that W= Sy — KaW zgﬁ(t k7)., (39
comparing to mRNAs, proteins usually degradate much

slowly. wherev(t) and u(t) follow Egs. (9) and (10). In the same

Next, we show that the network of Fig. 2 or Egs. manner as the case with smooth change of the gene numbers,
(28)«33) can be used as a relaxation oscillator. Since thave can construct gene switches or oscillators, and further
translation efficiency of protein Cl can be significantly re- theoretically analyze them. For instance, when we consider
duced by adjusting the RBS or other manipulations, Eqsthe autonomous system, i.e., without a cell division cycle

011909-7
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v(t)=u(t)=1, the null-clines are the same as Fig. 3. Let thenism of the relaxation oscillator in Fig. 3, the Hopf bifurca-
natural period of the oscillation in the autonomous system b&ons are singularly homoclinic provided that the time scale
T. Theoretically, we can expect synchronization between théifference between fast and slow dynamics is sufficiently
natural oscillation with period” and the forced oscillation large[13]. Such a fact implies that the amplitude increases or
with period 7 for Eqgs. (28)(33), or even resonance ifi  decreases almost exponentially near the bifurcation points,
~jr, wherei andj are integers without a common divisor. Which is shown in the upper figure. The middle and lower
Figure 7 is the analysis of the effects for a cell cycle byﬂgures are the effects df and 7 on amplitudes with a cell

parameters,, , t,, and. The upper figure is the bifurcation CYCl€- The natural period i5=23.4. From the observation of
diagram witrr:yout a cell cycle, which shows two Hopf bifur- the oscillation amplitude against the cell cycle perigpthere

> ; ' .~ _.Is no noticeable resonance due to extremely strong entrain-
cations corresponding to the lower and upper boundaries IFhent of the cell cycle dynamics, which is quite different

the bottom Fig. 3 aky, =10/3. Theoretically, due to mecha- o5 the results of9]. Besides the different networks and
. , , . cell cycle models, one reason for such a difference is that the
"""""""""""""""""""""""""""""" — k] cell cycle dynamicw(t) and u(t) in this paper are nonlin-
LI early coupled with the gene network as shown in Egs.
6o ] (28)—«(33) in contrast to the linear coupling if9]. Actually
a0t . the effect of the cell cycle mainly dilutes the concentrations
b _h_ ________________________________________________ ] of the chemicals by acting as a degradation factor, which
7 usually reduces the chemical amplitude even at resonance,
. ' : ' comparing with the case without a cell cycle. The trend is
that the amplitude slowly increases with the cell cyelal-
p——— though it is rugged. Generally, the protein synthesis can be
- “ ~ -= ol | enhanced if the DNA duplication occurs at the early stage of
! ',-"T;‘,‘ S N A R the cell cycle, i.e.ty is small. However, if there are nonlinear
PV T T AR interactions among genes in the network, relations can be
NN RN T very complicated. The middle figure is the analysis of the
oscillation amplitude variation witky that controls the DNA
synthesis process. For smgll oscillations ofx have very
small amplitudes, which are caused by strong repressign of
due to the early DNA duplication of. Whent, is around
FIG. 5. Time evolutions of the three-gene network without and0-4, there is a significant increase for the profed which is
with a cell division cycle for the case with smooth change of theowing to the strong and dominant activationzoMost of the
gene numbergThe upper figure is the case without a cell division oscillations are periodic in the middle and lower figures,
cycle, and the lower figure is the case with a cell division cycle,which are different from the Repressilator shown in the next
respectively, aka=4.5 andkmy:3.5.) case.
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FIG. 6. Time evolutions of the three-gene network with stochastic perturbations=f0:05 and 0.2(The bold lines are mean values and
the light vertical lines represent deviations. The upper figures are the perturbation cases of a stable equili@iigmﬁandkmy:& The
lower figures are the perturbation cases of an oscillatdx;nxa¢4.5 andkmy:3.5.)

Figure 8 shows time evolutions for a case without a celltion was experimentally investigated Escherichia coli in
cycle and two cases with the cell cycle correspondingyto vivo [6]. For the case with cell cycle dynamics, the model
=0.38 andty=0.6, respectively, where the cell cycle period can be expressed as folloys,12]:
and the natural period are=1 andT=23.4. The dynamics

are all entrained to be a forced oscillation with a period U@ —ren
=1 or its subharmonics when a cell cycle is considered, [m]= v1+[p]" (e +u)im, (36
which implies that a cell cycle has a tendency to entrain
subsystems of the cell. Comparing with the case,ef0.6, :
! D or 3 [pi]=Alm] - (5+0)[pi] (37

the synthesis of the proteifx] for the case oft;=0.38 is
considerably inhibited by strong repression of lyadue t0  \yherei and j have the following three pairs of value§:
its early DNA duplication. However, comparing with the =1,j=2), (i=2,j=3), and(i=3,j=1), which represenacl,
case without a cell cycle, the proteins for the cases with fetR andcl respectivelys(t) and u(t) follow Egs. (9) and
cell cycle are significantly reduced due to the dilution Or(lO). nis the Hill coefficient[m]e R are the relative con-
Qegradation effect of the cell division as well as the imerac'centrations of MRNAs, anfp;] 'E R are those of proteins
tions fromy andz Parameters are set as2, 8=0.5, o;=1, anda=500. Let
the cell cycle periodr=1. Assume that there are a small
number of plasmid copies in the cell. Then the model can
We next examine the influence of the cell cycle on thealso be described by the IDE form of E¢%)—<10) in terms
gene regulation of the Repressilator, whose periodic oscillaef the chemical numbers.

C. Case for Repressilator

011909-9
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FIG. 8. Time evolutions of the three-gene network for a case
without a cell cycle and two cases with the cell cycle corresponding
to t3=0.38 andty=0.6, respectively, when the gene numbers are
rapidly changed(The cell cycle period and the natural period are
=1 andT=23.4)

Figure 9 is the analysis of the effects of a cell cycle by
parametersy, B, ty, andr. The upper figure shows the stable
and unstable state regions for a case without a cell aycle
=p=1, v=0) and a case with a smooth change cell cycle
(u/v=1,v=(In 2)/7). Whena is small, there is a significant
difference for the regions, for which the system with a cell
cycle has a small oscillation region. The middle and lower
figures are the effects of and r on the amplitude op; with
a rapid change cell cycle andu follow Egs.(9) and(10),
andv=(In 2)/7). The trend for the effect of; is very clear.
The earlier the DNA duplicates, the more the proteins are
synthesized. The natural period 1s=27.6 for the current
parameter setting. In contrast, the maximum amplitude in-
creases with the cell cycle. Due to the coupling of the
natural and forced oscillations, there may exist aperiodic or
chaotic attractors. Figure 10 is an example withl, which
shows the coexistence of a chaotic attractor with a positive
Lyapunov exponent, and a quasi-periodic attractor. Such
complex dynamics provide the suitable blend of stability and
flexibility needed by the system, and may greatly enrich the
rhythms of living organisms to facilitate sophisticated func-
tions, in particular under uncertain environments. Moreover,
the irregular behaviors of living organisms may be attributed
not to stochastic noise but to the deterministic mechanism.

As the same as the network of Fig. 2, there is no drastic
change between resonance and no-resonance cases in terms
of amplitudes of oscillations due to extremely strong entrain-
ment of the cell cycle dynamics that nonlinearly exerts on
the gene network.

V. CONCLUSION

We have presented a theoretical framework to model and
analyze the nonlinear dynamics of gene regulatory networks
with the consideration of a cell division cycle, in particular

tg, and. (The upper figure is the bifurcation diagram without a cell for switches and oscillators of synthetic networks. Specifi-

cycle, whereas the middle and lower figures are the effedtganfd

7 on the amplitudes with a cell cyc)e.

cally, under the assumptions, we have derived two models
that may correspond to the eukaryotic and prokaryotic cells,
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FIG. 10. Coexistence of a chaotic attractihre top figur¢ and a
quasi-periodic attractqthe bottom figurgwith two different initial
conditions for Repressilatgr=1 andty=0.6).

respectively. For the case with the smooth change of the gene
numbers, the influence of a cell division cycle can be mod-
eled as an additional degradation rate for each chemical
when the concentrations are concerned, whereas the cell dy-
namics for the chemical numbers in gene regulatory net-
works can be expressed by IDEs with periodic degradation
terms for the case with the rapid change of the gene numbers.

In particular, when the gene network is near a stability
boundary or when the original degradation rates of the net-
work are small, a cell cycle as a degradation factor may
significantly affect cellular dynamics both qualitatively and
quantitatively.

We have used a three-gene modak, tetR cl) and the
Repressilator as switch and oscillator examples to illustrate

FIG. 9. Analysis on Repressilator. The upper figure shows théUr theoretical results.

stable and unstable state regions for a case without a cell gycle
=p=1,v=0) and a case with a smooth change cell cyclév =1,
v=(In 2)/7]. The middle and lower figures are the effectspand
7 on amplitude ofp; with a rapid change cell cycle andu follow

Egs.(9) and(10), andv=(In 2)/7].

As indicated in this paper, for the case with a smooth
change of the gene numbers, an effect of the cell division
cycle on gene regulation mainly accelerates the degradation
of the chemical concentrations. Depending on the structure
of the gene network, such an effect may change dynamics
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both quantitatively and qualitatively, as shown in the numeri-circadian oscillation on gene networks, e.g., cellular dynam-
cal simulation. ics of cyanobacteria, where surprisingly almost all of genes
For a dynamical gene switch, the bistable region may disare controlled by the circadian clodi5]. In contrast to
appear due to cell division dynamics although there is anany other living organisms, with and without the periodic
bistable region for the autonomous system, and vice versaclock or external force, cyanobacteria may have qualitatively
For a genetic oscillator, a cell division cycle works as angifferent behaviors, which imply that the gene regulation
e_xternal force to entrain or synchronize the natural oscillanechanism may be quite different from others.
tion. _ _ . In addition, depending on the organisms or cells, there are
Usually, a cell cycle entrains the system to tend to a limityigterent cell cycles, which may be important factors for the
cycle, but depending on the natural oscillation period or nety, . a4ion of cell specificity, because the cell cycles influence
work str:uctyred therej may_eX|Tt qléabs"pﬁ”c’d'ﬁ’ reslonance %ntire protein dynamics and differentiation of the cell.
evingcer?g;? ngtr\:\?gpllcisr; ﬁi/rguir?t: ceIBII ;ned C:n gl,[?ﬁi .ial ge- In this paper, although we have r_nainly examined effects
netic network in vitro in a cell-free systef4] actually cor- .Of a cell cycle on the.cellular dynam|c§, there are glso qther
important factors, which may play crucial roles in biological

;g:pggg\/&u ' %%?g;ovrveltr;uiﬂda\:;hgg; 3vifhe !ndc;v\;\?ilt%guctyglgé rocesses and should be further investigated in future works
P - Y rom both theoretical and experimental viewpoints, such as

division cycle may be a theoretical basis to quantitatively

. ; . . sttochastic noisg20,22,28 and time delayqg12,13,19. In
predict the essential dynamics and to successfully 'mpleme%ddition the cell cycle model used in this paper should be
experiments fromn vitro to in vivo. '

Due to a cell division cycle, there is a wide range distri_further improved to reflect various rhythms in living organ-

bution in terms of the molecule numbers of proteins at riSms: It is also necessary to examine the features induced by

equilibrium of the concentrations even without noise. In® cell cycle and their physiological relevance in the future.
other words, a cell division cycle not only is an important
part of dynamics but also can be viewed as a major source of
fluctuation for gene networks, which affects both gene ex-
pression levels and stability of cellular dynamics. We thank Dr. J. J. Collins, Dr. M. Kaern, Dr. D. Mc-

A cell cycle is viewed as an external force to drive au-Millen, and Dr. J. DiStefano for their valuable comments.
tonomous cellular dynamics in this paper. Such a techniqu&his research was supported by JSPS Research Fellowships
or mechanism can be also applied to analyze effects of #or Young Scientists under Grant No. 08703.
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