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Effect of the refractive index mismatch on light propagation through diffusive layered media
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The effect of the refractive index mismatch on light propagation through diffusive layers has been investi-
gated. The refractive index mismatch changes the balance of energy inside the medium determining a temporal
and spatial redistribution of light. Light penetration through the medium is obstryieteititated by a nega-
tive (positive) refractive index step variation. An analytical solution of the time-dependent diffusion equation
that accounts for this effect has been obtained. The solution has been validated by comparisons with the results
of Monte Carlo simulations. An excellent description of light propagation is given even for a high refractive
index mismatch.
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I. INTRODUCTION terface where variations of the refractive index could be ac-

The diffusion equatioiDE) is widely used in many fields counted for. Walkeet al. [7] obtained an analytical solution
of applied physics. In the last decades the DE has been pd@r retrieving the optical properties of an inhomogeneity em-
ticularly used for modeling light propagation through bio- bedded in a homogenous highly scattering medium. The re-
logical tissues or in general through highly scattering mediafractive index of the object was considered as an independent
Many applications based on the use of near-infrared light forinknown together with its absorption and reduced scattering
tissue spectroscopl] or for biomedical imaging instru- coefficient. Ripoll and Nieto-Vesperin&8] derived the inte-
ments[2,3] require an accurate modeling of photon migra-gral equations for diffuse photon density waves where
tion through tissues. Usually a set of measurements is carridgbundary conditions corresponding to a diffuse-diffuse inter-
out at the surface of tissue and subsequently it is used ttace with index mismatch were considered. Recently, Deh-
retrieve the internal optical properties of tissue. An essentiaghaniet al. [9] studied the effects of internal refractive index
point of any retrieval lies in the model used for light propa- variation in near-infrared optical tomography by use of a
gation that should be able to represent with fine details thénite element modeling approach for a two-layered medium.
structure of the investigated medium. Biological tissue is In this paper we derive a time-domain analytical solution
characterized by a complex architecture and a correct modf the DE for a layered medium that takes into account step
eling of its internal structure may be difficult. In a physical variations between the refractive indices of the diffusive lay-
sense biological tissue is not a homogeneous medium. Theys and between the layers and the external. The theory, that
scattering process is determined by microscopic fluctuations an extension of a previous worklO], models a step
of the refractive indexn between cells membranes, or- change of the refractive index that results in a discontinuity
ganelles, etc. The refractive index of bulk tissues is the resulef the photon fluence rate at the interface between two lay-
of many microscopic processes. Different types of tissueers. A validation of the analytical solution is provided mak-
show different values of, for instance 1.39musclg and ing a comparison with the results of Monte CailbIC)
1.45 (normal adipose tissyig4]. The refractive index mis- simulations. The effect of the refractive index mismatch is
matches on a macroscopic scale, e.g., between fat arsimmarized by some maps of the irradiance inside the me-
muscle or between skin and skull, determine refraction oflium. The use of the theory in inversion procedures is
light. These differences of the refractive index of differentstraightforward since it is basically similar to procedures pre-
tissue types are usually neglected ani then considered Viously developed11].
for most tissues a constant value around 1.4. This approxi- The theory is described in Sec. II. In Sec. Ill comparisons
mation may affect the analysis of measurements from biobetween the analytical theory and MC results are presented.
logical tissue. There are difficulties in making accurate meaConclusions are in Sec. IV.
surements of the refractive index of different tissue type. For
this reason is not easy to establish the actual effects of re-
fractive index variations in tissue. Despite this, it is impor-
tant to develop a good modeling of the phenomenon since We analyze the case of a parabolic-type time-dependent
this is the base of any understanding of it. DE [12] with discontinuous coefficients, i.e., absorption co-

The use of the DE to analyze experimental data fromefficient w,, diffusion coefficientD, and refractive index,
tissue has been mostly based on the assumption of a constavitich can vary inside the medium. The DE is solved making
refractive index inside tissue. Some theoretical approachasse of the eigenfunctions method. We have extended the
have been proposed to account for the effects of refractivenethod proposed by Zauder@ee Ref[13], pp. 335-338
index variations within the DE. Aronsofb] and Faris[6] and subsequently developed by Martedti al. [10] for the
described the boundary conditions at the diffuse-diffuse inphoton migration through a layered medium. The analytical
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L : Figure 1 shows the mediu®? composed of two regions:
' -9 0=0,U ;. In the figuresy ands; are the thicknessy,,

a1 the absorption coefficient®),, D, the diffusion coeffi-

cients, andn,, n; the absolute refractive indices of the first

o

=

s | L@ e refr .
l and of second layer respectively, is the absolute refractive
w index of the surrounding medium. The radius of the cylinder
g - is assumed to b&. The origin of the reference system is
1 | 1

chosen as the point where a collimated laser béaropa-
gating along the axis) impinges normally the medium along
the main axis of the cylinder; therefore its physical bound-
aries belong to the planes=0 andz=5+s; and to the sur-

. o . face p=L. Let us consider a source term represented by a
FIG. 1. Two-layered cylinder illuminated by a pencil light beam single isotropic point source placed in=(0,0.z), i.e.,

along the axis of the cylind€r axis). L is the radius of the cylinder; — o . . . . .
Sp ands; are the thickness of the top and bottom layers, respec-S(r’t)_a(r ro)8(t). The diffusion equation for the irradi

tively; wa0, a1 @re the absorption coefficients,, D4 are the dif- ance,®, is written as(v is the speed of light
fusion coefficients, andg, n; are the absolute refractive indices of
the first and second layer, respectiveR(p,t) and T(p,t) are the

reflectance and transmittance. 1% + 11y = V[D()V] | D(r,t) = 8(r = o) 8(t). (1)
v
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solution derived in Ref[10] accounts for a different, and o )

a different reduced scattering coefficiept, (u.=1/3D) We follow a S|m|Iar_p_rocedure to that descrlt_)ed by Mar-
[14]) of the diffusive layers, bun was assumed constant telli et al. [10]. In deriving the solution we point out the
inside the medium. In Ref10] a layered parallelepiped was differences, with this previous work, arised from the step
considered for the case of an isotropic Didsource term. Vvariations of the refractive index. Because of the discontinui-
Here, for simplicity, we refer to a two-layered cylinder as ties of the optical properties across the plare,, we expect
shown in Fig. 1. The theory, following the suggestions pro-to find a solution of Eqs(1) having some discontinuities.
vided in this section, can be also extended to a three-layerethe problem must be separated in the two layers and can be
cylinder. stated as an initial-boundary value problem as the following:

{[&/(voat)+,uao—D0V2]<I>0(r,t)=O, t>0, 0=z=s o

[0/(vy 9t) + gy — D,V ®4(r,) =0, t>0, sy<z<5+5

and the initial-boundary value conditions: ZBC is more approximatefll5,17; however, its use on the
lateral boundary significantly simplifies the problem here ad-
Polp=L,z1) = Po(p, 2=~ 2A(Nee) Do, 1) = 0, ®) dressed. With the EBC we would obtain different lateral ex-
trapolated boundaries in the different layers. The boundary
Pi(p=L,z1) = Py(p,z=5+ 5+ 2A(Me)D1,) =0, (4 conditions at the lateral boundary do not affect the reflec-
tance and the transmittance unless the source or the receiver
Do(r,t=0) =vd(r —ro). (5 s close to the boundary.

To account for the effect of a step change in the refractive
index at the interface=s, proper boundary conditions need
to be introduced. Wheny+# n; the continuity of the irradi-
ance atz=s; does not hold. The correct boundary condition
or the irradiance at=g, results in[5,6,8

Equation(5) represents the initial distribution of sources in
the medium assuming, in the first layer. Equation€3) and

(4) represent the boundary conditions with the external me
dium and are based on two different assumptions: the e
trapolated boundary conditiaieBC) [15] has been used on
the upper and lower surfagg=0 andz=s,+s;), while the - _ 2 - -

zero boundary conditiotZBC) [15,16 has been used at the P1(p,2= 50,0 = (M/No) Po(p, 2= 50,0 = B0, (6)
lateral boundarnp=L. With the EBC the fluence rate is as- where the expression f& can be found in Ref45,6,8 and
sumed equal to zero at an extrapolated boundary outside tlde represents the component of the photon flux normal to the
turbid medium at a distancga=2AD. The coefficientA(n,,o interface. Ripoll and Nieto-Vespering8] have shown that
also includes the effect of reflections due to the refractivdfor a wide range of values, e.g., relative refractive index
index mismatchn,,,. between the mediunm and the sur- between the layers:1.28, the right term of the above equa-
roundinge [15]. The ZBC simply assumes the fluence ratetion can be neglected. For simplicity, we consider, at the
equal to zero at the physical boundary of the medium. Thénterfacez=s,, the boundary conditions described by the left
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side of Eq.(6) and by the continuity of the photon flux. We note that because the diffusion operator is, inside do-

Therefore they are mains with constant refractive index, self-adjoint and posi-
) tive (Ref. [13], pp. 171-178 the parameteh is real and
Do(p,2=5p,1) = (Ng/NY) “DP1(p, 2= S, 1) non-negative. On the contrary, no assumption can be made
(7) . 2 2 .
Do d Py(p,z=S0,t)/d2=D1 dP4(p,z= S, 1)/ Z. on the sign ofKg and K3, and in general the Helmholtz

equationg[18] in the system(10) admit solutions both for
We have assumed that the flux vectigr,t) and the irradi- positive and negative values of these parameters.
ance ®(r,t) are related by the Fick's law:J(r,t)= In order to solve the Helmholtz equations in Ef0) we
-D(r)V(r,t) (Ref.[13], pp. 163—165 We will search fora  Use the separation of the variables method. Let us suppose

solution of the stated problem of the kind that a complete orthogonal set of eigenfunctions is given by
the expression

d(r,t) = {q)O(r't) =poll) V), 0=2<% (8) (r) = poin = Jo(Kip)ano SiN(KineZ+ 1o) 0sz<g
o0 =p) D), H=2=<S+s,. P pun = Jo(Kip)ans SiN(Kin1Z+ y1) SoSz<s+sy,
It is in fact obvious that the temporal evolution®f and®, (12

must be coincident if we want that the conditiof) is valid. : . .

We will also require that the functions(r) andg()r) satisfy where J, is the zero o_rder Bessel funct_lon of integer order
iy N anda,,, a,; are coefficients to be determined. From the sepa-

the conditions(3) and (4). After substitution of the expres- aiion of the variables method, according to conditio8s

sion(8) in the systen{2), we are led to the following eigen- anq(4) it is clear thatk, are the roots of the equation

values problem:
Jo(K|L) =0, (13

dn(t)/dt=—Xn(t) and that the conditions

= DoV2po(F) + paopo(r) = (Mvg) po(r) 9) 2 2. 2
—D.V2 _ Ko =Ki" + Kino»
D1V<p1(r) + parpa(r) = (Mog)py(r).
2_ 12, 2
The systen(9) can also be rewritten as K1 =Ki+ King (14)

must be satisfied. We note that Eq2) satisfies the bound-
ary conditions(3) and(4) if y,0 and y,,; are chosen as

Yo = 2KinoAoeDos

Yn1 =~ Kina(So + 81 + 2A4D9). (15

The boundary condition&) applied topg, andpy, yield the
K2=(Mvo— pao)/Do K2=(NMvy— pa)/Dy.  (11) linear system of equations far,, and anlr; "

dn(t)/dt=—Nn(t)
V2po(r) + Kgpg(r) = 0 (10
V2pa(r) + Kips(r) =0,

whereK3 andK? are given by the expressions

{anosir{Km(so + 20D0)] + B SIMK 1 (5, + 2A0D1) [(Ng/n) 2= 0

(16)
370D oKin0C0g Kno(Sp + 2A0eDo) ] = 871D 1Kiq1€04 Kjna(Sy + 2A1D1)] = 0.
[
The system(16) admits nontrivial solutionga,, a,; # 0) if Let us now consider the temporal evolution of the irradi-
and only if the determinant vanishes. Therefore, we are led tance, which is obtained by solving the first equation in Eq.
the transcendental equation for the eigenvalues: (10). The general solution of our initial-boundary value prob-
lem can be written agl3,18,19
1
tan Kjno(So + 2A0.Do) ] "
DOKInO
1 O = X ainpin(r)eXp=Nnb). (18)
== tar{Kiny(sy + 2A1D1)1(ng/ny)?. (17) =1
DlKInl

The initial condition(5) is used to determing,, together

As shown in Ref[10], there is the possibility that either with a condition necessary to have a set of orthonormalized
Kﬁ]O or Kﬁu are negative. Details about the imaginary roots ofeigenfunctions. According to Ref13] (pp. 335-338 Ref.
Eq. (17) can be found in Appendix A. These roots are fun-[19] (pp. 157 and 248-249and to the proper definition of
damental to obtaining the solution of the DE for the problemscalar product for the eigenvalue problem of E§0) we
here analyzed. have
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. . and orthonormal function@he proof of the orthogonality of
{Uof f(f)Pom(f)delf f(F)Pun(r)df} the eigenfunctions,,(r) can be obtained by following a
= %o Ql similar procedure to that shown in Appendix B of REfQ]).
' This set of eigenfunctions can generate all the solutions of
{UOJ pom(r)pgm(r)dr+vlf pl,n(r)p*lln(r)dr} the initial boundary value problem considered in E(®.
Qq ) consistent with the boundary conditions of E¢H—5). Sub-
(19)  stituting the expressio(iL2) in (19) we have
with

ap = vé a:'lO Sin*(KmoZo + ')’InO)/Nﬁw (2D
“ ith
(D =(rt=0)=vedr 1) = X apn(), (200

Poin(r) poin(r)dr + Ulf P1|n(r)P*1|n(r)df}-

I,n=1
- : Nf =
where we have used the definition of the scalar productinthe " {UOL o,

space of the continuous functions in the reg(dr[pl*n(r) is 22)
the complex conjugate gf,(r)]. The choice of the coeffi-

cientsa,g anda,; together with the boundary conditions as-  Finally we are able to write the solution of our initial-
sure thatp,(r) multiplied with o, determines a set of real boundary value problem as

Yo

0

2 05 Jo(Kip)|anol*sin(Kingz + ¥in) X Sin' (KinoZo + ¥no) X~ (KGDo + ma)votING, 0=<2z=s
I,n=1

o(r,)=y (23
> v330(Kip)aneanSIN(KinZ+ ¥in1) X Sin' (KingZo + yino)eXH— (K3D1 + pa)ustlINZ, So<z<so+s;.

I,n=1

The coefficients,y anda,, according to the systeiid6), are not uniquely determined; however, their ratio is determined by
the boundary condition for the irradiance of E@). Assuminga,,=1 we can rewrite Eq(23) as

o)

> 053o(Kip)Sin(KinoZ+ ¥ino) X SiN (KinoZo + ¥ino)€XH ~ (K§Dg + sa)vot /NG, Osz=g

|' =
orn=1" (24)

2 v530(Kip)binaSin(Kiniz + ng) X Sin' (KingZo + yinp)exi ~ (KiDy + uan)uat NG, So<z=so+sy,

I,n=1
[

whereb,; is given by as first layer that where the source is located, i.e., according
to Fig. 1 the layer where the origin of the reference system is
by = 8y = sin(KinoSo + ¥no) fixed, we have that in all generality E(R4) represents the
n1—=%1— ., .

~ sin(K;S + ')’Inl)( 1/no)? Green's function of the medium when the source term is
placed along the axis of the cylinder. Thinking in terms of
_ sinKjo(so + 2AOeD0)]( Ing)? (25) reflectance or transmittance emerging from the medisee
7 SiNKyy(s, + 2AD))] N1/Mo)™ Fig. 1) we have that changing the position of the Dirdc-
source from one layer to the other it is equivalent to ex-
The expression for the factdf;, can be found in Appen- changing the expressions for reflectance and trasmittance.
dix B. Equation(24) represents the Green's function for the  |n case the source term does not belong to the axis of the
cylinder of Fig. 1 when the source term is placed in the firstcylinder, we lose rotation symmetry arounénd the eigen-
layer along the axis of the cylinder. In caggbelongs to the  functions of the system cannot be represented anymore by
second layer the expression for the Green’s function changesq. (12). Therefore, we need to introduce in the eigenfunc-
and a new expression fay, is obtained according to Egs. tions a component for the rotation arounéh order to rep-
(19) and(20). The expression ob(r,t) for z,> sy is reported  resent all the points in they plane. This changes a little the
in Appendix C. We point out that the position where the final expression for the irradiance, but the whole frame of the
isotropic source term is placed does not affect the eigenvabrocedure remains unchanged. Moreover, we point out that,
ues\, but only the coefficientsy, by Eq.(19). Therefore, provided the distance of the source term from thaxis is
K2, andKZ, are obtained as solutions of the transcendentamuch lower thark, Eq.(24) is in general a good approxima-
equation(17) in the same way of the cagg<s,. Assuming tion of the Green’s function.
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Finally, we notice that from the expression of the irradi- 107 3 r DE
ance (24) we can calculate the reflectan&€p,t) and the ] p=22 mm . MCn=14 n=1
; B H . 4 o "7
transmittancd (p,t) by using the meaning of the flux vector: 10° . MCn=1,n=14
R(p,t) =J(p,z=0,1) - (- k), / \'\\A\ ]
_ _ g 107
T(p,)) =J(p,z=s0+ 5,0 - (K), I ( pr—
whereR and T are evaluated in an arbitrary points on the g 10-11;
surfacez=0 andz=g,+s, respectively, and the flux vectoris ] — p
given by the Fick’s lawk is the unit vector along the axis. ] / Hag=Hyy=0.01 m
From Eq.(24) we can derive the following expressions for 10"25 o My =1 MM, A =1 N
the reflectancg27) and transmittancé28) respectively: ] / / §,=8 mm; s,=100 mm ]
= 0 " 1000 2000 3000
R(p,t) = 2 v5DoK1noJo(Kip)COK ¥ino) X SiN' (KjneZo t (ps)
l,n=1
+ Yino)EXH— (K%DO+ Mao)vot]/Nﬁ] (27) FIG. 2. Comparison between the time-resolved reflectance cal-

culated with MC simulationgsymbolg and with the DE(continu-
ous curvep for a cylinder having:s5=8 mm, s;=100 mm, L

_ > =100 MM, pa0=px=0.01 mm?, wlo=pl=1 mnil Data are
Tlp,t) = I%l 00D1Kin1Jo(Kip)bing CO4Kin1(So+ 1) + ¥ina] shown forp=22 and 40 mm for two values of the refrative index

[

- 5 ) mismatch: ng=1.4, n;=n,=1 (circles and nyg=n.=1, n;=1.4
X sin (KinoZo + ¥no)eXH— (K1D1 + mar)vat /Ny, (crosses

(28) cal tissuegfor which in the near infrared range ¢s=0.9),

The whole procedure we described provides the time dodllows us to reduce significantly the computation time of MC
main Green’s function for a two-layered cylinder with varia- Simulations. However, as expected by the DE, whenever we

tions between the refractive index of the layers iIIuminated';il?(f_‘;"d the values Of‘és in tr:jebditfferent I\I/?()_/:ers nlc: sigbr:ifi_car;t .
by an isotropic light source placed . When a pencil light Imerences were observed between resufts obtained for

beam(z ais in Fig. 3 i nomally impinging the medum (41Erent omoinatons of scatering tnctons, . afeen
some approximations need to be introduced. The real sourc 9 enng ST e
the theory shown in this section is, within the diffusion

term is substituted either by a line of isotropic sources or b range, general and it does not refer to restricted conditions of
a single isotropic point source locatedgt (0,0 2)) as con- light propagation. The MC code simulated a pencil light

frlr?eor:% mtr?;tr ?heerl\{ir:l]téor;.f -Ii—ggtrgo?crdllﬁ Izo?;tr)(t:eggegngythebeam normally impinging the medium. The program for the
np 9 pic P solution of the DE is organized according to the details given
single point source have the same first mon{dgj. In ac-

cordance with this assumption if the thickness of the firstin the previous section. It is worthwhile to remind that once
. - P a , a set of eigenvalues is calculated by solving the transcenden-
layer is sufficiently large we havey=1/(ug+ uqo), Where

; d h duced tter; fficient and th tal equation(17), we have all the useful information for the
Mg aNd tgo are the reduced scatlering coetlicient and h€qqq, ation of the Green's functions of the system at different
absorption coefficient of the first layer. Although the more

source-detector distances. The roots of E) have been

general line source can also be treated as simple integral %und with a combination of bisection and Newton-Raphson

Eg. (19), .in this paper we restrict our investigation to the methods[20].

single point source. The results of Figs. 2—4 refer to a couple of diffusive

layers that only differ by their refractive indices. In Fig. 2

some comparisons between M&/mbolg and DE(continu-

ous lines temporal profiles for the reflectance are shown.
In a previous papefl0] we have already shown that a They refer to a cylinder havingg,=8 mm, s;=100 mm,L

solution of the DE for layered media based on the eigenfunc=100 mm, u,0=ux=0.01 mm?, and ul=pl=1 mnil.

tions method is able to describe step variations of the absorprhe data are plotted fgr=22 and 40 mm. Two values of the

tion and of the reduced scattering coefficient of the layers. Imefractive index mismatch between the layers have been

this section we present a set of comparisons between tlghown:ny=1.4 andn;=n.=1, andny=n.=1 andn,;=1.4.

results of MC simulations and Eq&7) and (28) with the In Fig. 3 some comparisons for the transmittance are

aim to show that the theory presented in Sec. Il also provideshown. They refer to a cylinder havinggp=8 mm, s;

an accurate description of step variations between the refrae=12 mm, L=100 mm, uly=ul =1 mntl. The curves are

tive indices of the layersyy andn;. calculated ap=0 for ua0=a;=0.01 mm?* and for the non-
Details about the MC code can be found in R¢1€,17. absorbing medium. Results are shown fg=1.4 andn;

For MC simulations we mainly used a scattering function of=n.=1, andny=n.,=1 andn;=1.4. We notice that the results

Rayleigh scatters for which the asymmetry fagioesults to  for the absorbing medium cannot be simply obtained by scal-

be =0. This choice 0§, although is not realistic for biologi- ing the Green’s function for the nonabsorbing medium with

Ill. RESULTS
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10-7 ; p"sO=M"s1=1 mm-1’ ne=1
3 §,=8 mm; s =12 mm, p=0
10° 3
~ 10°
"o 3
NQ- =10
‘e 10
E ]
ey 10-11 : .
3 DE \\\\\
1072+ - MC n0=1.4, n1=1

1 | - Mcn=1,n=14 W&%\ﬁ
10-13 |

0 1000 2000 3000
t(ps)

FIG. 3. Comparison between the time-resolved transmittance for
a coaxial receivetp=0) calculated with MC simulationésymbolg
and with the DE(continuous curves The cylinder hassp=8 mm,
$,=12 mm, L=100 mm, ujy=ul =1 mnil. Data are shown for
two values of the refractive index mismatchg=1.4, n;=n,=1
(circles and ng=ng,=1, n;=1.4 (crossep both for w,o=wma1
=0.01 mm! and for the nonabsorbing medium.

the exponential decay efpu,vt) since we do not have an FIG. 4. Maps of the cw irradiance in thez plane for a layered
a priori knowledge of the time spent by received photons incylinder having: 5,=8 mm, ;=100 mm, L=100 mm, w0= tta1
the first and in the second layer. =0.01 mm*, andufy=pg =1 mnT™. The maps refer tang=ne=1,

Figure 4 shows maps of irradiance in the continuous wavé1=14 (1op), no=ny=ne=1 (middle), and ne=1.4, n;=n.=1
(cw) domain. The cw irradiance has been obtained by afPotiom.

analytical integral of Eq(24). The layered cylinder ha;slo fluence. To simplify the study of the problem we have used
=8 mm, §,=100 mm, L=100 mm, pz0=ua=0.01 MM~ gpproximate boundary conditions expressed by EA.
and uf=py =1 mit. The maps refer tong=n.=1 andn;  However, we have verified that this approximation does not
=1.4 (top), np=n;=ne=1 (middle), andny=1.4 andn;=n,  significantly affect the results obtained. In fact, for all the
=1 (bottom). The refractive index mismatch determines acases analyzed in Figs. 2—4, we have repeated the calcula-
discontinuous behavior of the irradiance at the interface betions with the more correct boundary condition expressed by
tween the two layers, i.e., @=sp=8 mm. Photon migration Eq. (6) (we notice that the use of this boundary condition
through the second layer is obstructédcilitated when  makes the calculation quite more complicagtesd we ob-
no>ny(ng<ny), i.e., a negativgpositive) refractive index served that the results did not change significantly even for a
step variation between the layers determines a I@higher refractive index mismatch of 1.4. We therefore conclude that
penetration depth of the diffuse light. the range of refractive index mismatch for which the bound-
All the comparisons we presented show an excellenary condition expressed by E@/) holds seems even larger
agreement between the results of the MC simulations and tH&an expected by the results of Ripoll and Nieto-Vesperinas
theory derived in the preceding section. The formulas pre{8].
sented are able to account for significant variations between The solution of the diffusion equation has been validated
the refractive index of the diffusive layers. The computationby comparisons with the results of Monte Carlo simulations.
time for any set of temporal profiles was always shorter tharThe correctness of the formulas presented in Sec. Il has been
1 s by using a 1.8-GHz Pentium IV processor. verified for a wide range of the refractive indiceg ny, and
ne. In conclusion, the proposed theory provides a fast, accu-
rate, and reliable method to model the effect of the refractive
index mismatch at the interface of two diffusive layers. The
With the aim of modeling the refractive index mismatch refractive index mismatch changes both the shape of the
inside layered media a Green’s function of the time-domairtime-resolved reflectance or transmittance and the balance of
diffusion equation for a layered cylinder where the sourceenergy inside the medium. In the analytical expressions of
term is placed along the axis of the cylinder has been obSec. Il the refractive index mismatch changes the distribution
tained by using the eigenfunctions method. The Green'sf eigenvalues, the normalization factor, and the speed of
function accounts for step variations of refractive index bothlight passing through the layers.
between the diffusive layers and between the layers and the Although the formulas presented in Sec. Il may find ap-
external. The refractive index mismatch at the interface oplications in several physical processes, we make our final
two diffusive layers results in a discontinuity of the photon conclusion with some considerations on their use in tissue

IV. CONCLUSIONS
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FIG. 5. Reflectance calculated with MC simulatigisymbolg FIG. 6. Reflectance calculated with MC simulatiogsgmbolg

and with the solution of DEcontinuous linegsfor a cylinder hav-  and with the solution of DEcontinuous linesfor a cylinder hav-
ing: s=8 mm, $,=100 mm, L=100 mm, uplH=1mm?, ul ing: $p=8 mm, s;=100 mm, L=100 mm, u{H=1 mmnd, e

=0.5 mn?, pe=0.04 mm? and py;=0.03 mm?i ny=1.44,n,  =0.5mm? xp=0.004 mm?’, and u,=0.03 mm'. The case

=1.37, andn,=1. The data are plotted fop=14,22,30, and Muscle A refers tany=n;=1.4 andn.=1, while the case Muscle B

40 mm. refers tong=1.44,n,=1.37, andn,=1. The data are plotted fqr
=30 mm.

spectroscopy. The internal optical properties of tissue are

usually retrieved by inversion procedures on measurements ¢ & of duced tation ti dt
carried out at the surface of the tissue. The theory and thg'€Y arounc, of a reduced computation ime compared to

results of Monte Carlo simulations have clearly shown that'at for the parallelepiped geomefr0]. The cylindrical ge-
the refractive index mismatch may significantly change thePmetry can be used to model measurements on biological
time-resolved reflectance. Figures 5 and 6 refer to a couplBSSues, for which the medium is usually assumed to be lat-
muscular tissue for whiclul,# pl, tao# ar, @andng#n,.  der is assumegll].
In particular, Fig. 6 shows the effect that the refractive index
variation determines on measurements of muscle oxygen- ACKNOWLEDGMENT
ation. . . .
In Figs. 5 and 6 we have considered a two-layered cylin- The aL_Jthors wish to th_ank Filippo Colomo for his help
der with s,=8 mm, s,=100 mm, L=100 mm, i, and for his useful suggestions.
=0.004 mm?, u,=0.03 mm?t, wlo=1mnil, and upl
=0.5 mnTl. For modeling the optical properties of muscle
with a subcutaneous fat layer we have chosgnl.44(rep- In Ref. [10] we analyzed the distribution of imaginary
resentative of fat tissue, ReR1], p. 42 andn;=1.37(rep-  roots when the layers had matched refractive index but dif-
resentative of muscular tissue, Rg21], p. 43. The good  ferent absorption coefficient or different reduced scattering
agreement in Fig. 5 between EQ7) and the results of MC o eficient. In this appendix we summarize the changes that
simulations shows that the theory provides an accurate degise in the distribution of imaginary roots when a variation
scription of photon migration also Whepg# g, a0 petween the refractive indices of the diffusive layers is intro-
# Ha1, ANANG Ny, IN Fig. 6, for the distance=30 mm we (ﬁiuced. The initial-boundary value problem is thus solved af-

have cpmpared the data of Fig. 5 W'th the; data obtaine er we determine the discrete number of solutions of the tran-
assuming an average constant refractive indexg=n,

-~ . cendental equatioifl7). As stated before, here we are
=1.4. The differences between the curves denoted as Muscfgoking at the possibility that eithe(fno or Kﬁuv or both, are

A and Muscle B are r(_apresentatwe of the error th:_at may b% gative; thereforé,,, and K, are imaginary numbers. In
encountered when a time-resolved measurement is analyz?§

with a model that does not account for refractive index varia- Cl it is possible to demonstrate that the transcendental
. : . equation (17) admits always imaginary roots whenever
tions. Therefore inversion procedures based on an avera

constant refractive inder lead to wrong estimation of the ¥Bo/no) # (D/my). For the case(Dy/ng)=(Dy/ny), imag-

: ; . nary roots are found only if a minimum criteria for the
optical properties of the two layers. Equati@v) suggests change ofu,/n is met.

that for the layer with refracuve_ index larger than thg average™ | = o to write the relationship betw déﬁiil an dK,z .
valuen, u, would be underestimated and, overestimated n

and vice versa for the layer with lower refractive index. For
the case of muscle with the fat layer errors remain within ) )
5%. Kin1 = n__KInO +C, (AL)

The solution of the DE for the cylindrical geometry pre- 0
sented in this paper has the advantage, for the rotation symvhere

APPENDIX A: IMAGINARY ROOTS

011907-7



MARTELLI, Del BIANCO, AND ZACCANTI
C=[(n/ng) g — Ha1l/D1 + K|2[(n1/no)D0 - D,]/D;.
(A2)

We have a different linear relationship betwe€f, and KIno
for C>0 and forC<0, respectlvely For the cas€},<
—=(D1/Dg)(ng/n;)C (C>0), or K,n0<O(C<O) possible roots
Kino andK,; of Eq. (17) must be imaginary numberg,q
=+i|Kipol, Kinmi==i|Kjns|. By using the property tartb)
=-i tan(iz), wherez is a complex number, E¢17) becomes

tam‘[ﬂKInOKSO + 2AOeDO)]
Do(£i[Kinol)
_ tam‘[ﬂKlanSl + 2A1eD1)]
D (£i[Kinal)
We notice that Eq(A3) is impossible; therefore our prob-
lem cannot admit eigenvalues with bdt} , andK2, nega-

tive. In terms of the eigenfunctions it means that no eigen-
function has a component along tleaxis given by a

(ng/n)?. (A3)

combination of exponential functions at both sides of the

discontinuity z=sy. Let us now treat separately the two
possibilitiesC>0 and C<0 to search for imaginary roots
of Eq. (17).

(i) C>0. Possible imaginary roots are found in the inter-
val =(D1/Dg)(ny/ny)C< Kﬁw<0. Here we are looking at the
possibility that Eq.(17) is solved for K o= +i|Ko|, and
Kni1=%|Kn1|. The four different choices for the sign &f,o
andK,,; yield the same equation:

_ t":mk[|KInO|(SO + 2AOeDO)]1
DO|KInO|

_ tar{ [Ky1/(s; + 2A1Dy) ]
D1|Kn1|

(ng/ny)?. (A4)

Because we are studying EGA4) in a limited interval of
Kino @nd K1, we notice that a necessary condition for Eq
(A4) to admit some roots is

7—27 <\cl, (A5)

where we have defined =s;+2A;. D;. A sufficient condi-
tion for Eq. (A4) to admit some roots is

7<\CI,. (A6)

If Do/ny>D;/n, surely the condition(A6) will be met
for infinite choices of th&K|, and for each one of them Eg.
(A4) admits a finite number of roots. If we define,
=|Kjni/l2, and Mo=int[VCl,/#] (“int’ indicates the integer
part of the division all the possible roots are found when

a e U((2j 1)7/2,jm) U (Mgm,Cly), for the caseMiy>0.

Whlle for the caseM=0 the possible root is found when
a; € (w/2,JCl,). It is also possible that there exist at maxi-
mum a finite number of choices &j for which the condition

PHYSICAL REVIEW E 70, 011907(2004

(A5) is not met and therefore there are no roots of @dt).
If Dg/ng=D4/n;=D/n (when C>0 it means that
Maol Ng> a1/ Ny, @ Necessary condition for EGA4) to admit
a finite number of roots is
i

<

It means that the change @f,/n between the layers must
satisfy the following minimum criteriégnecessary condition

2D/n
|§‘

o

2

(N1/Ng) o = Mar

D (AT)

Aualn) = pao/No = Mar/Ng > <2) (A8)

If Do/ng<D4/ny, the condition that we are considering,
C>0, is verified only for a finite number of choices of the
K;. Again Eq.(A4) has roots, if the conditiofA6) is satis-
fied.

(i) C<0. Possible imaginary roots are found in the in-
terval 0< K|n0< (D1/Dg)(ng/n;)C. In this case we are
searching for roots of Eq17) of the kindK,o=%|K,o|, and
Kin1= %i|Kjn1|. After substitution in Eq(17) we obtain

tar1:|Kln0|(50 + 2AOeDO)]
DO| KIn0|
__ tank[King|(s; + 2A1eDy)]
D1|Kln1|

Necessary and sufficient conditions for E§\8) to admit
some roots are

(ng/ny)?. (A9

T / D
D,
7< /- (Do)c lo, (A11)

respectively, where we have definkgsy+2Aqe Do,
If Do/ng<D4/n;, surely the condition(A1l) will be

‘met for infinite choices of theK;, and for each one of

them Eq. (A9) admits a finite number of roots. If we
define a’o:|K|no||0 and MO_int[\,_(Dl/Do)(no/nl)C Io/’TT]

all the possible

=D w/2,j7m) U (Mgm,—(D1/Dg)(ng/ny)C lg) for the case
Mo>0, while for the caséMy=0 the possible root is found
when age (/2 ,\/=(D1/Dg)(Ng/n;)C lp). It is also possible
that there exist at maximum a finite number of choice&of
for which the condition(A10) is not met and therefore there
are no roots of Eq(A9).

If Do/ng=D1/n=D/n (it means thatwu,o/Ng<<ma1/Ny)

the condition (A10) yields a necessary condition for the
change ofu,/n of the two layers:

roots are found whemyge U((Zj

D_/"‘<7_T
13 \2
If Do/ng>D4/n,, the condition that we are considering,
C<0, is verified only for a finite number of choices Kf.
Again Eg.(A9) has roots, if the conditiopAll) is satisfied.

2
A(paln) = (tra1/Ng = pao/No) > ) . (A12)
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We can summarize this study by stating that whenever ) 5 lo SiN(2Kpnolo)
Do/ny# D;/n; the transcendental equatigh?) always ad- Nin = mLI1(K))]%) vo 2T Ak
mits imaginary roots for eithel|,q or K,1. While if Dg/ng In0
=D,/ny, imaginary roots of Eq(17) are possible only if . vyn? sin2(|<lno|o)[|_l sin(2K|n1I1)} 1)
A(ua/n)>[A(ma/N)Imin @and we have determined necessary N S (Kygl ) | 2 4K, ,

(and sufficient conditions for both case8>0 andC<0.
Now let us treat again simultaneously the two possi-

bilites C>0 and C<0. If KZ,>0 (C>0), or KZ,> NZ = LI (KP o, sinh(2|Knoll o)
—(D1/Dyg)(ne/n;)C (C<0) we are searching for real roots of in = mMLI(K)I) v 2 4/Kinol

the transcendental E@Ll7). For this case we have to solve 4. ]

Eq. (17), and because we are studying it in an interval not LU sint?(|Kinollo) ['_1 _ sm(2K,nlI1)} (B2)
bounded, we will always find infinite roots. g Sirf(Knal) | 2 AK 1 ’

Why are the imaginary roots of E¢L7) so important? If
we plotK2,vs K2, we understand that whenever imaginary ,
roots exist, they might yield the lowest eigenvalues and in Nﬁ]: Tr[LJl(K|)]2{v0[I—O _ M}

particular the minimum eigenvalug,,,. This is definitely 2 4Kno

the case if, for exampl /n)=0, Dy/ny>D4/n,, and . .
PGA(,U«’a ) o/Ng>Dy/ny _ 03] SiM(Kinolo) {I_l_ smr(2|K,n1|Il)] 83
T < \NCpin 1, (A13) ng SINFP(|Kna|l) | 2 AlK jna ’

whereC,, is the value ofC calculated for the lowed;. It is
obvious that the minimum eigenvalue dominates in the seri
solution(24) (especially at late time Therefore a large error
in the shape of the temporal profile is expected,jf,, is not
properly calculated.

eWhich are valid for the cases when bdthy,, and Ky, are
real, whenK,o=i|Kinol andK,;=|Kini|, andKo=|Kinol and
Kini=i|Kin1l, respectively.

APPENDIX B: NORMALIZATION FACTOR APPENDIX C: SOLUTION WITH 25>

The expression for the factdy, is obtaned by Eq(22) The Green’s function for a two-layered cylinder when the
and results in source term is placed in the second layer, zg= S, iS
|
2 0330(Kip)SIN(KinoZ+ yino) X big Sin'(Kinazo + yinexd— (K§Do + maguotlING,  0<z<sg
I,n=1
o=y "
2 0336(Kip)Bing SINKin1Z+ ¥ing) X by Sin' (KinaZo + ¥in) e~ (KID; + pa)vstlING,, So=<z=<sp+sy.
I,n=1
(C1)
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