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The effect of the refractive index mismatch on light propagation through diffusive layers has been investi-
gated. The refractive index mismatch changes the balance of energy inside the medium determining a temporal
and spatial redistribution of light. Light penetration through the medium is obstructed(facilitated) by a nega-
tive (positive) refractive index step variation. An analytical solution of the time-dependent diffusion equation
that accounts for this effect has been obtained. The solution has been validated by comparisons with the results
of Monte Carlo simulations. An excellent description of light propagation is given even for a high refractive
index mismatch.
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I. INTRODUCTION

The diffusion equation(DE) is widely used in many fields
of applied physics. In the last decades the DE has been par-
ticularly used for modeling light propagation through bio-
logical tissues or in general through highly scattering media.
Many applications based on the use of near-infrared light for
tissue spectroscopy[1] or for biomedical imaging instru-
ments[2,3] require an accurate modeling of photon migra-
tion through tissues. Usually a set of measurements is carried
out at the surface of tissue and subsequently it is used to
retrieve the internal optical properties of tissue. An essential
point of any retrieval lies in the model used for light propa-
gation that should be able to represent with fine details the
structure of the investigated medium. Biological tissue is
characterized by a complex architecture and a correct mod-
eling of its internal structure may be difficult. In a physical
sense biological tissue is not a homogeneous medium. The
scattering process is determined by microscopic fluctuations
of the refractive indexn between cells membranes, or-
ganelles, etc. The refractive index of bulk tissues is the result
of many microscopic processes. Different types of tissue
show different values ofn, for instance 1.39(muscle) and
1.45 (normal adipose tissue) [4]. The refractive index mis-
matches on a macroscopic scale, e.g., between fat and
muscle or between skin and skull, determine refraction of
light. These differences of the refractive index of different
tissue types are usually neglected andn is then considered
for most tissues a constant value around 1.4. This approxi-
mation may affect the analysis of measurements from bio-
logical tissue. There are difficulties in making accurate mea-
surements of the refractive index of different tissue type. For
this reason is not easy to establish the actual effects of re-
fractive index variations in tissue. Despite this, it is impor-
tant to develop a good modeling of the phenomenon since
this is the base of any understanding of it.

The use of the DE to analyze experimental data from
tissue has been mostly based on the assumption of a constant
refractive index inside tissue. Some theoretical approaches
have been proposed to account for the effects of refractive
index variations within the DE. Aronson[5] and Faris[6]
described the boundary conditions at the diffuse-diffuse in-

terface where variations of the refractive index could be ac-
counted for. Walkeret al. [7] obtained an analytical solution
for retrieving the optical properties of an inhomogeneity em-
bedded in a homogenous highly scattering medium. The re-
fractive index of the object was considered as an independent
unknown together with its absorption and reduced scattering
coefficient. Ripoll and Nieto-Vesperinas[8] derived the inte-
gral equations for diffuse photon density waves where
boundary conditions corresponding to a diffuse-diffuse inter-
face with index mismatch were considered. Recently, Deh-
ghaniet al. [9] studied the effects of internal refractive index
variation in near-infrared optical tomography by use of a
finite element modeling approach for a two-layered medium.

In this paper we derive a time-domain analytical solution
of the DE for a layered medium that takes into account step
variations between the refractive indices of the diffusive lay-
ers and between the layers and the external. The theory, that
is an extension of a previous work[10], models a step
change of the refractive index that results in a discontinuity
of the photon fluence rate at the interface between two lay-
ers. A validation of the analytical solution is provided mak-
ing a comparison with the results of Monte Carlo(MC)
simulations. The effect of the refractive index mismatch is
summarized by some maps of the irradiance inside the me-
dium. The use of the theory in inversion procedures is
straightforward since it is basically similar to procedures pre-
viously developed[11].

The theory is described in Sec. II. In Sec. III comparisons
between the analytical theory and MC results are presented.
Conclusions are in Sec. IV.

II. THEORY

We analyze the case of a parabolic-type time-dependent
DE [12] with discontinuous coefficients, i.e., absorption co-
efficient ma, diffusion coefficientD, and refractive indexn,
which can vary inside the medium. The DE is solved making
use of the eigenfunctions method. We have extended the
method proposed by Zauderer(see Ref.[13], pp. 335–338)
and subsequently developed by Martelliet al. [10] for the
photon migration through a layered medium. The analytical
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solution derived in Ref.[10] accounts for a differentma and
a different reduced scattering coefficientms8 sms8=1/3Dd
[14]) of the diffusive layers, butn was assumed constant
inside the medium. In Ref.[10] a layered parallelepiped was
considered for the case of an isotropic Dirac-d source term.
Here, for simplicity, we refer to a two-layered cylinder as
shown in Fig. 1. The theory, following the suggestions pro-
vided in this section, can be also extended to a three-layered
cylinder.

Figure 1 shows the mediumV composed of two regions:
V=V0øV1. In the figures0 and s1 are the thickness,ma0,
ma1 the absorption coefficients,D0, D1 the diffusion coeffi-
cients, andn0, n1 the absolute refractive indices of the first
and of second layer respectively.ne is the absolute refractive
index of the surrounding medium. The radius of the cylinder
is assumed to beL. The origin of the reference system is
chosen as the point where a collimated laser beam(propa-
gating along thez axis) impinges normally the medium along
the main axis of the cylinder; therefore its physical bound-
aries belong to the planesz=0 andz=s0+s1 and to the sur-
face r=L. Let us consider a source term represented by a
single isotropic point source placed inr0=s0,0,z0d, i.e.,
Ssr ,td=dsr −r0ddstd. The diffusion equation for the irradi-
ance,F, is written as(v is the speed of light):

F1

v

]

] t
+ ma − ¹fDsrd¹gGFsr,td = dsr − r0ddstd. s1d

We follow a similar procedure to that described by Mar-
telli et al. [10]. In deriving the solution we point out the
differences, with this previous work, arised from the step
variations of the refractive index. Because of the discontinui-
ties of the optical properties across the planez=s0, we expect
to find a solution of Eqs.(1) having some discontinuities.
The problem must be separated in the two layers and can be
stated as an initial-boundary value problem as the following:

Hf] /sv0 ] td + ma0 − D0¹
2gF0sr,td = 0, t . 0, 0ø zø s0

f] /sv1 ] td + ma1 − D1¹
2gF1sr,td = 0, t . 0, s0 ø zø s0 + s1

s2d

and the initial-boundary value conditions:

F0sr = L,z,td = F0„r,z= − 2Asn0edD0,t… = 0, s3d

F1sr = L,z,td = F1„r,z= s0 + s1 + 2Asn1edD1,t… = 0, s4d

F0sr,t = 0d = v0dsr − r0d. s5d

Equation(5) represents the initial distribution of sources in
the medium assumingr0 in the first layer. Equations(3) and
(4) represent the boundary conditions with the external me-
dium and are based on two different assumptions: the ex-
trapolated boundary conditionsEBCd [15] has been used on
the upper and lower surface(z=0 andz=s0+s1), while the
zero boundary conditionsZBCd [15,16] has been used at the
lateral boundaryr=L. With the EBC the fluence rate is as-
sumed equal to zero at an extrapolated boundary outside the
turbid medium at a distanceze=2AD. The coefficientAsnmed
also includes the effect of reflections due to the refractive
index mismatchnme between the mediumm and the sur-
roundinge [15]. The ZBC simply assumes the fluence rate
equal to zero at the physical boundary of the medium. The

ZBC is more approximated[15,17]; however, its use on the
lateral boundary significantly simplifies the problem here ad-
dressed. With the EBC we would obtain different lateral ex-
trapolated boundaries in the different layers. The boundary
conditions at the lateral boundary do not affect the reflec-
tance and the transmittance unless the source or the receiver
is close to the boundary.

To account for the effect of a step change in the refractive
index at the interfacez=s0 proper boundary conditions need
to be introduced. Whenn0Þn1 the continuity of the irradi-
ance atz=s0 does not hold. The correct boundary condition
for the irradiance atz=s0 results in[5,6,8]

F1sr,z= s0,td − sn1/n0d2F0sr,z= s0,td = Esn1/n0dJz, s6d

where the expression forE can be found in Refs.[5,6,8] and
Jz represents the component of the photon flux normal to the
interface. Ripoll and Nieto-Vesperinas[8] have shown that
for a wide range of values, e.g., relative refractive index
between the layersø1.28, the right term of the above equa-
tion can be neglected. For simplicity, we consider, at the
interfacez=s0, the boundary conditions described by the left

FIG. 1. Two-layered cylinder illuminated by a pencil light beam
along the axis of the cylinder(z axis). L is the radius of the cylinder;
s0 and s1 are the thickness of the top and bottom layers, respec-
tively; ma0, ma1 are the absorption coefficients,D0, D1 are the dif-
fusion coefficients, andn0, n1 are the absolute refractive indices of
the first and second layer, respectively.Rsr ,td and Tsr ,td are the
reflectance and transmittance.
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side of Eq. (6) and by the continuity of the photon flux.
Therefore they are

HF0sr,z= s0,td = sn0/n1d2F1sr,z= s0,td
D0 ] F0sr,z= s0,td/] z= D1 ] F1sr,z= s0,td/] z.

s7d

We have assumed that the flux vectorJsr ,td and the irradi-
ance Fsr ,td are related by the Fick’s law:Jsr ,td=
−Dsrd=Fsr ,td (Ref. [13], pp. 163–165). We will search for a
solution of the stated problem of the kind

Fsr,td = HF0sr,td = r0srdhstd, 0 ø zø s0

F1sr,td = r1srdhstd, s0 ø zø s0 + s1.
s8d

It is in fact obvious that the temporal evolution ofF0 andF1
must be coincident if we want that the condition(7) is valid.
We will also require that the functionsr0srd andr1srd satisfy
the conditions(3) and (4). After substitution of the expres-
sion (8) in the system(2), we are led to the following eigen-
values problem:

5dhstd/dt = − lhstd
− D0¹

2r0srd + ma0r0srd = sl/v0dr0srd
− D1¹

2r1srd + ma1r1srd = sl/v1dr1srd.

s9d

The system(9) can also be rewritten as

5dhstd/dt = − lhstd
¹2r0srd + K0

2r0srd = 0

¹2r1srd + K1
2r1srd = 0,

s10d

whereK0
2 andK1

2 are given by the expressions

K0
2 = sl/v0 − ma0d/D0, K1

2 = sl/v1 − ma1d/D1. s11d

We note that because the diffusion operator is, inside do-
mains with constant refractive index, self-adjoint and posi-
tive (Ref. [13], pp. 171–178), the parameterl is real and
non-negative. On the contrary, no assumption can be made
on the sign ofK0

2 and K1
2, and in general the Helmholtz

equations[18] in the system(10) admit solutions both for
positive and negative values of these parameters.

In order to solve the Helmholtz equations in Eq.(10) we
use the separation of the variables method. Let us suppose
that a complete orthogonal set of eigenfunctions is given by
the expression

rlnsrd = Hr0ln = J0sKlrdan0 sinsKln0z+ gn0d 0 ø zø s0

r1ln = J0sKlrdan1 sinsKln1z+ gn1d s0 ø zø s0 + s1,

s12d

whereJ0 is the zero order Bessel function of integer order
andan0, an1 are coefficients to be determined. From the sepa-
ration of the variables method, according to conditions(3)
and (4) it is clear thatKl are the roots of the equation

J0sKlLd = 0, s13d

and that the conditions

K0
2 = Kl

2 + Kln0
2 ,

K1
2 = Kl

2 + Kln1
2 s14d

must be satisfied. We note that Eq.(12) satisfies the bound-
ary conditions(3) and (4) if gln0 andgln1 are chosen as

gln0 = 2Kln0A0eD0,

gln1 = − Kln1ss0 + s1 + 2A1eD1d. s15d

The boundary conditions(7) applied tor0ln andr1ln yield the
linear system of equations foran0 andan1:

Han0sinfKln0ss0 + 2A0eD0dg + an1sinfKln1ss1 + 2A1eD1dgsn0/n1d2 = 0

an0D0Kln0cosfKn0ss0 + 2A0eD0dg − an1D1Kln1cosfKln1ss1 + 2A1eD1dg = 0.
s16d

The system(16) admits nontrivial solutions(an0, an1Þ0) if
and only if the determinant vanishes. Therefore, we are led to
the transcendental equation for the eigenvalues:

1

D0Kln0
tanfKln0ss0 + 2A0eD0dg

= −
1

D1Kln1
tanfKln1ss1 + 2A1eD1dgsn0/n1d2. s17d

As shown in Ref.[10], there is the possibility that either
Kln0

2 or Kln1
2 are negative. Details about the imaginary roots of

Eq. (17) can be found in Appendix A. These roots are fun-
damental to obtaining the solution of the DE for the problem
here analyzed.

Let us now consider the temporal evolution of the irradi-
ance, which is obtained by solving the first equation in Eq.
(10). The general solution of our initial-boundary value prob-
lem can be written as[13,18,19]

Fsr,td = o
l,n=1

`

alnrlnsrdexps− llntd. s18d

The initial condition(5) is used to determinealn together
with a condition necessary to have a set of orthonormalized
eigenfunctions. According to Ref.[13] (pp. 335–338), Ref.
[19] (pp. 157 and 248–249), and to the proper definition of
scalar product for the eigenvalue problem of Eq.(10) we
have
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aln =

Hv0E
V0

fsrdr0ln
* srddr + v1E

V1

fsrdr1ln
* srddrJ

Hv0E
V0

r0lnsrdr0ln
* srddr + v1E

V1

r1lnsrdr1ln
* srddrJ ,

s19d
with

fsrd = Fsr,t = 0d = v0dsr − r0d = o
l,n=1

`

alnrlnsrd, s20d

where we have used the definition of the scalar product in the
space of the continuous functions in the regionV [rln

* srd is
the complex conjugate ofrlnsrd]. The choice of the coeffi-
cientsan0 andan1 together with the boundary conditions as-
sure thatrlnsrd multiplied with aln determines a set of real

and orthonormal functions(the proof of the orthogonality of
the eigenfunctionsrlnsrd can be obtained by following a
similar procedure to that shown in Appendix B of Ref.[10]).
This set of eigenfunctions can generate all the solutions of
the initial boundary value problem considered in Eqs.(2)
consistent with the boundary conditions of Eqs.(3)–(5). Sub-
stituting the expression(12) in (19) we have

aln = v0
2 an0

* sin*sKln0z0 + gln0d/Nln
2 , s21d

with

Nln
2 =Hv0E

V0

r0lnsrdr0ln
* srddr + v1E

V1

r1lnsrdr1ln
* srddrJ .

s22d

Finally we are able to write the solution of our initial-
boundary value problem as

Fsr,td =5 o
l,n=1

`

v0
2 J0sKlrduan0u2sinsKln0z+ gln0d 3 sin*sKln0z0 + gln0dexpf− sK0

2D0 + ma0dv0tg/Nln
2 , 0 ø zø s0

o
l,n=1

`

v0
2J0sKlrdan0

* an1sinsKln1z+ gln1d 3 sin*sKln0z0 + gln0dexpf− sK1
2D1 + ma1dv1tg/Nln

2 , s0 ø zø s0 + s1.

s23d

The coefficientsan0 andan1, according to the system(16), are not uniquely determined; however, their ratio is determined by
the boundary condition for the irradiance of Eq.(7). Assumingan0=1 we can rewrite Eq.(23) as

Fsr,td =5 o
l,n=1

`

v0
2J0sKlrdsinsKln0z+ gln0d 3 sin*sKln0z0 + gln0dexpf− sK0

2D0 + ma0dv0tg/Nln
2 , 0 ø zø s0

o
l,n=1

`

v0
2J0sKlrdbln1sinsKln1z+ gln1d 3 sin*sKln0z0 + gln0dexpf− sK1

2D1 + ma1dv1tg/Nln
2 , s0 ø zø s0 + s1,

s24d

wherebln1 is given by

bln1 = an1 =
sinsKln0s0 + gln0d
sinsKln1s0 + gln1d

sn1/n0d2

= −
sinfKln0ss0 + 2A0eD0dg
sinfKln1ss1 + 2A1eD1dg

sn1/n0d2. s25d

The expression for the factorNln
2 can be found in Appen-

dix B. Equation(24) represents the Green’s function for the
cylinder of Fig. 1 when the source term is placed in the first
layer along the axis of the cylinder. In casez0 belongs to the
second layer the expression for the Green’s function changes
and a new expression foraln is obtained according to Eqs.
(19) and(20). The expression ofFsr ,td for z0.s0 is reported
in Appendix C. We point out that the position where the
isotropic source term is placed does not affect the eigenval-
ueslln but only the coefficientsaln by Eq. (19). Therefore,
Kln0

2 andKln1
2 are obtained as solutions of the transcendental

equation(17) in the same way of the casez0,s0. Assuming

as first layer that where the source is located, i.e., according
to Fig. 1 the layer where the origin of the reference system is
fixed, we have that in all generality Eq.(24) represents the
Green’s function of the medium when the source term is
placed along the axis of the cylinder. Thinking in terms of
reflectance or transmittance emerging from the medium(see
Fig. 1) we have that changing the position of the Dirac-d
source from one layer to the other it is equivalent to ex-
changing the expressions for reflectance and trasmittance.

In case the source term does not belong to the axis of the
cylinder, we lose rotation symmetry aroundz and the eigen-
functions of the system cannot be represented anymore by
Eq. (12). Therefore, we need to introduce in the eigenfunc-
tions a component for the rotation aroundz in order to rep-
resent all the points in thex-y plane. This changes a little the
final expression for the irradiance, but the whole frame of the
procedure remains unchanged. Moreover, we point out that,
provided the distance of the source term from thez axis is
much lower thanL, Eq. (24) is in general a good approxima-
tion of the Green’s function.
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Finally, we notice that from the expression of the irradi-
ance (24) we can calculate the reflectanceRsr ,td and the
transmittanceTsr ,td by using the meaning of the flux vector:

Rsr,td = Jsr,z= 0,td · s− kd,

Tsr,td = Jsr,z= s0 + s1,td · skd, s26d

where R and T are evaluated in an arbitrary points on the
surfacez=0 andz=s0+s1 respectively, and the flux vector is
given by the Fick’s law;k is the unit vector along thez axis.
From Eq.(24) we can derive the following expressions for
the reflectance(27) and transmittance(28) respectively:

Rsr,td = o
l,n=1

`

v0
2D0Kln0J0sKlrdcossgln0d 3 sin*sKln0z0

+ gln0dexpf− sK0
2D0 + ma0dv0tg/Nln

2 , s27d

Tsr,td = − o
l,n=1

`

v0
2D1Kln1J0sKlrdbln1 cosfKln1ss0 + s1d + gln1g

3 sin*sKln0z0 + gln0dexpf− sK1
2D1 + ma1dv1tg/Nln

2 .

s28d

The whole procedure we described provides the time do-
main Green’s function for a two-layered cylinder with varia-
tions between the refractive index of the layers illuminated
by an isotropic light source placed inz0. When a pencil light
beam(z axis in Fig. 1) is normally impinging the medium
some approximations need to be introduced. The real source
term is substituted either by a line of isotropic sources or by
a single isotropic point source located atr0=s0,0,z0d as con-
sidered in our derivation. The coordinatez0 is obtained by
imposing that the line of isotropic point sources and the
single point source have the same first moment[10]. In ac-
cordance with this assumption if the thickness of the first
layer is sufficiently large we havez0=1/sms08 +ma0d, where
ms08 and ma0 are the reduced scattering coefficient and the
absorption coefficient of the first layer. Although the more
general line source can also be treated as simple integral by
Eq. (19), in this paper we restrict our investigation to the
single point source.

III. RESULTS

In a previous paper[10] we have already shown that a
solution of the DE for layered media based on the eigenfunc-
tions method is able to describe step variations of the absorp-
tion and of the reduced scattering coefficient of the layers. In
this section we present a set of comparisons between the
results of MC simulations and Eqs.(27) and (28) with the
aim to show that the theory presented in Sec. II also provides
an accurate description of step variations between the refrac-
tive indices of the layers,n0 andn1.

Details about the MC code can be found in Refs.[10,17].
For MC simulations we mainly used a scattering function of
Rayleigh scatters for which the asymmetry factorg results to
be =0. This choice ofg, although is not realistic for biologi-

cal tissues(for which in the near infrared range isg.0.9),
allows us to reduce significantly the computation time of MC
simulations. However, as expected by the DE, whenever we
fixed the values ofms8 in the different layers no significant
differences were observed between MC results obtained for
different combinations of scattering functions, i.e., different
values ofg, and scattering coefficients. Thus the validation
of the theory shown in this section is, within the diffusion
range, general and it does not refer to restricted conditions of
light propagation. The MC code simulated a pencil light
beam normally impinging the medium. The program for the
solution of the DE is organized according to the details given
in the previous section. It is worthwhile to remind that once
a set of eigenvalues is calculated by solving the transcenden-
tal equation(17), we have all the useful information for the
calculation of the Green’s functions of the system at different
source-detector distances. The roots of Eq.(17) have been
found with a combination of bisection and Newton-Raphson
methods[20].

The results of Figs. 2–4 refer to a couple of diffusive
layers that only differ by their refractive indices. In Fig. 2
some comparisons between MC(symbols) and DE(continu-
ous lines) temporal profiles for the reflectance are shown.
They refer to a cylinder having:s0=8 mm, s1=100 mm,L
=100 mm, ma0=ma1=0.01 mm−1, and ms08 =ms18 =1 mm−1.
The data are plotted forr=22 and 40 mm. Two values of the
refractive index mismatch between the layers have been
shown:n0=1.4 andn1=ne=1, andn0=ne=1 andn1=1.4.

In Fig. 3 some comparisons for the transmittance are
shown. They refer to a cylinder having:s0=8 mm, s1
=12 mm, L=100 mm, ms08 =ms18 =1 mm−1. The curves are
calculated atr=0 for ma0=ma1=0.01 mm−1 and for the non-
absorbing medium. Results are shown forn0=1.4 andn1
=ne=1, andn0=ne=1 andn1=1.4. We notice that the results
for the absorbing medium cannot be simply obtained by scal-
ing the Green’s function for the nonabsorbing medium with

FIG. 2. Comparison between the time-resolved reflectance cal-
culated with MC simulations(symbols) and with the DE(continu-
ous curves) for a cylinder having:s0=8 mm, s1=100 mm, L
=100 mm, ma0=ma1=0.01 mm−1, ms08 =ms18 =1 mm−1. Data are
shown forr=22 and 40 mm for two values of the refrative index
mismatch: n0=1.4, n1=ne=1 (circles) and n0=ne=1, n1=1.4
(crosses).
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the exponential decay exps−mavtd since we do not have an
a priori knowledge of the time spent by received photons in
the first and in the second layer.

Figure 4 shows maps of irradiance in the continuous wave
(cw) domain. The cw irradiance has been obtained by an
analytical integral of Eq.(24). The layered cylinder has:s0
=8 mm, s1=100 mm, L=100 mm, ma0=ma1=0.01 mm−1,
andms08 =ms18 =1 mm−1. The maps refer to:n0=ne=1 andn1
=1.4 (top), n0=n1=ne=1 (middle), and n0=1.4 andn1=ne
=1 (bottom). The refractive index mismatch determines a
discontinuous behavior of the irradiance at the interface be-
tween the two layers, i.e., atz=s0=8 mm. Photon migration
through the second layer is obstructed(facilitated) when
n0.n1sn0,n1d, i.e., a negative(positive) refractive index
step variation between the layers determines a lower(higher)
penetration depth of the diffuse light.

All the comparisons we presented show an excellent
agreement between the results of the MC simulations and the
theory derived in the preceding section. The formulas pre-
sented are able to account for significant variations between
the refractive index of the diffusive layers. The computation
time for any set of temporal profiles was always shorter than
1 s by using a 1.8-GHz Pentium IV processor.

IV. CONCLUSIONS

With the aim of modeling the refractive index mismatch
inside layered media a Green’s function of the time-domain
diffusion equation for a layered cylinder where the source
term is placed along the axis of the cylinder has been ob-
tained by using the eigenfunctions method. The Green’s
function accounts for step variations of refractive index both
between the diffusive layers and between the layers and the
external. The refractive index mismatch at the interface of
two diffusive layers results in a discontinuity of the photon

fluence. To simplify the study of the problem we have used
approximate boundary conditions expressed by Eq.(7).
However, we have verified that this approximation does not
significantly affect the results obtained. In fact, for all the
cases analyzed in Figs. 2–4, we have repeated the calcula-
tions with the more correct boundary condition expressed by
Eq. (6) (we notice that the use of this boundary condition
makes the calculation quite more complicated) and we ob-
served that the results did not change significantly even for a
refractive index mismatch of 1.4. We therefore conclude that
the range of refractive index mismatch for which the bound-
ary condition expressed by Eq.(7) holds seems even larger
than expected by the results of Ripoll and Nieto-Vesperinas
[8].

The solution of the diffusion equation has been validated
by comparisons with the results of Monte Carlo simulations.
The correctness of the formulas presented in Sec. II has been
verified for a wide range of the refractive indicesn0, n1, and
ne. In conclusion, the proposed theory provides a fast, accu-
rate, and reliable method to model the effect of the refractive
index mismatch at the interface of two diffusive layers. The
refractive index mismatch changes both the shape of the
time-resolved reflectance or transmittance and the balance of
energy inside the medium. In the analytical expressions of
Sec. II the refractive index mismatch changes the distribution
of eigenvalues, the normalization factor, and the speed of
light passing through the layers.

Although the formulas presented in Sec. II may find ap-
plications in several physical processes, we make our final
conclusion with some considerations on their use in tissue

FIG. 4. Maps of the cw irradiance in thex-z plane for a layered
cylinder having: s0=8 mm, s1=100 mm, L=100 mm, ma0=ma1

=0.01 mm−1, andms08 =ms18 =1 mm−1. The maps refer to:n0=ne=1,
n1=1.4 (top), n0=n1=ne=1 (middle), and n0=1.4, n1=ne=1
(bottom).

FIG. 3. Comparison between the time-resolved transmittance for
a coaxial receiversr=0d calculated with MC simulations(symbols)
and with the DE(continuous curves). The cylinder has:s0=8 mm,
s1=12 mm, L=100 mm, ms08 =ms18 =1 mm−1. Data are shown for
two values of the refractive index mismatch:n0=1.4, n1=ne=1
(circles) and n0=ne=1, n1=1.4 (crosses) both for ma0=ma1

=0.01 mm−1 and for the nonabsorbing medium.
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spectroscopy. The internal optical properties of tissue are
usually retrieved by inversion procedures on measurements
carried out at the surface of the tissue. The theory and the
results of Monte Carlo simulations have clearly shown that
the refractive index mismatch may significantly change the
time-resolved reflectance. Figures 5 and 6 refer to a couple
of layers with optical properties similar to that of fat and of
muscular tissue for whichms08 Þms18 , ma0Þma1, andn0Þn1.
In particular, Fig. 6 shows the effect that the refractive index
variation determines on measurements of muscle oxygen-
ation.

In Figs. 5 and 6 we have considered a two-layered cylin-
der with s0=8 mm, s1=100 mm, L=100 mm, ma0
=0.004 mm−1, ma1=0.03 mm−1, ms08 =1 mm−1, and ms18
=0.5 mm−1. For modeling the optical properties of muscle
with a subcutaneous fat layer we have chosenn0=1.44(rep-
resentative of fat tissue, Ref.[21], p. 42) andn1=1.37 (rep-
resentative of muscular tissue, Ref.[21], p. 43). The good
agreement in Fig. 5 between Eq.(27) and the results of MC
simulations shows that the theory provides an accurate de-
scription of photon migration also whenms08 Þms18 , ma0
Þma1, andn0Þn1. In Fig. 6, for the distancer=30 mm we
have compared the data of Fig. 5 with the data obtained
assuming an average constant refractive indexn=n0=n1
=1.4. The differences between the curves denoted as Muscle
A and Muscle B are representative of the error that may be
encountered when a time-resolved measurement is analyzed
with a model that does not account for refractive index varia-
tions. Therefore inversion procedures based on an average
constant refractive indexn lead to wrong estimation of the
optical properties of the two layers. Equation(27) suggests
that for the layer with refractive index larger than the average
value n, ma would be underestimated andms8 overestimated
and vice versa for the layer with lower refractive index. For
the case of muscle with the fat layer errors remain within
5%.

The solution of the DE for the cylindrical geometry pre-
sented in this paper has the advantage, for the rotation sym-

metry aroundz, of a reduced computation time compared to
that for the parallelepiped geometry[10]. The cylindrical ge-
ometry can be used to model measurements on biological
tissues, for which the medium is usually assumed to be lat-
erally infinite, provided a sufficient large radius of the cylin-
der is assumed[11].
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APPENDIX A: IMAGINARY ROOTS

In Ref. [10] we analyzed the distribution of imaginary
roots when the layers had matched refractive index but dif-
ferent absorption coefficient or different reduced scattering
coefficient. In this appendix we summarize the changes that
arise in the distribution of imaginary roots when a variation
between the refractive indices of the diffusive layers is intro-
duced. The initial-boundary value problem is thus solved af-
ter we determine the discrete number of solutions of the tran-
scendental equation(17). As stated before, here we are
looking at the possibility that eitherKln0

2 or Kln1
2 , or both, are

negative; thereforeKln0 andKln1 are imaginary numbers. In
fact it is possible to demonstrate that the transcendental
equation (17) admits always imaginary roots whenever
sD0/n0dÞ sD1/n1d. For the casesD0/n0d=sD1/n1d, imagi-
nary roots are found only if a minimum criteria for the
change ofma/n is met.

Let us start to write the relationship betweenKln1
2 andKln0

2

as

Kln1
2 =

n1

n0

D0

D1
Kln0

2 + C, sA1d

where

FIG. 6. Reflectance calculated with MC simulations(symbols)
and with the solution of DE(continuous lines) for a cylinder hav-
ing: s0=8 mm, s1=100 mm, L=100 mm, ms08 =1 mm−1, ms18
=0.5 mm−1, ma0=0.004 mm−1, and ma1=0.03 mm−1. The case
Muscle A refers ton0=n1=1.4 andne=1, while the case Muscle B
refers ton0=1.44,n1=1.37, andne=1. The data are plotted forr
=30 mm.

FIG. 5. Reflectance calculated with MC simulations(symbols)
and with the solution of DE(continuous lines) for a cylinder hav-
ing: s0=8 mm, s1=100 mm, L=100 mm, ms08 =1 mm−1, ms18
=0.5 mm−1, ma0=0.04 mm−1 and ma1=0.03 mm−1, n0=1.44, n1

=1.37, and ne=1. The data are plotted forr=14,22,30, and
40 mm.
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C = fsn1/n0dma0 − ma1g/D1 + Kl
2fsn1/n0dD0 − D1g/D1.

sA2d

We have a different linear relationship betweenKln1
2 andKln0

2

for C.0 and for C,0, respectively. For the caseKln0
2 ,

−sD1/D0dsn0/n1dC sC.0d, or Kln0
2 ,0sC,0d, possible roots

Kln0 and Kln1 of Eq. (17) must be imaginary numbers:Kln0
= ± i uKln0u, Kln1= ± i uKln1u. By using the property tanhszd
5-i tansizd, wherez is a complex number, Eq.(17) becomes

tanhf± uKln0uss0 + 2A0eD0dg
D0s± i uKln0ud

= −
tanhf± uKln1uss1 + 2A1eD1dg

D1s± i uKln1ud
sn0/n1d2. sA3d

We notice that Eq.(A3) is impossible; therefore our prob-
lem cannot admit eigenvalues with bothKln0

2 andKln1
2 nega-

tive. In terms of the eigenfunctions it means that no eigen-
function has a component along thez axis given by a
combination of exponential functions at both sides of the
discontinuity z=s0. Let us now treat separately the two
possibilitiesC.0 andC,0 to search for imaginary roots
of Eq. (17).

(i) C.0. Possible imaginary roots are found in the inter-
val −sD1/D0dsn0/n1dC,Kln0

2 ,0. Here we are looking at the
possibility that Eq.(17) is solved for Kln0= ± i uKn0u, and
Knl1= ± uKln1u. The four different choices for the sign ofKln0
andKln1 yield the same equation:

−
tanhfuKln0uss0 + 2A0eD0dg1

D0uKln0u

=
tanfuKln1uss1 + 2A1eD1dg

D1uKn1u
sn0/n1d2. sA4d

Because we are studying Eq.sA4d in a limited interval of
Kln0 and Kln1, we notice that a necessary condition for Eq.
sA4d to admit some roots is

p

2
, ÎC l1, sA5d

where we have definedl1=s1+2A1e D1. A sufficient condi-
tion for Eq. sA4d to admit some roots is

p , ÎC l1. sA6d

If D0/n0.D1/n1 surely the condition(A6) will be met
for infinite choices of theKl, and for each one of them Eq.
(A4) admits a finite number of roots. If we definea1
= uKln1ul1, and M0= intfÎCl1/pg (“int” indicates the integer
part of the division) all the possible roots are found when

a1P ø
j=1

M0

(s2j −1dp /2 , jp)ø sM0p ,ÎCl1d, for the caseM0.0.

While for the caseM0=0 the possible root is found when
a1P sp /2 ,ÎCl1d. It is also possible that there exist at maxi-
mum a finite number of choices ofKl for which the condition

(A5) is not met and therefore there are no roots of Eq.(A4).
If D0/n0=D1/n1=D /n (when C.0 it means that

ma0/n0.ma1/n1, a necessary condition for Eq.(A4) to admit
a finite number of roots is

p

2
,ÎSsn1/n0dma0 − ma1

D
Dl1. sA7d

It means that the change ofma/n between the layers must
satisfy the following minimum criteriasnecessary conditiond:

Dsma/nd = ma0/n0 − ma1/n1 . Sp

2
D2D/n

l1
2 . sA8d

If D0/n0,D1/n1, the condition that we are considering,
C.0, is verified only for a finite number of choices of the
Kl. Again Eq.(A4) has roots, if the condition(A6) is satis-
fied.

(ii ) C,0. Possible imaginary roots are found in the in-
terval 0,Kln0

2 ,−sD1/D0dsn0/n1dC. In this case we are
searching for roots of Eq.(17) of the kindKln0= ± uKln0u, and
Kln1= ± i uKln1u. After substitution in Eq.(17) we obtain

tanfuKln0uss0 + 2A0eD0dg
D0uKln0u

= −
tanhfuKln1uss1 + 2A1eD1dg

D1uKln1u
sn0/n1d2. sA9d

Necessary and sufficient conditions for Eq.sA8d to admit
some roots are

p

2
,Î− SD1

D0
DCl0, sA10d

p ,Î− SD1

D0
DC l0, sA11d

respectively, where we have definedl0=s0+2A0e D0.
If D0/n0,D1/n1, surely the condition(A11) will be

met for infinite choices of theKl, and for each one of
them Eq. (A9) admits a finite number of roots. If we
define a0= uKln0ul0 and M0= intfÎ−sD1/D0dsn0/n1dC l0/pg,

all the possible roots are found whena0P ø
j=1

M0

(s2j

−1dp /2 , jp)ø (M0p ,Î−sD1/D0dsn0/n1dC l0) for the case
M0.0, while for the caseM0=0 the possible root is found
whena0P (p /2 ,Î−(D1/D0dsn0/n1dC l0). It is also possible
that there exist at maximum a finite number of choices ofKl
for which the condition(A10) is not met and therefore there
are no roots of Eq.(A9).

If D0/n0=D1/n1=D /n (it means thatma0/n0,ma1/n1)
the condition (A10) yields a necessary condition for the
change ofma/n of the two layers:

Dsma/nd = sma1/n1 − ma0/n0d .
D/n

l0
2 Sp

2
D2

. sA12d

If D0/n0.D1/n1, the condition that we are considering,
C,0, is verified only for a finite number of choices ofKl.
Again Eq.(A9) has roots, if the condition(A11) is satisfied.
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We can summarize this study by stating that whenever
D0/n0ÞD1/n1 the transcendental equation(17) always ad-
mits imaginary roots for eitherKln0 or Kln1. While if D0/n0
=D1/n1, imaginary roots of Eq.(17) are possible only if
Dsma/nd. fDsma/ndgmin, and we have determined necessary
(and sufficient) conditions for both casesC.0 andC,0.

Now let us treat again simultaneously the two possi-
bilities C.0 and C,0. If Kln0

2 .0 sC.0d, or Kln0
2 .

−sD1/D0dsn0/n1dC sC,0d we are searching for real roots of
the transcendental Eq.(17). For this case we have to solve
Eq. (17), and because we are studying it in an interval not
bounded, we will always find infinite roots.

Why are the imaginary roots of Eq.(17) so important? If
we plot Kln1

2 vs Kln0
2 we understand that whenever imaginary

roots exist, they might yield the lowest eigenvalues and in
particular the minimum eigenvaluelmin. This is definitely
the case if, for example,Dsma/nd=0, D0/n0.D1/n1, and

p , ÎCmin l1, sA13d

whereCmin is the value ofC calculated for the lowestKl. It is
obvious that the minimum eigenvalue dominates in the series
solution(24) (especially at late time). Therefore a large error
in the shape of the temporal profile is expected iflmin is not
properly calculated.

APPENDIX B: NORMALIZATION FACTOR

The expression for the factorNln is obtaned by Eq.(22)
and results in

Nln
2 = pfLJ1sKldg2Hv0F l0

2
−

sins2Kln0l0d
4Kln0

G
+

v1n1
4 sin2sKln0l0d

n0
4 sin2sKln1l1d

F l1
2

−
sins2Kln1l1d

4Kln1
GJ , sB1d

Nln
2 = pfLJ1sKldg2Hv0F−

l0
2

+
sinhs2uKln0ul0d

4uKln0u G
+

v1n1
4 sinh2suKln0ul0d

n0
4 sin2sKln1l1d

F l1
2

−
sins2Kln1l1d

4Kln1
GJ , sB2d

Nln
2 = pfLJ1sKldg2Hv0F l0

2
−

sins2Kln0l0d
4Kln0

G
−

v1n1
4 sin2sKln0l0d

n0
4 sinh2suKln1ul1dF l1

2
−

sinhs2uKln1ul1d
4uKln1u GJ , sB3d

which are valid for the cases when bothKln0 and Kln1 are
real, whenKln0= i uKln0u andKln1= uKln1u, andKln0= uKln0u and
Kln1= i uKln1u, respectively.

APPENDIX C: SOLUTION WITH z0.s0

The Green’s function for a two-layered cylinder when the
source term is placed in the second layer, i.e.,z0.s0, is

Fsr,td =5 o
l,n=1

`

v1
2J0sKlrdsinsKln0z+ gln0d 3 bln1

* sin*sKln1z0 + gln1dexpf− sK0
2D0 + ma0dv0tg/Nln

2 , 0 ø zø s0

o
l,n=1

`

v1
2J0sKlrdbln1 sinsKln1z+ gln1d 3 bln1

* sin*sKln1z0 + gln1dexpf− sK1
2D1 + ma1dv1tg/Nln

2 , s0 ø zø s0 + s1.

sC1d
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