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Pseudoknots in a homopolymer
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After a discussion of the definition and number of pseudoknots, we reconsider the self-attracting homopoly-
mer paying particular attention to the scaling of the pseudoknot nuthbgr at different temperature regimes
in two and three dimensions. We find that, although the total number of pseudoknots is extensive at all
temperatures, the number of those forming between the two halves of the chain diverges logarithmically at
(both dimensionsand below(two dimensions onlythe # temperature. We later introduce a simple model that
emphasizes the role of pseudoknot formation during collapse. The resulting phase diagram involves swollen,
branched, and collapsed homopolymer phases with transitions between each pair.
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I. INTRODUCTION PK'’s are allowed gives way to a smooth crossover upon their

Fueled mainly by the advance in RNA structure determi-exclusion. This result emphasizes the thermodynamic rel-
nation techniques, recently there has been growing interest fivance of PK's. Lucas and Dill14] consider lattice ho-
understanding and predicting the formation of pseudoknot§opolymers again to argue that the denaturation transition
in RNAs. A pseudokno(PK) is not a true knot in the con- between the pseudoknotted state and the open state is con-
ventional sense. It is a simpler construct generated by a polyinuous. Another two-tolerant trail model with pseudoknots
mer’s self-contactssee the definition beloyjand therefore is  and with a native state consisting of a single hairpin is shown
encountered more frequently. Unlike true knots which argo denaturate through a first-order transitidd]. Studying
problematic for the DNA and occur occasionally in shorterthe interplay between the PK's and the transition thermody-
biomolecules, PK'sare the tertiary structure of the folded namics within the homopolymer context is a prerequisite for
RNAs. They are known to exist in almost all RNA classes a deeper understanding of the physics of RNA pseudoknots.
including transfer, messenger, ribosomal, viral, catalytic, and Folding experiments on RNAs suggest that it is physi-
self-splicing RNA's (see reviews[1]). A recent analysis cally more appropriate to attribute a different binding energy
found that they account for up to 30% of the bound basdo the contacts that form a P 7]. This energy can be tuned
pairs in G+C rich RNA sequencef?]. In addition to stabi- by changing the Mt concentration in the solvent. Unless
lizing the fold, PK’s are believed to assume functional rolesthis energy is prohibitively higlias in the case of very low
such as mediating the binding of the proteins they encod®lg*? concentratiop calculating the Boltzmann weights ne-
[3], labeling functionally important positions on the coding cessitates identifying PK’s for an arbitrary configuration. As
regions of themRNA sequencd4,5], mediating frameshift- we shall see below, this task, though it may be easier in
ing [6], etc. native RNA configurations, is nontrivial for an arbitrary

Being a more elementary topological formation thanpolymer.
knots, PK’s are relatively amenable to numerical investiga- Accordingly, our goal throughout this paper will be to
tion. Nevertheless, most of the earlier computational toolexplore the thermodynamic role assumed by the PK’s in the
and recent theoretical work on RNA structure prediction takewvell-known context of homopolymer collapse by:
into consideration only those configurations without PK’s (i) providing an analytic definition for the PK number
[7-9. This is mostly because ignoring PK’s results in a(Sec. I);

“nested” set of equations and, as a consequence, allows effi- (ii) investigating the scaling properties of the PK number
cient dynamic programming techniques. The drawback i$n various regimes of the homopolymer collagSec. Il);

that their success is limited to secondary structure prediction (iii) generalizing the Hamiltonian for the self-attracting
only. And even then, with limited accuracy due, partially, to homopolymer to include an arbitrary penalty for PK’'s and
a necessary reorganization of the secondary structure copbtaining the corresponding phase diagreac. V).

tacts to accommodate the PK’s. More recently there appeared We hope that our results will provide a better understand-
computational[10,11] and theoretica[12-15 studies that ing to the nature of the PK’s and a new perspective to the
include PK’s into RNA structure prediction algorithms. Pils- homopolymer collapse transition by locating it in a more
bury et al. suggest a diagrammatic expansion to perturbageneral framework that also includes the branched polymers
tively take into account the PK'§12]. A recent study by and their collapse transition.

Baiesiet al. [13] takes a more physical look at RNA dena-

turation. They model the RNA as a _homopolymer_ traversing Il. COUNTING PSEUDOKNOTS

a two-tolerant walk on the fcc lattice and consider walks

both with and without PK’s[16]. They conclude that the An arbitrary configuration of a polymer chain can be en-
sharp second-order denaturation transition observed wheroded as a contact mgp8] which is a binary symmetric
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FIG. 2. The resulting graph for the arc diagram in Fig. 1 after
£ f/\\ the mapping to the vertex-covering problem. Empty vertices corre-

spond to the solution represented by bold arcs in Fig. 1.

FIG. 1. A SAW on a square lattice and its self-contaedges ) )
not traversed by the walk that connect two visited nearest-neighbd®CS (see Fig. 2 The vertex-covering problem on the ob-

lattice site together with the corresponding arc diagram and at@ined graphkknown as the incompatibility grapfamounts
nonunigue minimal contact seshown in bold whose removal re-  t0 finding a minimal set of vertices which, when labeled,

duces the diagram to a planar one. results in labeling at least one end of every edge. In other
words, erasing those vertices alone together with the edges
matrix. The contact map, in turn, can be represented graphsprouting from each is sufficient to get rid of all the edges in
cally by an “arc diagram” as follows: Imagine stretching thethe graph. Since every edge reflects a crossing and every
polymer into a horizontal straight line by pulling from the vertex an arc in the original arc diagram, eliminating those
two ends. Next, connect each pair of monomers that werarcs corresponding to the minimal vertex set obviously re-
originally in contact by a semicircular arc on the upper halfsults in a planar diagram, i.e., the size of this minimal set is
plane (the diagram is drawn on a plane even though theequal toN,. Since we need to calculad,, for many poly-
polymer may be embedded in arbitrary dimensjons mer configurations in our study, it is important to be aware
The diagram is said to bj@anar if no two arcs cross each that an exact treatment requires CPU times exponential in the
other. This is equivalent to having no PK’s. In the oppositenumber of arc crossings. The above mapping is a different
case, a selective treatment of the PK’s primarily requiresand simpler statement of NP completeness than an earlier
identification of their number. Since the definition involves proof that a large class of RNA secondary structure predic-
crossings in the arc diagram, one might be inclined to simplyion algorithms based on free energy minimization with
count the number of crossings. However, this does not makBseudoknots are NP complefizl]. Also note that when re-
physical sense, because an arbitrary number of crossingdficted to a certain subset of polymer configuratictypi-
may be generated by the addition of a single contact, as iglly generated in an iterative manpethe problem can be
obvious from Fig. 1. Instead we need a quantity that reflect§CIVed in polynomial time. Efficient algorithms on such re-
the number of contacts that are responsible for thestricted configurations have been recently utilized to predict
pseudoknots. Accordingly, we defitdg,, the PK number, as RNA psegdoknot$2,10,12_,.
the minimum number of arcs that need to be removed to Wha'; IS t_he expecte_d value (b.ipk _for a polymer? We
reach a planar diagram. The same definition was recentijyould first like to provide some insight for the reader by
adopted in another study on RNA pseudoknot predictiin alculatingNp fqr a randqm arc dllagram: C_on3|ng ran-
We stress that the choice of this minimal set is in general noflomly chosen distinct pairs OT points on a Ilne.."segment and
unique. In Fig. 1, we show a SAW in two dimensions and thecONnect them by arcs as in Figbl. The probability tham
corresponding arc diagram, where one possible choice of 2ndomly placed arcs do not intersece., form a planar
minimal set of arcs which, when removed, leave a plana@r@Ph i
diagram is drawn in bold. Therefore, although one can talk Ppianal(m) ~ 1/(m!). (1)
about a unique PK number, labeling some of the contacts as
PK forming contacts requires adopting an extra arbitrar
convention. In this study, we avoid this by resting our results X e ; -
on the mere knowledge of the number of PK’s. if the arc is placed with its legs resting on different compart-
Our first observation is that calculatingy, exactly foran ~ Ments, It has to cross at least one other arc. Then, the prob-
arbitrary arc diagram belongs to a class of problems know/@Pility that themth arc does not crosgiven the firstm-1
asNP completeimplying that there is no known determin- arcg is roughly lm_l.e., the probablhty that t_he two points
istic polynomial-time algorithm for calculatiniy, [19]. We fall into the same bin. Equatiogi) follows by induction.
prove this by mapping our problem to one of the six well- 1 "€n, such a subset of planar arcs will be found among
known problems in computer science that are shown to bgvailable distinct subsets when
NP complete, namely the “vertex-covering” problem. For a .
recent review of the vertex-covering problem in the statisti- (m ) = 1/Ppjana(m). 2
cal physics context, see RdR0]. The mapping is easily
established by representing each arc by a vertex and drawing is maximized when the two sides are equal. Applying Ster-
edges between pairs of vertices corresponding to crossin@ng’s approximation on both sides leads g, VN.. In

roof by induction: themth nonintersecting arc to be placed
Jwill see the polymer divided inton compartments, such that,
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other words, the typical number of pseudoknots for a randonpseudoknot formation can change the low-temperature phase
arc diagram approaches the number of contacts in the thefrom collapsed to a branched polym@&ec. V).
modynamic limit(N,— «) as

Ill. PSEUDOKNOT NUMERICS

(N = (Npid)/Ne o= 1/VNe. In this part of our analysis we look at the ordinary ho-
Yet, true polymers and lattice walks do not come with mopolymer collapse, where the energy is not sensitive to the
random arc diagrams. There is a considerable correlatiopseudoknot formation. We obtained statistics numerically for
among the contacts due to the existence of an underlyingelf-avoiding chains of typical siz&=300, even though we
chain and the effective repulsion resulting through self-checked for size independence of our results occasionally by
avoidance, both of which favor contacts between monomergoing up toN=800. All our results were obtained by using
that are closer along the chain. This tendency is reflected ign improved version of the PERM algorithm developed by
the loop length distributiori32], Grassbergeet al. [24]. Although with PERM it is typical to
simulate much longer homopolymers, our statistics were
mainly limited by the fact thal,, for each configuration has
P(l) <17, 3 to be calculated from scratch, unlike, e.g., the number of
contacts which is updated incrementally at each step of the
walk. We present results for square and cubic lattices in two
wherec=d/2 (random wall, c=dv—-0,=2.68,2.22SAW in and three dimensions, respectively.
two and three dimensiopsand a4 the critical dimension Itis possible to calculathl,, using an exact back-tracking
associated with a four-leg vertex as in the polymer networksearch algorithm which is straightforward to implement, but
theory of Duplantief27]. Correspondingly, one expedi,  requires a runtime exponential in system size. Since we want
for the real chains to be less than the above “random graphfo obtain statistics for reasonably long chains, it is not fea-
value. The combinatorial argument presented above picksible to use such an exact method. Instead, we calchigte
random pairs of points along the chain with equal probabilityapproximately by means of a greedy algorithm which at each
irrespective of the distance in betwe@¥ 0). Unfortunately,  step eliminategone of the maximally crossing afs). The
it does not generalize easily to>0. However, our numeri- choice is made randomly when they are more than one. Due
cal analysis on random graphs with arbitrarguggests to the stochastic nature of the algorithm and the fact that the
optimal selection may involve eliminating a less than maxi-
mally crossing arc, this greedy algorithm provides an upper
(Ng = Npp = N:J(C), bound toN,,. For details of various exact algorithms and the
above greedy algorithm we refer the reader to R2@)].

For comparison, we also implemented an exact calcula-
with qg(c) increasing almost linearly frong(0)=1/2 and  tion of Ny, on the typical diagrams we encountered. We
saturating ag(~2)=1. The interesting statistical properties found that the average deviation from the exact value of the
of the incompatibility graph with the distribution in E¢3) upper bound orN, obtained by the greedy algorithm, al-
will be reported elsewhere. A further reduction is expected irthough increasing with growing chain length, approaches a
two dimensions due to additional constraints imposed by theonstant fraction around 1.5% of the exbik. Therefore we
impenetrability of encircled regions: The fact that each poly-are confident that our conclusions concerning the scaling be-
mer contact divides the plane to two disconnected regionkavior are not effected by the approximate algorithm we
translates to having a bipartite incompatibility graph. As aadopted.
consequencely =< N/2 (since the arc diagram turns out to At all temperature regimes, we find th@t,,) is a fraction
be planar when arcs are allowed on both half planes insteagf the total number of contacts with a temperature-dependent
of one). Unlike the general case, the vertex-cover problem orproportionality constan&(T). Although a Fermi-function-
bipartite graphs is solvable in polynomial tini22]. like limiting behavior is evident from Fig. 3, the precise form

One can obtain a lower-bound o, from Kesten's Pat-  of 5(T) in the thermodynamic limit requires a more elaborate
tern Theoren{23], i.e., by noting that a local pseudoknotted 5n41ysis which we will not attempt here.
pattern(e.g., the shortest S-shaped walk on a square lattice 4(T) reveals the leading behavior itN,,), however
has a finite probability of occurrence in an infinite chain. i,y of critical phenomena has taught us that the nontrivial
Therefore behavior of many systems is reflected in the nonanalytic con-
tribution to the extensive quantities. Recently, Orlandihi
al. [25] considered the scaling of contacts formed between
the two halvegreferred from here on as A and Bf a SAW
at the 6 point as a direct and precise way of measuring the
crossover exponenp,. The number of such contacts scales

(N > aN (4)

for a walk ofN steps and for soma> 0. Extensivity of(Ng»
; ) s

for a homopolymer supports the observation that their exclu-

sion may have manifestations on the nature of the transition AB 3

in the thermodynamic limit[13] and that penalizing (Ng™(Ty)) = N, (5)
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FIG. 3. Fraction of pseudocontacts as a function of temperature
for self-avoiding walks of 64squarg, 128(circle), 256 (diamond,
and 512(triangle) steps in two dimensions.

FIG. 4. Scaling of the A-B pseudoknot number for T, (two
dimensiony T=T, (two dimensiongy and T=T, (three dimen-
siony. Estimated asymptotic slopes are given with the uncertainty
on the last digit indicated in parentheses. Maximum walk size was
where ¢,=3/7 in twodimensions, as can be shown analyti- 800 steps in both dimensions.

cally by using a recent extension of Saleur-Duplantier results

for polymer criticality [26,27. The value of the crossover yjyes (only at T=T, ), albeit with a different exponent,
exponent is typically difficult to confirm by numerics, be- -4 31+0.02.

cause, as a rule, it has to be extracted from subleading sin- |, retrospect, one could argue priori that <N/SE> and

gular terms, when considering the set of all contacts alon NABy should have qualitativelv different scaling properties at
the chain[28]. Focusing on the contacts between the two9 c) .q y g prop
the 6 temperature:

halves strongly filters out the dominant analytical contribu- We recall that the easiest wav to obtadn is to use the
tion of the local contacts along the chain, thus surfacing the way a )
. L o correspondence between a ring polymer at #éheoint and
otherwise concealed nonanalyticity. AB-contact statistics ha . _
s . e full hull of a percolating cluster at the percolation tran-
been fruitful in a variety of polymer mode[25,29.

e . . sition in two dimensiong25]. In this picture, the AB con-
We use the same method here to pinpoint the smgulant)(acts correspond to the the “red” contacts between the two

of (N, which at the leading term scales identical to the . . ; . .
; pt tensivity of(N-) due o Kesten’ t halves that lie between two diametrically opposite points of
contact energyextensivity of(Ny due to Kesten's pattern the hull [which are at the opposite infinities, see Figa)p

theoren). More precisely, we start by identifying all A-B [29].
AB . .

contactsN, aiBabovej and then calculate the number of A-B" The key observation is that, an AB pseudoknot cannot be
pseudoknoty, by eliminating the crossing arcs in the arc formed “locally” between the two halves, because one of the
diagram corresponding to A-B contacts only. Sifby on o halves of the chain should wrap around the midpoint to
the whole chain is a fraction of the contact®,), at all  make a pseudoknot-forming A-B contact, as shown in Fig.
temperatures, one may expect tiiif’) should also scale 5(b). This imposes a rather stringent condition on the A-B
identical to(N’C*B) at all temperatures. In contrast, we find a pseudoknot formation. The numerical result of E8). nev-
qualitatively different scaling of the A-B pseudoknot number. ertheless indicates a logarithmic divergence @fy). The

Let us consider each temperature regime separately:
Above thed point (T>T,), no surprises are expectedi,®)
already saturates to a constant in both two and three dimen-
sions. SinceNZ<N2®, this leaves no alternative toN;?
but to stay finite as well. This is confirmed by our numerics
in Fig. 4.

At the 6 point, the PERM algorithm is the most efficient.
Therefore we expect our results to be most accurate in this
region. Recall thatN2®)« N7 for T=T,, which can be ob-
tained analytically and verified numerically to high accuracy.
Our numerical results fo(rNﬁE} on the other hand indicate a

logarithmic divergence of the form

FIG. 5. The curves Athick) and B (thin) represent the two
halves of the full hull of a percolating cluster at the percolation
transition. The number of AB contadtimdicated by the cutting line

(NAE(T ) = (In N)“s, (6)  segmentsscales af*” in the thermodynamic limit when the two
diametrically opposite points on the hull bordering A and B are
where to our best estimate,=3.9+0.1 in two dimensions taken to infinity(a). An AB pseudoknot cannot be described in this
(Fig. 4. In three dimensions, the logarithmic behavior sur-setting once the thermodynamic limit is takés).
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scenario depicted in Fig(B) suggests a likely connection to 6r
the statistics of the homopolymer winding angldéor which

(@) xInN ) A O

(o]
in the swollen phase and at thepoint in two dimensions E” 4k
[30]. Yet, this would have the interesting implication that the asy
similar log scaling observed in three dimensions has a differ- 9\4,
ent origin. These possibilities will be investigated in the fu- 3F
ture.
Below thed point and in two dimensions, the logarithmic 2L i I |

growth of(N’SE} appears to persist. Although the numerics in 1 1.2 14
this region is not as reliable, the lack of a power-law behav- Temperature

ior similar to that for(N,,) is not surprising due to the above

geometric considerations. Yet, we do not have sufficient nu- FIG. 6. Transition temperature for each valueaois located as
merical evidence to claim a universal behavior independerthe crossing point ofR2)/(R}) curves as a function of temperature
of temperature. Note that the scaling(df;®) in this regime ~ for different polymer lengths. The curves is an interpolation be-
is still power law[31]. In three dimensions and far<T3, ~ tween the data points for two dimensions ar0.3.

preliminary calculations suggesNﬁE‘)ocN and a deviation ]
inset of Fig. 7. In fact, one can show that the ground-state

from the logarithmic behavior igNA2). This is probably due fourati in this’ limit h . fneiohb
to the fully A-B co-penetrated configurations of the compactgsgi('ﬁ;’ralftgiel?rees's Flg:laarreoof ?n T\% -gi(:?:]zi;)nnig it i(; '
polymer in three dimensions. Unlike in two dimensions, the 9 ' P '

A-B boundary fills the volume.

IV. PSEUDOKNOT-SENSITIVE HOMOPOLYMER
COLLAPSE

sufficient to note that the number of energetically favorable
contacts(size of the maximal planar subdiagraims maxi-
mized when the two ends of the walk meet at nearest-
neighbor sites to form a fully deflated self-avoiding ring.

o ] Thus at zero temperature, the Hamiltonian in Eg). with
The pseudoknot formation is essential for the collapse 0f,- 1 s equivalent to the Leibler-Singh-Fish@rSF) model
a polymer to a compact structure. This is most easily seen bys g1 of planar vesicles with negative area fugacity. LSF

comparing the radius of gyratidR, for a self-attracting ho- el with negative pressure is established to have a BP

mopolymer with that for which the pseudoknot forming con- |oy.temperature phase. The corresponding BP lives on the
tacts are excluded from the energy calculation. Consider thg,5|-|attice points inside the ring and the self-avoidance of

to

following generalized Hamiltonian for a self-avoiding lattice o
walk:

ring translates next-nearest-neighbor-avoiding

—-H :2 EcA(iaj)_achpk (8)

ij

with A(i,j)=1 for pairs of occupied nearest-neighbor lattice
sites not consecutive along the walk and 0 etse0,% cor-
respond respectively to the usual self-attracting homopoly-
mer with and without pseudoknotg=1 is the case when the

~— ..’.{

homopolymer energy is given by the number of contacts ing kg ch Pt =
the maximal planar “sub”-arc-diagram. In E®), we delib- - 3d’ o s "~
erately avoided writing dowm,, as a sum over contacts, Eﬂ." L ‘i’ ] ,/ 8
since only the numbeN,, and not the identity of the PK- s ro 5
forming contacts is well defined. i 4 | e

We located the transition point for different valuesaoby 0.2 f | 3
plotting (R%)/(R?%), the ratio of the averaged end-to-end dis- L y 6—collapse
tance and the radius of gyraties.temperature. This univer- 0 -~ 1 ] L Y
sal ratio as a function of temperature should converge to ¢ 0 0.5 1 1.5
step function in the thermodynamic limiN— o) with a gc]kT

universal intermediate value at the point [32,33. The
crossing point of the curves in Fig. 6 for different chain sizes £ 7. The phase diagram for the Hamiltonian in E&). The
is an efficient way of locating the transition temperature andower horizontal axis corresponds to the usual homopolymer with
the critical universal ratio at the transitih3]. The resulting  self-attraction. SAW-BP transition lines were obtained from the nu-
phase diagram is given in Fig. 7. merical data by the universal-ratio crossing method described in the
text. The terminal point on the lower axis of the transition curves
correspond to the& point for that dimension. The dashed curve is
Typical low-temperature configurations in the limit  the expected BP-CP boundary shown for two dimensions only with
— oo are double-stranded branched structures as shown in tteelimiting (T— 0) value of (1-«)/T=0.69[39].

A. Phase diagram
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branches in the dual lattice. Consistently, we numerically ob- Also note that, positive but small values of &-glescribe
tain for the radius-of-gyration exponent(T<T.,)~0.62, a transition upon reducing the temperature first to a
very close to the value ofgp=0.64. SAW— BP transition branched-polymer-like state followed by a PK-mediated col-
was studied earlier in several lattice polymer modeldapse. Such a collapger melting of RNAS with an inter-
[35-37. We note that the Hamiltonian in E¢B) exhibits an  mediate pronounced with lowered Nfgconcentration has
SAW-BP transition also in higher dimensions, especially inbeen experimentally observéti7,40—-42. A different model
three dimensions which could be relevant to RNA folding.recently proposed by Leoni and Vanderzande also depicts a
The zero-temperature mapping to lattice trees presentesimilar transition scenario where, in a certain regime, the BP
above applies to three dimensions as well, although the dualppears as an intermediate between the coil and the native
lattice on which the corresponding branched polymers live istate[15].
not simply the shifted simple cubic lattice.

The low-temperature scaling ¢Ry) along the linea=1 is V. CONCLUSIONS
still BP like. Deep in the BP phase®=(a-1) ¢, acts as a To summarize, we attempted in this paper to provide a
contact interaction between the branchesgativee’ being  mathematical definition for theumberof pseudoknotsNy
the attractive regime Considering earlier studies on BP’s in a polymer chain. With this definition, we show that count-
[38], we then expect a second transition line in each dimening the number of pseudoknots is equivalent to the well-
sion between two low-temperature phases, BP and the coknown “vertex-cover” problem which is NP complete. Nev-
lapsed polymel(CP), as shown in the dashed line for two ertheless, it is possible to study numerically the statistical
dimensions only in Fig. 7. The simplest scenario is that theproperties of pseudoknots by employing an efficient approxi-
BP-CP boundary splits from the SAW-BP boundary at the mate scheme. We show that the average total number of
point and asymptotically approaches el line such that pseudoknots is extensive at all temperatures, however, the
€Pk/ T=const. The critical interaction strength for the collapsenumber of pseudoknots forming between the two halves of
of lattice trees has been calculated in both dimensionghe chain scales logarithmically with chain size at thgoint
[38,39. We merely speculate this section of the phase diaef a homopolymer in both two and three dimensions, and
gram, since obtaining good statistics at temperatures lowalso forT<T,in two dimensions. This logarithmic character
enough to distinguish the two phases was not possible. is likely be related to the winding-angle statistics in two

An interesting feature of the phase diagram in Fig. 7 is thelimensions.
crossing of the phase boundaries corresponding to two and We also studied the role of pseudoknots in the homopoly-
three dimensions aroung=1, reflecting the fact that th€;  mer collapse by considering a Hamiltonian which favors
for a self-attracting homopolymd=0) increases with in- polymer self-contacts but penalizes pseudoknots. We showed
creasing dimension, whereas the SAVBP transition tem- that in the absence of an energetic preference for pseudoknot
perature for w>1 has the opposite trend. The transition formation, the low-temperature phase is a branched polymer.
temperature in each case is determined by the interplay b&Vhen the ratio of two competing energies satisfiesd< 1,
tween the entropy of the coil and the energy of the collapsediamiltonian(8) allows a transition scenario from a SAW to
state. Fora=0, as we switch from the square to the cubica collapsed phase with an intermediate branched polymer
lattice, the increased gain in contact energy by collgdse  regime, where the BP-CP transition is mediated by
to the higher number of nearest-neighbor sitegershadows pseudoknot formatiorfor a related experiment, see, e.g.,
the increased loss of entroggiue to, roughly, the change in Ref.[42]. The critical properties of the phase diagram and its
the connectivity constantAs a result,kgT,/e. moves up relevance to RNA folding need further investigation.
from 1.54 to 3.62. In the other limit-a> 1), the contact
energy due to the partial collapse to a BP is proportional to
and independent of dimensioiYet, the entropy loss due to A.K. thanks D. Yuret and C. E. Soteros for pointing out,
collapse still increases with dimensionality. Then, the col-respectively, the NP-complete character of the problem and
lapse to a BP should happen at a lower temperature witthe existence of a polynomial-time solution on bipartite
increasing dimension. The two opposing trends cancel eaofraphs. We acknowledge support from INFM-PAO2 and
other arounch=1. MIUR-COFINOL1.
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