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After a discussion of the definition and number of pseudoknots, we reconsider the self-attracting homopoly-
mer paying particular attention to the scaling of the pseudoknot numbersNpkd at different temperature regimes
in two and three dimensions. We find that, although the total number of pseudoknots is extensive at all
temperatures, the number of those forming between the two halves of the chain diverges logarithmically at
(both dimensions) and below(two dimensions only) theu temperature. We later introduce a simple model that
emphasizes the role of pseudoknot formation during collapse. The resulting phase diagram involves swollen,
branched, and collapsed homopolymer phases with transitions between each pair.
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I. INTRODUCTION

Fueled mainly by the advance in RNA structure determi-
nation techniques, recently there has been growing interest in
understanding and predicting the formation of pseudoknots
in RNA’s. A pseudoknot(PK) is not a true knot in the con-
ventional sense. It is a simpler construct generated by a poly-
mer’s self-contacts(see the definition below) and therefore is
encountered more frequently. Unlike true knots which are
problematic for the DNA and occur occasionally in shorter
biomolecules, PK’sare the tertiary structure of the folded
RNA’s. They are known to exist in almost all RNA classes
including transfer, messenger, ribosomal, viral, catalytic, and
self-splicing RNA’s (see reviews[1]). A recent analysis
found that they account for up to 30% of the bound base
pairs inG+C rich RNA sequences[2]. In addition to stabi-
lizing the fold, PK’s are believed to assume functional roles,
such as mediating the binding of the proteins they encode
[3], labeling functionally important positions on the coding
regions of themRNA sequence[4,5], mediating frameshift-
ing [6], etc.

Being a more elementary topological formation than
knots, PK’s are relatively amenable to numerical investiga-
tion. Nevertheless, most of the earlier computational tools
and recent theoretical work on RNA structure prediction take
into consideration only those configurations without PK’s
[7–9]. This is mostly because ignoring PK’s results in a
“nested” set of equations and, as a consequence, allows effi-
cient dynamic programming techniques. The drawback is
that their success is limited to secondary structure prediction
only. And even then, with limited accuracy due, partially, to
a necessary reorganization of the secondary structure con-
tacts to accommodate the PK’s. More recently there appeared
computational[10,11] and theoretical[12–15] studies that
include PK’s into RNA structure prediction algorithms. Pils-
bury et al. suggest a diagrammatic expansion to perturba-
tively take into account the PK’s[12]. A recent study by
Baiesi et al. [13] takes a more physical look at RNA dena-
turation. They model the RNA as a homopolymer traversing
a two-tolerant walk on the fcc lattice and consider walks
both with and without PK’s[16]. They conclude that the
sharp second-order denaturation transition observed when

PK’s are allowed gives way to a smooth crossover upon their
exclusion. This result emphasizes the thermodynamic rel-
evance of PK’s. Lucas and Dill[14] consider lattice ho-
mopolymers again to argue that the denaturation transition
between the pseudoknotted state and the open state is con-
tinuous. Another two-tolerant trail model with pseudoknots
and with a native state consisting of a single hairpin is shown
to denaturate through a first-order transition[15]. Studying
the interplay between the PK’s and the transition thermody-
namics within the homopolymer context is a prerequisite for
a deeper understanding of the physics of RNA pseudoknots.

Folding experiments on RNA’s suggest that it is physi-
cally more appropriate to attribute a different binding energy
to the contacts that form a PK[17]. This energy can be tuned
by changing the Mg+2 concentration in the solvent. Unless
this energy is prohibitively high(as in the case of very low
Mg+2 concentration), calculating the Boltzmann weights ne-
cessitates identifying PK’s for an arbitrary configuration. As
we shall see below, this task, though it may be easier in
native RNA configurations, is nontrivial for an arbitrary
polymer.

Accordingly, our goal throughout this paper will be to
explore the thermodynamic role assumed by the PK’s in the
well-known context of homopolymer collapse by:

(i) providing an analytic definition for the PK number
(Sec. II);

(ii ) investigating the scaling properties of the PK number
in various regimes of the homopolymer collapse(Sec. III);

(iii ) generalizing the Hamiltonian for the self-attracting
homopolymer to include an arbitrary penalty for PK’s and
obtaining the corresponding phase diagram(Sec. IV).

We hope that our results will provide a better understand-
ing to the nature of the PK’s and a new perspective to the
homopolymer collapse transition by locating it in a more
general framework that also includes the branched polymers
and their collapse transition.

II. COUNTING PSEUDOKNOTS

An arbitrary configuration of a polymer chain can be en-
coded as a contact map[18] which is a binary symmetric
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matrix. The contact map, in turn, can be represented graphi-
cally by an “arc diagram” as follows: Imagine stretching the
polymer into a horizontal straight line by pulling from the
two ends. Next, connect each pair of monomers that were
originally in contact by a semicircular arc on the upper half
plane (the diagram is drawn on a plane even though the
polymer may be embedded in arbitrary dimensions).

The diagram is said to beplanar if no two arcs cross each
other. This is equivalent to having no PK’s. In the opposite
case, a selective treatment of the PK’s primarily requires
identification of their number. Since the definition involves
crossings in the arc diagram, one might be inclined to simply
count the number of crossings. However, this does not make
physical sense, because an arbitrary number of crossings
may be generated by the addition of a single contact, as is
obvious from Fig. 1. Instead we need a quantity that reflects
the number of contacts that are responsible for the
pseudoknots. Accordingly, we defineNpk, the PK number, as
the minimum number of arcs that need to be removed to
reach a planar diagram. The same definition was recently
adopted in another study on RNA pseudoknot prediction[2].
We stress that the choice of this minimal set is in general not
unique. In Fig. 1, we show a SAW in two dimensions and the
corresponding arc diagram, where one possible choice of a
minimal set of arcs which, when removed, leave a planar
diagram is drawn in bold. Therefore, although one can talk
about a unique PK number, labeling some of the contacts as
PK forming contacts requires adopting an extra arbitrary
convention. In this study, we avoid this by resting our results
on the mere knowledge of the number of PK’s.

Our first observation is that calculatingNpk exactly for an
arbitrary arc diagram belongs to a class of problems known
as NP complete, implying that there is no known determin-
istic polynomial-time algorithm for calculatingNpk [19]. We
prove this by mapping our problem to one of the six well-
known problems in computer science that are shown to be
NP complete, namely the “vertex-covering” problem. For a
recent review of the vertex-covering problem in the statisti-
cal physics context, see Ref.[20]. The mapping is easily
established by representing each arc by a vertex and drawing
edges between pairs of vertices corresponding to crossing

arcs (see Fig. 2). The vertex-covering problem on the ob-
tained graph(known as the incompatibility graph) amounts
to finding a minimal set of vertices which, when labeled,
results in labeling at least one end of every edge. In other
words, erasing those vertices alone together with the edges
sprouting from each is sufficient to get rid of all the edges in
the graph. Since every edge reflects a crossing and every
vertex an arc in the original arc diagram, eliminating those
arcs corresponding to the minimal vertex set obviously re-
sults in a planar diagram, i.e., the size of this minimal set is
equal toNpk. Since we need to calculateNpk for many poly-
mer configurations in our study, it is important to be aware
that an exact treatment requires CPU times exponential in the
number of arc crossings. The above mapping is a different
and simpler statement of NP completeness than an earlier
proof that a large class of RNA secondary structure predic-
tion algorithms based on free energy minimization with
pseudoknots are NP complete[21]. Also note that when re-
stricted to a certain subset of polymer configurations(typi-
cally generated in an iterative manner), the problem can be
solved in polynomial time. Efficient algorithms on such re-
stricted configurations have been recently utilized to predict
RNA pseudoknots[2,10,12].

What is the expected value ofNpk for a polymer? We
would first like to provide some insight for the reader by
calculatingNpk for a random arc diagram: ConsiderNc ran-
domly chosen distinct pairs of points on a line segment and
connect them by arcs as in Fig. 1(b). The probability thatm
randomly placed arcs do not intersect(i.e., form a planar
graph) is

Pplanarsmd , 1/sm!d. s1d

Proof by induction: themth nonintersecting arc to be placed
will see the polymer divided intom compartments, such that,
if the arc is placed with its legs resting on different compart-
ments, it has to cross at least one other arc. Then, the prob-
ability that themth arc does not cross(given the firstm−1
arcs) is roughly 1/m, i.e., the probability that the two points
fall into the same bin. Equation(1) follows by induction.

Then, such a subset ofm planar arcs will be found among
available distinct subsets when

SNc

m
D ù 1/Pplanarsmd. s2d

m is maximized when the two sides are equal. Applying Ster-
ling’s approximation on both sides leads tommax~ÎNc. In

FIG. 1. A SAW on a square lattice and its self-contacts(edges
not traversed by the walk that connect two visited nearest-neighbor
lattice sites) together with the corresponding arc diagram and a
nonunique minimal contact set(shown in bold) whose removal re-
duces the diagram to a planar one.

FIG. 2. The resulting graph for the arc diagram in Fig. 1 after
the mapping to the vertex-covering problem. Empty vertices corre-
spond to the solution represented by bold arcs in Fig. 1.
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other words, the typical number of pseudoknots for a random
arc diagram approaches the number of contacts in the ther-
modynamic limit(Nc→`) as

sNc − kNpkld/Nc ~ 1/ÎNc.

Yet, true polymers and lattice walks do not come with
random arc diagrams. There is a considerable correlation
among the contacts due to the existence of an underlying
chain and the effective repulsion resulting through self-
avoidance, both of which favor contacts between monomers
that are closer along the chain. This tendency is reflected in
the loop length distribution[32],

Psld ~ l−c, s3d

wherec=d/2 (random walk), c=dn−s4=2.68,2.22(SAW in
two and three dimensions), and s4 the critical dimension
associated with a four-leg vertex as in the polymer network
theory of Duplantier[27]. Correspondingly, one expectsNpk
for the real chains to be less than the above “random graph”
value. The combinatorial argument presented above picks
random pairs of points along the chain with equal probability
irrespective of the distance in betweensc=0d. Unfortunately,
it does not generalize easily toc.0. However, our numeri-
cal analysis on random graphs with arbitraryc suggests

kNc − Npkl ~ Nc
qscd,

with qscd increasing almost linearly fromqs0d=1/2 and
saturating atqs,2d=1. The interesting statistical properties
of the incompatibility graph with the distribution in Eq.(3)
will be reported elsewhere. A further reduction is expected in
two dimensions due to additional constraints imposed by the
impenetrability of encircled regions: The fact that each poly-
mer contact divides the plane to two disconnected regions
translates to having a bipartite incompatibility graph. As a
consequence,NpkøNc/2 (since the arc diagram turns out to
be planar when arcs are allowed on both half planes instead
of one). Unlike the general case, the vertex-cover problem on
bipartite graphs is solvable in polynomial time[22].

One can obtain a lower-bound onNpk from Kesten’s Pat-
tern Theorem[23], i.e., by noting that a local pseudoknotted
pattern(e.g., the shortest S-shaped walk on a square lattice)
has a finite probability of occurrence in an infinite chain.
Therefore

kNpkl . aN s4d

for a walk ofN steps and for somea.0. Extensivity ofkNpkl
for a homopolymer supports the observation that their exclu-
sion may have manifestations on the nature of the transition
in the thermodynamic limit [13] and that penalizing

pseudoknot formation can change the low-temperature phase
from collapsed to a branched polymer(Sec. IV).

III. PSEUDOKNOT NUMERICS

In this part of our analysis we look at the ordinary ho-
mopolymer collapse, where the energy is not sensitive to the
pseudoknot formation. We obtained statistics numerically for
self-avoiding chains of typical sizeN=300, even though we
checked for size independence of our results occasionally by
going up toN=800. All our results were obtained by using
an improved version of the PERM algorithm developed by
Grassbergeret al. [24]. Although with PERM it is typical to
simulate much longer homopolymers, our statistics were
mainly limited by the fact thatNpk for each configuration has
to be calculated from scratch, unlike, e.g., the number of
contacts which is updated incrementally at each step of the
walk. We present results for square and cubic lattices in two
and three dimensions, respectively.

It is possible to calculateNpk using an exact back-tracking
search algorithm which is straightforward to implement, but
requires a runtime exponential in system size. Since we want
to obtain statistics for reasonably long chains, it is not fea-
sible to use such an exact method. Instead, we calculateNpk
approximately by means of a greedy algorithm which at each
step eliminates(one of) the maximally crossing arc(s). The
choice is made randomly when they are more than one. Due
to the stochastic nature of the algorithm and the fact that the
optimal selection may involve eliminating a less than maxi-
mally crossing arc, this greedy algorithm provides an upper
bound toNpk. For details of various exact algorithms and the
above greedy algorithm we refer the reader to Ref.[20].

For comparison, we also implemented an exact calcula-
tion of Npk on the typical diagrams we encountered. We
found that the average deviation from the exact value of the
upper bound onNpk obtained by the greedy algorithm, al-
though increasing with growing chain length, approaches a
constant fraction around 1.5% of the exactNpk. Therefore we
are confident that our conclusions concerning the scaling be-
havior are not effected by the approximate algorithm we
adopted.

At all temperature regimes, we find thatkNpkl is a fraction
of the total number of contacts with a temperature-dependent
proportionality constantasTd. Although a Fermi-function-
like limiting behavior is evident from Fig. 3, the precise form
of asTd in the thermodynamic limit requires a more elaborate
analysis which we will not attempt here.

asTd reveals the leading behavior inkNpkl, however
theory of critical phenomena has taught us that the nontrivial
behavior of many systems is reflected in the nonanalytic con-
tribution to the extensive quantities. Recently, Orlandiniet
al. [25] considered the scaling of contacts formed between
the two halves(referred from here on as A and B) of a SAW
at theu point as a direct and precise way of measuring the
crossover exponentfu. The number of such contacts scales
as

kNc
ABsTudl ~ Nfu, s5d
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wherefu=3/7 in twodimensions, as can be shown analyti-
cally by using a recent extension of Saleur-Duplantier results
for polymer criticality [26,27]. The value of the crossover
exponent is typically difficult to confirm by numerics, be-
cause, as a rule, it has to be extracted from subleading sin-
gular terms, when considering the set of all contacts along
the chain[28]. Focusing on the contacts between the two
halves strongly filters out the dominant analytical contribu-
tion of the local contacts along the chain, thus surfacing the
otherwise concealed nonanalyticity. AB-contact statistics has
been fruitful in a variety of polymer models[25,29].

We use the same method here to pinpoint the singularity
of kNpkl, which at the leading term scales identical to the
contact energy(extensivity ofkNpkl due to Kesten’s pattern
theorem). More precisely, we start by identifying all A-B
contactsNc

AB as above, and then calculate the number of A-B
pseudoknotsNpk

AB by eliminating the crossing arcs in the arc
diagram corresponding to A-B contacts only. SincekNpkl on
the whole chain is a fraction of the contacts,kNcl, at all
temperatures, one may expect thatkNpk

ABl should also scale
identical tokNc

ABl at all temperatures. In contrast, we find a
qualitatively different scaling of the A-B pseudoknot number.

Let us consider each temperature regime separately:
Above theu point sT.Tud, no surprises are expected:kNc

ABl
already saturates to a constant in both two and three dimen-
sions. SinceNpk

AB,Nc
AB, this leaves no alternative tokNpk

ABl
but to stay finite as well. This is confirmed by our numerics
in Fig. 4.

At the u point, the PERM algorithm is the most efficient.
Therefore we expect our results to be most accurate in this
region. Recall thatkNc

ABl~N3/7 for T=Tu, which can be ob-
tained analytically and verified numerically to high accuracy.
Our numerical results forkNpk

ABl on the other hand indicate a
logarithmic divergence of the form

kNpk
ABsTudl ~ sln Ndvu, s6d

where to our best estimate,vu=3.9±0.1 in two dimensions
(Fig. 4). In three dimensions, the logarithmic behavior sur-

vives (only at T=Tu ), albeit with a different exponentvu

=4.31±0.02.
In retrospect, one could arguea priori that kNpk

ABl and
kNc

ABl should have qualitatively different scaling properties at
the u temperature:

We recall that the easiest way to obtainfu is to use the
correspondence between a ring polymer at theu point and
the full hull of a percolating cluster at the percolation tran-
sition in two dimensions[25]. In this picture, the AB con-
tacts correspond to the the “red” contacts between the two
halves that lie between two diametrically opposite points of
the hull [which are at the opposite infinities, see Fig. 5(a)]
[29].

The key observation is that, an AB pseudoknot cannot be
formed “locally” between the two halves, because one of the
two halves of the chain should wrap around the midpoint to
make a pseudoknot-forming A-B contact, as shown in Fig.
5(b). This imposes a rather stringent condition on the A-B
pseudoknot formation. The numerical result of Eq.(6) nev-
ertheless indicates a logarithmic divergence forkNpk

ABl. The

FIG. 3. Fraction of pseudocontacts as a function of temperature
for self-avoiding walks of 64(square), 128(circle), 256(diamond),
and 512(triangle) steps in two dimensions.

FIG. 4. Scaling of the A-B pseudoknot number forT.Tu (two
dimensions), T=Tu (two dimensions), and T=Tu (three dimen-
sions). Estimated asymptotic slopes are given with the uncertainty
on the last digit indicated in parentheses. Maximum walk size was
800 steps in both dimensions.

FIG. 5. The curves A(thick) and B (thin) represent the two
halves of the full hull of a percolating cluster at the percolation
transition. The number of AB contacts(indicated by the cutting line
segments) scales asN3/7 in the thermodynamic limit when the two
diametrically opposite points on the hull bordering A and B are
taken to infinity(a). An AB pseudoknot cannot be described in this
setting once the thermodynamic limit is taken(b).
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scenario depicted in Fig. 5(b) suggests a likely connection to
the statistics of the homopolymer winding anglev for which

kv2l ~ ln N s7d

in the swollen phase and at theu point in two dimensions
[30]. Yet, this would have the interesting implication that the
similar log scaling observed in three dimensions has a differ-
ent origin. These possibilities will be investigated in the fu-
ture.

Below theu point and in two dimensions, the logarithmic
growth of kNpk

ABl appears to persist. Although the numerics in
this region is not as reliable, the lack of a power-law behav-
ior similar to that forkNpkl is not surprising due to the above
geometric considerations. Yet, we do not have sufficient nu-
merical evidence to claim a universal behavior independent
of temperature. Note that the scaling ofkNc

ABl in this regime
is still power law[31]. In three dimensions and forT,Tu

3d,
preliminary calculations suggestkNc

ABl~N and a deviation
from the logarithmic behavior inkNpk

ABl. This is probably due
to the fully A-B co-penetrated configurations of the compact
polymer in three dimensions. Unlike in two dimensions, the
A-B boundary fills the volume.

IV. PSEUDOKNOT-SENSITIVE HOMOPOLYMER
COLLAPSE

The pseudoknot formation is essential for the collapse of
a polymer to a compact structure. This is most easily seen by
comparing the radius of gyrationRg for a self-attracting ho-
mopolymer with that for which the pseudoknot forming con-
tacts are excluded from the energy calculation. Consider the
following generalized Hamiltonian for a self-avoiding lattice
walk:

− H = o
i j

ecDsi, jd − aecNpk s8d

with Dsi , jd=1 for pairs of occupied nearest-neighbor lattice
sites not consecutive along the walk and 0 else.a=0,` cor-
respond respectively to the usual self-attracting homopoly-
mer with and without pseudoknots.a=1 is the case when the
homopolymer energy is given by the number of contacts in
the maximal planar “sub”-arc-diagram. In Eq.(8), we delib-
erately avoided writing downNpk as a sum over contacts,
since only the numberNpk and not the identity of the PK-
forming contacts is well defined.

We located the transition point for different values ofa by
plotting kRe

2l / kRg
2l, the ratio of the averaged end-to-end dis-

tance and the radius of gyrationvs.temperature. This univer-
sal ratio as a function of temperature should converge to a
step function in the thermodynamic limitsN→`d with a
universal intermediate value at theu point [32,33]. The
crossing point of the curves in Fig. 6 for different chain sizes
is an efficient way of locating the transition temperature and
the critical universal ratio at the transition[13]. The resulting
phase diagram is given in Fig. 7.

A. Phase diagram

Typical low-temperature configurations in the limita
→` are double-stranded branched structures as shown in the

inset of Fig. 7. In fact, one can show that the ground-state
configurations in this limit are the next-nearest-neighbor
avoiding lattice-trees. For a proof in two dimensions, it is
sufficient to note that the number of energetically favorable
contacts(size of the maximal planar subdiagram) is maxi-
mized when the two ends of the walk meet at nearest-
neighbor sites to form a fully deflated self-avoiding ring.
Thus at zero temperature, the Hamiltonian in Eq.(8) with
a=1 is equivalent to the Leibler-Singh-Fisher(LSF) model
[34] of planar vesicles with negative area fugacity. LSF
model with negative pressure is established to have a BP
low-temperature phase. The corresponding BP lives on the
dual-lattice points inside the ring and the self-avoidance of
the ring translates to next-nearest-neighbor-avoiding

FIG. 6. Transition temperature for each value ofa is located as
the crossing point ofkRe

2l / kRg
2l curves as a function of temperature

for different polymer lengths. The curves is an interpolation be-
tween the data points for two dimensions anda=0.3.

FIG. 7. The phase diagram for the Hamiltonian in Eq.(8). The
lower horizontal axis corresponds to the usual homopolymer with
self-attraction. SAW-BP transition lines were obtained from the nu-
merical data by the universal-ratio crossing method described in the
text. The terminal point on the lower axis of the transition curves
correspond to theu point for that dimension. The dashed curve is
the expected BP-CP boundary shown for two dimensions only with
a limiting sT→0d value of s1−ad /T=0.69 [39].
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branches in the dual lattice. Consistently, we numerically ob-
tain for the radius-of-gyration exponent,nsT,Tcd,0.62,
very close to the value ofnBP=0.64. SAW→BP transition
was studied earlier in several lattice polymer models
[35–37]. We note that the Hamiltonian in Eq.(8) exhibits an
SAW-BP transition also in higher dimensions, especially in
three dimensions which could be relevant to RNA folding.
The zero-temperature mapping to lattice trees presented
above applies to three dimensions as well, although the dual
lattice on which the corresponding branched polymers live is
not simply the shifted simple cubic lattice.

The low-temperature scaling ofkRgl along the linea=1 is
still BP like. Deep in the BP phase,epk;sa−1d ec acts as a
contact interaction between the branches(negativeepk being
the attractive regime). Considering earlier studies on BP’s
[38], we then expect a second transition line in each dimen-
sion between two low-temperature phases, BP and the col-
lapsed polymer(CP), as shown in the dashed line for two
dimensions only in Fig. 7. The simplest scenario is that the
BP-CP boundary splits from the SAW-BP boundary at theu
point and asymptotically approaches thea=1 line such that
epk/T=const. The critical interaction strength for the collapse
of lattice trees has been calculated in both dimensions
[38,39]. We merely speculate this section of the phase dia-
gram, since obtaining good statistics at temperatures low
enough to distinguish the two phases was not possible.

An interesting feature of the phase diagram in Fig. 7 is the
crossing of the phase boundaries corresponding to two and
three dimensions arounda=1, reflecting the fact that theTu

for a self-attracting homopolymersa=0d increases with in-
creasing dimension, whereas the SAW→BP transition tem-
perature for −a@1 has the opposite trend. The transition
temperature in each case is determined by the interplay be-
tween the entropy of the coil and the energy of the collapsed
state. Fora=0, as we switch from the square to the cubic
lattice, the increased gain in contact energy by collapse(due
to the higher number of nearest-neighbor sites) overshadows
the increased loss of entropy(due to, roughly, the change in
the connectivity constant). As a result,kBTu /ec moves up
from 1.54 to 3.62. In the other limits−a@1d, the contact
energy due to the partial collapse to a BP is proportional toN
and independent of dimension. Yet, the entropy loss due to
collapse still increases with dimensionality. Then, the col-
lapse to a BP should happen at a lower temperature with
increasing dimension. The two opposing trends cancel each
other arounda=1.

Also note that, positive but small values of 1−a describe
a transition upon reducing the temperature first to a
branched-polymer-like state followed by a PK-mediated col-
lapse. Such a collapse(or melting) of RNA’s with an inter-
mediate pronounced with lowered Mg+2 concentration has
been experimentally observed[17,40–42]. A different model
recently proposed by Leoni and Vanderzande also depicts a
similar transition scenario where, in a certain regime, the BP
appears as an intermediate between the coil and the native
state[15].

V. CONCLUSIONS

To summarize, we attempted in this paper to provide a
mathematical definition for thenumberof pseudoknotsNpk
in a polymer chain. With this definition, we show that count-
ing the number of pseudoknots is equivalent to the well-
known “vertex-cover” problem which is NP complete. Nev-
ertheless, it is possible to study numerically the statistical
properties of pseudoknots by employing an efficient approxi-
mate scheme. We show that the average total number of
pseudoknots is extensive at all temperatures, however, the
number of pseudoknots forming between the two halves of
the chain scales logarithmically with chain size at theu point
of a homopolymer in both two and three dimensions, and
also forT,Tu in two dimensions. This logarithmic character
is likely be related to the winding-angle statistics in two
dimensions.

We also studied the role of pseudoknots in the homopoly-
mer collapse by considering a Hamiltonian which favors
polymer self-contacts but penalizes pseudoknots. We showed
that in the absence of an energetic preference for pseudoknot
formation, the low-temperature phase is a branched polymer.
When the ratio of two competing energies satisfies 0,a,1,
Hamiltonian(8) allows a transition scenario from a SAW to
a collapsed phase with an intermediate branched polymer
regime, where the BP-CP transition is mediated by
pseudoknot formation(for a related experiment, see, e.g.,
Ref. [42]. The critical properties of the phase diagram and its
relevance to RNA folding need further investigation.
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