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Local elastic stability for nematic liquid crystals
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We derive a stability criterion for nematic liquid crystals from a general study of the second variation of
Frank’s elastic free-energy functional. When applied to elementary director alignments compatible with the
boundary conditions, such as the uniform alignment in a hybrid cell, this criterion is able to determine whether
the most likely destabilizing mode is periodic or not, and to estimate the modulation length of such a mode,
when it is periodic.
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I. INTRODUCTION surface driven, as the saddle-splay energy is surfacelike. The
The onset of instability patterns in liquid crystals lies at role of ,k4 In generating peno_dlc patterns was explored by
the heart of both their theoretical treatment and their techng>Paravignat al. [6], who considered a hybrid cell where the
logical applications. Indeed, since 1933, when Freederickspreéférred orientations are homeotropic on one plate and de-
discovered the transition now named after him, several efJ€nerate planar on the other. This work complemented a se-
forts have been made to predict and detect other instabilitie§/€S Of Previous ones, where the anchoring on the planar
While we refer the reader to monographs on liquid crystalsP!at€ Was taken to be along a given preferred direction and

; ; tvas either weak or stronfy—10. In this context, Barbero
such as Refg[1,2], for a comprehensive treatment of insta- . N e
o - nd Barberi[11] had already shown that a hybrid aperiodic
g(lzlg)éepattems, here we recall a few papers relevant to Ouglignment replaces the uniform state whenever the cell thick-

: . . . nessd exceeds a critical valug,. It is shown in Ref[6] that,
As is well known, Freedericksz's transition arises from uek, 6]

h i f ) I wh he di feld even when all elastic constants are equal luta periodic
the uniform state of a nematic ce'l, where the director pattern arises at a critical valub <d, of d, provided that

is along a certain directiog, parallel to the plates. The sta- he saddle-splay elastic constaqtis chosen appropriately.
bility of this uniform state is probed by an external, uniform | the Janguage of critical phenomena, the transitions that
magnetic field orthogonal to the plates of the cell alepdf  generate the periodic patterns recalled above are second or-
the diamagnetic anisotropy of the liquid crystal is positive,der. Thus, they can be predicted by studying the behavior of
for a sufficiently strong field the uniform state=e, becomes the elastic free-energy functionalin the vicinity of its criti-
unstable and the energy minimizer is a director field bent ircal points: this study concerns thecal stability for 7. Es-
the (y,2) plane, but uniform along the axis. In 1985, over sentially, two lines of thought have been followed in the
50 years after Freedericksz’s discovery, Lonberg and Meyséliterature to address the local stability of equilibrium director
[3] enlarged the class of possible perturbations of the unifields within the classical mathematical theory of liquid crys-
form state, revealing a new transition in which the uniformtals. In the one line, the Euler-Lagrange equationsAare
state becomes unstable in favor of a twist-splay distortionlinearized in the vicinity of the equilibrium field whence the
periodic alonge,. Moreover, the new instability, sometimes new pattern is likely to germinate: the instability arises
called the periodic Freedericksz’s transition, can be induceahenever these equations, subject to the appropriate linear-
for magnetic critical fields weaker than Freedericksz’s. Thiszed boundary conditions, fail to possess only the trivial so-
transition is driven by the elastic anisotropy of the materiallution. The relevant dispersion relation typically appears in
More precisely, Lonberg and Meyer studied numerically thethe form of the determinant of a linear system requested to
influence of the ratio between the twist-to-splay elastic convanish[6,10,13. In the other line, the second variatidf.F
stants on both the form of the equilibrium distortion and theof F is computed mostly by representing the nematic director
values of the critical field. The results in R¢R] were con- n in a fashion that makes the constraint on its length identi-
firmed analytically by Oldang4], who then generalized cally satisfied, and the sign @&?F is explored by means of
Lonberg and Meyer’s outcomes to the case of weak anchora modal expansion of the director field in the vicinity of the
ing at the bounding plates of the c¢l], thus studying the ground statg13-1§.
effect of the anchoring strength on the transition, both when Both these methods to establish the stability of equilib-
the resulting pattern is periodic and when it is not. rium configurations for liquid crystals suffer from some
When the director field is subject to weak anchoring at thedrawbacks. The first method leads one to determine accu-
boundary of the cell, the saddle-splay elastic condtaein-  rately the transition condition, but it cannot even tell whether
ters the scene, and can also influence the stability analysithe mode prevailing at the transition is periodic or not. The
Precisely, it can induce an instability of the uniform statesecond method mends this deficiency, but often at the ex-
even in the absence of an external field. Such an instability ipense of introducing approximations, such as the request that
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the wave number of the perturbing modes be sufficiently o (n, V n): =k, (divn)?+ ky(n - curin)? + kg|n X curin|?
small [13,15. While such an assumption is not severe for 5 L5
spontaneous pattern formation in hybrid cells driven by the * (ka + k)[tr(Vn)“ = (divn)<],

saddle-spay constant, since this instability—unlike Lonbergyherek,, k,, ks, andk, are Frank's elastic constants. This
and Meyer’s, for example—is characterized by stripes withformula can also be given an equivalent form, more conve-

wavelengths much larger than the cell’s thickness, it remaingjent for our developmerisee also the identities on p. 115 of
a limitation to the method’s generality. Ref. [19]),

Here we attempt a third approach, which may be applied
when the others fail. It is the purpose of this paper to com- (N, V) =ky(divn)? + k[|Vn|[> = tr(VNn)?] + (k3 — ky)
pute systematical_ly the secc_)nd_ variation of F_rank’s elastic X|(VA)n|2+ (k, + K)[tr(Vn)2 = (divn)?].
free-energy functionalF for liquid crystals. This is not a
trivial task, mainly for two reasons. First, just arriving at the We assume that the liquid crystal occupies the redsom
expression fos 2F may involve long and difficult computa- ordinary three-dimensional space with smooth boundéty
tions. Second, assessing whetld&F is positive-definite or  For simplicity, we do not consider interactions with any ex-
not requires further considerable efforts. An instructive illus-ternal field, though the method we illustrate here would eas-
tration of the technical difficulties involved in computing ily handle them. Thus, the bulk-free energy reduces to the
82F can be found in Refl17], which studies the stability of functional
a hedgehog in terms of the elastic constants. We do not resort
to any representation of the length constraint on the director F[B]: :f ordV,
field n and yet we perturb it keeping this constraint valid up B
to second order; we reduce the question about the sign of
52F to compute the least eigenvalue of a linear problem and' , , ,
we associate the eigenfunction with zero eigenvalue, when ata §urface engrggfa resides orB, Wh'Ch.deSC”beS the
exists, with the onset of the destabilizing mode. When apgncho_rlng_ of the liquid c_rystal o the m_aterlal substrate sur-
plied to the spontaneous instability of the uniform alignment,/°uUnding it. Hereafter, is taken to be in the form
our method has several advantagés:it provides an unam-
biguous criterion for the stability of the undistorted state, J-"a[ﬁl’a’]::f n-AndA,
which tells when a spontaneous equilibrium pattern forma- B

tion is to be expected?) it identifies the most likely desta- \yhereA is the area measure aidis a symmetric, second-

bilizing mode, when the undistorted state fails to be stablejank tensor which, for simplicity, is assumed to be piecewise
and (3) it estimates the susceptibility to fluctuations of the constant orB. The total free-energy functional is thus
undistorted ground state, when it happens to be stadfle

Sec. 111 of Ref[18]). FIB]: = Fo[ Bl + Fola B], (1)

This paper is organized as follows. In Sec. Il, we recall
Frank's elastic free-energy functional for a nematic "qUidstationar oints
crystal subject to weak anchoring conditions on the boundary our my iFr)1 b'. tive here is to arrive at neral stabilit
of the region that confines it. In Sec. Il we apply this ur main objective nere Is to arfive at a general stability

method to a specific problem resembling the ones studied bggiirg:jnvg:att?snsi;q:rlllclibgc?.wzon?; ?g(cj:bl\"lnvsei dg(r)r\r/]:rlijeﬁotr?s
Sparavigneet al. [6,10], which already illuminated the role : 4 .
of the saddle-splay constaky in the stability of the uniform Ne o_flthe director féeldr& thf"‘t I:]eep the bIength constraint
state of a nematic hybrid cell. For illustrative purposes, thisg'n'. |Up to set;on order in the perturbation parameter
problem differs qualitatively from the others. Our stability recisely, we se

criterion proves useful in detecting the dependence of the N =n+eu +&%, (2)
critical mode on the saddle-splay constant: it shows, in par- ) i

ticular, that the wavelength of this mode is extremely sensivhereu andv are regular vectog fields defined @l Jb,
tive to k,. There exists a critical valuk which depends on and we require that, -n,=1+0(e”), thus obtaining the fol-
the anchoring strengths at the cell's plates, such that foloWing restrictions oru anduv:

|k4|>.kZ_the unstable mod_es are periodip, whereas they are u-n=0 (3a)
aperiodic for|k,| <kj. Section IV summarizes the outcomes

of the paper, and four appendices contain the mathematicand

details needed to appreciate fully our development. 1

v-N=-—-U-uU. (3b)
Il. VARIATIONAL FORMULATION 2

hereV denotes the volume measure. We further suppose

and the equilibrium configurations of the liquid crystal are its

Here we set the scene for the stability analysis to be perit follows from Eq. (3b) that takingv =0 would imply u
formed in the following section. Under the assumption that=0: this shows that disregarding the second-order variation
the nematic order is constant throughout the material, the in Eg.(2) would prevenn, from obeying the constraint on
elastic free-energy density is a function of the nematic direcits length at the required accuracy. Thus, in principle, com-
tor n and its spatial gradient. We adopt for it Frank’s for- puting the second variation of the free-energy functional for
mula, in the notation of Ref19], liquid crystals within the director theory by settimg=0 in
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Eqg. (2), and subjectingu only to the first-order condition
(3a), is erroneougsee also Appendix A Clearly, all compu-
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denotes the surface gradient, dite surface divergence, and
| is the identity tensor. Since is subject to Eq(3a), Eq. (6)

tations of the free-energy first variation escape this criticisnis equivalent to the field equations

since there, the length constraint npneeds to be enforced

only up to first order. The literature presents at least two

f(n,Vvn)=2\,n inB (9

other correct ways to enforce the length constraint up to segynq
ond order. Often the director field is represented by two

angles, which then need be subject to no further constraint.

Alternatively, n, is defined as

_h+eu

ng = ] 4
as done by Ou and Kinderlerh¢t7]. When restricted to
second order, Eqi4) and our representatiof?) subject to

Egs.(3a and(3b) are equivalent. We reckon our method to

gin,Vn)=2An ondxs, (10

where \, and A; are Lagrange multipliers, both associated
with the normalization constraint am in the volume and on
the surface of3, respectively.

B. Second variation

We now proceed to compute the second variataf of

be more direct than the existing ones: it will be shown belowr, which is formally defined by

that combining the equilibrium equations @t with condi-

tion (3b) on v will easily lead us to an expression for the

second variation ofF that depends only on, avoiding the
unnecessary nonlinearity hidden in Ed). Furthermore, our

2

SFN)[u,v]: = s

e=0

method is not an option in studying the local stability of BY the formulas in Appendix BS°F appears to have the
liquid crystal droplets laid on a curved substrate, as can eadollowing structure:

ily be anticipated from the outcomes of the stability analysis

for droplets of ordinary fluid$20].

In the two following subsections we compute the first and
second variations of-. Here only the bare structure of the
method is reported; most details are deferred to Appendices

B-D.

A. Equilibrium

The equilibrium equations forF in B and the natural
boundary conditions o#i53 are obtained by requiring the first
variation 5 to vanish identically,

=0.

dF
SF(N)[u]: = .
=0

(5
This equation can be written in the foreee Appendix B

5}'(n)[u]:f f(n,Vn)-udV+f g(n,Vn)-udA=0,
B )

B
(6)
where
%f(n, Vn): = (ky —ky) V (divn) = koAn + (k3 — k)
x{(Vn)T(Vn)n = (divn)[(Vn)n]
- V[(Vn)n]n}, (7)

%g(n, V n): =k[(VN) = (Vn)Tw + ky(divn)w + (k3 — ky)

X(n-w)(V)n + (ky +Ky)
X[(Van) "= (divgn)l v + An. (8)
In Egs. (7) and (8), » is the outer unit normal t@B, Vg

SFn)[u,v] :f f(n, Vn) -vdV+f e(n, Vn,u, Vu)dVv
B B

+ f g(n, vn) - -vdA
B

+f y(n, Vn,u, Vu)dA, 11
B

wheref andg are the same functions as in E@g) and(8),
while ¢ and y are scalar functions quadratic in bathand
Vu. Since6*F is to be computed on equilibrium configura-
tions forn, we can make use of the equilibrium equati¢®s
and(10) in Eq. (11), thus arriving at

)

f g(n, vn) -vdA=—f AUZdA,
B B

f(n,Vn) -vdV:—j
B

A u%dV

and

also with the aid of Eq(3b). Eventually, by these equations,
&F turns into a quadratic functional af only, which we
denote byG (see also Appendix B

Glu] =f {ka(divu)® + K[ [Vu[? = tr(Vu)?] + (kg — ko)
B
X[2(Vn)n - (Vu)u + [(Vu)n + (Vn)u|?] = A, u}dV
+ f {(ky +kg)[(Vsu)u = (divau)u] - v+u -Au
B

-\ UZdA. (12)

Our local stability analysis of an equilibrium configuration
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z=d
& FIG. 1. Sketch of the nematic cell. The an-
choring is homeotropic a=d and planar, though
—n €y not degenerate, a=0; the undistorted equilib-
e rium configuration, of which we probe the stabil-
€ ity, is n=e,.
2=0 —
for n is based on the strong positivenessG$ubject to Eqg. ll. APPLICATION
(33). Extending to the present case a classical reasasig
Ref. [21], pp. 398f), we minimizeG on the unit sphere Here we study a problem that is somehow intermediate
between those already solved by Sparavighal. [6,10].
f wdv=1 (13  Consider a nematic liquid crystal within a célwith plates
B a distanced apart. We choose a Cartesian coordinate system

_ ' . , so that the plates are the plares0 andz=d (see Fig. 1 In
and we conclude that an equilibrium configuration fois  4qgition to the physical boundarieszt0 andz=d, we also
locally stablewhenever the constrained minimum &f is introduce fictitious boundaries at L, andy=+L,, where
positive. This variational problem is known in the math- periodic boundary conditions are to be imposed.yaqtland
ematical literature as thgecondaryvariational problenisee, | 5re to be determined so as to accommodate the periodic
e.g., p. 396 of Ref[22]). The constraint13) is absorbed in eiygenmodes. The anchoring energy at the two physical

G by defining the modified functional boundaries is described by the tensors
G'[u]: =G[u] - “f u?dv, (14)
B _Iwy(l-e,®e) atz=d, 17
whereu is a Lagrange multiplier. As shown in Appendix C, - wyi(l -, ®e) atz=0,

the equilibrium equations fo" are

(ke =ky) ¥ (divu) = keAu + (ks = kp}{ (V) T(Vu)n where both the anchoring strengthvs(i=1,2) are positive
+(Vn)T(Vn)u- V[(Vn)n]u - divu(Vn)n constants. The anchoring is homeotropiczat and planar

. with easy axise, at z=0. The anchoring prescribed by Eqg.
~[V((Vwn) + V(Vmu)]n - (divn)[(Vu)n (17) marks the difference between the problem we apply our

+(Vn)ul} -\ u-uu=v,n in5B, (15) method to and those studied in Ref6,10.. While the an-
choring on the planar plate of the cell considered in REJ]
and is strong, am is prescribed there to possess a given align-
ky(divu) v + k[ (Vu) = (Vu) ] + (ks — ko)[U - 2(Vn)n] ment, the anchoring in the planar plate of the cell considered
T ] in Ref.[6] is degenerate, as the anchoring energy there is the
+ (ko + K)[(Vsu) 'w = (divau) v] same wheneven is orthogonal to the plate’s normal. Now,
+Au-ANU=pN ondB, (16  according to Eq(17), the anchoring on the planar plate is

anisotropic: the minimum anchoring energy is attained when
where the multipliers), and v5 are associated with the con- n is alonge,, but all alignments of in a cone where e, is
straint in Eq.(3a), in the bulk and on the surface &, re-  prescribed have one and the same energy. In particular, this
spectively. There is a close relationship between the eigenmplies that the restoring torques exerted by the anchoring on
value problem in Eqs(15) and(16) and the minimum ol the directorn, whenn lies orthogonal tce,, either on the
on the manifold(13): the minimum eigenvalug: for which  plate or along the plate’s normal, are equal. Though this may
there is a solution to these equations is precisely the mininot be the behavior of most anchoring substrates, this special
mum value attained bys on the manifold(13). This is @  anchoring serves well the purpose of illustrating our stability
classical result, which can be proved by retracing back fronmethod.
Egs. (15 and (16) the value attained by subject to Eg. We also limit attention to the case whekg=k,=ks
(3a). Thus, our local stability criterion says that an equilib- =k> 0, whilek, is free to vary in the intervdl-k,k], so that
rium configuration for the director field is locally stable  Ericksen’s inequalities for the positivenessogfare satisfied
whenever the minimum eigenvalyg, of Egs. (15 and  (cf. Sec. 3.4 of Ref[19]). The uniform alignmenh =g, is an
(16) is positive. Whenuy, vanishes, a condition that is often equilibrium configuration for this cell, as it solves both Egs.
called marginal stability, the corresponding solutiany,, to  (9) and(10) when
Egs. (15) and (16) describes the destabilizing eigenmode
which reveals the pattern, possibly periodic, that the director

field is likely to develop. Our criterion also has the potential w, atz=d,
to describe the qualitative features of this pattern, not only to A, =0 and As= 0 atz=0
say when its formation is expected. In the following section, ' '
we apply this stability condition to a simple example. We study below its stability. It is taken in the form
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U= U(X,Y,2)8+ UAXY,2)&,, KX(X) Y () Z(d) + kX1 Y(y)Z1(d) =0 atz=d,
Eq. (3a) is automatically satisfied, and so the multiplies (24)
and vg in Egs.(15) and(16) can be set equal to zero. Thus,
these equilibrium equations become and
Auy+ pue=0, KX1(0)Y1(y)Z(0) = kg X (x) Y (y)Z(0) = Wi X1 (X) Y1(y)Z4(0)
= O,
Au,+ pu,=0 in B, (18
whereu has been renormalized to and KX(X) Y ()Z(0) + Ky X1(X) Y 1(y)Z4(0) = w; X (X) Y (y)Z(0)
kuz,z_ k4ux,x -W,u,=0, =0 atz=0. (25)
- - In particular, it follows from Eqs(24) that, sincex andy are
Kbzt Kallyx =0 atz=d, (19 completely arbitrary, there must be constagtand ¢, such
that

I(uz,z - k4ux,x - wu, =0, . )
X130 Y4(y) =X Y(y) and X(X)Y(y) =oX1(x)Yy(y),
ku, , + KU, —wWiu, =0 atz=0. (20 (26)
Finally, it is possible to check that the boundary integrals o
the fictitious walls of the cell ak=+L, andy==L,, that or all (x,y) < [-Lx, Ll X [-Ly,Ly]. The constantp and ¢,
would produce equations akin to Eq49) and (20), com- &€ not completely arbitrary since, by differentiating each of

pensate each other pairwise, since any two opposite walfdS-(26) with respect tax, and replacing the result into the
have opposite orientations of their normals. Thus, all boundOther, by use of either E¢22g or Eq.(233, we arrive at the

ary conditions reduce to Eqél9) and (20). We solve Egs. condition
(18)—«20) by separation of variables. We set 1 I
U =XYWZD, U= X0 Y1(0)Z(@,  (2D) ee: "
and we obtain from Eq(18) that We must also require that=n,, since solutions of Eq$22b)
. and (23b) corresponding to different values ofandn, are
§ _ 29 linearly independent, and so they would fail to obey identi-
X =m, (223 cally in y the boundary conditions in Egq$24) and (25).
Since we expect modes periodic in bathndy we shall take
. bothm andn as negative. Moreover, we note that the bound-
X =n (22h) ary conditions on the fictitious walls at=+L, andy=+L,
Y require
. £ym)? £, m)?
7 Liz——( ™ and Liz——L( ) ,
7=~ (wtm+n), (220 m n
for €, and{, integers.
i We seek modes for which
A 1
X, M (239 Q== (p+m+n)>0,
and so
RS =n; (23b) 7(z) = A coshqz+ B sinhqz,
Y1 ’
) 74(z) = C coshqz+ D sinhqgz
. (+my+ny), (230 The boundary conditions in Eq&4) and (25) can then be
Zy written as

wherem, my, n, andn, are constants to be determined and a _
superimposed dot denotes differentiation with respect to the
relevant variable. Similarly, by inserting E(R1) into Egs. (279
(19) and(20), we arrive at

TA- B tanhé+ C(étanhé— wy) + D(E— w, tanh §) =0,

: . Aétanhé+ B+ myC+ D tanh =0, (27b)
KX (0 Y1(y)Za(d) — KK (0 Y (1) Z(d) = Wo Xy () Y1 (y)Z4(d) T

=0, -7A-w,C+DE=0, (270
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-0 A+BE+ TYC=0, (270 de/d]
where the dimensionless quantities¢, o, w,, and ¢ are )
defined by ‘\
k wid
T::f, £:=qd, wi::—l'(, y:=md,

and the constanis, B, C, andD have been rescaled t@/d.
We note tham enters the boundary conditions throughand ,
¢, whereas enters only througly. Since here we seek the 0 RUNOICIE
minimum value ofu for which there are solutions to Egs.

(27), we can sen=0. To see this, suppose that for a given FIG. 2. The critical distancd,, scaled to the critical distanc

pair (q,m) there is a solutiorf to Egs.(27). It will be inde- ~ at 7=0 defined in Eq.(32), is plotted against.the dimensiqnless
pendent ofn, but the corresponding eigenvall,ae=—q2—m parameterr=Kk,/k, for several values of the_ ratlﬁzwszl, which

—n would be made larger by decreasingThus, we sen measures the strength of the homeotropic anchoring at one plate

=0 and effectively restrict attention to modes independent ofS/aVe o the strength of the anisotropic planar anchoring at the
y, for which other plate. On the axis are marked the critical values of 7 at

which the unstable mode correspondsqté 0, and so a periodic
,ud2 - _ gz — (28) pattern arises. Precisely(tl)zo.607 corresponds t6=0.25, T(CZ)

=0.6831 corresponds t6=0.50, andr(ce’):o.8057 corresponds to
A nontrivial mode exists, provided that the determinant as-6=0.75. For -k 7<0, each graph ofl; would be symmetric to
sociated with the linear syste(@7) vanishes, which requires that drawn here.

that
- 21 2w, — 2 WimWa _.q0
(wr = 2w1) & + 7wy — 2w1) + wowiltanh & d<k o - g, (32
12
+ w0y — wy) — {Pr+ EE - w0
Eol 22 21) v ele 2] which coincides with the condition found by Barbero and
+ (28 + wi)Mtantt £=0. (290 Barberi[11] for 7=0.
In the opposite limit, wheré&>1 andd remains finite and

In view of Eq. (28), only the largest negative root of this
equation, which we denote hyy(¢), whenever it exists, af-
fects the least eigenvalyg,,;,. Moreover, it follows from Eq. of 1

(29) that, thoughr could be either positive or negative,i, fo~¢ 2 1),
can only depend ofr|. Our task is thus reduced to determine

positive,

the minimum of the function which is positive provided thdt] <1, that is, for all values
of r compatible with Ericksen’s inequality dk, except the
fo(€): = — [+ Yo O], (30 limiting values +1. Thus, forr given in the interval-1,1)

] . we do not expect any instability to occur whep>1 and
for fixed values of the parametetlsw;, and 7, and to require  4~q is finite. A differentscenariooccurs when7—1, as
it to be positive. shown below.

We can readily obtain analytically two necessary stability \yhen the above asymptotic estimates fipdo not apply,
conditions, by looking at the behavior df when either  the sign of the minimum value df, must be evaluated nu-

0<é<1 oréx>1, whiled stays finite. For 8<§<1, merically. To compare our results with those obtained in Ref.
s 3 3 5 7 [6], we remark that in the one-constant approximation em-
_ 201~ wyt 0y~ Nwy t+ 4wy + 20wy + @) 2 ployed there, the surface term i is written as
fo=~ > +0(&9).

= 2(k + kyg)div(n - divn + n X curln),

In this limit the stability of the uniform stata=e, is guar- 414 o their dimensionless parametgr=k,,/k is related to
anteed whenevefp > 0. After elementary manipulations, this g ;¢ through the equation

inequality can be given a more transparent interpretation by

introducing theextrapolationlengthsL;: =k/w; of the two _ }( -1
anchorings, Ka=o\T= 2
L,-L;>d. (31)  The main outcomes of our stability analysis are described in

Figs. 2-5. Figure 2 shows the behavior of the critical thick-
This says that the anchoring strength associated with the amessd, of the cell, above which the uniform planar state
isotropic planar alignment on the lower plate must prevailbecomes unstable, in terms gffor three values of the ratio
over the homeotropic alignment imposed on the upper platé: =w,/w;, which measures the strength of the homeotropic
for the uniform alignment to be stable. In terms of the dis-anchoring at the upper plate relative to that of the anisotropic
tanced, this inequality reads as planar anchoring at the lower plate. This ratio is bound to
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g.d?

FIG. 3. The critical valuey, of the wave num-
ber g, scaled to the reciprocal of the critical dis-
tancedg at 7=0 defined in Eq.(32), is plotted
against the dimensionless parametetk,/k, for
several values of the ratié=w,/w;. As in Fig. 2,
on the 7 axis are the critical values, of 7 at
which the periodic pattern arises. Precise&?
=0.607 corresponds tB:O.25,r£2)20.6831 cor-
responds t@=0.50, andrg3):0.8057 corresponds
to 6=0.75. These are easily extended by symme-
try to the interval -1 7<0.

| (2) |(3) 1 i
Te Tc

D
obey the inequality & <1 for the necessary condition for hybrid-aligned nematic. There is an important difference be-
stability (31) to be obeyed. The critical distandg at which  tween the graph fod, that we arrived at and its analog in
the instability occurs has been normalized to the vailfie Ref. [6]: ours is flat for|7| up to 7, whereas the one in Ref.
defined in Eq(32). All the graphs in Fig. 2 are flat up to the [6] steadily decreases towards zero|gsincreases. In par-
point where the normalized saddle-splay constamtaches a ticular, this means that here a periodic pattern arises only if
critical valuer,: below 7, the value of 7| is irrelevant to the  |K4| is large enough, whereas in R¢6] a periodic pattern
stability of the cell, whereas it becomes crucial upon exceed@rises whenevek, does not vanish. Intuitively, such a differ-
ing 7.. For |7]<, the functionf, attains its minimum at ence could easily be explained by the difference in anchor-
&.=0, and so whernu,i, vanishes, that is, fod=d., alsom d

=—q? vanishes and Eq(22a together with the periodic 9] Jele

boundary conditions imposed ontell us that the destabiliz-
ing eigenmode is uniform in bothandy: no periodic pattern
arises. On the contrary, for| > 7, the functionf, attains its
minimum até.>0 and, ford=d;, m does no longer vanish
and the destabilizing eigenmode exhibits a modulatior. in
Figure 3 makes the role of. even clearer. It shows the
dimensionless critical parametqug corresponding to the
value ofq for which u,;, vanishes, as a function af When
T.<|7<1, q. grows greater than 0 and then it tends to di-
verge ag7]— 1. In the parlance of Ref6], the curve in Fig.

2 marks the transition from a planar aligned to a periodic-

Tc

1/v/3

1) ) (3 7
Te Te Te 1
FIG. 5. The producti.d.=& is plotted against, again for sev-
eral values ofs=w,/wy. It remains finite in all cases, substantiating
the claim thaiy, diverges a$r— 1. As before, the curves leave the
d Taxis at a critical value, of at which the periodic pattern arises.
Precisely, T(Cl)=0.607 corresponds t6=0.25, r(cz)=0.6831 corre-
FIG. 4. The critical valuer, of |7, the normalized modulus of sponds to5=0.50, andr(cs):o.8057 corresponds t6=0.75. These
k4, againsts=w,/w,. When|7 =1, the pattern becomes periodic. values ofr, are consistent with formulé34).

0 1
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ing: our anisotropic planar anchoring is somewhat stiffer I[V. CONCLUSIONS
than the degenerate planar anchoring in Réf, and so it

requires a larger value dk,| for a given cell's thickness to librium configuration for the director field within Frank’s

become critical elastic theory of nematic liquid crystals. Our method consists

Our criterion also leads us to an explicit expressionsfor of computing the second variation of the elastic free-ener
This can be obtained by adding a further term in the Taylor, puting gy

expansion of the functiorfy in ¢ when d=d2. One easily fﬁnctlonal b_y shaplr?g thg c|i|rectr(])r vanﬁgons, sohas to make
proves that the constraint on the unit length of valid up to the same

order of approximation at which the free energy is computed.
fo(&) = fo(0) + a(r, ) €2 + O(£Y), (33 We showed how this affects the form of the second energy
variation, and hence the local stability criterion. The reader

We proposed a general method for the stability of an equi-

where skeptical about the need to afford this subtlety should have
o i52+ o+1 been convinced by the elementary example in Appendix A.
a(r,6): = 32145-8 L. There has recently been in the literature a surge of interest

towards periodic pattern formation in liquid crystg§®8—-27.
It follows from Eq.(33) that if a>0, thenf, keeps attaining |n all these contributions, however, the second-order varia-
its minimum at,=0, and sad? keeps being the critical value tion of the director field is invariably ignored, which in our
of d for the stability of the planar alignment. Whenbe-  opinion makes the conclusions reached there not quite justi-

comes negativef, becomes concave at the origin, thus im- fied. It could be of some interest to subject them also to the
plying that its minimizeré, becomes positive an(f:J ceases scrutiny of our method.

to be the critical distance. Hence, settag, 9)=0 yields the Here we applied our stability criterion to a hybrid cell
critical value 7, as a function ofs, similar to the one studied in Ref6], with an anisotropic
1 [£+o+1 planar anchoring on one plate contrasted by the homeotropic
Te= =\ - (34) anchoring of the other plate, and we predicted that the planar
V3 V1+6-& alignment can spontaneously generate a periodic distortion

only if the modulus of the saddle-splay elastic constant
exceeds a critical value that depends on the ratio between the
two anchoring strengths. This conclusion is qualitatively dif-
ferent from the one of Re{6], for which a periodic transi-
tion takes place for eadhy # 0, though at a different value of
the cell thickness. Such a difference is easily explained by
the different planar anchorings envisaged in the two papers:
our anisotropic anchoring is stiffer than the degenerate an-
choring in Ref.[6]. An advantage of our method is that it
does not restrict the family of admissible eigenmodes: it fully
haracterizes the destabilizing perturbations and hence the
atterns that are likely to arise spontaneously.

Figure 4 shows the plot of, againsts: 7, ranges if1/y3, 1]
as é ranges in0, 1]. Figure 5 shows the productd, as a
function of 7, for different values ofé: in all cases, this
product remains finite. The behaviordfas|d— 1 (see Fig.
2) suggests thaj, actually diverges in this limit. The distinc-
tive feature of our model is the persistence upde 1/y3 of
the plateau in the graphs fdg in Fig. 2: we predict that no
periodic transition may happen for| < 7.

The limit asé— 0 in the foregoing analysis must be con-
sidered with care. Since in this limit stays finite, one might
conclude from the diagram in Fig. 2 that a modulation shoul
spontaneously arise in the cell at a critical value of the thick-
nessd, in clear contrast with the fact that fev,=0 the ho-
meotropic anchoring disappears, and so the planar alignment
minimizes the elastic energy for all valuesfActually, this We show below in an elementary case how failing to en-
conclusion is not only false, but also inconsistent with ourforce a constraint to the second order can easily lead one to a
analysis, in which the critical distanak has been scaled to wrong stability criterion. Consider a smooth real-valued
dy, the critical distance for=0, which diverges a®s, and  functionf defined in the planéx,y) and seek its minimizers
thus 6, vanishes. In other words, the stability analysis of the(x,,y,) on the unit circlex?+y?=1. If one only subjects the
uniform alignment must be repeated afresh widger®. Set-  jncrementau, and u, of X andy, to the requirement
ting w,=0 in Eq.(29), one can expresk in Eq. (30) as

APPENDIX A: ELEMENTARY EXAMPLE

XoUy + yOuy =0

- wy
fo= (? B 1)§2+ 2.2 tanh g[(“’l tanh &+ 2¢) and computes the increment 6fnear a stationary point
(X9,Yo) on the unit circle, one easily arrives at the stability
~ (0] + 489tanif &+ 4w é tanh £], condition
whence, sincé&<tanh¢ for all £>0, it easily follows that Pf Pf Pf
) Xy + ——x? >0. (Al
1 2 dX IxXay ay X=X Y=Y
fo> ?—15 forall ¢>0, *o¥Yo

On the other hand, the unit circle can easily be parametrized
and SOum,in, Which is the minimum of,, is certainly positive by settingx=cos ¢ andy=sin ¥, so thatf becomes a func-

for all admissible values df, w,, and 7. This proves that in tion of 9, g(9¥):=f(cosd,sin &). By requiring the second
the absence of the contrasting homeotropic anchoring thderivative ofg to be positive ai) =, so thatx,=cos J, and
planar alignment of a hybrid cell is always stable. Yo=Sin 9, one easily obtains the inequality
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>t o, P AN AN 5 5 T
—y°-2 Xy+ X = —X= Y >0, |(Vny)n dV="] [(Vn)n|°dV+2¢ | {(Vn)"(Vn)n
ax axay"T oy 9x Y Ly, 5 5 5
(A2) - (divn)[(Vn)n] = V[(Vn)n]In} - udV
which clearly differs from(A1). The reason for such a dif- + ZSJ (n-»)(Vn)n -udA
B

ference is that ifA2) the constraint is obeyed to all orders,

whereas inAl) it is only obeyed to first order.
+ szf |(Vu)n + (Vn)ul?dv
B

APPENDIX B: FREE-ENERGY EXPANSIONS
+ Zszf {(Vn)T(Vn)n- (divn)[(Vn)n]
To expand the free enerd¥ up to second order in, we B
employed the following formulas, which follow from E¢R) — V[(Vn)n]n} - vdV
by use of repeated integrations by parts:

+232f (Vn)n - (Vu)udVv
f(divns)de:J (divn)ZdV—Zsf V (divn) - udv ’
5 B

o +282f (n-v)(Vn)n -vdA+ O(&3).
B
+ Zsf (divn)u - vdA
e (B4)
Here v denotes the outer unit normal &5. It is well known
- 282f V (divn) - vdV (see also p. 160 of Ref19)) that
B

2 (A2 - T .
.\ 282[ (divo - vdA L [tr(Vn)“ = (divn)<]dV LB[(VSn)n (divgn)n] - wdA,
B

where V¢ denotes the surface gradient anddive surface

+Szf (divu)2dV + O(&3), (B1) diverger_we. By use of the surface-di\_/ergence_ theorsee
B Appendix D belowy, under the assumption théB is smooth,
we arrive at

J|Vn€|2dv=f |Vn|2dv—2sf An - udV fﬁs[(vsng)ns_(dlvsnsms]'VdA
B B B

:f [(Vgn)n = (divgh)n] - wdA
+ ZSJ u - (Vn)wdA+ szf [Vul? B
B B

+ 28] {(Van) To— (divgn)w} - udA
- ZSZJ An -vdV B
B

+ Zszf {(Vn)Tw = (divgh) v} - vdA
+ 282f v-(Vn)rdA+0(%, (B2) B
B

+f [(Vau)u = (divau)u] - vdA+ O(e%). (B5)
B

f tr(Vns)ZdV:f tr(Vn)2dv — 28] V (divn) - udv Finally, by the symmetry of the tensdt, we easily obtain
B B B the following expansion for the anchoring enetgy:.
+ Zsf (Vn)"w - udA J n, -AnedA:J n-AndA+ Zsf An -udA
B B B B
- 282f V (divn) -vdV + sZJ tr(Vu)2dv + 282f An -vdA
B B B
+2¢? f (Vn)Tv - vdA+O(%), (B3) + g2 J u-AudA + O(3). (B6)
B aB
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APPENDIX C: FIRST VARIATION OF G

To compute the first variation of the function@l in Eq.
(14) we essentially proceed as in the Appendix: only for two
integrals we need to compute afresh the expansion up to first

order ine when

PHYSICAL REVIEW E70, 011710(2004

236 (u)ih] = J (ko — ko) V (divL) — koAU + (ks — ko)
B

X[(Vn)T(Vu)n- V[(Vn)n]u - divu(Vn)n
+(Vn)T(Vn)u = (V((Vu)n) + V ((Vn)u))n

U, =u+sh. (C1) = (divn)((Vu)n + (Vn)u)] = \,u — uu} - hdVv

They are the following:

f (Vn)n -(Vug)ust:J (Vn)n - (Vu)udV
B B
+sf u-v(Vn)n-hdA
B

- Sf {VI(Vn)n]u
B

+ divu(Vn)n} - hdV + O(&?)

+ f {ky(divu)w + k[ (V) = (Vu)TTw + (kg
B

—k)[u - w(Vn)n]+ (ky + k) [(Veu) Tw
= (divu)w] + Au =} - hdA. (C4)

Sinceu, is a perturbation of like u, it must also satisfy Eq.
(3a), which requires that the vector field obey
h-n=0. (CH

Thus, §G" vanishes for alh subject to Eq(C5) whenever
Egs.(15) and(16) hold.

(C2 APPENDIX D: SURFACE-DIVERGENCE THEOREM

and

f|(Vu8)n+(Vn)ue|2dV:f [(Vu)n + (Vn)u|?dV
B 5

For completeness, we recall a theorem that has often been
employed in our computations. The reader is referred to Ref.
[19] (see, in particular, p. §7or further details. LetS be a
smooth orientable surface in the three-dimensional space
with a border on the smooth cur¢e Letf be a differentiable

vector field defined upors. Then the following formula
+28f {{Vvm)T(Vn)u holds:
B
+(Vn)T(Vu)n] - divn[(Vu)n f divsfdA:f Hf-vdA+f f-wdf, (DY)
S S C

+(Vmu]-[V((Vu)n)
+ V (Vn)u)]n} - hdVv

+sf (n-p»)[(Vu)n
B

whereH is the total curvature o, that is, twice its mean
curvaturep is the unit normal in the chosen orientation®f
v is the unit conormal along, that is, the unit vector tan-
gent toS, orthogonal taC, and oriented away fror§, and¢
is the length measure. Whehis the smooth boundargis of

+(Vn)u]-hdA+0(¢?). (c3) B, Cis empty and Eq(D1) reduces to

With the aid of Eqs(C2) and(C3), we give the first variation j distdA:f Hf - vdA. (D2)
B

of G the following form

B
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