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We derive a stability criterion for nematic liquid crystals from a general study of the second variation of
Frank’s elastic free-energy functional. When applied to elementary director alignments compatible with the
boundary conditions, such as the uniform alignment in a hybrid cell, this criterion is able to determine whether
the most likely destabilizing mode is periodic or not, and to estimate the modulation length of such a mode,
when it is periodic.
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I. INTRODUCTION

The onset of instability patterns in liquid crystals lies at
the heart of both their theoretical treatment and their techno-
logical applications. Indeed, since 1933, when Freedericksz
discovered the transition now named after him, several ef-
forts have been made to predict and detect other instabilities.
While we refer the reader to monographs on liquid crystals,
such as Refs.[1,2], for a comprehensive treatment of insta-
bility patterns, here we recall a few papers relevant to our
scope.

As is well known, Freedericksz’s transition arises from
the uniform state of a nematic cell, where the director fieldn
is along a certain directioney parallel to the plates. The sta-
bility of this uniform state is probed by an external, uniform
magnetic field orthogonal to the plates of the cell alongez. If
the diamagnetic anisotropy of the liquid crystal is positive,
for a sufficiently strong field the uniform staten=ey becomes
unstable and the energy minimizer is a director field bent in
the sy,zd plane, but uniform along thex axis. In 1985, over
50 years after Freedericksz’s discovery, Lonberg and Meyer
[3] enlarged the class of possible perturbations of the uni-
form state, revealing a new transition in which the uniform
state becomes unstable in favor of a twist-splay distortion,
periodic alongex. Moreover, the new instability, sometimes
called the periodic Freedericksz’s transition, can be induced
for magnetic critical fields weaker than Freedericksz’s. This
transition is driven by the elastic anisotropy of the material.
More precisely, Lonberg and Meyer studied numerically the
influence of the ratio between the twist-to-splay elastic con-
stants on both the form of the equilibrium distortion and the
values of the critical field. The results in Ref.[3] were con-
firmed analytically by Oldano[4], who then generalized
Lonberg and Meyer’s outcomes to the case of weak anchor-
ing at the bounding plates of the cell[5], thus studying the
effect of the anchoring strength on the transition, both when
the resulting pattern is periodic and when it is not.

When the director field is subject to weak anchoring at the
boundary of the cell, the saddle-splay elastic constantk4 en-
ters the scene, and can also influence the stability analysis.
Precisely, it can induce an instability of the uniform state
even in the absence of an external field. Such an instability is

surface driven, as the saddle-splay energy is surfacelike. The
role of k4 in generating periodic patterns was explored by
Sparavignaet al. [6], who considered a hybrid cell where the
preferred orientations are homeotropic on one plate and de-
generate planar on the other. This work complemented a se-
ries of previous ones, where the anchoring on the planar
plate was taken to be along a given preferred direction and
was either weak or strong[7–10]. In this context, Barbero
and Barberi[11] had already shown that a hybrid aperiodic
alignment replaces the uniform state whenever the cell thick-
nessd exceeds a critical valueda. It is shown in Ref.[6] that,
even when all elastic constants are equal butk4, a periodic
pattern arises at a critical valuedp,da of d, provided that
the saddle-splay elastic constantk4 is chosen appropriately.

In the language of critical phenomena, the transitions that
generate the periodic patterns recalled above are second or-
der. Thus, they can be predicted by studying the behavior of
the elastic free-energy functionalF in the vicinity of its criti-
cal points: this study concerns thelocal stability for F. Es-
sentially, two lines of thought have been followed in the
literature to address the local stability of equilibrium director
fields within the classical mathematical theory of liquid crys-
tals. In the one line, the Euler-Lagrange equations forF are
linearized in the vicinity of the equilibrium field whence the
new pattern is likely to germinate: the instability arises
whenever these equations, subject to the appropriate linear-
ized boundary conditions, fail to possess only the trivial so-
lution. The relevant dispersion relation typically appears in
the form of the determinant of a linear system requested to
vanish[6,10,12]. In the other line, the second variationd 2F
of F is computed mostly by representing the nematic director
n in a fashion that makes the constraint on its length identi-
cally satisfied, and the sign ofd 2F is explored by means of
a modal expansion of the director field in the vicinity of the
ground state[13–16].

Both these methods to establish the stability of equilib-
rium configurations for liquid crystals suffer from some
drawbacks. The first method leads one to determine accu-
rately the transition condition, but it cannot even tell whether
the mode prevailing at the transition is periodic or not. The
second method mends this deficiency, but often at the ex-
pense of introducing approximations, such as the request that
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the wave number of the perturbing modes be sufficiently
small [13,15]. While such an assumption is not severe for
spontaneous pattern formation in hybrid cells driven by the
saddle-spay constant, since this instability—unlike Lonberg
and Meyer’s, for example—is characterized by stripes with
wavelengths much larger than the cell’s thickness, it remains
a limitation to the method’s generality.

Here we attempt a third approach, which may be applied
when the others fail. It is the purpose of this paper to com-
pute systematically the second variation of Frank’s elastic
free-energy functionalF for liquid crystals. This is not a
trivial task, mainly for two reasons. First, just arriving at the
expression ford 2F may involve long and difficult computa-
tions. Second, assessing whetherd 2F is positive-definite or
not requires further considerable efforts. An instructive illus-
tration of the technical difficulties involved in computing
d 2F can be found in Ref.[17], which studies the stability of
a hedgehog in terms of the elastic constants. We do not resort
to any representation of the length constraint on the director
field n and yet we perturb it keeping this constraint valid up
to second order; we reduce the question about the sign of
d 2F to compute the least eigenvalue of a linear problem and
we associate the eigenfunction with zero eigenvalue, when it
exists, with the onset of the destabilizing mode. When ap-
plied to the spontaneous instability of the uniform alignment,
our method has several advantages:(1) it provides an unam-
biguous criterion for the stability of the undistorted state,
which tells when a spontaneous equilibrium pattern forma-
tion is to be expected;(2) it identifies the most likely desta-
bilizing mode, when the undistorted state fails to be stable;
and (3) it estimates the susceptibility to fluctuations of the
undistorted ground state, when it happens to be stable(cf.
Sec. 111 of Ref.[18]).

This paper is organized as follows. In Sec. II, we recall
Frank’s elastic free-energy functional for a nematic liquid
crystal subject to weak anchoring conditions on the boundary
of the region that confines it. In Sec. III we apply this
method to a specific problem resembling the ones studied by
Sparavignaet al. [6,10], which already illuminated the role
of the saddle-splay constantk4 in the stability of the uniform
state of a nematic hybrid cell. For illustrative purposes, this
problem differs qualitatively from the others. Our stability
criterion proves useful in detecting the dependence of the
critical mode on the saddle-splay constant: it shows, in par-
ticular, that the wavelength of this mode is extremely sensi-
tive to k4. There exists a critical valuek4

c which depends on
the anchoring strengths at the cell’s plates, such that for
uk4u.k4

c the unstable modes are periodic, whereas they are
aperiodic foruk4u,k4

c. Section IV summarizes the outcomes
of the paper, and four appendices contain the mathematical
details needed to appreciate fully our development.

II. VARIATIONAL FORMULATION

Here we set the scene for the stability analysis to be per-
formed in the following section. Under the assumption that
the nematic order is constant throughout the material, the
elastic free-energy density is a function of the nematic direc-
tor n and its spatial gradient. We adopt for it Frank’s for-
mula, in the notation of Ref.[19],

sFsn, ¹ nd: = k1sdivnd2 + k2sn · curlnd2 + k3un 3 curlnu2

+ sk2 + k4dftrs¹nd2 − sdivnd2g,

wherek1, k2, k3, and k4 are Frank’s elastic constants. This
formula can also be given an equivalent form, more conve-
nient for our development(see also the identities on p. 115 of
Ref. [19]),

sFsn, ¹ nd = k1sdivnd2 + k2fu¹nu2 − trs¹nd2g + sk3 − k2d

3us¹ndnu2 + sk2 + k4dftrs¹nd2 − sdivnd2g.

We assume that the liquid crystal occupies the regionB in
ordinary three-dimensional space with smooth boundary]B.
For simplicity, we do not consider interactions with any ex-
ternal field, though the method we illustrate here would eas-
ily handle them. Thus, the bulk-free energy reduces to the
functional

FbfBg: =E
B

sFdV,

where V denotes the volume measure. We further suppose
that a surface energyFa resides on]B, which describes the
anchoring of the liquid crystal to the material substrate sur-
rounding it. Hereafter,Fa is taken to be in the form

Faf] Bg: =E
]B

n ·AndA,

whereA is the area measure andA is a symmetric, second-
rank tensor which, for simplicity, is assumed to be piecewise
constant on]B. The total free-energy functional is thus

FfBg: = FbfBg + Faf] Bg, s1d

and the equilibrium configurations of the liquid crystal are its
stationary points.

Our main objective here is to arrive at a general stability
criterion for these equilibria. To this end, we compute the
second variation ofF, and so we need to consider variations
n« of the director fieldn that keep the length constraint
n ·n=1 up to second order in the perturbation parameter«.
Precisely, we set

n«: = n + «u + «2v, s2d

whereu and v are regular vector fields defined onBø]B,
and we require thatn« ·n«=1+Os«3d, thus obtaining the fol-
lowing restrictions onu andv:

u ·n = 0 s3ad

and

v ·n = −
1

2
u ·u. s3bd

It follows from Eq. (3b) that takingv;0 would imply u
;0: this shows that disregarding the second-order variation
v in Eq. (2) would preventn« from obeying the constraint on
its length at the required accuracy. Thus, in principle, com-
puting the second variation of the free-energy functional for
liquid crystals within the director theory by settingv;0 in
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Eq. (2), and subjectingu only to the first-order condition
(3a), is erroneous(see also Appendix A). Clearly, all compu-
tations of the free-energy first variation escape this criticism
since there, the length constraint onn« needs to be enforced
only up to first order. The literature presents at least two
other correct ways to enforce the length constraint up to sec-
ond order. Often the director field is represented by two
angles, which then need be subject to no further constraint.
Alternatively,n« is defined as

n«: =
n + «u

un + «uu
, s4d

as done by Ou and Kinderlerher[17]. When restricted to
second order, Eq.(4) and our representation(2) subject to
Eqs.(3a) and (3b) are equivalent. We reckon our method to
be more direct than the existing ones: it will be shown below
that combining the equilibrium equations forF with condi-
tion (3b) on v will easily lead us to an expression for the
second variation ofF that depends only onu, avoiding the
unnecessary nonlinearity hidden in Eq.(4). Furthermore, our
method is not an option in studying the local stability of
liquid crystal droplets laid on a curved substrate, as can eas-
ily be anticipated from the outcomes of the stability analysis
for droplets of ordinary fluids[20].

In the two following subsections we compute the first and
second variations ofF. Here only the bare structure of the
method is reported; most details are deferred to Appendices
B–D.

A. Equilibrium

The equilibrium equations forF in B and the natural
boundary conditions on]B are obtained by requiring the first
variationdF to vanish identically,

dFsndfug: = UdF
d«
U

«=0
= 0. s5d

This equation can be written in the form(see Appendix B),

dFsndfug =E
B

fsn, ¹ nd ·udV +E
]B

gsn, ¹ nd ·udA = 0,

s6d

where

1

2
fsn, ¹ nd: = sk2 − k1d ¹ sdivnd − k2Dn + sk3 − k2d

3hs¹ndTs¹ndn − sdivndfs¹ndng

− ¹ fs¹ndngnj, s7d

1

2
gsn, ¹ nd: = k2fs¹nd − s¹ndTgn + k1sdivndn + sk3 − k2d

3sn · nds¹ndn + sk2 + k4d

3fs¹sndT − sdivsndI gn + An. s8d

In Eqs. (7) and (8), n is the outer unit normal to]B, ¹s

denotes the surface gradient, divs the surface divergence, and
I is the identity tensor. Sinceu is subject to Eq.(3a), Eq. (6)
is equivalent to the field equations

fsn, ¹ nd = 2lvn in B s9d

and

gsn, ¹ nd = 2lsn on] B, s10d

where lv and ls are Lagrange multipliers, both associated
with the normalization constraint onn, in the volume and on
the surface ofB, respectively.

B. Second variation

We now proceed to compute the second variationd2F of
F, which is formally defined by

d2Fsndfu,vg: = Ud2F
d«2 U

«=0
.

By the formulas in Appendix B,d2F appears to have the
following structure:

d2Fsndfu,vg =E
B

fsn, ¹ nd ·vdV +E
B

wsn, ¹ n,u, ¹ uddV

+E
]B

gsn, ¹ nd ·vdA

+E
]B

gsn, ¹ n,u, ¹ uddA, s11d

wheref andg are the same functions as in Eqs.(7) and (8),
while w and g are scalar functions quadratic in bothu and
¹u. Sinced2F is to be computed on equilibrium configura-
tions forn, we can make use of the equilibrium equations(9)
and (10) in Eq. (11), thus arriving at

E
B

fsn, ¹ nd ·vdV = −E
B

lvu
2dV

and

E
]B

gsn, ¹ nd ·vdA = −E
]B

lsu
2dA,

also with the aid of Eq.(3b). Eventually, by these equations,
d2F turns into a quadratic functional ofu only, which we
denote byG (see also Appendix B),

Gfug =E
B

hk1sdivud2 + k2fu¹uu2 − trs¹ud2g + sk3 − k2d

3f2s¹ndn · s¹udu + us¹udn + s¹nduu2g − lvu
2jdV

+E
]B

hsk2 + k4dfs¹sudu − sdivsudug · n + u ·Au

− lsu
2jdA. s12d

Our local stability analysis of an equilibrium configuration
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for n is based on the strong positiveness ofG subject to Eq.
(3a). Extending to the present case a classical reasoning(see
Ref. [21], pp. 398ff), we minimizeG on the unit sphere

E
B

u2dV = 1 s13d

and we conclude that an equilibrium configuration forn is
locally stablewhenever the constrained minimum ofG is
positive. This variational problem is known in the math-
ematical literature as thesecondaryvariational problem(see,
e.g., p. 396 of Ref.[22]). The constraint(13) is absorbed in
G by defining the modified functional

G*fug: = Gfug − mE
B

u2dV, s14d

wherem is a Lagrange multiplier. As shown in Appendix C,
the equilibrium equations forG* are

sk2 − k1d ¹ sdivud − k2Du + sk3 − k2dhs¹ndTs¹udn

+ s¹ndTs¹ndu − ¹ fs¹ndngu − divu„¹ndn

− f¹„s¹u…n… + ¹ „s¹ndu…gn − sdivndfs¹udn

+ s¹ndugj − lvu − mu = nvn in B, s15d

and

k1sdivudn + k2fs¹ud − s¹udTgn + sk3 − k2dfu · ns¹ndng

+ sk2 + k4dfs¹sudTn − sdivsudng

+ Au − lsu = nsn on] B, s16d

where the multipliersnv andns are associated with the con-
straint in Eq.(3a), in the bulk and on the surface ofB, re-
spectively. There is a close relationship between the eigen-
value problem in Eqs.(15) and (16) and the minimum ofG
on the manifold(13): the minimum eigenvaluem for which
there is a solution to these equations is precisely the mini-
mum value attained byG on the manifold(13). This is a
classical result, which can be proved by retracing back from
Eqs. (15) and (16) the value attained byG subject to Eq.
(3a). Thus, our local stability criterion says that an equilib-
rium configuration for the director fieldn is locally stable
whenever the minimum eigenvaluemmin of Eqs. (15) and
(16) is positive. Whenmmin vanishes, a condition that is often
called marginal stability, the corresponding solutionumin to
Eqs. (15) and (16) describes the destabilizing eigenmode
which reveals the pattern, possibly periodic, that the director
field is likely to develop. Our criterion also has the potential
to describe the qualitative features of this pattern, not only to
say when its formation is expected. In the following section,
we apply this stability condition to a simple example.

III. APPLICATION

Here we study a problem that is somehow intermediate
between those already solved by Sparavignaet al. [6,10].
Consider a nematic liquid crystal within a cellB with plates
a distanced apart. We choose a Cartesian coordinate system
so that the plates are the planesz=0 andz=d (see Fig. 1). In
addition to the physical boundaries atz=0 andz=d, we also
introduce fictitious boundaries atx= ±Lx andy= ±Ly, where
periodic boundary conditions are to be imposed. BothLx and
Ly are to be determined so as to accommodate the periodic
eigenmodes. The anchoring energy at the two physical
boundaries is described by the tensors

A = Hw2sI − ez ^ ezd at z= d,

w1sI − ey ^ eyd at z= 0,
s17d

where both the anchoring strengthswi si =1,2d are positive
constants. The anchoring is homeotropic atz=d and planar
with easy axisey at z=0. The anchoring prescribed by Eq.
(17) marks the difference between the problem we apply our
method to and those studied in Refs.[6,10]. While the an-
choring on the planar plate of the cell considered in Ref.[10]
is strong, asn is prescribed there to possess a given align-
ment, the anchoring in the planar plate of the cell considered
in Ref. [6] is degenerate, as the anchoring energy there is the
same whenevern is orthogonal to the plate’s normal. Now,
according to Eq.(17), the anchoring on the planar plate is
anisotropic: the minimum anchoring energy is attained when
n is alongey, but all alignments ofn in a cone wheren ·ey is
prescribed have one and the same energy. In particular, this
implies that the restoring torques exerted by the anchoring on
the directorn, when n lies orthogonal toey, either on the
plate or along the plate’s normal, are equal. Though this may
not be the behavior of most anchoring substrates, this special
anchoring serves well the purpose of illustrating our stability
method.

We also limit attention to the case wherek1=k2=k3
=k.0, while k4 is free to vary in the intervalf−k,kg, so that
Ericksen’s inequalities for the positiveness ofsF are satisfied
(cf. Sec. 3.4 of Ref.[19]). The uniform alignmentn=ey is an
equilibrium configuration for this cell, as it solves both Eqs.
(9) and (10) when

lv = 0 and ls = Hw2 at z= d,

0, at z= 0.

We study below its stability. Ifu is taken in the form

FIG. 1. Sketch of the nematic cell. The an-
choring is homeotropic atz=d and planar, though
not degenerate, atz=0; the undistorted equilib-
rium configuration, of which we probe the stabil-
ity, is n=ey.
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u = uxsx,y,zdex + uzsx,y,zdez,

Eq. (3a) is automatically satisfied, and so the multipliersnv
andns in Eqs.(15) and (16) can be set equal to zero. Thus,
these equilibrium equations become

Dux + mux = 0,

Duz + muz = 0 in B, s18d

wherem has been renormalized tok, and

kuz,z − k4ux,x − w2uz = 0,

kux,z + k4uz,x = 0 atz= d, s19d

kuz,z − k4ux,x − w1uz = 0,

kux,z + k4uz,x − w1ux = 0 atz= 0. s20d

Finally, it is possible to check that the boundary integrals on
the fictitious walls of the cell atx= ±Lx and y= ±Ly, that
would produce equations akin to Eqs.(19) and (20), com-
pensate each other pairwise, since any two opposite walls
have opposite orientations of their normals. Thus, all bound-
ary conditions reduce to Eqs.(19) and (20). We solve Eqs.
(18)–(20) by separation of variables. We set

ux: = XsxdYsydZszd, uzª X1sxdY1sydZ1szd, s21d

and we obtain from Eq.(18) that

Ẍ

X
= m, s22ad

Ÿ

Y
= n, s22bd

Z̈

Z
= − sm + m+ nd, s22cd

Ẍ1

X1
= m1, s23ad

Ÿ1

Y1
= n1, s23bd

Z1
¨

Z1
= − sm + m1 + n1d, s23cd

wherem, m1, n, andn1 are constants to be determined and a
superimposed dot denotes differentiation with respect to the
relevant variable. Similarly, by inserting Eq.(21) into Eqs.
(19) and (20), we arrive at

kX1sxdY1sydŻ1sdd − k4ẊsxdYsydZsdd − w2X1sxdY1sydZ1sdd

= 0,

kXsxdYsydŻsdd + k4Ẋ1sxdY1sydZ1sdd = 0 atz= d,

s24d

and

kX1sxdY1sydŻs0d − k4ẊsxdYsydZs0d − w1X1sxdY1sydZ1s0d

= 0,

kXsxdYsydŻs0d + k4Ẋ1sxdY1sydZ1s0d − w1XsxdYsydZs0d

= 0 atz= 0. s25d

In particular, it follows from Eqs.(24) that, sincex andy are
completely arbitrary, there must be constants% and%1 such
that

X1sxdY1syd = %1ẊsxdYsyd and XsxdYsyd = %Ẋ1sxdY1syd,

s26d

for all sx,ydP f−Lx,Lxg3 f−Ly,Lyg. The constants% and%1

are not completely arbitrary since, by differentiating each of
Eqs.(26) with respect tox, and replacing the result into the
other, by use of either Eq.(22a) or Eq.(23a), we arrive at the
condition

1

%%1
= m= m1.

We must also require thatn=n1, since solutions of Eqs.(22b)
and (23b) corresponding to different values ofn andn1 are
linearly independent, and so they would fail to obey identi-
cally in y the boundary conditions in Eqs.(24) and (25).
Since we expect modes periodic in bothx andy we shall take
bothm andn as negative. Moreover, we note that the bound-
ary conditions on the fictitious walls atx= ±Lx and y= ±Ly
require

Lx
2 = −

s,xpd2

m
and Ly

2 = −
s,ypd2

n
,

for ,x and,y integers.
We seek modes for which

q2: = − sm + m+ nd . 0,

and so

Zszd = A coshqz+ B sinh qz,

Z1szd = C coshqz+ D sinh qz.

The boundary conditions in Eqs.(24) and (25) can then be
written as

− tA − tB tanhj + Csj tanhj − v2d + Dsj − v2 tanhjd = 0,

s27ad

Aj tanhj + jB + tcC + tcD tanhj = 0, s27bd

− tA − v1C + Dj = 0, s27cd
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− v1A + Bj + tcC = 0, s27dd

where the dimensionless quantitiest, j, v1, v2, and c are
defined by

t : =
k4

k
, j : = qd, vi : =

wid

k
, c : = md2,

and the constantsA, B, C, andD have been rescaled toÎ% /d.
We note thatm enters the boundary conditions throughq and
c, whereasn enters only throughq. Since here we seek the
minimum value ofm for which there are solutions to Eqs.
(27), we can setn=0. To see this, suppose that for a given
pair sq,md there is a solutionj to Eqs.(27). It will be inde-
pendent ofn, but the corresponding eigenvaluem=−q2−m
−n would be made larger by decreasingn. Thus, we setn
=0 and effectively restrict attention to modes independent of
y, for which

md2 = − j2 − c. s28d

A nontrivial mode exists, provided that the determinant as-
sociated with the linear system(27) vanishes, which requires
that

jfsv2 − 2v1dj2 + t2csv2 − 2v1d + v2v1
2gtanhj

+ j2v1sv2 − v1d − hc2t4 + j2fj2 − v1v2g

+ ct2s2j2 + v1
2djtanh2 j = 0. s29d

In view of Eq. (28), only the largest negative root of this
equation, which we denote byc0sjd, whenever it exists, af-
fects the least eigenvaluemmin. Moreover, it follows from Eq.
(29) that, thought could be either positive or negative,mmin
can only depend onutu. Our task is thus reduced to determine
the minimum of the function

f0sjd: = − fj2 + c0sjdg, s30d

for fixed values of the parametersd, vi, andt, and to require
it to be positive.

We can readily obtain analytically two necessary stability
conditions, by looking at the behavior off0 when either
0,j!1 or j@1, while d stays finite. For 0,j!1,

f0 <
2v1 − v2 + v1

2 − Îv2
2 + 4v1

3 + 2v1
2v2 + v1

4

2t2 + Osj2d.

In this limit the stability of the uniform staten=ey is guar-
anteed wheneverf0.0. After elementary manipulations, this
inequality can be given a more transparent interpretation by
introducing theextrapolation lengthsLi : =k/wi of the two
anchorings,

L2 − L1 . d. s31d

This says that the anchoring strength associated with the an-
isotropic planar alignment on the lower plate must prevail
over the homeotropic alignment imposed on the upper plate
for the uniform alignment to be stable. In terms of the dis-
tanced, this inequality reads as

d , k
w1 − w2

w1w2
= :dc

0, s32d

which coincides with the condition found by Barbero and
Barberi [11] for t=0.

In the opposite limit, wherej@1 andd remains finite and
positive,

f0 < j2S 1

t2 − 1D ,

which is positive provided thatutu,1, that is, for all values
of t compatible with Ericksen’s inequality onk4, except the
limiting values ±1. Thus, fort given in the intervals−1,1d
we do not expect any instability to occur whenq@1 and
d.0 is finite. A differentscenariooccurs whenutu→1, as
shown below.

When the above asymptotic estimates forf0 do not apply,
the sign of the minimum value off0 must be evaluated nu-
merically. To compare our results with those obtained in Ref.
[6], we remark that in the one-constant approximation em-
ployed there, the surface term insF is written as

− 2sk + k24ddivsn · divn + n 3 curlnd,

and so their dimensionless parameterk4: =k24/k is related to
ours through the equation

k4 =
1

2
st − 1d.

The main outcomes of our stability analysis are described in
Figs. 2–5. Figure 2 shows the behavior of the critical thick-
nessdc of the cell, above which the uniform planar state
becomes unstable, in terms oft, for three values of the ratio
d : =w2/w1, which measures the strength of the homeotropic
anchoring at the upper plate relative to that of the anisotropic
planar anchoring at the lower plate. This ratio is bound to

FIG. 2. The critical distancedc, scaled to the critical distancedc
0

at t=0 defined in Eq.(32), is plotted against the dimensionless
parametert=k4/k, for several values of the ratiod=w2/w1, which
measures the strength of the homeotropic anchoring at one plate
relative to the strength of the anisotropic planar anchoring at the
other plate. On thet axis are marked the critical valuestc of t at
which the unstable mode corresponds toqÞ0, and so a periodic
pattern arises. Precisely,tc

s1d=0.607 corresponds tod=0.25, tc
s2d

=0.6831 corresponds tod=0.50, andtc
s3d=0.8057 corresponds to

d=0.75. For −1øtø0, each graph ofdc would be symmetric to
that drawn here.

ROSSO, VIRGA, AND KRALJ PHYSICAL REVIEW E70, 011710(2004)

011710-6



obey the inequality 0ødø1 for the necessary condition for
stability (31) to be obeyed. The critical distancedc at which
the instability occurs has been normalized to the valuedc

0

defined in Eq.(32). All the graphs in Fig. 2 are flat up to the
point where the normalized saddle-splay constantt reaches a
critical valuetc: belowtc, the value ofutu is irrelevant to the
stability of the cell, whereas it becomes crucial upon exceed-
ing tc. For utu,tc, the function f0 attains its minimum at
jc=0, and so whenmmin vanishes, that is, ford=dc, alsom
=−q2 vanishes and Eq.(22a) together with the periodic
boundary conditions imposed onX tell us that the destabiliz-
ing eigenmode is uniform in bothx andy: no periodic pattern
arises. On the contrary, forutu.tc, the functionf0 attains its
minimum atjc.0 and, ford=dc, m does no longer vanish
and the destabilizing eigenmode exhibits a modulation inx.
Figure 3 makes the role oftc even clearer. It shows the
dimensionless critical parameterqcdc

0 corresponding to the
value ofq for which mmin vanishes, as a function oft. When
tcø utu,1, qc grows greater than 0 and then it tends to di-
verge asutu→1. In the parlance of Ref.[6], the curve in Fig.
2 marks the transition from a planar aligned to a periodic-

hybrid-aligned nematic. There is an important difference be-
tween the graph fordc that we arrived at and its analog in
Ref. [6]: ours is flat forutu up to tc, whereas the one in Ref.
[6] steadily decreases towards zero asutu increases. In par-
ticular, this means that here a periodic pattern arises only if
uk4u is large enough, whereas in Ref.[6] a periodic pattern
arises wheneverk4 does not vanish. Intuitively, such a differ-
ence could easily be explained by the difference in anchor-

FIG. 3. The critical valueqc of the wave num-
ber q, scaled to the reciprocal of the critical dis-
tancedc

0 at t=0 defined in Eq.(32), is plotted
against the dimensionless parametert=k4/k, for
several values of the ratiod=w2/w1. As in Fig. 2,
on the t axis are the critical valuestc of t at
which the periodic pattern arises. Precisely,tc

s1d

=0.607 corresponds tod=0.25,tc
s2d=0.6831 cor-

responds tod=0.50, andtc
s3d=0.8057 corresponds

to d=0.75. These are easily extended by symme-
try to the interval −1øtø0.

FIG. 4. The critical valuetc of utu, the normalized modulus of
k4, againstd=w2/w1. When utu=tc, the pattern becomes periodic.

FIG. 5. The productqcdc=jc is plotted againstt, again for sev-
eral values ofd=w2/w1. It remains finite in all cases, substantiating
the claim thatqc diverges asutu→1. As before, the curves leave the
t axis at a critical valuetc of t at which the periodic pattern arises.
Precisely,tc

s1d=0.607 corresponds tod=0.25, tc
s2d=0.6831 corre-

sponds tod=0.50, andtc
s3d=0.8057 corresponds tod=0.75. These

values oftc are consistent with formula(34).
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ing: our anisotropic planar anchoring is somewhat stiffer
than the degenerate planar anchoring in Ref.[6], and so it
requires a larger value ofuk4u for a given cell’s thickness to
become critical.

Our criterion also leads us to an explicit expression fortc.
This can be obtained by adding a further term in the Taylor
expansion of the functionf0 in j when d=dc

0. One easily
proves that

f0sjd = f0s0d + ast,ddj2 + Osj4d, s33d

where

ast,dd: =
1

3t2

d2 + d + 1

1 + d − d2 − 1.

It follows from Eq. (33) that if a.0, thenf0 keeps attaining
its minimum atjc=0, and sodc

0 keeps being the critical value
of d for the stability of the planar alignment. Whena be-
comes negative,f0 becomes concave at the origin, thus im-
plying that its minimizerjc becomes positive anddc

0 ceases
to be the critical distance. Hence, settingast ,dd=0 yields the
critical valuetc as a function ofd,

tc =
1
Î3
Îd2 + d + 1

1 + d − d2 . s34d

Figure 4 shows the plot oftc againstd: tc ranges inf1/Î3,1g
as d ranges inf0,1g. Figure 5 shows the productqcdc as a
function of t, for different values ofd: in all cases, this
product remains finite. The behavior ofdc asutu→1 (see Fig.
2) suggests thatqc actually diverges in this limit. The distinc-
tive feature of our model is the persistence up totc.1/Î3 of
the plateau in the graphs fordc in Fig. 2: we predict that no
periodic transition may happen forutu,tc.

The limit asd→0 in the foregoing analysis must be con-
sidered with care. Since in this limittc stays finite, one might
conclude from the diagram in Fig. 2 that a modulation should
spontaneously arise in the cell at a critical value of the thick-
nessd, in clear contrast with the fact that forw2=0 the ho-
meotropic anchoring disappears, and so the planar alignment
minimizes the elastic energy for all values ofd. Actually, this
conclusion is not only false, but also inconsistent with our
analysis, in which the critical distancedc has been scaled to
dc

0, the critical distance fort=0, which diverges asw2, and
thusd, vanishes. In other words, the stability analysis of the
uniform alignment must be repeated afresh whend=0. Set-
ting v2=0 in Eq. (29), one can expressf0 in Eq. (30) as

f0 = S 1

t2 − 1Dj2 +
v1

2t2 tanhj
fsv1 tanhj + 2jd

− Îsv1
2 + 4j2dtanh2 j + 4v1j tanhjg,

whence, sincej, tanhj for all j.0, it easily follows that

f0 . S 1

t2 − 1Dj2 for all j . 0,

and sommin, which is the minimum off0, is certainly positive
for all admissible values ofd, v1, andt. This proves that in
the absence of the contrasting homeotropic anchoring the
planar alignment of a hybrid cell is always stable.

IV. CONCLUSIONS

We proposed a general method for the stability of an equi-
librium configuration for the director fieldn within Frank’s
elastic theory of nematic liquid crystals. Our method consists
of computing the second variation of the elastic free-energy
functional by shaping the director variations, so as to make
the constraint on the unit length ofn valid up to the same
order of approximation at which the free energy is computed.

We showed how this affects the form of the second energy
variation, and hence the local stability criterion. The reader
skeptical about the need to afford this subtlety should have
been convinced by the elementary example in Appendix A.
There has recently been in the literature a surge of interest
towards periodic pattern formation in liquid crystals[23–27].
In all these contributions, however, the second-order varia-
tion of the director field is invariably ignored, which in our
opinion makes the conclusions reached there not quite justi-
fied. It could be of some interest to subject them also to the
scrutiny of our method.

Here we applied our stability criterion to a hybrid cell
similar to the one studied in Ref.[6], with an anisotropic
planar anchoring on one plate contrasted by the homeotropic
anchoring of the other plate, and we predicted that the planar
alignment can spontaneously generate a periodic distortion
only if the modulus of the saddle-splay elastic constantk4
exceeds a critical value that depends on the ratio between the
two anchoring strengths. This conclusion is qualitatively dif-
ferent from the one of Ref.[6], for which a periodic transi-
tion takes place for eachk4Þ0, though at a different value of
the cell thickness. Such a difference is easily explained by
the different planar anchorings envisaged in the two papers:
our anisotropic anchoring is stiffer than the degenerate an-
choring in Ref.[6]. An advantage of our method is that it
does not restrict the family of admissible eigenmodes: it fully
characterizes the destabilizing perturbations and hence the
patterns that are likely to arise spontaneously.

APPENDIX A: ELEMENTARY EXAMPLE

We show below in an elementary case how failing to en-
force a constraint to the second order can easily lead one to a
wrong stability criterion. Consider a smooth real-valued
function f defined in the planesx,yd and seek its minimizers
sx0,y0d on the unit circlex2+y2=1. If one only subjects the
incrementsux anduy of x0 andy0 to the requirement

x0ux + y0uy = 0

and computes the increment off near a stationary point
sx0,y0d on the unit circle, one easily arrives at the stability
condition

S ]2f

] x2y2 − 2
]2f

] x ] y
xy+

]2f

] y2x2D
x=x0,y=y0

. 0. sA1d

On the other hand, the unit circle can easily be parametrized
by settingx=cosq andy=sin q, so thatf becomes a func-
tion of q , gsqd : = fscosq ,sin qd. By requiring the second
derivative ofg to be positive atq=q0, so thatx0=cosq0 and
y0=sin q0, one easily obtains the inequality
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S ]2f

] x2y2 − 2
]2f

] x ] y
xy+

]2f

] y2x2 −
] f

] x
x −

] f

] y
yD

x=x0,y=y0

. 0,

sA2d

which clearly differs from(A1). The reason for such a dif-
ference is that in(A2) the constraint is obeyed to all orders,
whereas in(A1) it is only obeyed to first order.

APPENDIX B: FREE-ENERGY EXPANSIONS

To expand the free energyF up to second order in«, we
employed the following formulas, which follow from Eq.(2)
by use of repeated integrations by parts:

E
B

sdivn«d2dV =E
B

sdivnd2dV − 2«E
B

¹ sdivnd ·udV

+ 2«E
]B

sdivndu · ndA

− 2«2E
B

¹ sdivnd ·vdV

+ 2«2E
]B

sdivndv · ndA

+ «2E
B

sdivud2dV + Os«3d, sB1d

E
B

u ¹ n«u2dV =E
B

u¹nu2dV − 2«E
B

Dn ·udV

+ 2«E
]B

u · s¹ndndA+ «2E
B

u¹uu2

− 2«2E
B

Dn ·vdV

+ 2«2E
]B

v · s¹ndndA + Os«3d, sB2d

E
B

trs¹n«d2dV =E
B

trs¹nd2dV − 2«E
B

¹ sdivnd ·udV

+ 2«E
]B

s¹ndTn ·udA

− 2«2E
B

¹ sdivnd ·vdV + «2E
B

trs¹ud2dV

+ 2«2E
]B

s¹ndTn ·vdA + Os«3d, sB3d

E
B

us¹n«dn«u2dV =E
B

us¹ndnu2dV + 2«E
B

hs¹ndTs¹ndn

− sdivndfs¹ndng − ¹ fs¹ndngnj ·udV

+ 2«E
]B

sn · nds¹ndn ·udA

+ «2E
B

us¹udn + s¹nduu2dV

+ 2«2E
B

hs¹ndTs¹ndn− sdivndfs¹ndng

− ¹ fs¹ndngnj ·vdV

+ 2«2E
B

s¹ndn · s¹ududV

+ 2«2E
]B

sn · nds¹ndn ·vdA + Os«3d.

sB4d

Heren denotes the outer unit normal to]B. It is well known
(see also p. 160 of Ref.[19]) that

E
B

ftrs¹nd2 − sdivnd2gdV =E
]B

fs¹sndn − sdivsndng · ndA,

where¹s denotes the surface gradient and divs the surface
divergence. By use of the surface-divergence theorem(see
Appendix D below), under the assumption that]B is smooth,
we arrive at

E
]B

fs¹sn«dn« − sdivsn«dn«g · ndA

=E
]B

fs¹sndn − sdivsndng · ndA

+ 2«E
]B

hs¹sndTn− sdivsndnj ·udA

+ 2«2E
]B

hs¹sndTn − sdivsndnj ·vdA

+E
]B

fs¹sudu − sdivsudug · ndA + Os«3d. sB5d

Finally, by the symmetry of the tensorA, we easily obtain
the following expansion for the anchoring energyFa:

E
]B

n« ·An«dA =E
]B

n ·AndA + 2«E
]B

An ·udA

+ 2«2E
]B

An ·vdA

+ «2E
]B

u ·AudA + Os«3d. sB6d
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APPENDIX C: FIRST VARIATION OF G*

To compute the first variation of the functionalG* in Eq.
(14) we essentially proceed as in the Appendix: only for two
integrals we need to compute afresh the expansion up to first
order in« when

u«: = u + «h. sC1d

They are the following:

E
B

s=ndn · s=u«du«dV =E
B

s¹ndn · s¹ududV

+ «E
]B

u · ns¹ndn ·hdA

− «E
B

h¹fs¹ndngu

+ divus¹ndnj ·hdV + Os«2d
sC2d

and

E
B

us¹u«dn + s¹ndu«u2dV=E
B

us¹udn + s¹nduu2dV

+ 2«E
B

hfs¹ndTs¹ndu

+ s¹ndTs¹udng − divnfs¹udn

+ s¹ndug − f¹„s¹udn…

+ ¹ „s¹ndu…gnj ·hdV

+ «E
]B

sn · ndfs¹udn

+ s¹ndug ·hdA + Os«2d. sC3d

With the aid of Eqs.(C2) and(C3), we give the first variation
of G* the following form

1

2
dG*sudfhg =E

B
hsk2 − k1d ¹ sdivud − k2Du + sk3 − k2d

3fs¹ndTs¹udn− ¹ fs¹ndngu − divus¹ndn

+ s¹ndTs¹ndu − „¹„s¹udn… + ¹ „s¹ndu…dn

− sdivnd„s¹udn + s¹ndu…g − lvu − muj ·hdV

+E
]B

hk1sdivudn + k2fs¹ud − s¹udTgn + sk3

− k2dfu · ns¹ndng+ sk2 + k4dfs¹sudTn

− sdivsudng + Au − lsuj ·hdA. sC4d

Sinceu« is a perturbation ofn like u, it must also satisfy Eq.
(3a), which requires that the vector fieldh obey

h ·n = 0. sC5d

Thus, dG* vanishes for allh subject to Eq.(C5) whenever
Eqs.(15) and (16) hold.

APPENDIX D: SURFACE-DIVERGENCE THEOREM

For completeness, we recall a theorem that has often been
employed in our computations. The reader is referred to Ref.
[19] (see, in particular, p. 87) for further details. LetS be a
smooth orientable surface in the three-dimensional space
with a border on the smooth curveC. Let f be a differentiable
vector field defined uponS. Then the following formula
holds:

E
S

divsfdA =E
S

Hf · ndA +E
C

f · nSd,, sD1d

whereH is the total curvature ofS, that is, twice its mean
curvature,n is the unit normal in the chosen orientation ofS,
nS is the unit conormal alongC, that is, the unit vector tan-
gent toS, orthogonal toC, and oriented away fromS, and,
is the length measure. WhenS is the smooth boundary]B of
B, C is empty and Eq.(D1) reduces to

E
]B

divs fdA=E
]B

Hf · ndA. sD2d
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