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We investigate theoretically, and numerically, the shape of a droplet of an isotropic fluid immersed in a
nematic liquid crystal in the presence of an interfacial layer of surfactant; the droplet size is assumed to be
small compared to the extrapolation length of the nematic and homeotropic alignment is favored by the
anchoring energy at the nematic-isotropic interface. In a certain range of droplet sizes, the droplets are found
to be lens shaped with the rotation axis aligned along the imposed director field and the aspect ratio dependent
upon the ratio of anchoring strength and surface tension coefficients. For anchoring strengths large compared
to the surface tension, the curvature of the edge of lens is controlled by the bending rigidity of surfactant.
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I. INTRODUCTION

In recent years there has been considerable experimental
and theoretical interest in colloidal particles embedded in a
nematic host fluid[1–9]. The colloidal particles have fre-
quently been droplets of an isotropic fluid with a surface
tension such that the droplets are essentially spherical. This
is true if the droplet radius is sufficiently large compared to
K /s [10], K being the elastic constant,s being the surface
tension coefficient. Otherwise, the shape of the smaller drop-
lets can considerably differ from spherical, and this has been
recently confirmed by the lattice-Boltzmann simulations
[11,12]. In principle, the deviation of the droplets shape can
influence the properties of liquid crystal colloids, and con-
trolling the surface tension by adding surfactants could be a
promising way of obtaining materials with given properties.
However, the presence of a surfactant leads to an additional
contribution to the free energy of the system, connected with
the bending rigidity of a surfactant layer[13–15]. The prob-
lem of finding the shape of the isotropic droplets in a nematic
is rather complicated, but it can be considerably simplified
for the small isolated droplets, and the solution of this prob-
lem can be a step toward the understanding of the influence
of surfactants on the properties of liquid crystal colloids.

In absense of surfactants, the inverse problem of a small
nematic droplet embedded in an isotropic fluid can be solved
exactly[16–18] and results in either tactoid or lens shape of
the droplet depending of the parameters of the nematic-
isotropic interface. However, the method of the Wulff con-
struction [19] used by the authors of these works does not
allow straightforward generalization to the case when the
bending rigidity of a surfactant layer is taken into account.

The aim of the present paper is to investigate the shape of
an isolated isotropic droplet in a nematic in the presence of a
surfactant layer for the droplet sizes small compared to the
extrapolation lengthj=K /W, whereW is the anchoring co-
efficient. The paper is organized as follows; in Sec. II we
compare different contributions to the free energy and define
the model used in the paper. Next, we use variational calcu-
lus to find the shape of the droplet on the basis of this model
without (Sec. III) and with (Sec. IV) surfactant. We discuss
the results and conclusions in Sec. V.

II. MODEL

We consider a droplet consisting of an isotropic fluid in a
nematic medium. The contributions to the free energy of this
system relevant for our study are the elastic free energyFe of
the nematic and the interfacial free energyFs of the surface
separating to the two fluids. This latter energy may include
contributions associated with the properties of the surfactant.

According to Nehring and Saupe[20–23], the elastic free
energy of a nematic in the absence of external fields is

Fe =E fFdV+E sf13 + f24ddS, s1d

wheredV anddSare volume and surface elements,fF is the
standard Frank elastic free energy density,f13 and f24 are two
surface elastic contributions. The explicit form of the terms
in Eq. (1) is

fF =
1

2
hK1s¹ ·nd2 + K2sn · ¹ 3 nd2 + K3f¹ 3 s¹ 3 ndg2j,

s2d

f13 = K13sk ·nds¹ ·nd, s3d

and

f24 = − sK2 + K24dk · fns¹ ·nd + n 3 s¹ 3 ndg, s4d

whereK1, K2, K3, K13, andK24 are, respectively, the splay,
twist, bend, bend-saddle, and saddle-splay elastic constants,
n is the director, andk is the unit vector orthogonal to the
interface. The elastic constants typically have a value ofK
,10−11 N [24].

The surface free energy can be subdivided in isotropic
contributionFs, corresponding to usual surface tension, the
curvature contributionFk, related to the difference of the
curvature of a surfactant film from the locally preferred
(spontaneous) value, and the anchoring contributionFa, de-
scribing the energetics of the preferred alignment direction of
the nematic director relative to the interface:
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Fs = Fs + Fk + Fa. s5d

The energy arising from the surface tension of the interface
is the surface tension coefficients times the total surface
area,

Fs = sE dS. s6d

We take the curvature free energy in the form[25–27]

Fk =E F1

2
kS 1

r1
+

1

r2
−

2

rs
D2

+
kG

r1r2
GdS. s7d

Here r1 and r2 are principal local curvature radii,rs is the
spontaneous radius of curvature,k and kG are the elastic
moduli for cylindrical bending and saddle bending of a sur-
factant film, usually referred as curvature rigidity and Gauss-
ian (or saddle-splay) rigidity, respectively. From Eqs.(6) and
(7) it follows that the surface tension of a flat interface is

s + 2k/rs
2. s8d

Typical values of the elastic moduli of the surfactant films
arek,10−21 J andkG,−10−21 J; the spontaneous radius of
curvature is found experimentally to bers*10−7 m [13–15].
The Gauss-Bonnet theorem[28] implies that the integral of
Gaussian curvature over a closed surface is a topological
constant, therefore we can neglect the Gaussian contribution
in the free energy for deformations of the droplet that do not
change its topology and use the following formula for the
curvature free energy:

Fk =
1

2
kE S 1

r1
+

1

r2
−

2

rs
D2

dS. s9d

The free energy of anchoring is often described by the
Rapini-Papoular phenomenological surface free energy[29],

Fa =
1

2
WE sin2adS, s10d

W being the anchoring strength coefficient,a being the angle
between the director and the surface normal. Homeotropic
alignment is favored byW.0, and planar alignment by
W,0. Typical values of the anchoring strength coefficients
for the surfactant films areW,10−6−10−4 J/m2 [30,31].

Let us compare magnitudes of different contributions in
the free energy of our system. For the droplet of sizea, the
elastic energy scales asa, whereas the anchoring energy and
surface tension scale asa2. Thus the elastic energy dominates
over the anchoring energy for smallsa!jd droplets, and we
should expect the director deviation from its equilibrium ori-
entation to be small. For spherical droplets this dimensional
argument is confirmed by the analytical study[32]. In the
first approximation we can consider the director field to be
undistorted by the presence of the droplet(see Fig. 1), and
find the droplet shape under this condition. This essentially
means that we neglect the elastic free energy(1) and keep
only the surface contribution(5) in the free energy. The de-
viation of the director field will lead to corrections to the

droplet profile; the smaller the droplet size, the smaller are
these corrections. The condition of validity of this model can
be formally written as

a ! j, s11d

wherej=K / uWu is the extrapolation length, withK being the
smallest of the elastic constants. This is effectively the con-
dition for weak anchoring. Taking typical values forK andW
given above, we obtainj,0.1–10mm, which sets the va-
lidity domain of our approximation.

III. SHAPE OF DROPLET IN ABSENCE OF SURFACTANT

In this section we use the calculus of variations to derive
the shape of the small isotropic droplet in nematic medium in
absence of surfactant. Thus we neglect the curvature contri-
bution (9) to the free energy. We assume that at large dis-
tances from the drop, the nematic is aligned uniformly in the
z direction.

The most obvious choice for describing the shape of a
droplet is to use a functionRsu ,wd, whereR is the distance
from some origin within the droplet, andu and w are polar
and azimuthal angles, respectively. Due to the rotational
symmetry of our problem we can expect rotationally sym-
metric shapes of a deformed droplet, thus reducing this func-
tion to Rsud (see Fig. 1). This function and its first derivative
enter the free energy density leading to a second-order Euler-
Lagrange equation. Taking into account the curvature would
lead to the inclusion of the second derivativeR9sud into the
free energy density and result in a fourth-order Euler-
Lagrange equation.

In order to avoid the mathematical difficulties arising
from the high order nonlinear differential equation, we there-
fore use an approach proposed by Helfrich[26]. We employ
another rotationally symmetric function, namelyxscd, where
x is the distance from the polar axis andc is the angle made
by the surface tangent plane with the polar axis(see Fig. 1).
In such a coordinate system, the variational problem leads to
an algebraic equation in the absence of curvature effects, and
to the second-order differential equation in the presence of
these effects.

FIG. 1. The definition of functionsRsud andxscd describing a
shape of droplet surface.OZ is the symmetry axis of the droplet,k
is the interface normal. The director fieldnsr d of nematic is taken to
be uniform.
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The contributions to the free energy density expressed in
terms ofxscd are

fs = s s12d

and

fa =
W

2
cos2c. s13d

We note that the elements of surface area and volume corre-
sponding todc can be written as

dS= 2pxx8csccdc s14d

and

dV= px2x8cot cdc. s15d

In the absence of curvature energy, we can cast the expres-
sions for the free energy in the form

F =E
−p/2

p/2

sfs + fad2pxx8csccdc s16d

and the volume of the droplet

V =E
−p/2

p/2

px2x8cot cdc. s17d

The minimization of the free energy(16) yields the algebraic
equation forxscd,

xscd =
2 cosc

l0
Fs +

W

2
s1 + sin2cdG , s18d

wherel0 is a Lagrange multiplier to enforce the constraint
that the volume of the droplet(17) is constant.

The shape of the droplet is not directly given byxscd, but
it can be obtained by an integration. For instance, we may
introduce a coordinatez along the polar axis, indicated in
Fig. 1. Thenz as a function ofc is given by the integral

zscd = −E
0

c

x8sjdcot jdj s19d

and in our case is

zscd =
2 sin c

l0
Ss −

W

2
cos2cD . s20d

The solution is physical forc belonging to the intervalc̄

ø ucuøp /2, c̄ being the following solution of the equation

zsc̄d=0:

c̄ = H0, 0ø v ø 1

arccosÎ1/v, v . 1,
s21d

where

v =
W

2s
s22d

is the dimensionless anchoring strength and we are assuming
throughout thatWù0. The droplets corresponding to Eqs.

(18) and (20) have the shape of “lenses” with smooth or
sharp edge depending onv. Some shapes corresponding to
Eqs. (18) and (20) with different values ofv are presented
on the bottom row of Fig. 2(with x=0). The results of the
present section suggest that a lens shape with sharp edges is
formed forvù1.

The shape of the droplet can be represented as the piece-
wise function

xscd =5
2s cosc

l0
f1 + vs1 + sin2cdg, c̄ ø ucu ø

p

2

4sÎv

l0
, ucu , c̄

s23d

with c spanning the connected interval −p /2øcøp /2 for
any value ofv. The aspect ratioA of the droplet is

A =
xs0d

zsp/2d
= H1 + v, 0 ø v ø 1

2Îv, v . 1.
s24d

We note for use in Sec. IV that the Lagrange multiplierl0
can be derived from Eq.(23) and expressed in the form

l0 =5
2s

xs0d
s1 + vd, 0 ø v ø 1

4s

xs0d
Îv, v . 1.

s25d

Equation(18) is equivalent to the result, obtained earlier
by Prinsen and van der Schoot[18] for the inverse problem
of a nematic droplet with a uniform director field embedded
in an isotropic fluid. However, it should be noted that in this
work we are considering lens shaped deformations rather
than the tactoid shapes considered by Prinsen and van der
Schoot and it is necessary to modify the sign and definition
of v in order to fully reconcile the two sets of results. The
Wulff construction[19] (see also Refs.[16,17]) used in Ref.
[18] seems to be a rather simple method for solving this
problem. However, it is applicable for the cases when the

FIG. 2. Cross section of droplets which minimise the free en-
ergy (31). x is defined in Eq.(47), v is defined in Eq.(22), and the
spontaneous curvature 1/rs is taken to be equal to zero.
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free energy depends only on the orientation of the interface,
and, unlike the direct use of the calculus of variations, does
not allow straightforward generalization to the case when
curvature effects are taken into account.

IV. ROLE OF SURFACTANT

In this section we investigate the shape of the droplet in
the presence of a surfactant layer. Before attempting to solve
the variational problem, let us estimate the curvature at the
edge of the droplet in the limit of small surface tension,
arising from a very strong surfactant. In this case the princi-
pal competition is between the bending rigidity and the an-
choring. Let the radius of curvature of the interface atq
=p /2 ber. Then the anchoring free energy at the edge of the
droplet is of orderWar, and the bending free energy is of
order ka/r, provided the spontaneous curvature is small
enough. These two effects become equal for a radius of cur-
vature of order

r ,Î k

W
. s26d

Setting typical values forW and k, given above, we obtain
the value of the radius of curvature at the edge of the droplet
to ber,10 nm.

To generalize the variational problem described in Sec.
III, we take into account the curvature contribution to the
free energy density, corresponding to Eq.(9):

fk =
1

2
kS 1

r1
+

1

r2
−

2

rs
D2

. s27d

Expressing the principal radii of curvature in terms ofxscd
as

r1 = −
x8scd
sin c

s28d

and

r2 =
xscd
cosc

, s29d

we can cast Eq.(27) in the form

fk =
1

2
kS−

sin c

x8scd
+

cosc

xscd
−

2

rs
D2

. s30d

Then the droplet profilexscd minimizing the total free en-
ergy

F =E
−p/2

p/2

sfs + fk + fad
2pxx8

sin c
dc s31d

under the constraint of constant volume(17) satisfies the
Euler-Lagrange equation

] L

] xscd
−

d

dc

] L

] x8scd
= 0 s32d

with

L = pxscdx8scdH 2

sin c
Fs +

W

2
cos2c +

k

2
S sin c

x8scd
−

cosc

xscd

+
2

rs
D2G − l cot cxscdJ , s33d

or, substituting Eq.(33) into Eq. (32):

kgscd = H2 cot cFs +
W

2
s1 + sin2cdG −

lxscd
sin c

J
3 x2scdx83scd, s34d

where

gscd = 2x2scdx9scdsin2c − x8scd

3F1

2
hscdsin 2c + 2xscdx8scdsin2cG , s35d

hscd = x2scd + S1 + sin2c −
4xscdcosc

rs
+

4x2scd
rs

2 Dx82scd
sin2c

.

s36d

For k=0 the differential equation(34) reduces to the alge-
braic equation(18) considered in the previous section. In the
general case, the equation(34) is a second-order differential
equation with respect toxscd which should be augmented
with boundary conditions

xS−
p

2
D = xSp

2
D = 0. s37d

The presence of the small parameterk pre-multiplying the
highest-order derivative leads to a form of singular perturba-
tion problem, which prevents straightforward perturbation
expansion in terms of the parameterk. While several meth-
ods have been developed for the solution of the perturbation
problems of this class[33,34], their application to the differ-
ential equation(34) presents considerable mathematical dif-
ficulties.

In order to make progress, we consider the piecewise so-

lution (23) of the perturbed problem. Forc̄, ucu,p /2 the
curvature is of order 1/a, and the terms in Eq.(34) contain-
ing k are small compared to the non-k terms. Hence in this
interval the solution(18) can be used as the first approxima-

tion. Note that this solution applies for allc when c̄=0.

For v.1, we find from Eq.(21) that c̄.0. In this case
the principal change in the shape of the droplet arises in the

interval −c̄,c,c̄ corresponding to the area close to the
lens edge. Herexscd can be expanded into series inc and up
to the second order written as

xscd = xs0d −
r

2
c2 + Osc4d, s38d

r being the value of the radius of curvaturer1 at c=0. Sub-
stitution of Eq.(38) into Eq. (34) and equating the terms of
the same order inc yields the algebraic equation

C2c2 + Osc4d = 0, s39d
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C2 = Xkx2s0d − r2H„2s + W− lxs0d…x2s0d

+ kF1 −
4xs0d

rs
S1 −

xs0d
rs

DGJCr. s40d

The root of this equation corresponding to the minimum of
the free energy is

r =Î k

2s + W− lxs0d
+ Osk3/2d. s41d

Next, expanding the Lagrange multiplierl in series ink,

l = l0 + osk0d, s42d

with l0 given by Eq.(25), we obtain the following result:

r =
Îk

ÎW− Î2s
+ Osk3/2d. s43d

In the absence of surface tension and intrinsic curvature it
agrees with the estimate(26). It should be noted that the
approximation(43) fails if Îk*ÎW−Î2s; however, this is
very unlikely to be encountered experimentally given typical
values ofk ands.

At c=c̄ where the solutions(18) and (38) join, there is
discontinuity in the derivativex8scd. However, this disconti-
nuity does not affect the free energy of the droplet since the
derivativex8scd enters in the denominator of Eq.(30). More-
over, the surface of the droplet remains smooth despite the
break in thexscd.

The disregard of higher terms ofk in the expansion(43)
is valid under the conditions

k ! sa2 s44d

and

rs * a. s45d

We also note from Eq.(11) that the model presented above
assumes

a !
K

uWu
. s46d

Equations(44)–(46) constitute the validity domain of our
solution.

To estimate the size of the droplet satisfying the inequali-
ties (44)–(46) let use choose the typical values of constants
characterizing our system asK,10−11 N, W,10−6 J/m2,
k,10−21 J, rs,10−7 m. To obtain noticeable distortion of
the droplet shape we must choose the surfactant providing
the surface tension at leasts,W,10−6 J/m2 [see Eq.(24)].
Then the inequalities(44)–(46) reduce toa@0.03mm, a
!10mm, and a!10 mm, correspondingly, yielding
0.03mm!a!10 mm. Thus, for the chosen parameters the
solution we have obtained is valid for the droplets of size
a,1 mm.

For smaller droplets the inequality(44) does not hold, and
the curvature free energy becomes important on the whole
surface of the droplet. In this case the shape of the droplet

can be found numerically. Following Ref.[12], we con-
structed a Fourier expansion ofxscd with the coefficients
scaled to enforce a constant volume of a droplet. This expan-
sion was substituted in the free energy(31), and the latter
was minimized numerically as a function of Fourier coeffi-
cients. Some shapes for different values of the dimensionless
anchoring strengthv defined by Eq.(22) and the dimension-
less bending rigidity,

x =
k

2sR0
2 , s47d

are presented in Fig. 2, whereR0 is the radius of the nonde-
formed (spherical) droplet. The spontaneous curvature 1/rs
is taken to be equal to zero. The bottom row(with x=0)
corresponds to the results of Sec. III. The aspect ratio de-
creases with increasingx, corresponding to the decrease of
droplet size, and the shape becomes closer to the spherical
one which minimizes the curvature energy(7).

Numerical calculation also shows that for smaller sponta-
neous radius of curvaturers the aspect ratio decreases and if
the inequality opposite to Eq.(45) holds the droplet becomes
almost spherical. This can be qualitatively explained by the
increase in the effective surface tension(8).

If the surface tension dominates the elastic energy(i.e.,
K /sa!1), the droplet will become spherical. Also for drop-
lets large compared to the extrapolation length, the inequality
(46) does not hold and the effect of the distortion of the
elastic field of nematic becomes important. The simulations
using the lattice Boltzmann technique show that with in-
creasing size of a droplet the aspect ratio decreases, while the
distortion of the elastic field grows and, at a certain point, the
transition to the state with the defects in the director field
occurs [11,12]. The similar picture is observed for the in-
verse problem of a nematic droplet in isotropic host fluid
[18].

V. CONCLUSION

We have investigated the shape of a droplet of an isotro-
pic liquid immersed in a nematic liquid crystal in the pres-
ence of a surfactant layer in the limit that the droplet is small
compared to the extrapolation length of the nematic. We
have found the droplets of size satisfying the inequalities
(44)–(46) to be lens shaped with the rotation axis aligned
along the imposed director field and the aspect ratio depen-
dent upon the ratio of anchoring strength and surface tension
coefficients. The curvature of the edge of lens is controlled
by the bending rigidity of surfactant. The deformation of the
droplets becomes smaller for droplet sizes large or small
compared to the range limited by Eqs.(44)–(46).

Although we have so far only considered isolated drop-
lets, the latter result is qualitatively correct for the concen-
trated polydisperse nematic emulsions. In this case the elastic
field is more complicated due to large concentration of the
droplets and to the possible presence of droplets large
enough to distort the elastic field significantly; hence the
shape of the droplets can be different from the described in
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the present paper. However, the distortion from the spherical
shape becomes small both for small droplets, where the
bending rigidity of a surfactant layer is important, and for
large droplets, where the shape is controlled by the isotropic
surface tension. Thus we can expect that in polydisperse
nematic emulsion the largest deformation must be observed
for droplets of sizes satisfying the inequalities(44) and(46).

In the present study we neglected the effect of the fluc-

tuations of the interface. Generally, the shape fluctuations
result in the renormalization of the surfactant parametersk,
kG, andrs [35], thus affecting the profile of droplets near the
edge. The dynamics of surfactant layer can also significantly
alter the surface vibration spectra even for spherical droplets
[36–38]. The equilibrium shape of the droplet is the prereq-
uisite for studying the dynamic fluctuations, and the results
of the present paper may be useful in such a study.
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