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Shape of an isotropic droplet in a nematic liquid crystal: The role of surfactant
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We investigate theoretically, and numerically, the shape of a droplet of an isotropic fluid immersed in a
nematic liquid crystal in the presence of an interfacial layer of surfactant; the droplet size is assumed to be
small compared to the extrapolation length of the nematic and homeotropic alignment is favored by the
anchoring energy at the nematic-isotropic interface. In a certain range of droplet sizes, the droplets are found
to be lens shaped with the rotation axis aligned along the imposed director field and the aspect ratio dependent
upon the ratio of anchoring strength and surface tension coefficients. For anchoring strengths large compared
to the surface tension, the curvature of the edge of lens is controlled by the bending rigidity of surfactant.
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I. INTRODUCTION IIl. MODEL

In recent years there has been considerable experimental We consider a droplet consisting of an isotropic fluid in a

and theoretical interest in colloidal particles embedded in %egt]:r%crg?s\%momircggjtgbL;trlg?ﬁéoefgseﬁfﬁfegneer:gzg;f this
nematic host fluid[1-9]. The colloidal particles have fre- y y

quently been droplets of an isotropic fluid with a surfacethe nematic and the interfacial free enefgyof the surface

tension such that the droplets are essentially spherical. Thlsseparatlng o the two fluids. This latter energy may include

is true if the droplet radius is sufficiently large compared tocontr|but|0ns associated with the properties of the surfactant.

K/ o [10], K being the elastic constant; being the surface According to Nehring and Saug20-23, the elastic free

tension coefficient. Otherwise, the shape of the smaller drop@nergy of a nematic in the absence of external fields is

lets can considerably differ from spherical, and this has been
recently confirmed by the lattice-Boltzmann simulations Fe:f deV+J (f1a+ fo0)dS, (1)
[11,12. In principle, the deviation of the droplets shape can
influence the properties of liquid crystal colloids, and con-
trolling the surface tension by adding surfactants could be #vheredV anddSare volume and surface elemertis;is the
promising way of obtaining materials with given properties. standard Frank elastic free energy densityandf,, are two
However, the presence of a surfactant leads to an addition.éurfaCe el_astic contributions. The explicit form of the terms
contribution to the free energy of the system, connected withh EQ. (1) Is
the bending rigidity of a surfactant laygt3—-15. The prob-
lem of finding the shape of the isotropic droplets in a nematic f
is rather complicated, but it can be considerably simplified 'F
for the small isolated droplets, and the solution of this prob- )
lem can be a step toward the understanding of the influence
of surfactants on the properties of liquid crystal colloids.
In absense of surfactants, the inverse problem of a small f13=Kiak -n)(V -n), (3)
nematic droplet embedded in an isotropic fluid can be solved
exactly[16—18 and results in either tactoid or lens shape ofand
the droplet depending of the parameters of the nematic-
isotropic interface. However, the method of the Wulff con- foa= = (Ko + Kok -[n(V-n)+n X (VX n)], (4
struction[19] used by the authors of these works does not
allow straightforward generalization to the case when thevhereK,, K,, Ks, K;3, andK,, are, respectively, the splay,
bending rigidity of a surfactant layer is taken into account. twist, bend, bend-saddle, and saddle-splay elastic constants,
The aim of the present paper is to investigate the shape af is the director, and is the unit vector orthogonal to the
an isolated isotropic droplet in a nematic in the presence of aterface. The elastic constants typically have a valu& of
surfactant layer for the droplet sizes small compared to the- 107! N [24].
extrapolation lengtit=K/W, whereW is the anchoring co- The surface free energy can be subdivided in isotropic
efficient. The paper is organized as follows; in Sec. Il wecontributionF,, corresponding to usual surface tension, the
compare different contributions to the free energy and defineurvature contributiorF,, related to the difference of the
the model used in the paper. Next, we use variational calcusurvature of a surfactant film from the locally preferred
lus to find the shape of the droplet on the basis of this modelspontaneoysvalue, and the anchoring contributién, de-
without (Sec. Ill) and with(Sec. 1V) surfactant. We discuss scribing the energetics of the preferred alignment direction of
the results and conclusions in Sec. V. the nematic director relative to the interface:

= KAV Kol X 2+ KT X (VX )P,

1539-3755/2004/10)/0117026)/$22.50 70011702-1 ©2004 The American Physical Society



S. V. LISHCHUK AND C. M. CARE PHYSICAL REVIEW E70, 011702(2004

Fo=F,+F +Fa. (5) i z\ )
The energy arising from the surface tension of the interface v
is the surface tension coefficient times the total surface 2O L ‘
area, isotropic \9\ R(9)§
0 f\‘(i\v) ?

F,= O'f ds. (6)

We take the curvature free energy in the foi25—27

1 (1 1 2)?
FK:f[EK<—+———) +&}ds (7)
PL P2 Ps P1P2 FIG. 1. The definition of function(6) and x(¢) describing a

Here p, and p, are principal local curvature radipg is the shape of droplet surfac@Z is the symmetry axis of the droplek,
spontaneous radius of curvature,and g are the elastic is the interface normal. The director fighdr) of nematic is taken to
moduli for cylindrical bending and saddle bending of a sur-Pe uniform.

factant film, usually referred as curvature rigidity and Gauss-

ian (or saddle-splayrigidity, respectively. From Eqg6) and  droplet profile; the smaller the droplet size, the smaller are
(7) it follows that the surface tension of a flat interface is these corrections. The condition of validity of this model can
be formally written as

nematic

o+ 2K/p§. (8)
a<y¢, (12)

Typical values of the elastic moduli of the surfactant films ] ) ) )
are k~ 10721 J andkg~—-10721 J; the spontaneous radius of whereé=K/|W, is the_ extrapolation Ie_ng_th, Wn‘h_bemg the
curvature is found experimentally to pg=10"7 m[13-15.  Smallest of the elastic constants. This is effectively the con-
The Gauss-Bonnet theoref@8g] implies that the integral of dition for weak anchoring. Taking typical values #érandw
Gaussian curvature over a closed surface is a topologic&iven above, we obtaig~0.1-10um, which sets the va-
constant, therefore we can neglect the Gaussian contributidiflity domain of our approximation.
in the free energy for deformations of the droplet that do not
change its topology and use the following formula for the

curvature free energy: Ill. SHAPE OF DROPLET IN ABSENCE OF SURFACTANT
1 1 1 2\2 In this section we use the calculus of variations to derive
F.= —Kf (— +—= —) ds. (9) the shape of the small isotropic droplet in nematic medium in
2 P P2 Ps absence of surfactant. Thus we neglect the curvature contri-

The free energy of anchoring is often described by the?Ution (9) to the free energy. We assume that at large dis-

Rapini-Papoular phenomenological surface free enf2gj tzagiiiufg?]m the drop, the nematic is aligned uniformly in the

1 _ The most obvious choice for describing the shape of a
Fa= EWJ sinfads, (10)  droplet is to use a functioR(6, ¢), whereR is the distance
from some origin within the droplet, an@ and ¢ are polar
W being the anchoring strength coefficieatbeing the angle and azimuthal angles, respectively. Due to the rotational
between the director and the surface normal. Homeotropiymmetry of our problem we can expect rotationally sym-
alignment is favored byw>0, and planar alignment by metric shapes of a deformed droplet, thus reducing this func-
W< 0. Typical values of the anchoring strength coefficientstion to R(6) (see Fig. 1. This function and its first derivative
for the surfactant films arev~10°-10* J/n? [30,31. enter the free energy density leading to a second-order Euler-
Let us compare magnitudes of different contributions inLagrange equation. Taking into account the curvature would
the free energy of our system. For the droplet of siz¢he lead to the inclusion of the second derivatirg 6) into the
elastic energy scales aswhereas the anchoring energy andfree energy density and result in a fourth-order Euler-
surface tension scale a& Thus the elastic energy dominates Lagrange equation.
over the anchoring energy for smédl< &) droplets, and we In order to avoid the mathematical difficulties arising
should expect the director deviation from its equilibrium ori- from the high order nonlinear differential equation, we there-
entation to be small. For spherical droplets this dimensionafore use an approach proposed by Helfrji2]. We employ
argument is confirmed by the analytical stug82]. In the  another rotationally symmetric function, namedyy), where
first approximation we can consider the director field to bex is the distance from the polar axis atids the angle made
undistorted by the presence of the dropglete Fig. 1, and by the surface tangent plane with the polar asise Fig. 1
find the droplet shape under this condition. This essentiallyn such a coordinate system, the variational problem leads to
means that we neglect the elastic free endfyand keep an algebraic equation in the absence of curvature effects, and
only the surface contributio(b) in the free energy. The de- to the second-order differential equation in the presence of
viation of the director field will lead to corrections to the these effects.
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The contributions to the free energy density expressed in

terms ofx(y) are x=1.0
f,=o (12
and x0
W
fa= Ecoszz,//. (13) 1=001

We note that the elements of surface area and volume corre;_q g,
sponding tody can be written as

dS=2mxx' csapdyy (14 =0

O O
O O
e
>
o

OO0O00
00000
00000

and

®=0.0 ®=0.5 w=1.0 w=1.5 ®=2.0
dV=7x?x' cot yd. (15)
FIG. 2. Cross section of droplets which minimise the free en-
In the absence of curvature energy, we can cast the expregrgy (31). y is defined in Eq(47), w is defined in Eq(22), and the

sions for the free energy in the form spontaneous curvature dd/is taken to be equal to zero.
/2
F=f (f, + fa)2mxx csopdys (16)  (18) and (20) have the shape of “lenses” with smooth or
-2 sharp edge depending an Some shapes corresponding to
and the volume of the droplet Egs. (18) and (20) with different values ofw are presented

on the bottom row of Fig. Zwith x=0). The results of the
present section suggest that a lens shape with sharp edges is
formed foro=1.

The shape of the droplet can be represented as the piece-
The minimization of the free enerd{6) yields the algebraic wise function

equation forx(y),

72
V= f mx2x' cot ydip. (17)

—7l2

20 cosy ) — T
2 cosyr W _ — 1+l +sify)], ¢=<|y=<-
x(ih) = o+ —(1+sirfy) |, (18) B Ao 2
0 2 x(h) = —
doVw —
where\, is a Lagrange multiplier to enforce the constraint No [l <
that the volume of the droplél7) is constant. 23

The shape of the droplet is not directly giveniyy), but
it can be obtained by an integration. For instance, we mawith  spanning the connected intervatrf2< yy< /2 for
introduce a coordinate along the polar axis, indicated in any value ofw. The aspect ratié of the droplet is

Fig. 1. Thenz as a function ofy is given by the integral
’ As x(0) Jl+w, Ososl1 (24
z() :—j X' (£)cot &dé (19 z2(ml2) (2o, w>1.
° We note for use in Sec. IV that the Lagrange multipligr
and in our case is can be derived from Eq23) and expressed in the form
2 sin W 2
z(lp):—l’b(o——cos%). (20) —U(1+w), Osw<1
No 2 X(0)
_ No= (29
The solution is physical fors belonging to the intervaly 4_‘7\@, w>1.
sMK 12, i being the following solution of the equation x(0)
z()=0: Equation(18) is equivalent to the result, obtained earlier
_ by Prinsen and van der Schddi8] for the inverse problem
= 0, 0\_‘”\ 1 (21) of a nematic droplet with a uniform director field embedded
arccos/l/o, w>1, in an isotropic fluid. However, it should be noted that in this

work we are considering lens shaped deformations rather

where than the tactoid shapes considered by Prinsen and van der
W Schoot and it is necessary to modify the sign and definition
w= %0 (22) of w in order to fully reconcile the two sets of results. The

Waulff construction[19] (see also Refd16,17) used in Ref.
is the dimensionless anchoring strength and we are assuminfi$8] seems to be a rather simple method for solving this
throughout thatw=0. The droplets corresponding to Egs. problem. However, it is applicable for the cases when the
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free energy depends only on the orientation of the interface, , 2 W k(siny cosy
and, unlike the direct use of the calculus of variations, does L = m™X(¥)X'(¥)) — o+ —coSy+ | —— -
X o Si 2 2\X' () x(¢)
not allow straightforward generalization to the case when )
i 2
curvature effects are taken into account. N _) ] ~\ cot yx( zp)}, (33)
S
IV. ROLE OF SURFACTANT or, substituting Eq(33) into Eq.(32):

In this section we investigate the shape of the droplet in _ w . _ AX(#)
the presence of a surfactant layer. Before attempting to solve KQ(y) =) 2 coty o+ 2 (L+sirty) sin

the variational problem, let us estimate the curvature at the 5 N3

edge of the droplet in the limit of small surface tension, XXA(PX), (34
arising from a very strong surfactant. In this case the princiywhere

pal competition is between the bending rigidity and the an-

choring. Let the radius of curvature of the interfaceat a() = 2 PYX" (Psintyr =X ()

=/2 bep. Then the anchoring free energy at the edge of the 1

droplet is of ordeWap, and the bending free energy is of X Eh(z,//)sin 24+ 2X(p)X' (P)siry |, (35

order kal/p, provided the spontaneous curvature is small

enough. These two effects become equal for a radius of cur- 5 -

vature of order () =2 + (1 + ity - Ax()cos i 4x (;/;))x. )

Ps Ps szlﬁ
-~V (26) (36)
p W

For k=0 the differential equatioit34) reduces to the alge-

tShettmgl; typ|fctahl Vallcjfs fo;N and tK gIVftnh ab%ve, V\]{ethob(tjam | raic equatior(18) considered in the previous section. In the
€ value of the radius of curvature at the edge of the dropi€a e, case, the equati@¥) is a second-order differential

to bep~10 nm. ; . .
To generalize the variational problem described in Secequatlon with respect ta(y) which should be augmented

I, we take into account the curvature contribution to theWlth boundary conditions

free energy density, corresponding to E®).: T T
X|-=]=x{=]=0. (37
ol (1 ! 2)2 7 2 2
=SkK|l—+———| .
“ 2 \py pp ps The presence of the small parametgre-multiplying the
Expressing the principal radii of curvature in termsxf) highest-order derivative leads to a form of singular perturba-
asp 9 P P tion problem, which prevents straightforward perturbation

expansion in terms of the parameterWhile several meth-
X' () ods have been developed for the solution of the perturbation
“sing (28)  problems of this clasf33,34, their application to the differ-
ential equation(34) presents considerable mathematical dif-
and ficulties.
In order to make progress, we consider the piecewise so-

p1=

po= X(¥) , (29)  lution (23) of the perturbed problem. FQ;<|¢|<77/2 the
cosy curvature is of order 1d, and the terms in Eq:34) contain-
we can cast Eq27) in the form ing « are small compared to the nenterms. Hence in this
_ ) interval the solutior(18) can be used as the first approxima-
f = EK(_ sing  cosy _ E) _ (30)  tion. Note that this solution applies for ali when y=0.
2\ X x¥  ps For w>1, we find from Eq.(21) that »>0. In this case
ergy interval —/<<y<y corresponding to the area close to the
i lens edge. Herg() can be expanded into seriesgand up
" 2arxx’ to the second order written as
F= (fy+f +f)—dy (31
—al2 sin ¢
- _P 4
under the constraint of constant voluni&?) satisfies the x() =x(0) 2‘”2+O("” ), (38)

Euler-Lagrange equation
p being the value of the radius of curvatyrgat ¢=0. Sub-

gL d_adL _ stitution of Eq.(38) into Eq.(34) and equating the terms of
0 (32) o) . .
the same order iy yields the algebraic equation

ax(y)  dgax ()
with C# +0(y4 =0, (39
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) ) ) can be found numerically. Following Refl12], we con-
Co=| kx(0) = p%| (20 + W= Ax(0))x*(0) structed a Fourier expansion @&fy) with the coefficients
scaled to enforce a constant volume of a droplet. This expan-
.\ ;{1 _ 4x(0)(l _X(O))”)p (40) sion was substituted in the free ener@d), and the latter
Ps Ps ' was minimized numerically as a function of Fourier coeffi-

) , ) . cients. Some shapes for different values of the dimensionless
The root of this equation corresponding to the minimum Ofanchoring strengtiw defined by Eq(22) and the dimension-
the free energy is less bending rigidity,

— . K &
P= 20+ W= 2Ax(0) +0(™?). (41) _K (47)

X_ZO'RCZ)'

A =Np+0(k9), (42)  are presented in Fig. 2, wheRy is the radius of the nonde-
formed (spherical droplet. The spontaneous curvaturepd /

is taken to be equal to zero. The bottom rowith y=0)
corresponds to the results of Sec. Ill. The aspect ratio de-
—_— 0(x*?). (43 creases with increasing, corresponding to the decrease of
VW=+y20 droplet size, and the shape becomes closer to the spherical

In the absence of surface tension and intrinsic curvature @ne which minimizes the curvature ener@y.

agrees with the estimat@6). It should be noted that the Numerical calculation also shows that for smaller sponta-
spproNImAoN4) s 1 V= W2 howeve,this s _1E0US radus of curvatu e aspect o decreases and
very unlikely to be encountered experimentally given typlcalalmost spherical. This can be qualitatively explained by the

values ofx ando. . . . )
= ) . ) increase in the effective surface tensi@.
At y=y where the solution¢18) and (38) join, there is If the surface tension dominates the elastic endigy,

discontinuity in the derivativet’ (). However, this disconti- /o < 1), the droplet will become spherical. Also for drop-

nuity does not affect the free energy of the droplet since thggs jarge compared to the extrapolation length, the inequality
derivativex’(¢) enters in the denominator of E@0). More-  (46) does not hold and the effect of the distortion of the

over, the surface of the droplet remains smooth despite thg|astic field of nematic becomes important. The simulations

Next, expanding the Lagrange multipligrin series ink,

with \q given by Eq.(25), we obtain the following result:

— V” K
p p

break in thex(y). _ _ using the lattice Boltzmann technique show that with in-

~ The disregard of higher terms afin the expansioit43)  creasing size of a droplet the aspect ratio decreases, while the

is valid under the conditions distortion of the elastic field grows and, at a certain point, the
< oa> (44) transition to the state with the defects in the director field

occurs[11,12. The similar picture is observed for the in-

and verse problem of a nematic droplet in isotropic host fluid
o= a. (45 L8

We also note from Eq(11) that the model presented above

assumes V. CONCLUSION

We have investigated the shape of a droplet of an isotro-
a< W (46)  pic liquid immersed in a nematic liquid crystal in the pres-
ence of a surfactant layer in the limit that the droplet is small
Equations(44)—<46) constitute the validity domain of our compared to the extrapolation length of the nematic. We
solution. have found the droplets of size satisfying the inequalities
To estimate the size of the droplet satisfying the inequali{44)—(46) to be lens shaped with the rotation axis aligned
ties (44)—(46) let use choose the typical values of constantsalong the imposed director field and the aspect ratio depen-
characterizing our system d@~10 N, W~10°J/n?,  dent upon the ratio of anchoring strength and surface tension
k~102J, ps~10" m. To obtain noticeable distortion of coefficients. The curvature of the edge of lens is controlled
the droplet shape we must choose the surfactant providingy the bending rigidity of surfactant. The deformation of the
the surface tension at least- W~ 107 J/n? [see Eq(24)]. droplets becomes smaller for droplet sizes large or small
Then the inequalitieg44)—«46) reduce toa>0.03um, a  compared to the range limited by Eq44)—46).
<10um, and a<10um, correspondingly, vyielding Although we have so far only considered isolated drop-
0.03um<a<10 um. Thus, for the chosen parameters thelets, the latter result is qualitatively correct for the concen-
solution we have obtained is valid for the droplets of sizetrated polydisperse nematic emulsions. In this case the elastic
a~1um. field is more complicated due to large concentration of the
For smaller droplets the inequalit$4) does not hold, and droplets and to the possible presence of droplets large
the curvature free energy becomes important on the wholenough to distort the elastic field significantly; hence the
surface of the droplet. In this case the shape of the droplethape of the droplets can be different from the described in
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the present paper. However, the distortion from the sphericdliations of the interface. Generally, the shape fluctuations
shape becomes small both for small droplets, where theesult in the renormalization of the surfactant parameiers
bending rigidity of a surfactant layer is important, and for kg, andps [35], thus affecting the profile of droplets near the
large droplets, where the shape is controlled by the isotropiedge. The dynamics of surfactant layer can also significantly
surface tension. Thus we can expect that in polydispersalter the surface vibration spectra even for spherical droplets
nematic emulsion the largest deformation must be observe[86—39. The equilibrium shape of the droplet is the prereq-
for droplets of sizes satisfying the inequalitig!) and(46). uisite for studying the dynamic fluctuations, and the results
In the present study we neglected the effect of the flucof the present paper may be useful in such a study.
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