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Assessing flow alignment of nematic liquid crystals through linear viscoelasticity
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Shear alignment of rodlike nematic liquid crystals is found when the reactive paranteter Measure-
ments of\ usually require complex experiments. This paper presents a method based on the nematodynamic
theory of Leslie and Ericksen that assesses flow alignment through small amplitude oscillatory flow. The
method is based on the fact that the effechadn the storage modulus’ of linear viscoelasticity, when the
director is along the flow direction, is directly proportionalte 1. Thus the alignment-nonalignment transition
for increasing lambda is a reentrant viscoelastic transition: viscoelagtic 1)—purely viscous
(A=0)—viscoelastic (\>1) that is reflected in the storage modul@ and in the “loss angle”s
=tamr}(G"/G’). The methodology is demonstrated by analyzing the Leslie-Ericksen equations for small-
amplitude oscillatory Poiseuille flow @fi-n-octyl-4 -cyanobiphenyl (8CB) using analytical and scaling meth-
ods. Since linear viscoelastic moduli are easily accessible, the proposed methodology is an additional useful
and economical tool for nematodynamicists.
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[. INTRODUCTION theoretical predictions has been the focus of many studies

- . . [1,2,4. Under flow aligning conditions the reactive param-

to z'\a/l dOOSt t“gﬁ;gr(;%s:ﬁfrﬁggbgfmo:zmﬁ;pshéimt ar}gaalllre i':]r;(r):;nsgater can be determined by optical methods. More generally, it
b y P » typically can be determined indirectly by viscosity measurements or

ing order as the temperature decreases. For instance, 4—@ . .
i o ; L using startup flow, as is described by Lar§bh(see p. 4638
octyl-4’-cyanobiphenykknown as 8CB, which is a small for a recent review on measurement of viscosities in nemat-

21 docia;sn;gjt? othi?: rr?]?rz’?:tli((:: n:ﬂTi&gﬂg'i(;irgs@?gﬂsTe':L;) 7the ics see Moscick[6]. When one wishes to ascertain whether
P pic, ' P nematic liquid crystal is flow aligning or not, these optical

temperature decreases under atmospheric pressure. Tﬁﬁd rheological experimental methods can be substituted by

uniaxial nematic liquid crystalline phase has a long ran . . ; : .
one-dimensional o(rqientatignal orde? but no ositionzgl Ordgﬁneasurlng the viscoelastic response to small-amplitude oscil-
P latory shear flow, as shown in this paper where we propose

whereas the smectics phase has, in addition to the orlent%—n alternative and simpler rheological technique based on the

E%neacltic(j{der:és: isogr?;rj;rg'[?e ?ISZ' ggatl p;olsal tlgpea:jl s?rrl?cet[lre-rtrr:el-near viscoelastic theory and a standard oscillatory flow.
P y y mall amplitude oscillatory flowcSAOF’s) are a main rheo-

Imparts a one—gjlmensu_)nal positional order, while _the_ m.o'logical tool used to characterize viscoelastidity] in terms
lecular orientation retains the order of the nematic liquid

crystal phase. Thus the temperature changes of nematic flo c.); the storagds'(w, T) and lossG"(w, T) moduli as a func-

lead to drastic changes in the rheological behayioZ]. ion of frequency(w) and temperatureT). Although simple

A most significant temperature sensitive property is theShear is commonly used, pressure driven flows, as consid-

shear flow aligning characteristics of uniaxial rodlike nemat-£€d in this paper, are also equally usefé/10. Previous

ics, which is set by the sign and magnitude of the reactivé("ork on small-amplitude oscillatory shear of liquid crystal_s
order parametex; for the aligning regime\ > 1), the aver- in a parallel plate geometry has been presented for rodlike

age molecular orientation or directar, is close to the nematic liquid crystalg11], nematic liquid crystal mixtures
streamline. while for the nonali nmeni regin@<A < 1) [12], chiral nematic liquid crystal13], and side-chain nem-
the stea dy’ state orientation is gnonplanargan d\nonho;”nog %a\;tic polymers[14]. In these theoretical studies the objective
neous[3]. Some SMTNLC's such as 8CB exhibit flow- as to determine the relation between viscoelastic moduli

aligning behavior if the temperature is sufficiently high but atand the material properties, such as the Frank elastic con-
gning peraturt y high bu stants, the Miesowicz viscosities, and the rotational viscosity.
lower temperatures are nonaligning. At the flow aligning-

nonaligning(A-NA) transition temperaturg,., the reactive In most of these theoretical studies it was found that mon-
gning P a-na .odomain nematic liquid crystals are viscoelastic in a fre-

lpartame_zter IS etqual Ito 1. Nqna;lllgnmer]nt IS atlso f[)hbserved Iauency region surrounding the director relaxation time, and
yotropic nematic polymerpd]; at low shear rates, these ma- that the response in the small frequency terminal region cor-

terials are usually nonaligning, while at high shear rates the}r‘esponds to pure viscous material. Obviously, introduction of

are gllgnlng. : . .stable defect lattices would predict elastic response in the
Since the rgacUye parameter plays such a crucial role "Yerminal zone, as observed by Ramnebsl. [15] and by Yada
nematodynamics, its experimental measurement as well a3 al. [16] for cholesteric liquid crystals. In this paper we
show that the relatively simple SAOF measurements are also
a useful tool to determine flow alignment in liquid crystals.
*Corresponding author. Email address: alejandro.rey@mcgill.ca  The objectives of this paper are:
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v A T=-pl - 9Fq -V nT+ a(nn:A)nn + a,nN + asNn
e
i 9 50 r +aA+asnn - A+ agA - nn, (2
o4 oy by >
A=(Vv+ Vvh/2; (3a)
N=n-W -n; (3b)
FIG. 1. Capillary flow of a uniaxial rodlike nematic liquid crys- W = (Vv - vvh/2, (30)

tal, showing the unit normal vectd@u), the director vectotn), the
(6), and the cylindricalr, ¢,2) coordinate system used to describe the six Leslie viscosity coefficients, is the rate of deforma-
a generic poinP. Under pressure drop oscillation, the director vec- tion tensor,N is the corotational derivative of the director,
tor fluctuates around,=(0,0, 1. andW is the vorticity tensor. In this theory the elastic free
energy densityF is given by
(i) Characterize the temperature dependence of small am- _ ; 1 1
pIituzje oscillatory capiIIar)[/) Poiseuillep floSAOPH of Fg=3K1(V -n)?+3Kp(n - V X n)?+ 5Kgdn X V X n?,
nematic liquid crystals exhibiting an aligning-nonaligning (4
transition.
(i) Find the signatures of the aligning-nonaligning tran-
sition on the linear viscoelasticity of nematic liquid crystals.
(iii) Demonstrate the applicability of the small amplitude
oscillatory capillary Poiseuille flow to characterize the align- re+1rv=0 (5)
ment behavior of nematic liquid crystals, using 8CB as a
model system. _ _ (a[:d IFq4 )
This paper is organized as follows. Section Il presents the IM=-nx|—- T/
governing equations and auxiliary data to describe the nem- an d(Vn)
atic liquid crystals oscillatory capillary Poiseuille flow. Sec-
tion Il presents the material viscoelastic properties and func- I’=-nX(yN+yA-n), (6b)
tions used to characterize the oscillatory Poiseuille flow of
nematic liquid crystals. Section IV presents a characteriza- V1= az T ay, (7a)
tion of the thermal dependence of the small amplitude oscil-
latory Poseuille flow of nematic liquid crystals using 8CB. Vo= ag— a5 = a3 + ap; (7b)
The correspondence between temperature and reactive pa-
rameter effects on the; storage modulus is establlsheq. Sec- oy, agmas | aztap
tion V presents the signatures of flow alignment on linear A=-—"=-———=-—",
viscoleasticity. Section VI presents the conclusions. L e
wherey;, is the rotational viscosity, angh, is the irrotational
torque coefficient. Due to Eq7b) there are only five inde-
pendent Leslie coefficients. In addition, four thermodynamic
The governing equations of the Ericksen and Leslieinequalities introduce further magnitude restrictions on these
theory consist of the linear momentum balance, directocoefficients[1,2,19. The reactive parameter is involved in
torque balance, and constitutive equations for the stressespndissipative processes but it is given by a ratio of dissipa-
viscous and elastic torques, that take into account externdive coefficients]1,2].
forces that distort the spatially uniform equilibrium configu-  The inertial term in the linear momentum balance equa-
rations of liquid crystalg§1,2,17-19. The orientation is de- tion, Eq. (1), and the director inertia in Eq5) are both
fined by the directon that is a unit vector collinear with the neglected; the former is due to the fact that the velocity field
average molecular orientation direction. Uniaxial nematicevolves much faster than the orientation field, so the velocity
liguid crystals(NLC's) are characterized by an average mo-relaxation time is irrelevant with respect to the orientation
lecular orientation represented by the director vectpas relaxation timg[2] and the latter is because it is insignificant
shown in Fig. 1. For incompressible, inertialess, isothermain comparison with the retained viscous terms.

whereKy,, K,,, andKs; are the splay, twist, and bend Frank
elastic constants. The director torque balance equation is
given by the sum of viscoud™) and elastiqI'®) torques:

(6a)

(70

Il. THEORY AND GOVERNING EQUATIONS

conditions the linear momentum balance is Consider a small-amplitude oscillatory Poiseuille capil-
lary flow of a nematic liquid crystal, driven by pressure drop
0=f+V -7, (1)  oscillations of infinitesimal amplitude, as shown in Fig. 1.

The cylindrical coordinate system is also defined in Fig. 1.
wheref is the body force per unit volume, andis the total  The flow is described by an axisymmetric oscillatory planar
stress tensor. The constitutive equation for the total stresdirector field [n(r,t)=(sin 6(r,t),0, cosé(r,t))], and a
tensorr is purely axial oscillatory velocity fieldv(r,t)=(0,0(r,t))]
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with finite velocity gradient at the centerline. Linearizing 7,=(-ay+a,+as)/2 when it is parallel to the velocity gra-
around the axial directiofi.e., sind=#6, cosf=1), the di- dient, andn;=a,/2 when it is parallel to the vorticity axis;
mensionless governing equations for the director tilt anglehe measured Miesowicz shear viscosities for aligning nem-

6(f ,T) and the axial velocity (7, t) simplify to [20] atics usually follow the ordering
~ > 3> . 11
Tipayes = %(%%Ga)) + CE, (@a o 4
Jgt  Jr\rar 2'm In the present flowy, is the relevant steady shear viscosity,
but the average of the three Miesowicz viscosities are used
97 ET -~ for scaling proposes. _ _
E =-__ +B, (8b) The shear flow alignment of rodlike NLC'’s is governed
n by the magnitude of the reactive parametgiT). According
~ to Eq. (7c), A=f(ay,a3), and for rods the inequality, <0
B=- %‘9_0, (9a) holds at all temperatures, but may change sign. For rod-
mdt like molecules, when >1 (a3<0) the material is known as
shear flow aligning, and the director aligns within the shear
~ . ad plane, at an angl®_, known as the flow-alignment Leslie
Tsplay= Y1~ R (9b)  angle, given by19]
1
where 7pay is the dimensionless splay viscosityy, 6, = 1 Cos-l<l>_ (12)
are the dimensionless Leslie viscositié®=a;/(n)), (n) 2 A

is the average Miesowicz viscosifig0], E(@f)=(R*/Ky)  In a steady simple shear flow when the director is aligned

X[-(dp/d2(o1)] is the ratio of viscous flow effects to long- along ¢, the viscous torques are zero. The Leslie angle can

range elasticity effects known as the Ericksen number, be measured using optical methods and the reactive param-
=r/R is the dimensionless radiuR is the capillary radius, eter can be evaluated directly using @&); however, when

T=K 1t/ (R¥ 7)) is the dimensionless tim@&=(7)Rv/K;;is A <1 (az>0), nonaligning behavior arises and K#fj2) does

the scaled axial velocity, —dp/dz is the given small amplitudenot hold.

oscillatory pressure drop in the capillary per unit length, When the director angle is in the plane of shear and close

= w(R¥7)) /K4y is the dimensionless frequency, aBds the [0 zero the viscous torqué;, around the azimuthal direction

dimensionless backfloi21]. IS

The boundary conditions for the director orientation angle ) ) (1-)N) .

. ~ U — _ Y1 _

represent strong planar anchorimg0 f)=6(1 )=0, and for Py=—agby==-72(1-Moy= 21N oy, (13
the axial velocity the no slip condition at the bounding sur- .
face is usedp(1)=0. The director oscillates around the Wherey is the characteristic shear rate, and where we used
velocity (2) direction, and the undistorted director field is the definitions Eqs(7a) and (7¢). In SAOPF the viscous
n,=(0,0,1. torque is balanced by the elastic torque, and thus measuring

For the small amplitude oscillatory capillary Poiseuille the linear V'SCOEIaS,t'C storage and loss moduli yields
flow considered in this paper, the Ericksen number., di- Since for SMRNLC's the Leslie coefficient, is always

mensionless pressure djogscillates as follows: negative, the sign of; determines whethex is greater or -
less than 1. Thus flow alignment can be determined using
E=E, sin o, (10 simple and purely mechanical measurements. AtAHEA

transition, the viscous torque vanish&$;=0.

The director reorientation is a viscoelastic process, and
the re-orientation viscosities associated with splay, twist, and
bend deformations are defined [,21]

Thwist = Y1s (144

whereE, is the infinitesimal dimensionless amplitude. Note
that the frequencw is scaled with the orientation time scale
7o=(R¥7))/K;; and the maximum elastic storage is ex-
pected for frequencies close to the reciprocal of this value.

Ill. MATERIAL PROPERTIES

The viscoelastic material properties needed to character-
ize the small amplitude oscillatory Poiseuille flow of NLC’s

a’32 Pt 2
Nsplay= Y1~ — N 1- 1-M7); (14b)
it 4y

aligned along the capillary axis include the Miesowicz vis- -2 v )
cosities 77, the reactive parametex, the torque coefficient Moend= Y1~ —  =n|1- 4—(1 +M°). (140
as, and the re-orientation VisCOSitspay [2,19. 2 2

The Miesowicz shear viscosities that characterize viscouFhese viscosities are given by the rotational viscoséity)
anisotropy are measured in a steady simple shear flow betecreased by a factor introduced by the backflow effect.
tween parallel plates with fixed director orientations alongBackflow is re-orientation driven flow and is essentially the
three characteristic orthogonal directionsy;=(az+as  reverse effect to flow-induced orientation. The general ex-
+ag)/2 when the director is parallel to the velocity direction, pression for the re-orientation viscosities can be re-written as
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TABLE . Viscosity coefficients to4-n-octyl-4’-cyanobipheny(8CB) [22,23.

Set 1 2 3 4 5 6 7
T (°C) 34.00 35.00 37.00 38.36 39.00 40.00 40.50
Leslie viscosities coefficientda 9
ay 0.6510 0.1342 0.0382 0.0196 0.0138 0.0078 0.0060
ay —0.0707 —0.0696 —0.0587 —0.0500 —0.0458 —0.0371 —0.0305
asz 0.0404 0.0140 0.0031 0.0000 —0.0011 —0.0034 —0.0055
ay 0.0582 0.0560 0.0520 0.0497 0.0488 0.0478 0.0474
as 0.0644 0.0529 0.0472 0.0415 0.0388 0.0339 0.0315
g 0.0341 —0.0026 —0.0084 —0.0085 —0.0082 —0.0067 —0.0046
Reactive parameter
N 0.2725 0.6639 0.9013 1.0000 1.0512 1.2042 1.4436
Dimensionless Leslie viscosities coefficiel(ffs:ai/<7;))b
a 10.166 2.6671 0.8932 0.5067 0.3735 0.2291 0.1855
ay —1.1044 —1.3832 —1.3725 —1.2925 —1.2395 —1.0896 —1.9428
Qg 0.6309 0.2782 0.07249 0.0000 —0.02978 —0.09985 —0.1700
ay 0.9089 1.1130 1.2159 1.2848 1.3207 1.4038 1.4652
as 1.0057 1.0513 1.1037 1.0728 1.0501 0.9956 0.9737
ap 05325 ~ —0.05167 —0.1964 —0.2197  —0.2219  -0.1968  —0.1422
Dimensionless rotational viscosity and irrotational torque coefficient
" 1.7350 1.6615 1.4450 1.2925 1.2097 0.9897 0.7728
Yo —0.4732 —1.1050 —1.3001 —1.2925 —1.2693 —1.1894 —1.1128
Dimensionless Miesowicz viscosities
" 1.0362 0.6698 0.5460 0.5325 0.5345 0.5536 0.5765
D 1.5094 1.7738 1.8461 1.8251 1.8051 1.7445 1.6909
3 0.4544 0.5565 0.6080 0.6424 0.6604 0.7019 0.7326
Dimensionless re-orientation viscosities
Thwist 1.7350 1.6615 1.4450 1.2925 1.2097 0.9897 0.7728
?7Sp|ay 1.3509 1.5459 1.4354 1.2925 1.2081 0.9717 0.7226
Tbend 1.4713 1.6178 1.4422 1.2925 1.2092 0.9840 0.7557

*The Leslie viscosities coefficients and the temperature in this case are interpolated values.
®The average Miesowicz viscosity is defined @gi=(7,+ 7.+ 73)/3.

7.=71— %l 7;, where s, denotes the corresponding Miesow- observed, while for temperatures belofy,,, A<1 and
icz viscosity and{; the corresponding torque coefficient. a3>0 and nonalignment is observed. In this paper we
Since twist is the only mode that creates no backflow themliscuss results in terms ok, instead of az, without
Mwist=y1- FOr a bend distortion the backflow is normalrto  |oss of generality. The relation betweeg and \ is [2]: a3
and hence the torque coefficient as, and the Miesowicz =-ay(1-\)/(1+\). Using Table | it can be seen that
viscosity is7,. On the other hand, for a splay distortion the g /da;<0 at all temperatures. Since for any functién
backflow is parallel tm and hence the torque coefficient is gf/qq,=(df/d\)(dN /dag), it follows that sgiidf/deas)=

o, and the Miesowicz viscosity 1,. In the present fiow the —-sgr(df/dn) for all temperatures, and no ambiguities will
relevant re-orientation viscosity igpia= y1~ 3%/ 71. For a arise '

material like 8CB, the splay viscosity, twist and bend vis-
cosities are identical at th&-NA transition.

In this paper we use the viscoelastic material parameters
of 8CB, shown in Table [22,23. The temperature depen-
dence of rheology of 8CB under transient and steady simple The semicoupled set of equations, E(a) and(8b), is
shear flows was presented by Han and RyAt a tempera-  solved by separation of variables. Note that the velocity par-
ture T=T,,,=38.36 °C the reactive parameterNs1 and tial time derivative is missing in Eq@8b), and hence the
a3=0. As mentioned previously in this section for tempera-velocity time dependence is set by the director dynamics.
tures aboveT, ., A>1 and a3<0 and flow alignment is Symbolic and numerical calculations presented in the next

IV. RESULTS AND DISCUSSION
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sections were performed using the softwarlerelease 7 4(F,1,®) is given by the sum of the following in-phase and
by Waterloo Maple Inc anehatlabversion 6.5 by MathWorks out-phase components:

Inc. o~ ~ ~
0(F 1, 0) = 6,F, ®) sin(@) + 6,(F, ) cogwi). (15
_ S Note that in phase means oscillation in phase with the im-
A. Orientation field posed Ericksen numbgsee Eq.(10)], and hence the in-
Imposing pressure oscillations on the NLC'’s will produce Phase temporal variation is i), while the out phase is
spatially nonhomogeneous director oscillations. Since NLC'sogt). Using Eq.(8a) and separation of variables, the in-

are viscoelastic the director oscillations will not be in phasephaset.(f, w) and out-of-phas@,(f, w) director components
with the applied pressure drop. Thus the total director anglare found to be

~ [~ ~ . /’T . ~= ~ [~
_ a3E0< berl\'wﬂspla)f be'l\“wﬂsplay_ bell\/w Msplay beerwnsplay)

(I 25 ~~ 2 [== .o [~~ (16)
7 wnspla)(berl N0 Bsplay+ bei; Vw’?spla;)
~ /’T... [~ ~ N oy ~ L= ~
_ a’3E0( ben W Nsplay ben \ W 7splay T bei W Nsplay’ bei O%splay T ) (17)
0~ A~ —~—~ [y B [ ~—~ y
2m w’?spla)(berlz\“'wnsplay"' bel12V w’?splay) @spla

where bej(x) and bej(x) are the Kelvin functions of order, because the net flow effect on the director is renormalized by

[24]: backflow.
Figure 2a) shows the in phase component of the orienta-
. C05<3—771/+ Zk> tion (6:/E,) as a function of the dimensionless radial distance
B 4 2 x| 2+ (r) for dimensionless frequencié®): 0.1, 1, 10, 100, 1000,
ber,(x) = kE_O k! T (k+1+v) 2 ' (18 and 10 000;T=34 °C, and the reactive parameter 0.2725, in
- the nonaligning regime. Figur&l® shows the corresponding
out-phase component of the orientati@y/E,) as a function
" sin<3—7v+ Zk) s of the dimensionless radial distan@®. The in-phase com-
bei0=3 2 <§> v (19) ponent decreases monotonically with frequency, while the
v o k! T'(k+1+v)\2 out-of-phase component exhibits resonance behavior that

signals maximum elastic storage. The behavior in the align-
The amplitude of the director field is a function of ing regime is obtained by reversing the signs of the ampli-
a3l Mspiaymn- The symmetry and scaling of the amplitudes aretudes.

ei(FvZ)!aS) == aiG1Z)1_aS)r HO(FiZ)vaS) == O(F,Z),—a?,),

B. Velocity field
(20)

Since the director field is coupled to the velocity field,
o ~ ~ o - ~ imposing an oscillatory pressure drop to the NLC will pro-
6,0, as) =a5fi(T,®),  6,(F, 0,03 =asf(F.w). (21)  gyce a velocity field with in-phase and out-of-phase compo-
Vanishing amplitudes are a signature of the aligment-”?”ts- Thus the total dimensionl_ess_velocity fiedd,t, ) is
nonalignment transition. The amplitude sign reversal indi-9iven by the sum of the following in-phase and out-phase
cates characteristic rheological responses. The only viscosfomponents:
ties in the problem are the Miesowicz viscosiy associated ~ e~ ~ o~
with the axially oriented director fieli.e. n=(0,0, 1], and o(F 1) =07, ) sin(@l) +To(F,@) cot@h).  (22)
the transient splay viscositys s, associated with oscilla- Using Eg. (8b) and separation of variables, the in-phase
tions the director around the axial “z” axis. The frequencyv;(f,®) and out-of-phas&(f,») director components are
dependence of is weighted by the splay viscosifygy,,  found to be
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~ ~ [~~ [~~ ~ . <= <~ [~ . ’/T
7=(1 _~Z)E<l " a32 )+ a32E0 |: ben\ W nspiafPeHV O 7spiaf — beb\’/w"’]spla)r — bepVansplay* beb\’wﬂsplay):|
i~ ~ ~ o~ ~ D~ o~ ~~ . | —y—
4m 71 splay 27]127lsplay \’/2(1) Wspla)(berlz\/w"’]splay"' be'lz\“’wﬂsplay)
~ =~ Y e = .. == ==
0‘32E0 |: be'lenspIa)(be'O\'wﬂspla)r + be'f)\“wnspla)r - bebV/wnspIay_ be'b\'wﬂsplay) :| (23)
~ > — == S e ,
2y Tsplay \'ansplmxberlz\"wﬂsplay"' be'lewnspla))
~ . e~ ~~ ~ . /T._. [~~ P oy
~ _ a32EO be'leﬂspIa}(be'bVwﬂspla)r - bepVonspiaf — beHV 0 7splay* beb\/wnspla))
Vo=7 = o~ [y~ ~ 2 [~~ 2, [~~
2m Tsplay V2“’775pla)(ber1 V@ Nsplayt bei WJ"7lsplay)
~ [ [ . == ==
a32EO |: berl\'wnspla)(be'oanspla)r + be'bVwﬂsplaJ - beb\'wnsplay_ be'b\’wﬂsplay) :| (24)
~ > oo = 2~ :
2m Tsplay V2w 7lsp|ay(bef12\* ®7splayt beI]_ZV “”]spla))

The in-phase componeit has a frequency-dependent term elastic storage. In steady simple shear flow the dimensionless

and a frequency-independent Newtonian parabolic compagirector boundary layer thicknegsscales agx=1/VE [25].
nent that is associated with the pure viscous contribution; jkewise in SAOPF the boundary layer thickness scales as
The in-phase componentis associated with the elastic con- Eu 1%, By analyzing the dimensionless boundary layer

tribution. The amplitude of the velocity fieidl is a function thickness of the dimensionless out-phase velocity component

of as a function of the dimensionless frequency we find that the
R= -4’ (Pspay=7) 1 5 Power law scaling holds for aligning and nonaligning re-
T =2~ - = ~ (25 gimes; at T=T,,, Newtonian viscous flow arises and
71 Msplay Nsplay 71 =0
o=0.

The transient viscosity information is contained in the di-

mensionless ratid7spiay~v1)/ 7splay DEtWEEN nNet viscosity

due to rotation and transient displacement viscosity. As usual C. Viscoelastic material functions
7, is in the denominator and contains the steady “Newton-
1an viscosity factor. Th_e fre_quency dependence wofis The linear viscoelastic material functions are given by the
weighted by the splay viscosifysy,, because the net flow o ey _Tap (N 4 i =

effect is renormalized by backflow. The symmetry and scalS0MpPlex modulusG* (0)=G'(w)+iG"(w), whereG' is the

ing of the amplitudes are dimensionless storage modulus a@tlis the dimensionless
loss modulus. The dimensionless complex viscosity is de-

vill @9 = vl0-ag). voll a9 = vl @a), g e ) i(3) =G (@)@, where and

(26) 77" are the dissipative and elastic components. For Poiseuille
(N (N2 (F ~ =\~ 2 ~ flow the dimensionless flow rat@) and the dimensionless
0ilf,©,a3) = (@2)°G(1,), vy, @,a3) = (ay) g°(r’w2'27) apparent viscosity7) are given by the following relations
[26]:

Vanishing amplitudes are a signature of the alignment-
nonalignment transition. The amplitudes are even functions
of as. 1

Figure 3a) shows the in-phase dimensionless velocity A= ~
componen{v;/E,) as a function of the dimensionless radial Q wao b{Ordr, (283
distance(F) for dimensionless frequencié€®): 0.1, 1, 10,
100, 1000, and 10 000T=34 °C, and\=0.2725, corre-
sponding to the nonalignment regime. Figute)3hows the
corresponding out-phase dimensionless velocity component
(vo/E,) as a function of the dimensionless radial distafi¢e T=—. (28b)
As the frequency increases the profile of the in-phase com- 8Q
ponent asymptotes the Newtonian parabola, while the out-
phase component exhibits resonance. Identical behavior is
observed in the aligning regime.

The out-phase velocity amplitude and the in-phase direcSpecifying these expressions for SAOPF using the dimen-
tor amplitude exhibits boundary layer behavior that signalssionless oscillatory flow rate given by
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Q* @1 =Q(@) sinat+Qy®) cosat, (29 =, _mEo_ Q.
) ) ) ) ) ) G :?,.. , = 20). (30b)
we obtain the following expressions for viscoleastic moduli: Qi+ Q,
&= Q o (30a  Using Eds(23), (24), and(28) the in-phaséQ,) and out-of-
8 Q2+ Q.2 phase(Q,) flow-rate components are found to be
|
oo = 1l =1 oo
~ 9 ~ 2 berl\'a”]spla\( be'l\/wnsplay"' Ebeb\ W splay~ Ebe'b\/wnsplay)
6_77_53(1+_a3 )+T’_EO Bay V20 7spiay
(i ~ = ~ ~ ~ — — > ==
I 87 71 Msplay 81 71 Msplay)| \"2w773p|a3(ber12\/wﬂsp|ay+ bellz\’wﬂsma))
L= 2 = 1 == 1 [y
- bei; wﬂspla\(_ /?berl\'wﬂsplay_ Ebeb\”wnsplay_ Eber()\’w”]splay)
71'_Eo 8as V20 splay 31
8m 7717’SP lay \ ZZ”;]spIa)( ber? \’/Z”ﬁsplay +bei? \'/Z”;lsplay)
Y o 2 = 1 == 1 =
~ o be'l\"wﬂspla - ’/Tbell\’wﬂsplay_ Ebeb\”wnsplay"' Ebero\’wﬂsplay
= _7T_EO 8ag VLW Nsplay
07 A~ ~ ~ ~ ~~ . f~ ~
871 M 7splay V2% 77splzn(ber12\’/w77splay+ be'lz\’/w Nsplay
= 2 = 1 == 1 oy
~ 2 berl\’wﬂspla(_ /?berl\'wnsplay_ Ebeb\”wnsplay_ Eberoansplay>
™o 8as V20 spiay (32
871 T Tispiay V26 Tspray DEN2\ @ Tspiay* DN Trspiay)

The frequency dependence of the viscoelastic moduli for Figure 4 shows the dimensionless loss modd&s and

;70 is as follows. The loss modulus is always greater ththe dimensionless storage modul@) as a function of di-

the storage rr_lodulus, the low frequer(ttgrmmab_ regime is ionl ¢ ~gf T°C): 34 35 37 38.36. 39

classic of a viscous fluid, and the characteristic slopes are Mensionless frequendy) for T(°C): 34, 35, 37, 38.36, 39,
40, and 40.5. By analyzing the dimensionless loss modulus

as® —0, G ~a% G ~; as a function of the reactive paramet&) and scaled tem-
B N perature(T*) for given values of dimensionless frequency
asow— », G ~a'2 G ~oa. (33)  we find that this modulus is essentially independent of tem-

-~ ~ perature and ok:
The phase lag or “loss angl¢d=tari(G"/G')] is charac- _
teristic of a viscoelastic material with a single relaxation dG" ()

time; in addition, the NLC is viscoelasti®@< 7/2) at inter- A<l A <L (353
mediate frequencies and purely viscous 7/2) at small

and large frequencies.

Next we discuss the correspondence betweBh A> 1 d('z)fw) =0, (35b)
=G'(T,w), G"=G"(T,w) and G'=G’'(\,»), G"=G"(\,w).
In other words, we wish to use the Leslie-Ericksen model to &)
establish whether experimental measurements performed at o (o <1
different temperatures are good indicators of the magnitude T=3r°c dT <L (359
of \. Without loss of generality we discuss the results in
terms of a normalized temperaturé: S~
. dG"(w)
T-T T>37°C: =0. (350
. _ 1 daT
=NTy + [A(T2) = M(Ty)]. (34)
T2 - Tl

. ] This follows from the fact that th& and\ dependence d&”
We have checked that this scaled tempel’aﬁfl’eetalns all is essentia”y througﬁ;‘?l’ and according to Table |, for

the Signatures fgund with the griginal temperamlmale. In T<37 °C,';71 is a Very Weak function OT, for T>37 °C’
particular, sgdG’/dT)=sgn(dG’/dT*). n, is essentially constant which explains the constant behav-
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FIG. 2. Orientation components as a function of the dimension-
less radial distanc) for dimensionless frequenciés): 0.1, 1, 10,
100, 1000, and 10 000, temperature 34 °C and reactive parametsr
0.2725:(a) in-phase director componef#/E,); (b) out-phase di-

rector componenté,/E,).

ior mentioned above. Equat|o(1356)—(350) establish a one-
to-one correspondence betwee@”—G”(T w) and G

:G”()\ ,@).

02 04 06 .. 08
DIMENSIONLESS RADIAL DISTANCE, (7))

02 04 06 08
DIMENSIONLESS RADIAL DISTANCE, (T)
(b)

FIG. 3. Dimensionless velocity components as a function of the
dimensionless radial distan® for dimensionless frequenci€®):

1, 1, 10, 100, 1000, and 10 000, temperature 34 °C and reactive
parameter 0.272%a) in-phase velocity componefi;/E,); (b) out-
phase velocity componelit,/E,).

By analyzing the dimensionless storage modulus as a
function of the reactive parametex) and scaled temperature

(T*) for given values of dimensionless frequency we find
that this modulus is dependent of temperature and ef

follows:
dG' (@)
A <1, <0
d\
dG' (@
NZ 1, dG'(@) _
d\
dG' (@)
A>1, >0
d\

dG' (@
T<3836 °C, @ _y (364)

dT

dG' (@ -~

T<38.36 °C, #:o, G'(@=0 (360
T>38.36 °C, > 0. (36f)

dT

(36h)

Equat|ons(36a)—(36f) establish the one- -to-one correspon-
dence betweeG’ =G’ (T,») and G'=G '(\,»). From Egs.
(303, (31), and(32) it follows that the correspondence prin-

(360) ciple between th@ and\ effects on the storage modulus is
the factorability of thex effects:
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100000 1.58
7165243
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]
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8 oo 1)34.00
151 2)35.00
: 3)37.00
0.0001 3 4)38.36
5)39.00
0.00001 4 6) 40.00
1 7)40.50
1_48 T T T T T T T
0.000001 3 0001 001 0.1 1 10 100 1000 10000 100000
DIMENSIONLESS FREQUENCY, &
0.0000001 T T T T T
0.1 1 10 100 1000 10000 100000 1 . .
DIMENSIONLESS FREQUENCY, & FIG. 5. Loss angld s=tarr}(G"/G’)] as a function of the di-

mensionless frequendyv) for temperatures 34, 35, 37, 38.36, 39,
FIG. 4. Dimensionless loss moduméﬂ) and dimensionless 40, and 40.5 °C. The resonant behavior is classic of nematic liquid
storage modulugG’) as a function of dimensionless frequer@  cTystais[11-14.
for temperatures 34, 35, 37, 38.36, 39, 40, and 40.5 °C. The result
of G’ for (4) is not shown in the plot because its value is zero for all viscoleasti€T < 38.36 °Q O purely viscou§T

frequencies. ) )
=38.36 ° Q O viscoleasti€T > 38.36 ° Q.

N -1Y), - The minimum value of the loss angle, ré)=4,, occurs at
MT) + 1)fs(“)’Mi(T))' (37) the resonance frequen@=w, and both are functions of

and temperature. The correspondence principle betWween
where M;(T) are viscoelastic parameters. According to Eqs.and\ follows from Eq.(37).

(303, (31) and (32) the storage modulus is proportional to
a3? [and hencé\ -1)?/(\+1)?], hence explaining the curva- v, ASSESSING FLOW ALIGNMENT THROUGH LINEAR

G'(Tw)= gs(

ture of the storage modulus as a function of the reactive VISCOELASTICITY
parametei\) and scaled temperatu(&* ) for given values . ) . . L
of dimensionless frequency. Using EG04 it is found that Assessing flow alignment through linear viscoelasticity is

based on the temperature dependence of the reactive param-
eter and the factorability principle in nematodynamics. For
nematics, such as 8CB, the temperature dependenxdrof

in the terminal zone, the storage modufBsis given by

7By 0Q, ; (1—>\

2
lim G’ = lim —2 ——=0 ) > (39 conjunction with factorability in the storage modulus gives
s oo 8(QP4Q) MHA 0
and hence the curvature in the terminal zone is an increasing A=MD MTand =1, dT > 1, (40)
function of @%: #G'/IN?=f(»?), and forw?<1 the curva-
ture is small. On the other hand, at large frequencies -~ _ NT) -1\ _
G'(T,®) =gs NT) + 1 fs(@,Mi(T));

~ Ey  @Q 1-2\2 =
lim G’ :Jim% % m( ) Vo (39
oe ooe 8 (Q24+QR)

1+\ ~ ~
G’ aG’
= . 050)=0; sgr(—) = sgr(—) , (41)
and hence forw>1 the curvature is large. aT IN

Figure 5 shows the loss ang[$=tan‘1((~3”/(~3’)] as a B
function of the dimensionless frequen¢y) for T(°C): 34, "

35, 37, 38.36, 39, 40, and 40.5. At the alignment- G'(T.@) = f1(@ MT),M(T)); ——= <1,
nonalignment transitiokiT,.,,=38.36 °Q the storage modu-

lus vanishes,s=#/2, and the material is Newtonian. The ~ ~ ~

material behavior of 8CB in this flow configuratigm, ! <1 sgr(—ﬂ) - ’.(f?_G"> (42)
=(0,0,1] exhibits viscoelastic re-entrant behavior: ' oT IN )’
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. 70000 & 156 s / : S
o 1 uf L7 / ) : I 0070 '
% d v ’ A/ 0095/ | | ,L ;
3 2 VA
1.54 7 ) |
g i / |
0N = N / |
2 1521 7 |
0 / / | |
& 4 . Jowe/ | :
% Temperature°C: 159, / . |
= 3 %% L/ T — Reactive parameter
e 3)37.00 Vi +- - - Scaled Temperature
4) 38.36 1.48 T T T T } T
& 9000 025 05 075 1 1.25 15
74050 REACTIVE PARAMETER L/ SCALED TEMPERATURE, T*
1] T T T T T T
] 100 120 140 FIG. 7. Resonance loss andl&) as a function of the reactive

40 60 80
DIMENSIONLESS STORAGE MODULUS, G' parameter(\) and scaled temperatut@* ), for the alignmeniA)

. . ~, ) and nonalignmeng{NA) regions. At theA-NA transition the reso-
FIG. 6. Dimensionless loss modulé6”) as a function of the 56 |oss angle is a maximum. The slope ofd#g dT indicates
dimensionless storage modul(@’) for temperatures 34, 35, 37, \whether(\>1) or not.

38.36, 39, 40, and 40.5 °C. Note that the slope diverges as the
A-NA transition is approached. -
( (? G”)
— | = %,
fu(@ M) |, 9G'
(’\(T) - 1) (iii) aligning regime,T>T,.na
S\I\NT) +1 B
d [ aG"
(9T é)G’
(43)  Measuring the sign o§G"/JG'(T) establishes whether the
material is of the aligning type or not.
Figure 7 shows the resonance loss arigj¢ as a function

of the reactive parameték), and of the scaled temperature
??*), in the alignment and nonalignment regions. Both

AT, ») =tar™®

fls@,Mi(T))} =

~\ ol
NTyna ) =tan { 9.0) 2

and hence performing experiments at several temperatur
ives unequivocal information on whetheis greater or less . "
g d 9 curves lack mirror symmetry around theNA transition.

than 1. The f how the following signatures:
Since the alignment-nonalignment transition is reflected € Tigures show the Toflowing signatures.
(iv) nonaligning regimeT <T, ..

in the viscoelasticity as a re-entrant viscoelastic transition,

we propose to capture information on flow alignment 98
through a_Tr>0’
(i) G'=1(G"),
(i) &=6(T), (v) Newtonian transitionT =Ty pa
i) w,=w/(T).
(i) @ =w(T) 5= ml2,

Figure 6 shows the dimensionless loss modyEs as a
function of the dimensionless storage moduli@’) for
T(°C): 34, 35, 37, 38.36, 39, 40, and 40.5. The figure shows 98

)

the following signatures: — <O0.
(i) nonaligning regimeT <T. . JT

(vi) aligning regime,T>T,.na

Measuring &,(T) establishes whether the material is of the
_ aligning type or not.
Ay Figure 8 shows the resonance dimensionless frequency
ﬁ(g) 0, (w,) as a function of the reactive parametay, and scaled
temperaturéT* ). The curves show the following signatures:
(i) Newtonian transitionT=T,. (i) nonaligning regimeT <T,.na
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28 | VI. CONCLUSIONS
lf_ — — Reactive parameter \
% Scaled Termperatre : » The Leslie-Ericksen equations for small-amplitude oscil-
3 2 | /o latory Poiseuille flow of 8CB(4-n-octyl-4’-cyanobiphenyl
2 | / were solved using analytical and scaling methods. This SM-
ul 0 : / K RNLC is flow aligning forT>38.36 °C and nonaligning for
% | YA T<38.36 °C. The storagé’ and lossG” modulus are those
| s of a viscoelastic material with a single relaxation time, such
i i s that the loss anglé exhibits a resonance peak at a frequency
ﬁ 16 I o,. The dependence of linear viscoelastic material functions
Z B ,/I’ . 205,/ | on temperature and reactive parameter were established. It
% o - pol \ was found that the aligning-nonaligning transition is a re-
é 12 T T ! oo entrant viscoelastic transition and that when the director is
o ! aligned along the flow direction the behavior is purely New-
NA Region : ARegion tonian whem\ =1.
8 NN It is shown that since the major temperature effects on the
0.25 0.5 0.75 1 1.25 15 , .
REACTIVE PARAMETER, . /SCALED TEMPERATURE, T* storage modulu§&’ are through a factorable function of the

reactive parameter: G'(T,w,M)=g[\(T)]f(w,M), flow
FIG. 8. Resonance dimensionless frequefigy as a function  alignment in nematic liquid crystals can be determined using
of the reactive parameté¢k) and scaled temperatut@* ), for the  the temperature dependence of the linear viscoleastic re-

alignment(A) and nonalignmertNA) regions. Note the weak slope - sponse to small-amplitude oscillations. In particular measur-
in the NA region and the relatively large slope in the A region. ing 4G"14G'(T), 5(T), w(T) provides unequivocal evi-
5 B dence on whether the nematic liquid crystal is of the aligning
J w; J w; or nonaligning type. Since linear viscoelasticity is a simple
—=0-0< <eg, : ;
oT oT and easily accessible measurement, the proposed methodol-
ogy is a helpful and economical tool for nematodynamicists.

asT1,

(i) aligning regime,T> T, .

Jd Wy
aT
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