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Viscoelastic properties of complex fluids in the microscopic scale can be studied by measuring the transport
properties of small, embedded probe particles. We have measured the complex electrophoretic mobilitym*svd
of nanometer-sized particles dispersed in a lyotropic lamellar phase, which shows two relaxation processes at
approximately 1 kHz(high frequency relaxation, HF) and 1 Hz(low frequency relaxation, LF). It is shown
quantitatively that these processes are caused by the trapping of particles within two local structures of
characteristic size in the lamellar phase: the interbilayer distance and the persistence length. The origin of
observed relaxations is further investigated and augmented in this study with data obtained by two other
complementary methods, dielectric spectroscopy and the direct observation of fluorescently labelled probe
particles under an optical microscope. It is shown that the local distortion field of the lamellar phase is induced
by the extra steric interaction involving the collision of a colloidal particle with the membrane. The resulting
distortion field hinders the Brownian motion of colloidal particles parallel to the membranes(not vertical), and
causes the observed HF relaxation. On the other hand, the origin of LF relaxation is presumably a result of the
defects in the lamellar structure. Since the results of this study show that the transport property is strongly
influenced by microscopic environments, this method is referred to aselectrophoretic microrheology.
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I. INTRODUCTION

The complex and hierarchical structure of soft materials
such as gels, polymer solutions and micelles is one of the
main factors attributing diverse functionality to these mate-
rials, especially in biological systems. The mechanical re-
sponse of these materials is one of the most important and
frequently studied properties, since it shows significant time
or frequency dependence that reflects the innumerable kinds
of interactions and transport phenomena associated with such
complex structures. However, information given by a con-
ventional rheometer(macrorheology) is not sufficient for the
detailed investigation of the physics of soft materials since
the data is averaged in macroscopic scales and the accessible
frequency range cannot exceed 100 Hz due to the inertia of
large samples and the apparatus.

The new research field of microrheology has recently
been developed to overcome the inherent deficiencies of
macrorheology[1–3]. Microrheology is not based on the
stress-strain relation of matrices, but on the motion of small,
embedded probe particles detected by several techniques
such as particle tracking optical microscopy[4], laser inter-
ferometry [5,6] or dynamic light scattering[2]. Transport
properties of probe particles measured by these techniques
are transformed into an estimate of the viscoelasticityh*svd
of the surrounding matrix via the generalized Stokes-Einstein
relation D*svd=kBT/6ph*svda, wherekB is the Boltzmann
constant,D is a diffusion constant, anda represents the ra-
dius of particles. Hereafter, a parameter shown with an aster-

isk indicates that the parameter is of complex quantity. In
this respect, the spatial scale of microrheology reduces to the
size of the probe particles, and the available frequency can
be extended to the MHz range[7]. However, since the mini-
mum size of a probe particle is usually limited by the dif-
fraction of light or the intense scattering from the bulk me-
dia, probe particles are normally larger than the characteristic
length of the matrix, such as the mesh size of a gel network.

The complex electrophoretic mobilitym*svd of colloidal
particles is measured in this study using a method recently
developed in our laboratory[8,9]. Complex electrophoretic
mobility is a frequency dependent response function of ve-
locity to the sinusoidal electric field. The extreme sensitivity
of our method and the ability to remove attendant noise al-
lows the use of nanometer-sized colloids as probe particles,
which are smaller than the characteristic length of the sur-
rounding material. In such a case, the change of mobility
provides more information[1] on local structures and local
interactions between particles and the surrounding materials,
than that obtained by continuum viscoelasticity measured
with larger probes.

This method of electrophoretic microrheology is applied
to a lyotropic lamellar phase composed of surfactant bilay-
ers. Even in this simple system, there are hierarchical struc-
tures as shown in Fig. 1[10]. A lyotropic lamellar phase is
made of alternative stacks of solvent and bilayer membranes
with an intermembrane distanced. The stability of the peri-
odical lamellar structure is considered a derivation of the
steric interactions between fluctuating and colliding mem-
branes.Therefore, the length between colliding pointsl is
also an important length scale. Lamellar phase loses orienta-
tional order at a length scale longer thanL, and three-
dimensional packing of crumpled membranes needs topo-
logical defects, which may also slowly fluctuate with time
according to generation and annihilation.
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The observed spectrum ofm*svd reveals two relaxation
processes at approximately 1 kHz(high frequency relax-
ation, HF) and 1 Hz(low frequency relaxation, LF) [11]. The
typical length scale of each relaxation is in quantitative
agreement with the size of the two characteristic local struc-
tures of the lamellar phase. The potential size of the HF
relaxation corresponds to the interbilayer distanced, and that
of the LF mode to persistence lengthL. In order to further
investigate the mechanism of observed relaxations, we per-
formed two additional complementary experiments: dielec-
tric response spectroscopy and the direct observation of the
motion of fluorescently labelled probe particles. The dielec-
tric spectrum indicates that the Maxwell-Wagner relaxation
caused by the lamellar structure is located at a frequency
higher than that associated with HF relaxation.[12] This
means that the electric field working on particles is parallel
to the membrane in the frequency range used to measure
m*svd. We therefore conclude that the HF relaxation mode
originates from the hindrance of diffusion of colloidal par-
ticles parallel to membranes, not vertical to membranes.

This study has theoretically shown that the local distortion
field [13] of the lamellar phase is induced by the collision of
a colloidal particle with membranes. The resulting distortion
field hinders the Brownian motion of colloidal particles par-
allel to membranes. The dynamics of such a particle-
distortion pair is discussed in detail, and it is discovered that
the theoretical prediction coincides well with the observed
spectrumm*svd.

On the other hand, the detailed mechanism of LF relax-
ation is not clear, although it is assumed to be caused by
defect structures of the lamellar phase, such as multibilayer
vesicles and onions. That is partly becausem*svd completely
relaxes at frequencies below the LF mode and DC mobility
is not available. The existence of LF relaxation is confirmed
in this study by the direct observation of the motion of col-
loidal particles under an optical microscope. Colloidal par-
ticles are normally trapped in one particular location for sev-
eral seconds and sometimes hop to another site. The
relaxation time obtained from the evolution of mean-squared
displacement was consistent with the LF relaxation time in
m*svd. Certain trajectories of colloidal particles possess a
particular path of connecting trapping sites, and which is
sometimes renewed instantly. Therefore, the mechanism of
the LF relaxation mode is supposedly influenced by dynamic
disorder transport[14] between defect structures of the
lamellar phase.

II. METHODS

A. Wide-band spectroscopy of complex electrophoretic
mobility m*

„v…

Colloidal particles in suspension are usually charged due
to the desorption or adsorption of low molecular ions, and
therefore move toward the direction of the external electric
field (electrophoresis). DC electrophoretic mobilitymdc is de-
termined as a ratio of the velocity of colloidal particles to the
DC applied electric field. When an AC electric field is ap-
plied, electrophoretic mobility is generally given as a
frequency-dependent complex response functionm*svd
=m expsidd, which is expected to yield more information
than that supplied by DC electrophoresis[15]. We have re-
cently developed a new method for measuring complex elec-
trophoretic mobilitym*svd with the heterodyne technique of
dynamic light scattering under a sinusoidal electric field
E0 cosvt.

The heterodyne technique of dynamic light scattering uses
a coherent laser light as a probe, and light scattered from the
sample is detected by mixing with a reference light. The
phase of the scattered light shifts by the difference relative to
the optical pathq ·dr due to the displacementdr of a colloi-
dal particle, whereq is a scattering wave vector. The scat-
tered light detected with the heterodyne method results in a
signal that is proportional to cossq ·dr d. Since displacement
of a colloidal particle is the sum of the displacement due to
Brownian motiondr 0 and that due to electrophoresisdr E
=mE0 sinsvt+dd /v, the signal intensity under a small elec-
tric field is written as

cosfq · sdr 0 + dr Edg , cossq · dr 0d

−
msq ·E0dsinsdq · r d

v
sinsvt + dd

; cossq · dr 0d + A1svd, s1d

whereE0 is the amplitude of the applied electric field. It is
worth noting that the amplitude ofA1, defined by
msq ·E0dsinsq ·dr 0d /v, is a random variable with an average
value of zero. Therefore, the detection of a second harmonic
frequency componentA18 obtainable by squaringA1 allows
the derivation ofm*svd from Eq. (1). Further detailed prin-
ciples pertaining to this method are discussed in Appendix A
and within previous publications[8,9].

The experimental setup used in this study is shown in Fig.
2. Incident laser lightsHe-Ne,l=6328 Åd is crossed with
reference light in a cylindrical sample cell in order to facili-
tate the detection of light with the heterodyne method[16].
The scattering wave number determined by the crossing
anglesu=10°d is q=2.33106 m−1. In the sample cell, par-
allel plate platinum electrodes are separated by a distance of
5 mm. The sinusoidal electric field generated by a synthe-
sizer(HP33120A) is amplified with a high-voltage amplifier
(PA84) and applied to the sample. The scattered light mixed
with the transmitted reference light is detected with the op-
tical heterodyne technique and amplified with a preamplifier
(AD624). The harmonic frequency component of the applied
electric field in the detected signal is extracted by using a

FIG. 1. Schematics of probe particles dispersed in a lyotropic
lamellar phase with layer distanced. The lengthL is the correlation
length of the orientational order of membranes andl is the longest
wavelength of the free fluctuation of a membrane.
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band-pass filter(NF3628). In previous studies[8,9] the fil-
tered signal is squared with an analog multiplier before being
detected with a lock-in amplifier(SR830) because the corre-
lation time of sinsq ·dr 0d in Eq. (1) is much faster than the
time constanttc of the lock-in amplifier. In this study, how-
ever, the Brownian motion of probe particles dispersed in a
lamellar structure is so slow that the signalA1 can be de-
tected with a lock-in amplifier beforehand, and the output of
the lock-in amplifier A19=msq ·E0dsinsq ·dr 0dexphisd
−p /2dj /v is then digitally squared as a complex quantity to
obtainkA19

2l on a personal computer. As indicated in Appen-
dix A, the first and second order harmonic signal is measured
at 230 Hz to measure the magnitude of complex electro-
phoretic mobility.m*svd for an arbitrary frequencyv is ob-
tained by comparingkA19

2ls230 Hzd andkA19
2lsvd. In order to

calibrate the temporal change of measurement efficiency, we
applied the sum of the electric field with the frequency ofv
and 230 Hz. An extra phase shift or change of amplitude due
to the devices,such as the filter and the multiplier, is cor-
rected by measuring the reference signal instead of the de-
tected signal.

B. Electrophoretic microrheology

We measuredm*svd of colloidal particles dispersed in a
complex fluid to study local mechanical properties. Usually,
DC electrophoretic mobility is simply related to the surface
potential of colloidal particles via the Smoluchowski equa-
tion u=«z /h, wherez is the zeta potential of colloidal sur-
face, « and h are the permittivity and DC viscosity of the
surrounding solvent. The Smoluchowski equation is simply
extended to the frequency-dependent case asm*svd
=«z /h*svd when the intrinsic mobility of a probe particle is

independent of frequency. In this study, intrinsic mobility
refers to the mobility of a particle in water, which is usually
independent of frequency in the absence of certain particular
situations[8,9]. Therefore,m*svd offers information on the
local viscoelastic propertyh*svd of the solvent surrounding
the particle.

Since the applied electric field does not induce transla-
tional motion of the surrounding bulk media, information on
m*svd of the probe particles can be extracted even under
intense background scattering. This is a distinct advantage of
our method, and it enables us to use nanometer-sized par-
ticles that are smaller than the characteristic length of bulk
media (intermembrane distanced of the lyotropic lamellar
phase in this study). Therefore,m* or h* measured by elec-
trophoretic microrheology reflects the mesoscopic structure
of complex fluids or the microscopic circumstances of probe
particles, where the assumption of continuum viscoelasticity
might be broken[1].

C. Particle tracking fluorescent microscopy

Colloidal particles smaller than the wavelength of visible
light cannot be directly observed under a regular optical mi-
croscope. But we can trace the motion of small particles by
labeling them with fluorescent dye. In this study, the motion
of fluorescent colloidal particles(diameter 2a=57 nm, Poly-
sciences, Inc.) in a lamellar structure was observed directly
with a fluorescence microscope(TE300, Nikon). A sample is
filled in a laboratory dish with a cover slip at its bottom, and
sealed with a cover glass. The observed image of a particle
was detected with a CCD camera(Tokyo Inst.) and image
contrast was digitally enhanced with Argus20(Hamamatsu).
The time resolution of the measurement is limited by the
video frequencys30 Hzd. We evaluated the center of gravity
of a particler c from the captured digital image by weighting
its digitized intensity. The use of this procedure allows the
resolution of a particle’s position to improve by 1/10 of a
pixel (about 10 nm).

This method can provide information on transport proper-
ties of colloidal particles that complements the measurement
of complex electrophoretic mobilitym*svd because the time
evolution of the mean-squared displacement calculated from
r cstd is directly related tom*svd with the classical linear
response theory[17] as

m*svd =
QeD

*svd
kBT

= −
Qe

4kBT
v2E

0

`

dt exps− ivtdkfr cstd − r cs0dg2l,

s2d

whereQe is an effective charge of a colloidal particle.

D. Dielectric relaxation spectroscopy

The dielectric response of the lyotropic lamellar phase
including colloidal particles was measured with changing
temperature or concentration of surfactants and colloidal par-
ticles. Samples were left to rest for sufficient time before

FIG. 2. Schematic diagram of the experimental setup for wide-
band spectroscopy of complex electrophoretic mobility.
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measurement to allow equilibrium and the stabilization of
temperature[12]. The complex impedanceZs

* of the sample
set in a temperature-controlled cylindrical cell was measured
by an LF impedance analyzer(HP4192A) in the frequency
range 10 Hz to 13 MHz. The parallel plate electrodes are
made of platinum coated with platinum black. The areaS0
and distance between electrodesd0 are, respectively, 4.5 cm2

and 5 mm. The cell constant of the parallel plate electrodes,
determined by measuring the capacitance of several liquids
with known permittivity, was estimated at 8.9 m−1. This
value is confirmed prior to the commencement of each ex-
periment by obtaining a measurement using pure distilled
water. The measured impedanceZs

* was analyzed by regard-
ing the sample as a parallel circuit of frequency-dependent
capacitanceCssvd and conductanceGssvd.

III. MATERIALS

The sample surfactant solution is a ternary mixture of
n-dodecyl pentaethyleneglycol monododecylethersC12E5d /
1-hexanol/water[18,19] to which was added polystyrene la-
tex particles with diameter of 2a=42 nm(Dow. Co. Ltd.). In
the case of fluorescent microscopy, latex particles with 2a
=57 nm(Polysciences, Inc.) were used instead. The lamellar
phase in this system swells up with very small amounts of
surfactants. The measured value of membrane thicknessdm is
3 nm [18]. An interbilayer spacingd is obtained from the
simple swelling law of lyotropic lamellar phase,d,dm/fm.
Here, the volume fractionfm of the bilayer membrane made
up of C12E5 and hexanol is determined by taking into ac-
count the solubility of hexanol in waters,0.3%d.

A sample is prepared in the concentration range
0.02,fm,0.06s130 nm.d.50 nmd to satisfy the rela-
tion d.2a so that the colloidal particles are homogeneously
dispersed between membranes. The total amount of latex
particles (about 0.1 wt.% or less) added to the lamellar
sample is small enough to satisfy the conditionnc!1/d3,
where nc is the number density of colloidal particles. The
interaction between particles is therefore negligible in such a
dilute dispersion. It has been confirmed that the colloidal
particles are homogeneously dispersed between membranes,
and the phase diagram is not affected by the inclusion of
latex particles if their concentration is less than a few wt.%
and the intermembrane distance is larger than the particle
size[20,21]. However, the phase behavior of the sample was
confirmed on each occasion with dielectric spectroscopy
[12]. Since the amplitude of the displacement of a particle
due to electrophoresis is much less thand, it has little influ-
ence on the lamellar structure. Unless indicated otherwise, all
experiments are conducted within a specific room tempera-
ture ranges26°C–28°Cd.

IV. RESULTS

A. Complex electrophoretic mobility of probe particles
dispersed in the lamellar phase

Figure 3 shows the mobilitym*svd of latex particles dis-
persed in the aqueous phase of C12E5 at CMC and 0.3 wt%
hexanol. This chemical composition is almost the same as

that of the aqueous phase between membranes of a lyotropic
lamellar solution. A decrease in magnitudem observed at
frequencies lower than 100 Hz is considered an artifact since
there is no phase shift in the same frequency range. The
reason for this apparent decrease was explained in our pre-
vious papers. Frequency dispersion of each harmonic fre-
quency component of the detected signal is very broad for
our sample due to the fast Brownian motion of very small
latex particles. Since the bandwidth of the electric filter used
in this study is proportional to the center frequency, the en-
tire signal cannot pass through the filter at low frequencies.
The broken line in Fig. 3 shows the value of DC electro-
phoretic mobility measured with ELS-800(Otsuka elec.),
mdc=5.7310−8 nm/Cs, which is in good agreement with the
magnitude of mobility in the higher frequency region. It is
therefore confirmed that there is no relaxation for the elec-
trophoretic mobility of probe particles in this measured fre-
quency range, and the local rheological environment is safely
obtained fromm*svd.

Figure 4(a) shows the frequency dependence ofm* ob-
tained in a lamellar phase atfm=4.7%. There are two relax-
ations in the spectrum, and the relaxation frequencies are,
respectively, namedfL and fH. We divide the frequencyspec-
trum into three respective regions byfL and fH to yield re-
gion I, II, and III. Hereafter, the values for the mobilitym,
diffusion coefficientD and drag coefficientg at the plateau
in respective regions are denoted by the subscript I, II, and
III. The solid lines in Fig. 4 are the best-fit curves of the sum
of two relaxation spectra with the relaxation time
tLs=1/2pfLd andtHs=1/2pfHd,

m*svd = smIII − mIId
ivtH

1 + ivtH
+ mII

ivtL

1 + ivtL
, s3d

where tH=1.7310−4s, tL =6.6310−2s, mIII =1.5
310−8 cm/Ns andmII =9.2310−9 cm/Ns. The mobilitymIII
and mII are considerably smaller thanm0 measured in an
aqueous phase without a lamellar structure.

FIG. 3. Frequency dependence of complex electrophoretic mo-
bility m* =meid of latex particles dispersed in an aqueous phase of
C12E5 at CMC and hexanol at a saturated concentrations0.3 wt%d.
Broken line shows the value of DC electrophoretic mobilitysmdc

=5.7310−8 Nm/Csd measured with ELS-800. See text for an ex-
planation of the artifactual decrease in magnitudem observed at low
frequencies.
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Since there is enough free space for an electric double
layer around probe particles, it is assumed that electrokinetic
properties of the latex particles are not influenced by the
presence of membranes. Therefore, the observed frequency
dependence ofu*svd is a result of microscopic interactions
between probe particles and membrane structures. An expla-
nation of the strength of perturbation of the membrane-
particle interaction due to electrophoretic motion follows.
The average amplitude of electrophoretic motion, indicated
by filled circles in Fig. 4(b), is calculated asmuE0u /v. In this
measurement, a small electric field is carefully applied to the
sample, and the linear relation between the amplitude and
applied field is confirmed at several frequencies. Therefore,
electrophoretic motion is always smaller than thermal
Brownian motion, which is estimated asÎDsvd /v
=ÎmsvdkBT/6pm0hav and shown as a solid curve in Fig.
4(b). The perturbation force applied to membranes by the
electrophoretic motion of each particle, shown as open
circles in Fig. 4(b), is estimated as 6phasm0−mduE0u. It is
revealed that the interaction energy, estimated simply as the
product of the amplitude and force, is much smaller than the
thermal energykBT. Therefore, it is clear that the membrane

structure is not influenced strongly by the electrophoretic
motion of the colloidal particles.

Now, the observed frequency dependence ofm*svd is dis-
cussed by assuming that colloidal particles are under the po-
tential barrier caused by the interaction with lamellar struc-
tures. In this case, the relaxation timet is estimated from
thetime required for a particle to diffuse the length of thermal
fluctuationLHsLd, which is the typical size of the potential
barrier estimated from the thermal energy,kBT. The relax-
ation timestHsLd are written as

tHsLd , LHsLd
2 /2DIII sII d = gIII sII dLHsLd

2 /2kBT, s4d

whereLHsLd is the amplitude of fluctuation of probe particles
in the potential barrier for HF(LF) relaxation. The drag co-
efficientsgIII and gII can be determined from the measured
mobility by

gIII sII d = 6ph0am0/mIII sII d, s5d

where h0 and m0 are the viscosity of water and electro-
phoretic mobility in the aqueous phase, respectively. We can
estimate the sizeL of the potential barrier as

L , Î2kBTt/g, s6d

which is 33 nm for HF relaxation and 500 nm for LF relax-
ation atfm=4.7%. Measurement conditions and estimations
of LHsLd for all samples are listed in Table I and Fig. 5,
respectively.

As we mentioned previously, there are three characteristic
length scales in a lamellar phase composed of a nonionic
surfactant, as schematically shown in Fig. 1[6]. The inter-
membrane distanced, mean distancel between the points
where a membrane collides with its neighboring membranes,
and the persistent length of the orientational orderL. The
length l is roughly estimated asl ,Î4p3kc/JkBTd [10],
wherekc is the mean curvature elasticity of a single mem-
brane andJ is a constraining parameter estimated as
0.1–0.2 from simulations[22] and the measurement of inter-
membrane interactions[23]. On the other hand,L is esti-
mated asL,b exps2pkc/kBTd [10], where b is a short-
distance cutoff of the order of a molecular length. In the
sample we studied, we can estimatel =4d–7d and L
,500 nm when using the reported value ofkc,0.8kBT [18]

FIG. 4. (a) Frequency dependence of complex electrophoretic
mobility m* of latex particles dispersed in a nonionic lamellar phase
of C12E5/hexanol/water systemsfm=4.7%d. The solid lines are
best-fit curves of Eq.(3). Errors of the measured values are about
5–8 %. (b) Comparison of electrophoretic motion(filled circles)
and Brownian motion(solid line), and estimation of force applied to
membranes by one particle(open circles).

TABLE I. Volume fractions of each component in samples used
in this study, and intermembrane distance estimated using the
simple swelling law.

C12E5s%d Hexanols%d fms%d dsnmd

2 0.650 2.35 123

2 0.730 2.43 128

2.5 0.750 2.95 102

3 0.852 3.55 85

3.5 0.946 4.15 72

4 1.04 4.74 63

5 1.20 5.90 51
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and assumeb to bedm. Therefore, two characteristic lengths
of the potential barrier estimated from the experiment are
found to correspond to the characteristic size of the lamellar
structurej;d/2 (,32 nm atfm=4.7%) andL as shown in
Fig. 5. This means that the potential barrier formed by flex-
ible membranes traps colloidal particles within these length
scales. It is noted thatj is a reasonable estimation forLH.

Figure 6 qualitatively illustrates the mechanism of the ob-
served relaxations. At the highest frequencies of region III,
colloidal particles can freely diffuse to the extent permitted
by j. The colloidal particles in region II need to hop from
one trapping site to another of sizej to diffuse longer dis-
tances. At the lowest frequencies of region I, almost all par-
ticles are trapped within the size domainL and this decreases
mobility to negligible levels.

B. Particle tracking fluorescent microscopy

As mentioned in the preceding section, LF relaxation is
caused by the potential barrier of the size of the persistent
length. However, it is intuitively difficult to understand why
the colloidal particles are so strongly trapped within the per-
sistent length. The influence of persistence length on the mo-
bility of latex particles is perhaps screened by lamellar or-
dering. The main motivation to measure the position of a
colloidal particler cstd directly with fluorescent microscopy
isto confirm whether the colloidal particle is really trapped
within L. Since the upper limit of time resolution of measure-
ment is determined by video frequencys30 Hzd, it is possible
to observe LF relaxation with the use of this technique. Fur-
thermore, direct observation under a microscope allows us to
confirm that the dispersed colloids do not aggregate and that
they are dispersed homogenously in the lamellar matrix.

One typical example of the mean square displacement
Sstd=kfr cst0+ td−r cst0dg2lt0

of a colloidal particle dispersed in
the sample offm=5.9% is shown in Fig. 7. If we observe
colloidal particles dispersed in a purely viscous matrix, time
evolution of square displacementSstd should be proportional
to elapsed timet. However, in the case of a lamellar solution,
ÎSstd saturates to a value approximating,300 nm. This
roughly coincides withLL estimated from the LF relaxation
of m*svd. This indicates that particles are really trapped
within the space ofLL and that mobility is almost reduced to
zero in region I. The mean square displacement of probe
particles rigidly trapped in the potential barrier is given as

Sstd = 2kr 2
clf1 − exps− t/tcdg. s7d

The characteristic relaxation frequency obtained from the
particle tracking methods1/2ptcd is 0.6 Hz, and is also of
the same order as the relaxation frequency of LF relaxation
fL of m*svd.

In Figs. 8 and 5(b), the dependence oftc andÎkr 2
cl on fm

is shown together withtL andLL obtained fromm*svd. The
relaxation time obtained from fluorescent microscopy is al-
ways approximately two to three times larger than that ob-
tained from m*svd. This is probably not only a result of
differences in particle size, but also of the increase in drag
coefficient due to the wall effect. On the other hand, the
length of fluctuation estimated fromm*svd is larger than that

FIG. 5. Comparison of characteristic length for(a) HF relax-
ation sLH,jd and (b) LF relaxationsLL ,Îkr 2

cld.

FIG. 6. Schematic representation of the mechanism of the relax-
ations observed in the frequency spectrum ofm*svd.

FIG. 7. Time evolution of the mean-squared displacement of a
colloidal particle dispersed in a lamellar phase offm=5.9%. The
solid line is a best-fit curve derived from Eq.(7).
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obtained from fluorescent microscopy. For a slower relax-
ation, colloidal particles do not freely fluctuate withinLL.
Particles should move parallel to the membrane. In such a
case,LL represents the total path length within the trapping
potential, which must always be longer thanÎkr 2

cl.

C. Dielectric spectroscopy

It is necessary to know the electrical property of a sample
in order to discuss the detailed mechanism of the observed
relaxations. We therefore measured the dielectric response of
the sample solution. The typical frequency spectrum of per-
mittivity «svd and conductivityssvd obtained for a sample
of f=3.6% is shown in Fig. 9. The spectrum reveals two
relaxation processes at approximately 1 kHz and 100 kHz,
which are, respectively, numbered 1 and 2 for convenience.
The solid lines in Fig. 9 are best-fit curves of the sum of two
Cole-Cole type relaxation spectra given by

«*svd = «` + o
i=1,2

D«i

1 + sivtidbi
+

s

iv
+

d

sivdg , s8d

where«` is the permittivity at high frequencies,D«i, ti and
bisi =1,2d are, respectively, the dielectric increment, relax-

ation time and broadness factor of relaxation time, andsdc is
the DC conductivity. The last term of Eq.(8) represents the
electrode polarization at low frequencies, and is very large in
an aqueous conductive solution.

Relaxation 1 is observed only when the probe particles
are added to a lamellar solution, and its relaxation time is
almost the same as that of HF relaxation observed inm*svd
as shown in Fig. 10. This indicates that induced dipole mo-
ment arises at this frequency due to the constraints of in-
plane motion of charged particles withinj. The dielectric
incrementD«1 and the relaxation timet1 of induced polar-
ization due to charged colloids trapped within a potential of a
sizej are, respectively, written as

D«1 ,
ncQ

2smIII − mIIdj2

2kBTmIII
s9ad

and

t1 , j2/2DIII , s9bd

wherenc andQ are the number density and charge of colloi-
dal particles, andDIII is the diffusion coefficient in region III.
In fact, D«1fm

2 is linearly dependent onnc as shown in Fig.
11, due to the simple relationj,1/f. The slope of the best-
fit line shown as a solid line in Fig. 11 givessmIII

−mIIdQ2/2kBTmIII ,2.9310−12 C2/Nm2. Employing the ap-

FIG. 8. Comparison of relaxation time of LF relaxationtL ob-
served in complex electrophoretic mobility(filled circles) and tc

measured by the tracking of the particle by fluorescent microscopy
(open circles).

FIG. 9. Frequency dependence of permittivity and conductivity
of a lamellar phase offm=3.6% including colloidal particles(open
circles). The solid lines are best-fit curves derived from Eq.(8).
Dotted line is permittivity of the same sample without colloidal
particles.

FIG. 10. Concentrationfm dependence of HF relaxation timetH

of complex electrophoretic mobility(filled circles) and relaxation
time for process 1t1 observed in dielectric response(open circles).

FIG. 11. Dependence ofD«1fm
2 on the number density of col-

loidal particlesnc. Surfactant concentrationfm of each point is
identified by different symbols. Solid line is a best-fit line assuming
a linear relation.
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proximate value ofsmIII −mIId /mIII ,0.3, the surface charge
per colloidal particle is represented byQ,2.8310−16 C,
which coincides with the value measured by titration 2.4
310−16 C. It is shown that the mechanism of relaxation 1 of
the dielectric response is the same as that of HF relaxation of
complex electrophoretic mobility.

On the other hand, a faster relaxation process(relaxation
2) is always observed even without the presence of colloidal
particles in the sample solution. We have recently shown
[12] that the dielectric response of a lyotropic lamellar phase
can be modeled as a series circuit of capacitance(mem-
branes) and resistance(solvent), which causes a so-called
Maxwell-Wagner relaxation in dielectric response. At fre-
quencies lower than those of a Maxwell-Wagner relaxation, a
component of the electric field vertical to the membrane is
applied mainly to the capacitance(membrane), and the elec-
tric field in the aqueous phase is forced to lie parallel to the
membranes. This implies that HF relaxation inm*svd is
caused by the hindrance of Brownian motion of colloidal
particles parallel to membranes, since the frequency range in
which m*svd was measured is always below the Maxwell-
Wagner relaxation frequency.

V. DISCUSSION

A. Effective friction coefficient in the lamellar phase

If colloidal particles can freely diffuse to an extent per-
mitted by j and at a frequency within region III, the drag
coefficientgIII is estimated from the observed mobilitymIII
by Eq.(5). Open circles in Fig. 12 show the 1/j dependence
of the ratio ofg0s;6ph0adto gIII calculated frommIII .

At the lowest frequency in region III, HF relaxation arises
due to the trapping potential of sizeLH. Since its relaxation
time tH is written astH,LH

2 /2DIII =gIII LH
2 /2kBT, gIII can

also be estimated fromtH as

gIII = 2kBTtH/j2 s10d

by assumingLH,j. The values ofg0/gIII calculated by this
method are plotted as closed circles in Fig. 12 and are in

approximate agreement with values obtained from mobility
without any assumptions.

The estimated value ofgIII is always larger thang0 and
increases withfm. That is not due to the existence of certain
relaxations at frequencies higher than those found in region
III, but is due to the excess stress caused by the confinement
of particles between membrane walls. The drag coefficient
for a spherical particle near a hard boundary wall under no-
slip conditions has been calculated as[24]

g0

g
= 1 − 1.004Sa

j
D + 0.418Sa

j
D3

+ 0.21Sa

j
D4

− 0.169Sa

j
D5

s11d

for infinite parallel plates separated by a distance 2j (solid
curve in Fig. 12), and as

g0

g
=

1 − 2.1050sa/jd + 2.0865sa/jd3 − 1.7068sa/jd5 + 0.726 03sa/jd6

1 − 0.758 57sa/jd5 s12d

for an infinite cylinder with radiusj (dotted curve in Fig.
12). The excess stress experienced by a moving particle can
be roughly explained by the geometry of the wall surround-
ing the particle. There is two-dimensional free space for a
probe particle in a slit between parallel flat plates, but there is
only one dimension of free space in a cylinder. If the bilayer
membrane is not regarded as a flat wall, and it is believed
that a colliding point of membranes also disturbs the flow
field, it is reasonable to expect that experimental data lie
between these theoretical curves.

The potential contribution of other factors should be taken
into consideration.

(1) Equations(11) and (12) are calculated only for par-
ticle movement that is restricted to the centerline of each
wall, while it is experimentally known that the position de-
pendence ofg0/gIII is not that large, except for particles
attachedto the wall[25].

(2) The strength and direction of the electric field that is
applied to colloidal particles is somewhat heterogeneous.

(3) It is generally accepted that the no-slip boundary con-

FIG. 12. Half of the interlamellar spacejs=d/2d dependence of
the ratio of drag coefficientg0/gIII calculated frommIII (open
circles), from relaxation timetH (closed circles) and from t1

(crosses). The lengthj is calculated from the volume fractionfm

using the simple swelling law. The solid curve and dotted curve are
theoretically calculated values for a spherical particle between par-
allel walls (separation 2j) and in a cylindrical wall(radius j),
respectively.
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dition is not satisfied when considering the interface of bi-
layer membranes.

However, these weaker effects may counteract each other
and would only require a negligible correction to data.
Therefore, the result shown in Fig. 12 suggests that the drag
coefficient in a nanometer-sized structure can be roughly es-
timated by continuum hydrodynamics, and that there is no
relaxation process at frequencies higher than the measured
frequency range.

B. Mechanism of HF relaxation

1. Dynamic disorder transport

Dielectric spectroscopy indicates that the HF mode is not
caused by the hindrance induced by the Brownian motion of
colloidal particles vertical to membranes, but by the motion
of colloidal particles parallel to membranes. It is therefore
tentatively assumed that colloidal particles are weakly con-
fined within the length between the colliding points of mem-
branes, neglecting the discrepancy of length scale(LH
,d/2 and l =4d,7d). At middle frequencies(region II),
colloidal particles need to hop between trapping sites to dif-
fuse longer distances, while colloidal particles may diffuse
without hopping if membrane collision disappears with time.
Such a process is called dynamic disorder transport[14].
When this transport process is taken into account, the theo-
retical spectrum of mobilitym*svd can be rewritten as

m*svd = m0 + Dm
t fs1 + ivtmd

t f + tm + ivt ftm
, s13d

where tm,hj3/kc is the reorganization time of a trapping
site, which is the relaxation time of fluctuation for a free
membrane of sizej [26], t f ,haj2/kBT is the time required
for probe particles to diffuse overj, andDm is the increment
of mobility under the condition involving the absence of a
dynamic disorder process. From Eq.(13), mII /mIII is roughly
written as

mII

mIII
=

m0 + Dmst f/st f + tmdd
m0 + Dm

, s14d

which is a monotonously increasing function of membrane
concentrationfm. However, experimental values ofmII /mIII
represent a decreasing function offm, as shown in Fig. 13.
This discrepancy indicates that generation and annihilation
of colliding points of membranes have little influence on the
diffusion of colloidal particles, which is plausible because
colloidal particles can easily bypass the colliding points.

2. Distortion field induced by dispersed particles

In the above discussions, it is not assumed that the local
morphology of membranes is influenced by colloidal par-
ticles. However, the membranes in this study are so soft that
they are easily deformed by the osmotic pressure produced
by the collision of colloidal particles with the membranes.
This distortion field surrounds a colloidal particle and is es-
sential for the understanding of HF relaxation. As shown in
Fig. 14, the distortion field is described by the displacement

of a membrane from the reference plane, which is the aver-
age membrane position in the absence of a particle,usr ,zd,
where thez axis is taken vertical to the membrane and ther
plane is parallel to the membrane. A colloidal particle is lo-
cated at the origin. The elastic energy of a smectic liquid
crystal is expressed by the Landau–de Gennes Hamiltonian
[27]

H0 =E dr E dzF1

2
BS ] u

] z
D2

+
1

2
Ks¹r

2ud2G , s15d

whereB is the layer compression modulus andK is the bend-
ing modulus of the smectic liquid crystal. By minimizing this
Landau-de Gennes Hamiltonian under the constraint for local
spacing,dp=d+Dd0, Senset al. calculated the distortion
field usr ,zd [13] as

usr ,zd =
dDd0

4z
expS − r2

4luzuD , s16d

where l;ÎK /B is represented byd since B and K are
roughly estimated asB,skBTd2/kcd

3 and K,kc/d, respec-
tively, in the case of lyotropic smectics. The distortion of a
neighboring membrane is therefore given as

FIG. 13. Concentration dependence of the ratio of the complex
electrophoretic mobility,mII /mIII (filled circles) and best-fit values
as derived from Eq.(37) (open circles).

FIG. 14. Schematic drawing of membranes distorted by the col-
lision with colloidal particles.
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usr ,d/2d =
Dd0

2
expS− r2

2d2D . s17d

It is important that the in-plane size of distortion of a neigh-
boring membrane is roughly estimated asd. This indicates
that the in-plane motion of a colloidal particle is free within
d while a colloidal particle has to drag the distortion field to
move a distance longer thand. This is the probable origin of
HF relaxation.

A sequence representing the Brownian motion of colloidal
particles influenced by the distortion field is illustrated in
Fig. 15. A colloidal particle fluctuating in the distortion field
hops out, and then creates a distortion field around itself. In
the excited state[(2) in Fig. 15], the space available for the
colloidal particles,dd is smaller than that in the initial state
s,d+Dd0d. This entropy loss gives rise to the energy barrier
DU for this hopping process, which is written as

kBT lns1 + Dd0/dd. s18d

Therefore, the ratio ofmII to mIII is expressed by the ampli-
tude of the distortion field as

mII

mIII
,

d

d + Dd0
. s19d

The total free-energyF of this particle-distortion pair is the
sum of the elastic energy of the distortion field and the en-
tropy of a colloidal particle. Since the elastic energy of the
distortion field is estimated by incorporating Eq.(16) into
(15) askBTsDd0/dd2 [13], it is written as

F , kBTfsDd0/dd2 − lns1 + Dd0/ddg. s20d

By minimizing F with Dd0, the amplitude of distortionDd0
is given as

Dd0 =
Î3 − 1

2
d0 , 0.4d. s21d

Since the measured value ofmII /mIII averaged over all con-
centrations is about 2/3, a membrane can theoretically dis-
tort to a sufficient degree to yield the observed HF relax-
ation.

3. Step response of the distortion field

We have so far neglected the dynamic process concerning
the formation of the distortion field. This is very important
because a distortion field cannot grow sufficiently if a colloi-
dal particle escapes from the field too quickly. In order to
evaluate such a dynamic effect, we discuss the step response
function of the distortion fieldusr ,z,td by calculating the
hydrodynamic equation of a lyotropic lamellar phase. A basic
set of hydrodynamic equations for a lyotropic lamellar phase
is presented in Appendix B. When osmotic pressureP due to
a colloidal particle dispersed between membranes is intro-
duced as

P = P0dsr ,zd, s22d

Eq. (B4) is modified because of the stress applied to mem-
branes

FIG. 15. Diffusion process of
colloidal particles between soft
membranes. A colloidal particle
fluctuates in a distortion field(1,
initial state) hops out(2, excited
state), then creates a distortion
field around itself(3, final state).
At (a) high fm, a strongly inter-
acted particle-distortion pair al-
ways grows fully while at(b) low
fm, the colloidal particle moves
too fast to form a substantial dis-
tortion field.
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r
] vz

] t
= −

] p

] z
+

]

] z
F ] f1

] g̃
G

g̃

− KS ]4u

] x4 + 2
]4u

] x2 ] y2 +
]4u

] y4D
+ hF ]2

] x2 +
]2

] y2 +
]2

] z2Gvz −
] P

] z
. s23d

The derivation of deformation is performed in the Fourier
space. In order to consider the purely diffusive slow mode,
inertial terms in hydrodynamic equations are neglected.
From Eqs.(23), (B2), (B3), (B5), and(B6), we obtain

q4h
]2

] t2
uq + qr

2fmshq4D33 + Kqr
4 + sB − 2D23 + D33dqz

2g
]

] t
uq

+ msqr
4fsD33qr

4K − D23
2 qz

2 + BD33qz
2duq + iD33qzPqg = 0,

s24d

where Aqsuq,Pqd is the Fourier component of quantityA
defined as

Asr ,zd =
1

s2pd3 E E dqr dqz Aq expfisqr · r + qzzdg,

s25d

andqr andqz are the Fourier conjugates ofr andz, respec-
tively. A stationary solution foruq is given as

uq0 = −
iD33qzPq

D33qr
4K − D23

2 qz
2 + BD33qz

2 , −
iqzPq

Kqr
4 + Bqz

2 . s26d

Since the energy cost for changing the area per surfactant
molecule is usually much larger than the other deformation
modes, the plausible relationD33@B,D23 is assumed. In this
case, the same solution as represented by Eq.(16) is obtained
by the inverse transform of Eq.(26). At equilibrium, the
amplitude of distortion as determined by the osmotic pres-
sure is given asDd0=P0/2pdÎBK.

The higher derivative term oft in Eq. (24) usually corre-
sponds to the membrane peristaltic and second sound modes.
Schematic drawings of these hydrodynamic modes are given
in Figs. 6.8(b) and 6.8(d) in Ref. [10], respectively, and are
probably not comparable to the slower modes of current in-
terest. When we neglect terms including the second deriva-
tive of t, an equation representing the so-called undulation-
baroclinic mode[see Figs. 6.8(a) and 6.8(c) in Ref. [10]) is
obtained

fmshq4D33 + Kqr
4 + sB − 2D23 + D33dqz

2g
]

] t
uq = − msqr

2fsD33qr
4K − D23

2 qz
2 + BD33qz

2duq + iD33qzPqg. s27d

The solution of this equation is given as

uqstd = uq0f1 − exps− Gtdg, s28d

where

G =
msD33sKqr

4 + Bqz
2dqr

2

Kqr
4 + mshD33q

4 + D33qz
2 . s29d

Therefore, the inverse Fourier transformation ofuq written as a superposition of undulation-baroclinic modes gives the step
response of distortion of membranes,

usr ,z,td =
1

s2pd3 E E dqr dqz
− iqzPq

Kqr
4 + Bqz

2f1 − exps− Gtdgexpfisqr · r + qzzdg. s30d

Instead of calculating an analytical form of this solution by finding all residues, here we make plausible approximations.
First, Kqr

4 in the denominator of Eq.(29) is much smaller than the other two terms, except for the case ofqz,0. Sinceuq0 has
a negligible value in the case ofqz,0, it is always possible to ignore the termsKqr

4d in Eq. (29). Second,G is a monotonically
decreasing function ofqz which asymptotically approachesG,kBTqr

2/12hd at qzùqr from the maximum value ofG
,kBTqr

2/hd at qz!qr. The prefactor −iqzPq/ sKqr
4+Bqz

2d in Eq. (30) has a maximum value in the intermediate region of these
two extremes atqz=ÎK /Bqr

2. We can therefore fixG to the valueGsqz=ÎK /Bqr
2d=kBTqr

2/6hd;aqr
2 with little error in the

estimation ofusr ,z,td. Now, Eq.(30) can be integrated overqz and rewritten as

usr ,z,td =
Dd0dl

4p
E dqrf1 − exps− aqr

2tdgexps− lqr
2zdexpfisqr · r dg. s31d

The time-dependent component of Eq.(31) is obtained simply by replacing the variablez in Eq. (15) with z+at /l, and an
approximated form ofusr ,z,td is given by
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usr ,z,td =
Dd0d

4z
expS−

r2

4lz
D −

lDd0d

4slz+ atd
expF−

r2

4slz+ atdG . s32d

The step response for the increment of lamellar spacing
Ddstd;2us0,d/2 ,td is obtained from this equation as

Ddstd = Dd0S kBTt

3hd3 + kBTt
D . s33d

The characteristic timetR for the formation of a distortion
field is therefore estimated as

tR ,
3hd3

kBT
. s34d

4. Effect of dynamics of distortion field formation

Now we can consider the influence of the dynamic pro-
cess of the formation of a distortion field on the transport
property of colloidal particles. Since a distortion field grows
only when the colloidal particle stays inside, the amplitude
of the distortion field is estimated asDdst3d, wheret3 is the
average time for one hopping event estimated ast3
=j2/2DII . Therefore, this hopping timet3 is proportional to

fm
−2. On the other hand, the time required for the formation

of a distortion fieldtR is proportional tofm
−3. Therefore, as

shown in Fig. 15, at a high concentration wheret3 is larger
than tR, the distortion field can grow completely around a
colloidal particle. On the other hand, at low concentrations
wheret3 is smaller thantR, the distortion field cannot grow
sufficiently.

In the same manner as discussed in Sec. V B 2,mII /mIII is
given by the ratio of the amplitude of the distortion field as

mII

mIII
=

d

d + Ddst3d
. s35d

From the relations oft3=j2/2DII andtH=j2/2DIII , t3 is es-
timated by the measured parameterstH, mIII , andmII as

t3 = tH
DIII

DII
= tH

mIII

mII
. s36d

From Eqs.(33), (35), and(36), the dependence ofmII /mIII on
fm is given as

mII

mIII
=

3hd4 − sd + Dd0dkBTtH + Î12hkBTtHd5 + fsd + Dd0dkBTtH − 3hd4g2

6hd4 . s37d

In Fig. 13, experimental values ofmII /mIII are plotted and
shown as filled circles. Empty circles are best-fit values with
respect to Eq.(37). SincetH is obtained experimentally for
each concentration, a continuous line could not be obtained
in this case. It is noted that only one fitting parameterDd0
=0.9d determines the level ofmII /mIII at a high concentration
limit. The crossover concentration to a lower concentration
limit is automatically given by Eq.(37), regardless of the
fitting parameterDd0. It is therefore confirmed that the dis-
tortion field created by colloidal particles constrains the in-
plane motion of a colloidal particle, and this phenomenon
corresponds to the mechanism of HF relaxation.

C. Mechanism of LF relaxation

Since the lamellar in our sample cell is not macroscopi-
cally oriented, there must be defects in a scale larger than the
intermembrane distance. In fact, a vesicle-like structure or a
folded lamellar surrounded by a perforated lamellar is fre-
quently observed in freeze fracture electron micrographs
[28,29]. We have recently measured the dielectric response
in the lyotropic lamellar phase of an aqueous solution of

C12E5, and reported[12] that the observed Maxwell-Wagner
relaxation can be quantitatively understood by modeling the
lamellar phase as aggregates of multilamellar vesicles, the
insides and outsides of which are filled with perforated
lamellar. The size of such vesiclelike regions estimated from
dielectric spectroscopy is approximately 200–400 nm,
which coincides withLL obtained in this study. It is plausible
that the trapping sites for LF relaxation are composed of
multilamellar vesicles which colloidal particles cannot move
across. On the other hand, colloidal particles can move inside
and outside of the vesiclelike region, which is composed of
perforated lamellar.

Therefore, the Brownian motion of colloidal particles in
region I should be closely related to the property or dynam-
ics of a site-connecting path, which probably consists of mi-
croscopic defects joining one bilayer to another. We do not
assume that colloidal particles can hop between different
sites by breaking through the membranes of vesiclelike
structures, since an extremely large amount of energy would
be required for such a move[30]. There are therefore two
possible mechanisms to effect the movement of colloidal
particles through the path:(1) colloidal particles may search
for a very small fraction of the stable path, and(2) the dy-
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namic reorganization of lamellar structure may lead to the
very slow diffusion of colloidal particles. The latter case
would involve a mechanism of LF relaxation equivalent to
dynamic disorder transport[14].

Figure 16(a) shows a typical trajectory of a colloidal par-
ticle dispersed in the lamellar phase offm=2.4% as ob-
served by fluorescent microscopy. The colloidal particle hops
many times between particular sites through a path fixed for
some time[site A and B in Fig. 16(a)]. Figure 16(c) shows
the average number of sites connecting the observed path.
The number seems to be a decreasing function offm. In fact,
almost all colloidal particles dispersed in concentrated solu-
tions are always trapped in one particular site, as shown in
the typical trajectory offm=4.7% [Fig. 16(b)]. The occur-
rence of sites associated with a path is rare in concentrated
solutions since more microscopic defects are required fora
single path. This is consistent with the fact that the effective
size of the potential barrierLL becomes large whenfm de-
creases, as shown in Fig. 5(b). It is noted, however, that the
intrinsic size of the trapping site has little dependence on
concentration of the surfactant, as shown in Figs. 16(a) and
16(b) since the size of the vesiclelike region is mainly deter-
mined by the nature of a single membrane[12].

On the other hand, a colloidal particle trapped within par-
ticular sites[A and B in Fig. 16(a)] hops to another sitesCd,
which was probably induced by the reorganization of the
lamellar structure. It is rare to observe such an event that
implies a renewal of the site-connecting path during the pe-
riod of each experimentals20 sd. Therefore, it is difficult to
obtain the renewal ratep from this measurement. However,
this observation suggests that the diffusion process in region
I mainly follows a mechanism reflective of dynamic disorder
transport.

It is expected thatmI /mII gives important information on
the renewal ratep of the site-connecting path. However,mI is
not obtained from the frequency spectrum ofm*svd since
mobility relaxes to a negligible value in region I.mI can
probably be determined from the self-diffusion coefficient of
probe particles in this region,DI. In order to obtainDI, the
diffusion of probe particles has to be tracked for a distance
that is much longer thanL, and would involve a tracking
period exceeding hundreds of seconds. This is experimen-
tally difficult because colloidal particles move out of the fo-
cal plane and adjusting thez-stage position results in large
drifting motions of colloidal particles. In this study,DI in a
sample offm=4.7% was measured by slight modification of
our experimental system[8,9] for the mobility as explained
in Appendix A. Since we set the scattering angle to satisfy
the condition 2p /q<3 mm.L, the probe particles need to
diffuse about 3mm by hopping between trapping sites of
size L before the intensity of the scattered lightf~A19stdg
loses its memory, and we can regard the value of the appar-
ent diffusion constant asDI. The autocorrelation function of
the amplitude of the fundamental signalgstd=kA19stdA19s0dl
~exps−DIq

2td obtained for the sample offm=4.7% is shown
in Fig. 17. A very slow fluctuation with correlation time
1/DIq

2<230 s is observed. The estimated value ofgI is
much larger(about 1.43104 times) than that ofg0. Such
extremely large values ofgI again indicate that the probe

particles are almost completely trapped withinL of region I.
From an approximate length between trapping sites of 1mm,
the renewal ratep is estimated asp,DI /L

2,3310−3 s−1.
We consider this a maximum estimation ofp since it is dif-

FIG. 16. Typical trajectories of a colloidal particle dispersed in
lamellar phase over 20 s for(a) fm=2.4% and(b) fm=4.7%, and
(c) concentration dependence of the average number of trapping
sites observed during 20 s.
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ficult to distinguish between the diffusion of a colloidal par-
ticle and drift. We are therefore now measuringp by a more
direct method. This is possible if we make an artificial path
by manipulating an optically trapped colloidal particle, and
then observe the relaxation of the path by measuring the
yield stress. Recent results show consistent value ofp with
that obtained in this study[33].

VI. CONCLUDING REMARKS

In conclusion, we studied the spectra of complex electro-
phoretic mobility m*svd of nanometer-sized colloidal par-
ticles dispersed in a nonionic dilute lamellar phase in order
to probe the rheological properties in microscopic scales.
The spectra show two relaxations corresponding to the two
characteristic lengths of the lamellar structure. Combining
the complementary information given by dielectric spectros-
copy and the tracking of a particle’s motion with fluorescent
microscopy, the detailed mechanism of the observed relax-
ations were investigated. It was found that these relaxations
offer more information on the local structure and interaction
between particles and membranes than information yielded
by conventional macrorheology. This is because the probe
particles are smaller than the characteristic length(intermem-
brane distanced) of the lamellar phase, and wide-band spec-
troscopy is possible in our experimental system. The trans-
port properties of colloidal particles between membranes are
analogous to those of proteins and other secretions in bio-
logical systems in which bilayer membranes are one of the
most common components. As a consequence, the method of

electrophoretic microrheology developed in this study repre-
sents a useful method for the study of transport phenomena
in much more complex systems, such as biological cells and
other complex systems.
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APPENDIX A: PRINCIPLES OF WIDE-BAND
SPECTROSCOPY OFm*

„v…

As written in the text, the wide-band spectroscopy of
m*svd is carried out with a recently developed method using
the heterodyne technique of dynamic light scattering. If the
suspension is composed of identical spherical particles with-
out any internal degree of freedom, the scattered electric field
ESstd from the spheres at positionr n is given by
ÎI /Nonexphisq ·r n−vItdj. Here,I =ESES

* , N is the number of
particles in the scattering volume,vI is the angular frequency
of the incident light, andq is the scattering wave vector. We
employ an optical heterodyne technique to obtain the elec-
trophoretic mobility by mixing the scattered light with local
light, as shown schematically in Fig. 2. The temporal change
of the intensity of the detected lightIout is given asESEL

*

+ES
* EL =2ÎI0I /Noncossq ·r nd, whereEL is the electric field

of the local light andI0=ELEL
* . In equilibrium,r n varies with

time due to the Brownian motion of colloidal particles. When
the particles are subjected to the external electric fieldE,
another contributiondr E gives rise to displacement due to
electrophoresis. The total displacement of a colloidal particle
is given asr n=r 0n+dr En, wherer 0n is the position of a par-
ticle without an electric field. When the sinusoidal fieldE
=E0 cossvtd is applied to suspension,dr En is given by
dr En=mnE0 sinsvt+dd /v. If every particle has the same mo-
bility m, Iout is given as

Iout = 2Î I0I

N Fo
n

cosscndHJ0szd + 2o
k=1

`

J2kszdcoss2ksvt + dddJ+ 2o
n

sinscndo
k=1

`

J2k−1szdsinss2k − 1dsvt + dddG , sA1d

FIG. 17. Autocorrelation function of the amplitude of the fun-
damental componentkA19stdA19s0dl in a lamellar phasesfm=4.7%d.
The solid line is a best-fit curve of exponentially decaying function.
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wherecn=q ·r 0n, z=mq ·E0/v and Jk is the Bessel function
of kth order. We hereafter call thekth order harmonic com-
ponent thekth order term.

The signal detected by QELS-SEF in Eq.(A1) consists of
two components. One is a randomly fluctuating component
due to the Brownian motion of colloidal particles,oncosscnd
and onsinscnd. The diffusion coefficientD is obtained from
the autocorrelation function of these parts[8]. The other
component is the response to the external field,
ok=1

` J2kszdcosf2ksvt+dtdg and ok=1
` J2k−1szdsinfs2k−1dsvt

+ddg. The complex electrophoretic mobilitym*svd is ob-
tained from these parts. We therefore extract the first-order
component in Eq.(A1),

A1 = 4ÎI0I/NJ1szdsinsvt + ddo
n

sinscnd, sA2d

and then the second order harmonic component

A2 = 4ÎI0I/NJ2szdcoss2vt + 2ddo
n

cosscnd sA3d

from the output signal. However, these components are not
directly measured by a lock-in amplifier because the tempo-
ral average of cosscnd and sinscnd becomes zero.

In order to avoid this undesirable effect, we squared these
signals before lock-in detection when the correlation time of
oncosscnd andonsinscnd was smaller than the time constanttc
of the lock-in amplifier. Using this procedure, the compo-
nents detected with the lock-in amplifier are given by

A18 = − 4I0kIlJ1
2szdcoss2vt + 2dd < − I0kIlz2 coss2vt + 2dd

sA4d

and

A28 = 4I0kIlJ2
2szdcoss4vt + 4dd < 1

16I0kIlz4 coss4vt + 4dd.

sA5d

In the above calculation, we used the relation
onÞmcosscndcosscmd=0 and onÞmsinscndsinscmd=0, which
are derived from the plausible assumption that there are
many particles having no positional correlation in a scatter-
ing volume. The phase delay ofd is obtained from Eqs.(A4)
and (A5). But the magnitudem cannot be obtained directly
from the amplitude of the output signalsA18 or A28, since they
depend on uncontrollable parameters such as the fluctuation
of the intensity of laser light and the efficiency of the optical
system. As a result, the ratio of the amplitudeA28 /A18 is cal-
culated to obtainm.

On the other hand, the correlation time ofoncosscnd and
onsinscnd is much larger than the time constanttc of the
lock-in amplifier used in this study. In such cases,A1 andA2
are detected directly with a lock-in amplifier. The output of
the lock-in amplifier may then be represented as

A19 = 4ÎI0I/NJ1szdo
n

sinscndexphisd − p/2dj sA6d

and

A29 = 4ÎI0I/NJ2szdo
n

cosscndexps2idd, sA7d

which are digitally squared on a personal computer. The av-
eraged signals are given by

kA19
2l = − 8I0kIlJ1

2szdexps2idd , − 2I0kIlz2 exps2idd
sA8d

for the fundamental harmonic component, and

kA29
2l = 8I0kIlJ2

2szdexps4idd , 1
8I0kIlz4 exps4idd sA9d

for the second order harmonic component. These signals
give m*svd in the same manner as previously written.

In the above procedure, the information on Brownian mo-
tion is excluded by squaring the detected signal to yield a
sensitive measurement ofm*svd. In contrast, the diffusion
constant of colloidal particles can be obtained separately by
eliminating the electrophoretic information. In such a case,
the signalA1 is detected with a lock-in amplifier without
employing a squaring operation. If the time constanttc of the
lock-in amplifier is set shorter than the characteristic time of
diffusion 1/Dq2, it is possible to observe the temporal
change of the coefficientonsinscnd. By calculating the auto-
correlation function of the signal, the diffusion coefficient is
obtained from its decay rate.

This method has several advantages when compared to
other techniques used in the field of microrheology. First,
since lock-in detection removes noise that is asynchronous to
the signal, a signal whose amplitude is much smaller than the
noise level(by 60 dB) is easily detected. Therefore, both
complex electrophoretic mobility and the diffusion constant
of colloidal particles in soft materials that scatter light
strongly can be measured using this method. Second, the
entire signal originally distributed around a harmonic fre-
quency due to Brownian motion is collected with our
method. Therefore, the effective intensity of the detected sig-
nal is extremely larger than the signal containing the influ-
ence of Brownian motion. Third, even if a drifting motion
dr dstd=vdt exists with velocityvd in the system studied, the
correct complex mobilitym* can be obtained in our system.
That is because Eqs.(A2) and(A3) are not altered if we add
the termq ·dr d to cn in Eq. (A1), as long asq ·vd is smaller
than the half-width of a band-pass filter. Therefore, we can
apply a higher field to the suspension, which is of great ad-
vantage when measuring small displacements at high fre-
quencies.

APPENDIX B: HYDRODYNAMICS OF LYOTROPIC
LAMELLAR PHASE

In order to discuss the hydrodynamics of the binary lipid
system for larged, we use the phenomenological approach of
Brochard and de Gennes[31] for lyotropic smectics. At con-
stant temperature, we need three variables to describe the
dynamics of the lamellar phase. These are the total density
dilation Q, the dilation of the layer spacingg̃=sdl −dd /d
=]u/]z, and the dilation of the surfactant concentration«̃
=sc0−cd /c0=]c/c0, wheredl is the local layer spacing,c0 is
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the prepared surfactant concentration, andc is the local sur-
factant concentration. SinceQ involves the first sound,
which is much faster than the membrane fluctuations we are
considering and which yields little effect, we may assume the
material is incompressible. One may use the relative change

of the area per polar headd̃=sA−Aeqd /Aeq instead of using«̃,
whereAeq is the area per polar head at equilibrium andA

denotes its local value. These are related by«̃= g̃+ d̃. The
free energy density can therefore be expanded as

f =
1

2
BS ] u

] z
D2

+ D23
] u

] z
d̃ +

1

2
D33d

~2

+
1

2
Ks¹r

2ud2

; f1 +
1

2
Ks¹r

2ud2, sB1d

where the last term is the membrane curvature elastic energy,
andK=kc/d. Following Ref.[32], the equations representing
the motion of the fluid are

r
] yx

] t
= −

] p

] x
+

]

] xF ] f1

] d̃
G

g̃

+ hF ]2

] x2 +
]2

] y2 +
]2

] z2Gyx,

sB2d

r
] yy

] t
=

] p

] y
+

]

] yF ] f1

] d̃
G

g̃

+ hF ]2

] x2 +
]2

] y2 +
]2

] z2Gyy,

sB3d

r
] yz

] t
= −

] p

] z
+

]

] z
F ] f1

] g̃
G

d̃

− KS ]4u

] x4 + 2
]4u

] x2 ] y2 +
]4u

] y4D
+ hF ]2

] x2 +
]2

] y2 +
]2

] z2Gyz, sB4d

wherep andv represent the local pressure and velocity of the
fluid. It is assumed that water does not cross the bilayers and
surfactant molecules do not leave the bilayers; that is, there
is no permeation. Without permeation,vz=]u/]t, and thex
component of the lipid velocity is given byvLx=]d̃ /]t. Un-
der the conditions of a dilute lamellar phase, it is appropriate
to use an isotropic shear viscosityh equal to the viscosity of
water in Eqs.(B2)–(B4). However, water may flow between
the bilayers in thex direction. This is described by the phe-
nomenological equation[31,32]

yLx − yx = ms
]

] xS ] f1

] d̃
D

g̃

, yLy − yy = ms
]

] yS ] f1

] d̃
D

g̃

,

sB5d

wherevLx and vLy are thex and y components of the lipid
velocity, andms is the slip coefficient, which is estimated as
d2/12h [31]. We may then combine¹ ·vL =]«̃ /]t with the
incompressibility condition¹ ·v=0 to obtain

]

] t
sg̃ + d̃d = msS ]2

] x2 +
]2

] y2DS ] f1

] d̃
D

g̃

. sB6d

Equations(B2)–(B4) and (B6) combined with the incom-
pressibility and impermeability conditions form a complete
set of equations representing the hydrodynamics of binary
lipid systems with larged.
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