
Description beyond the mean-field approximation of an electrolyte confined between
two planar metallic electrodes

Gabriel Téllez*
Departamento de Física, Universidad de Los Andes, A.A. 4976, Bogotá, Colombia

(Received 23 January 2004; published 30 July 2004)

We study an electrolyte confined in a slab of widthW composed of two grounded metallic parallel elec-
trodes. We develop a description of this system in a low coupling regime beyond the mean-field(Poisson–
Boltzmann) approximation. There are two ways to model the metallic boundaries: as ideal conductors in which
the electric potential is zero, and it does not fluctuate, or as good conductors in which the average electric
potential is zero but the thermal fluctuations of the potential are not zero. This latter model is more realistic.
For the ideal conductor model we find that the disjoining pressure is positive behaves as 1/W3 for large
separations with a prefactor that is universal, i.e., independent of the microscopic constitution of the system.
For the good conductor boundaries, the disjoining pressure is negative and it has an exponential decay for large
W. We also compute the density and electric potential profiles inside the electrolyte. These are the same in both
models. If the electrolyte is charge asymmetric, we find that the system is not locally neutral and that a nonzero
potential difference builds up between any electrode and the interior of the system although both electrodes are
grounded.
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I. INTRODUCTION

In this paper, we study an electrolyte solution confined
between two parallel planar metallic electrodes. The study of
the electrical double layer near an electrode and more gen-
erally near any object submerged in an electrolyte is of cru-
cial importance in chemical physics and in colloidal science.
This problem was first considered by Gouy[1] and indepen-
dently by Chapman[2] almost a century ago. Their work is
part of the foundations of colloidal science[3] and the phys-
ics of electrolytes[4].

However, their work and subsequent developments are
based on a mean-field description: the Poisson-Boltzmann
equation. Although this mean-field approach describes accu-
rately several properties of the systems, in some situations it
misses some subtle effects due to correlations. As an ex-
ample, we can mention the old controversy about the possi-
bility of attraction between like-charged colloids[3,5]
recently renewed by some experimental results[6–8]. It has
been shown[9–12] that the mean-field approach(actually
any local density approximation) cannot predict any attrac-
tive effective interaction. Therefore, the study of electrolyte
suspensions beyond the mean-field approximation is
important.

This paper is oriented in that sense, although we will not
consider here the problem of like-charged attraction between
colloids, but the study of an electrolyte solution confined
between two parallel metallic planar electrodes beyond the
mean-field approximation. We will be interested in questions
such as what force is exerted on the planar electrodes, is it
attractive or repulsive, etc. To have a clear picture of the role
of the correlations in this problem, we will consider the case
when the two electrodes are grounded. The mean-field pic-

ture in this case is very simple: the mean-field potential in
the electrolyte is zero everywhere and the fluid is uniform
and locally neutral. We will describe the first fluctuations
around this mean-field picture in a low coupling regime
where the average Coulombic energy of the micro-ions of
the solution is much smaller than their thermal energy.

We should mention that this same problem was recently
considered in Ref.[13]. However, the authors of Ref.[13]
made a mistake that has lead them to the wrong conclusions,
as explained below. The electrolyte is confined between two
conductor parallel planes. Each particle polarizes the planes.
There is an interaction energy between each particle and the
polarization charge that it induces in the electrodes. In
Ref. [13], the authors forgot to include this energy in the
Hamiltonian, and this error made most of their conclusions
incorrect.

The outline of this paper and our main results can be
summarized as follows. In Sec. II, we present the models
under consideration and explain the method[14] used to find
the thermodynamic properties of the system. Actually, there
are two ways to model the metallic electrodes. In a first
model, the boundaries are supposed to be made of an ideal
conductor material. This model is very simple, but it has the
defect of neglecting the fluctuations of the electric potential
in the electrodes. In the second model, which is more realis-
tic, the electrodes are supposed to be genuine Coulombic
systems with very good conducting properties. We will call
this model the good conductor model. In this model, the
screening length vanishes inside the conducting electrodes,
the average electric potential is zero in the electrodes, but the
electric potential can fluctuate. We will obtain results for
both models and compare them using results from Ref.[15].

In Sec. III, we compute the grand potential of the system
and the pressure. For the ideal conductor model we find that
the disjoining pressure is positive. For large separationsW of
the slab, the disjoining pressure behaves as 1/W3. On the*Electronic address: gtellez@uniandes.edu.co

PHYSICAL REVIEW E 70, 011508(2004)

1539-3755/2004/70(1)/011508(13)/$22.50 ©2004 The American Physical Society70 011508-1



other hand, for the good conductor model, the disjoining
pressure turns out to be negative and it decays ase−2kW for
large separations, withk the inverse Debye length.

Finally, in Sec. IV, we find the micro-ion density profiles
and the electric potential inside the electrolyte. These quan-
tities are the same regardless of the model used to describe
the electrodes(ideal conductor or good conductor). In that
section, we retrieve the important result[16–18] that for
charge asymmetric electrolytes, a nonzero potential differ-
ence builds up between each electrode and the middle of the
electrolyte solution and the system is not locally neutral, al-
though both confining plates are grounded.

II. MODEL

As explained in Sec. I the system under consideration is
an electrolyte confined between two grounded conductor pla-
nar electrodes separated by a distanceW. Let us choose thex
axis in the direction perpendicular to the electrodes, the ori-
gin is in the middle of the electrodes and the electrodes are
located atx= ±W/2. We will eventually also consider the
limiting case whenW→`. In this case, we shall use the
coordinateX=x+W/2 which measures the distance from one
electrode.

We will model the electrolyte as composed of several spe-
cies of pointlike micro-ions with chargesqa labeled by a
Greek index. The solvent will be modeled as a continuum
medium with dielectric constant«. As is well known[19,20],
a system of charged point particles described by classical
statistical mechanics is not stable. In principle, we should
introduce some short-distance cutoff, for instance, the radius
of the ions, to avoid the collapse of particles of different
signs. However, in the low coupling regime considered here,
most physical quantities have a well-defined value when this
short-distance cutoff vanishes. Therefore, our model will
give valuable quantitative information on the system pro-
vided the ion radius is much smaller that the others lengths
involved in the problem.

The position of theith particle of the speciesa will be
labeled asr a,i. We shall work in the grand-canonical en-
semble at a reduced inverse temperatureb=1/skBTd, with kB

the Boltzmann constant andT the absolute temperature. The
average number of particleskNal of the speciesa is con-
trolled by the chemical potentialma. We shall use the fugac-
ity za=ebua /La

3 whereLa is the thermal de Broglie wave-
length of the particles, which appears as usual in classical
(i.e., nonquantum) statistical mechanics after the trivial
Gaussian integration over the kinetic part of the Hamiltonian.
We shall impose the pseudoneutrality condition

o
a

qaza = 0. s2.1d

In Appendix B of Ref.[14], it is explained that this choice is
equivalent to suppose that there is no electric potential dif-
ference between the plates and the interior of the system in
the mean field approximation. The pseudoneutrality condi-
tion ensures the neutrality of the reservoir, however, as we
will see below, it does not ensure the global neutrality of the
system confined with Dirichlet boundary conditions. As we

will show in Sec. IV, there is a nonvanishing charge density
near the electrodes. However, this charge density induces in
the electrodes a polarization charge of opposite sign and the
total charge(system plus electrodes) is zero.

There are two models that can be used to describe the
electrodes[15,21]. The simpler one is the ideal conductor
model. In this model, the interaction potential between two
unit charges located atr =sx,y,zd and r 8=sx8 ,y8 ,z8d is the
solution of Poisson equation

Dvsr ,r 8d = −
4p

«
dsr − r 8d, s2.2d

satisfying the Dirichlet boundary conditionsvsr ,r 8d=0 if
x8= ±W/2. It can be computed using, for example, the
method of images,

vsr ,r 8d =
1

«
o

n=−`

+` F 1

fsx − x8 + 2nWd2 + sr ' − r '8 d2g1/2

−
1

fsx + x8 + s2n + 1dWd2 + sr ' − r '8 d2g1/2G ,

s2.3d

wherer '=sy,zd is the transversal part of the position vector
r and « is the dielectric constant of the solvent. For future
reference, we define the Coulomb potential for an unconfined
system as

v0sr ,r 8d =
1

«

1

ur − r 8u
, s2.4d

which will be needed in the following.
Notice that with this ideal conductor model, the micro-

scopic electric potential deduced from(2.3) vanishes on the
electrodes, for any configuration of the system. Then, not
only the average electric potential will vanish on the elec-
trodes, but also its fluctuations.

In a real situation, even if the electrodes have very good
conducting properties, the electric potential inside the con-
ductor will be subjected to thermal fluctuations. This leads us
to the other model that can be used to describe the elec-
trodes, the good conductor model. In this model, the elec-
trodes are genuine Coulomb systems with good conducting
properties. We will restrict ourselves to a classical(nonquan-
tum) description of these conductors. We will consider that
the screening length in the conductors vanishes. This ensures
that the electrodes have good conducting properties. It is
shown in[15] that in this limit the average electric potential
vanishes on the electrodes. However, the fluctuations of the
potential do not vanish in this limit.

A natural question then arises: how are related the ideal
conductor model and the good conductor one? This question
has already been addressed in Ref.[15] and we will make
extensive use of the results presented there. It is shown in
Ref. [15] that the densities and electric potential profiles in-
side the electrolyte are the same in both models. Thus, we
will work with the (more simpler) ideal conductor model for
the determination of these profiles in Sec. IV.
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On the other hand, the results for the grand potential and
for the pressure are different in both models, but there are
simple relations between them[15]. We will use the ideal
conductor model for the calculation of these quantities in
Sec. III and using the relations found in[15], we will obtain
the results for good conductor model. From now on, we con-
sider the ideal conductor model unless stated otherwise.

Although to write down the Hamiltonian of the system is
a trivial exercise in electrostatics, to clearly show what the
problem is with the previous study[13] of this system, we
will detail a few (well-known) points before proceeding.
First, consider the case when only a planar electrode is lo-
cated atX=0. Bringing first a unit charge from infinity to a
position r =sX,y,zd at a distanceX from the plane cost a
nonzero energy, contrary to the case of an unconfined sys-
tem. This is because of the interaction between the particle
and the polarization charge it induces in the plane. In this
very simple geometry, this interaction can also be understood
as the potential energy between the particle and an image
charge located atr * =s−X,y,zd. This energy is −1/s4«Xd,
which can be formally written ass1/2dfvsr ,r d−v0sr ,r dg [in
this casevsr ,r 8d is the potential sur −r 8u−1− ur −r *8u−1d /«
when only one electrode is present]. This interaction energy
should be included in the Hamiltonian.

Following the same lines, in the general case of two me-
tallic planes, the potential energy of the system reads

H =
1

2o
a,g

o
i,j

8qaqg vsra,i,r g,jd +
1

2o
a

o
i

qa
2fvsr a,i,r a,id

− v0sr a,i,r a,idg. s2.5d

In the first sum, the prime means that the casea=g and i
= j should be omitted. The second sum is the energy between
each particle and the polarization charge it has induced in the
electrodes, as discussed previously. Introducing the micro-
scopic charge density defined as

r̂sr d = o
a

o
i

qadsr − r a,id, s2.6d

we can formally write the potential part of the Hamiltonian
of the system as

H =
1

2
E drE dr 8r̂sr dvsr ,r 8dr̂sr 8d −

1

2o
a

o
i−1

Na

qa
2v0sr a,i,r a,id.

s2.7d

The domain of integration in the first term is the space be-
tween the two parallel electrodess−W/2,x,W/2d. Notice
that from the first term written in terms of “continuous”
fields we subtract the infinite “self-energy” of a particle
v0sr ,r d, but with the potential energyv0 corresponding to an
unconfined system.

With the Coulomb potentialv0 given by Eq.(2.4) this
self-energy is infinite. The appearance of infinite quantities
can be avoided, and the subsequent analysis can be done
more rigorously by modifying the Coulomb potential
v0sr ,r 8d by introducing a short-distance cutoff that smears
out the singularity atr =r 8. At the end of the calculations,

one can then take the limit of a vanishing cutoff. This has
been done rigorously in Ref.[22]. It turns out that the final
results are the same as if one takes the short-distance cutoff
equal to zero from the start. Therefore, to simplify the alge-
bra we will take from the start a system of point particles
without short-distance cutoff.

Now we follow the method proposed recently by the au-
thor and collaborators in Refs.[14,23] to study in general
confined Coulombic systems in a low coupling regime. Let
us define the Coulombic couplingsGa=bqa

2za
1/3/«. The

method proposed in Ref.[14] is valid for Ga!1.
In the method exposed in Ref.[14], the sine-Gordon

transformation[24] is performed in the grand-canonical par-
tition function, and the action of the corresponding field
theory is then expanded to the quadratic order(valid in the
low Coulombic coupling regime) around the stationary
(mean-field) solution (heref=0). For details, the reader is
referred to Ref.[14] and to Appendix A. The grand partition
function can then be written as

J =
1

ZG
E Df expf− Ssfdg, s2.8d

with

ZG =E Df expH−
1

2
E fsr dF−

b«D

4p
Gfsr ddrJ ,

s2.9d

andSsfd is an action, quadratic inf, given by

Ssfd =
1

2
E − b«

4p
fsr dDfsr d + o

g

sbqgd2zg < fsr d2 < dr ,

s2.10d

where <fsr d2< is a pseudonormal ordered product,(see
Appendix A for details).

The field fsr d is a mathematical intermediary. At the
mean-field level, the stationary equation for the action(be-
fore it is expanded to the quadratic order) is Poisson–
Boltzmann equation, andifsr d can be interpreted as the elec-
tric potential. However, this relation breaks down when we
consider the fluctuations as in the present case, for instance,
the correlations offsr d are short-ranged[25], whereas the
correlations of the electric potential are known to be long-
ranged[26,27]. The Gaussian functional integration in Eq.
(2.8) can be performed[14] to obtain

J = Fp
n
S1 −

k2

ln
Dp

m

e
k2

lm
0 G−1/2

eo
a

Vza, s2.11d

whereln are the eigenvalues of the Laplacian operator sat-
isfying the Dirichlet boundary conditions andlm

0 are the ei-
genvalues of the Laplacian operator defined in the whole
spaceR3 without boundaries. We will call this case, in the
following, the free boundary conditions case. The volume of
the system isV andk=Îoa4pzabqa

2 /« is the inverse Debye
length. The second product in Eq.(2.11) involving lm

0 comes
from the subtraction of the self-energy termv0sr ,r d.
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III. GRAND POTENTIAL AND PRESSURE

A. Ideal conductor model

In this part, we use the ideal conductor model to describe
the electrode. In what follows, we will use a superscript “id”
in the thermodynamic quantities.

1. Grand potential

For the present geometry, the eigenvalues of the Laplacian
for Dirichlet boundary conditions and free boundary condi-
tions, respectively, arel=−k2−snpd2/W2 with nPN* and
k PR2 and lm

0 =−K 2 with K PR3. We find that the grand
potential Vid takes the form Vid=Vig+Vexc

id , with Vig

=kBTVoaza the ideal gas contribution andVexc
id the excess

grand potential. From Eq.(2.11), we find the excess grand
potentialvexc

id per unit area of a plate, as

bvexc
id =

1

2s2pd2E
R2

lnp
n=1

`

11 +
k2

Snp

W
D2

+ k22d2k

−
Wk2

2s2pd3E
R3

d3K

K 2 . s3.1d

The product under the logarithm can be performed exactly
[28] to obtain

bvexc
id =

1

4p
E

0

kmax

lnF k
Îk2 + k2

sinhsWÎk2 + k2d
sinhskWd Gkdk

−
Wk2

s2pd2E
0

Kmax

dK. s3.2d

Notice that we introduced two ultraviolet cutoffskmax and
Kmax for both integrals since each integral, taken separately,
is ultraviolet divergent. However, together they should give a
finite result whenkmax→` andKmax→` as far as the bulk
properties are concerned. Indeed, in the limitW→` we
should recover the well-known bulk result[14,22] bvb=
−k3W/ s12pd. This requirement imposes that the cutoffs
should be related byKmax=pkmax/2. Doing the change of
variable K=pk/2 in the second integral, the excess grand
potential per unit area can finally be written as

bvexc
id =

1

4p
E

0

kmaxFk lnS k
Îk2 + k2

sinhsWÎk2 + k2d
sinhskWd D

−
k2W

2
Gdk. s3.3d

In principle, we should take the limitkmax→`, however, it
should be noted that the above expression has a logarithmic
divergence whenkmax→`, which manifests itself in the sur-
face tension. This can be seen clearly if we expandvexc for
kW@1, as

bvexc
id = −

k3W

12p
+ 2bg +

zs3d
16pW2 + Ose−2kWd, s3.4d

with the surface tensiong given by

bg =
k2

16p
Sln

k

kmax
−

1

2
D s3.5d

andzs3d is the Riemann zeta function evaluated at 3(not to
be confused with the fugacities). In Eq. (3.4), all terms that
vanish whenkmax→` have been omitted.

A few comments are in order. Concerning the surface ten-
sion g, it is divergent when the cutoffkmax→`. This is nor-
mal: it is due to the strong attraction that each particle and its
images of opposite charge in the electrodes feel. The small
coupling regime of an electrolyte near a plane metallic wall
can also by studied from a diagrammatic Mayer expansion.
This is done in section 5 of Ref.[29] for a two-dimensional
Coulombic system. These calculations can easily be adapted
to a three-dimensional system to show that the surface ten-
sion g is related to the integral of the screened interaction
energy between a particle and its image: −exps−2kXd / s4Xd.
This energy is not integrable at short distances and its inte-
gral has a logarithmic divergence atX=0. In this picture, one
can impose a short-distance cutoffD: the particles cannot
approach below this distance to the electrode, and the surface
tension is proportional to lnkD. Actually, our ultraviolet cut-
off kmax~1/D.

The second comment concerns the algebraic finite-size
correction kBTzs3d / s16pW2d to the grand potential. This
finite-size correction is universal, it does not depend on the
details of the microscopic constitution of the system, and it
has been proved to exist even beyond the low coupling re-
gime considered here provided that the electrolyte is in a
conducting phase and it has good screening properties, in
particular if it can screen an external infinitesimal dipole
[30]. This correction is a consequence only of the screening
properties of the system: that explains its universality. How-
ever, as we will see later, this term is only present for the
ideal conductor model considered in this section. For the
good conductor model, this algebraic correction in the grand
potential is absent.

We should also mention that this algebraic finite-size
correction is not present in the case of insulating plates
[30–32]. Indeed, if the boundary is made of a dielectric ma-
terial, there is a subtle cancellation between the term found
here and the one from the Lifshitz interaction(the Casimir
effect). For dielectric boundary conditions, the disjoining
pressure has an exponential decaye−2kW at large separations
W and it is attractive[31,32], as opposed to the present case
of ideal conductor boundary conditions. Further details on
this interesting difference are discussed in Appendix B.

2. Pressure

The pressure is obtained from the usual relationp=
−]v /]W. From Eq.(3.3), we find that the excess pressure
pexc

id is given by

bpexc
id =

1

4p
E

0

` Fk2

2
+ k2 cothskWd

− kÎk2 + k2 cothsWÎk2 + k2dGdk. s3.6d

Although the grand potential has an ultraviolet divergence
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and should be regularized as explained earlier, the pressure
proves to be well defined forkmax→` (andWÞ0). This is
expected since from the large-W expansion(3.4) of the grand
potential, we can see that the ultraviolet divergent part(the
surface tension contribution) does not depend onW. Notice,
however, that forW→0 the pressure is divergent. Let us
mention that the nondivergence of the pressure with the cut-
off and, more precisely, the fact that it is independent of the
surface tensiong is special to this planar geometry. If we
were to consider a confining geometry with curved bound-
aries(for example an electrolyte confined in a spherical do-
main), the surface tension would be a dominant term in the
pressure: due to the curvatureR the disjoining pressure for
large systems would bepd~−g /R, see Ref.[33] for an ex-
ample of this effect.

Doing a few manipulations to Eq.(3.6), we can cast the
pressure in a form more adequate to study the disjoining
pressurepd

id, difference between the pressurepid and the bulk
pressurepb, and its large-W behavior. The bulk pressure,
expressed in terms of the fugacities, is obtained from the
limit W→` of Eq. (3.4), and it is given by

bpb = o
a

za +
k3

12p
. s3.7d

The well-known expression of the bulk pressure in terms of
the densities will be recovered in the Eq.(4.17), when we
obtain the expression of the bulk densities in terms of the
fugacities.

We then find the disjoining pressure

bpd
id =

zs3d
8pW3 +

k3

4p
E

0

`

uÎu2 + 1f1 − cothskWÎu2 + 1dgdu

s3.8d

=
W→`

zs3d
8pW3 + Ose−2kWd. s3.9d

For large separationsW of the electrode plates, the disjoining
pressure is positive and decays as 1/W3. The force exerted
on the plates is therefore repulsive and the system is stable: if
it is compressed the pressure increases. This actually holds
for any separation, as can be seen in Fig. 1.

B. Good conductor model

We now study the electrolyte confined by good conductor
electrodes. We will not use any superscript in the thermody-
namic quantities in order to differentiate them from the ones
computed for the ideal conductor model.

1. Free energy and grand potential

Let F be the free energy of the system composed of the
electrolyte and the electrodes. These latter ones are consid-
ered as Coulomb systems with a vanishing screening length
(high density of charged particles) in the regionx,−W/2
and x.W/2. The electrolyte is in the region
−W/2,x,W/2.

For the following discussion, it is useful to introduceF0
the free energy of the electrodes in absence of the electrolyte.
It is shown in Ref.[15] thatF=Fid+F0, whereFid is the free
energy of the electrolyte in the ideal conductor model, which
can be obtained from the results of the previous section. The
argument of Ref.[15] can easily be applied to the grand
potential, thus,

v = vid + v0, s3.10d

with v the grand potential(per unit area of the plates) of the
system when the electrodes are described as good conduc-
tors,vid the grand potential(per unit area) for the ideal con-
ductor model, which can be obtained from Eq.(3.3), andv0
the grand potential of the good conducting electrodes alone
in the space in the absence of the electrolyte.

The large-W expansion of this latter termv0 is given by
Lifshitz theory [34] in the classical regime as
−kBTzs3d / s16pW2d. Thus, it cancels the similar contribution
that we found invid in Eq. (3.4). When the electrodes are
described as good conductors(which is a more realistic
model), there is no long-range contribution in 1/W2 to the
grand potential of the system, as opposed to the ideal con-
ductor model.

2. Pressure

The pressure is the force per unit area that the electrolyte
exerts on one plate, say the one atx=W/2. It can be com-
puted by means of the Maxwell stress tensorTmn. It is p=
−Txx evaluated atx=W/2. In Ref. [15], it is shown that the
stress tensor in the ideal conductor modelT mn

id and the one in
the good conductor modelTmn are related by

Tmnsr d − T mn
id sr d =

«

4p
S]m]v8 −

dmn

2
]s]s8DG*sr ,r 8dr8=r ,

s3.11d

with G*sr ,r 8d=v0sr ,r 8d−vsr ,r 8d is (minus) the “images”
contribution to the Coulomb potentialv in the ideal conduc-
tor model.

FIG. 1. The disjoining pressure of the electrolyte confined by
ideal conductor electrodes. It is positive and always decreasing with
increasingW, indicating that there is a repulsive force between the
two ideal conductor parallel plates.
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The right-hand side of Eq.(3.11) can be computed explic-
itly, giving

Txx − T xx
id =

zs3d
8pW3 . s3.12d

Thus, the pressure for the good conductor model is

p = pid −
zs3d

8pW3 . s3.13d

Using Eq. (3.8), we finally obtain the disjoining pressure
when the electrodes are modeled as good conductors:

bpd =
k3

4p
E

0

`

uÎu2 + 1f1 − cothskWÎu2 + 1dgdu.

s3.14d

Notice that since the function coth in the integrand is greater
than 1, the disjoining pressure is always negative. Figure 2
shown a plot of the disjoining pressure as a function of the
width W. We notice that the pressure is now an increasing
function of W. This behavior is just the opposite of that ob-
tained with the ideal conductor model. Now, for largeW as
well, the disjoining pressure decays exponentially ase−2kW.

IV. DENSITY AND ELECTRIC POTENTIAL PROFILES

The difference in the results for the pressure using the
ideal conductor model and the good conductor one are dras-
tic. However, the results for the density and electric potential
profiles inside the electrolyte are the same in both models, as
was shown in Ref.[15]. Therefore, we will concentrate in
this section on the ideal conductor model, which is more
tractable.

A. Density

The densitynasr d can be obtained from the usual func-
tional derivative.

nasr d = zasr d
d ln J

dzasr d
. s4.1d

In Appendix A, it is shown that

nasr d = zaS1 −
bqa

2

2
fvDHsr ,r d − v0sr ,r dg

+
b2qa

2 o
g

zg qg
3E vDHsr 8,r dfvDHsr 8,r 8d

− v0sr 8,r 8dgdr 8D , s4.2d

wherevDHsr ,r 8d is the Debye-Hückel(DH) potential, solu-
tion of DH equation

sD − k2dvDHsr ,r 8d = −
4p

«
dsr − r 8d, s4.3d

satisfying the Dirichlet boundary conditionsvDHsr ,r 8d=0 if
x8= ±W/2. Equation(4.2) gives the density up to the order
Ga

3/2 in the Coulombic couplings. For the present calcula-
tions, we found that the most convenient form forvDH is as a
Fourier transform in the transverse directionr '=sy,zd. In
Fourier transform, DH Eq.(4.3) reduces to an ordinary linear
differential equation in thex variable, which can be easily
solved. We then find

vDHsr ,r 8d =
4p

«
E

R2

dk

s2pd2

sinhfÎk2 + k2sW/2 − x8dgsinhfÎk2 + k2sW/2 + xdg
Îk2 + k2sinhsWÎk2 + k2d

eik·r ', s4.4d

if x,x8 and exchange the roles ofx andx8 if x8,x. Using this expression in(4.4), we find that the density can be expressed
as

nasxd = za
F1 +

bqa
2k

2e
f1skxd +

2pb2qao
g

qg
3zg

k«2 f2skxdG , s4.5d

with

FIG. 2. The disjoining pressure of the electrolyte confined by
good conductor electrodes. It is negative and always increasing with
increasingW, indicating that there is an attractive force between the
two conductor parallel plates.
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f1sx̃d = −E
0

`H 2k
Îk2 + 1

sinhfÎk2 + 1sW̃/2 − x̃dgsinhfÎk2 + 1sW̃/2 + x̃dg

sinhsÎk2 + 1W̃d
− 1Jdk s4.6d

and

f2sx̃d =
coshx̃

coshsW̃/2d
E

0

` F1 −
4kÎk2 + 1

4k2 + 3
cothsW̃Îk2 + 1dGdk

s4.7d

+E
0

` k coshs2x̃Îk2 + 1d
Îk2 + 1s4k2 + 3dsinhsW̃Îk2 + 1d

dk s4.8d

+E
0

` F k
Îk2 + 1

cothsW̃Îk2 + 1d − 1G dk, s4.9d

where we have used distances measured in Debye length

units x̃=kx andW̃=kW. Notice that the factors multiplying
f1 and f2 in the density, Eq.(4.5), are of orderGa

3/2 in the
coulombic couplings. Our approach neglects corrections of
higher order thanGa

3/2.
After doing the change of variableu=Îk2+1 in the above

integrals, some of them can be performed explicitly, and do-
ing some manipulations, we find the following convenient
expressions forf1sx̃d and f2sx̃d:

f1sx̃d = 1 +
e−sW̃−2x̃d

W̃− 2x̃
+

e−sW̃+2x̃d

W̃+ 2x̃
+ 2E

1

` e−3uW̃coshs2ux̃ddu

1 − e−2uW̃

+
1

W̃
lns1 − e−2W̃d s4.10d

and

f2sx̃d = f2
s1dsx̃d + f2

s2dsx̃d − 1 −
1

W̃
lns1 − e−2W̃d, s4.11d

with

f2
s1d =

coshx̃

coshsW̃/2d
F1 −

ln 3

4
− 8E

1

` u2e−2uW̃

s4u2 − 1ds1 − e−2uW̃d
duG

s4.12d

and

f2
s2dsx̃d =

1

4
HeW̃/2−x̃EiF− 3SW̃

2
− x̃DG

− e−sW̃/2−x̃dEiF− SW̃

2
− x̃DGJ , s4.13ad

+
1

4
HeW̃/2+x̃EiF− 3SW̃

2
+ x̃DG − e−sW̃/2−x̃dEiF− SW̃

2
+ x̃DGJ ,

s4.13bd

+ 2E
1

` e−3uW̃coshs2ux̃ddu

s4u2 − 1ds1 − e−2uW̃d
, s4.13cd

where Eiszd=−e−z
` e−t / t dt is the exponential integral func-

tion. The advantage of these latter expressions is that one can
immediately see that the terms written as integrals are of

orderOse−2W̃d whenW̃→`. Therefore, we can easily obtain
the expression for density in the case of one electrode alone,
with X=x+W/2, as

nasXd = za
H1 +

bqa
2k

2«
S1 +

e−2kX

2kX
D

+

2pb2qao
g

qg
3zg

«2k
Fe−kXS1 −

ln 3

4
D

+
ekXEis− 3kXd − e−kXEis− kXd

4
− 1GJ .

s4.14d

Far away from the metallic wall,X→`, we find the bulk
density

na
b = zaS1 +

bqa
2k

2«
−

2pb2qaog
qg

3zg

«2k
D . s4.15d

Replacing back into Eq.(4.14), we find an expression for the
density profile in terms of the bulk density

nasXd = na
bH1 +

bqa
2e−2kDHX

4«X
J s4.16ad

+

2pb2qao
g

qg
3 ng

b

«2kDH
HFe−kDHXS1 −

ln 3

4
D

+
ekDHXEis− 3kDHXd − e−kDHXEis− kDHXd

4
GJ .

s4.16bd

with corrections of higher order thanGa
3/2. Here, kDH

=Î4pbog ng
b qg

2 /«. We recover the expression that Aqua and
Cornu have previously obtained in their studies of the prop-
erties of a classical Coulombic system near a wall[16–18]
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using diagrammatic methods, up to a small difference: the
first term (4.16a) appears in[18] as an exponential Boltz-
mann factor of the screened interaction between a particle
and its image. Here, this exponential Boltzmann factors ap-
pears linearized since the Coulombic coupling is small. Our
density profile and the one found in[18] will agree, in the
low coupling regime considered here, for distances not to
close to the electrode and our results are reliable in this case.
On the other hand, very close to the electrode, at distances
comparable to the ion radius, our results will differ from
those of Ref.[18], this is a defect of the pointlike model for
the micro-ions used here.

We can use Eq.(4.15), which relates the fugacities to the
bulk densities into the expression(3.7) of the bulk pressure
expressed in terms of the fugacities, to recover the well-
known equation of state of DH theory[4]:

bpb = o
a

na
b −

kDH
3

24p
. s4.17d

Returning to the general case, for any arbitrary separation
W of the plates, it can be noticed that the density diverges at
x= ±W/2 as 1/sx7W/2d. The density does not have a finite
value at the contact of the electrodes, but it diverges. This is
an expected behavior, since each particle is strongly attracted
to its images in the electrodes. This is related to the diver-
gence of the surface tension and the necessity to impose a
short-distance minimum distance of approach of the particles
to the planar electrodesD~1/kmax as explained in the previ-
ous section. The logarithmic divergence in lnkD of the sur-
face tension is closely related to the divergence of the den-
sities as 1/sx7W/2d at the contact of each electrode.

The charge density turns out to be

rsxd = o
a

qanasxd =
bk

2« Soa

zaqa
3Dr̃skxd, s4.18d

with the reduced charge density

r̃sx̃d = f1sx̃d + f2sx̃d s4.19ad

=
e−sW̃−2x̃d

W̃− 2x̃
+

e−sW̃+2x̃d

W̃+ 2x̃
+

1

4
HeW̃/2−x̃EiF− 3SW̃

2
− x̃DG

− e−sW̃/2−x̃dEiF− SW̃

2
− x̃DGJ +

1

4
HeW̃/2+x̃EiF− 3SW̃

2
+ x̃DG

− e−sW̃/2+x̃dEiF− SW̃

2
+ x̃DGJ+F1 −

ln 3

4

− 8E
1

` u2e−2uW̃du

s4u2 − 1ds1 − e−2uW̃d
G coshx̃

coshsW̃/2d

+ 8E
1

` u2e−3uW̃coshs2ux̃ddu

s4u2 − 1ds1 − e−2uW̃d
. s4.19bd

In the case of a two-component symmetric electrolyte,q1=
−q2, we haveog zg qg

3=0, therefore, the system is locally
neutral rsxd=0. For a general asymmetric electrolyte,

oaqa
3zaÞ0 and the system is not locally neutral. Further-

more, the charge density diverges near the plates as
1/sx7W/2d which is not integrable. The total charge
induced in the electrodes is infinite if the particles are al-
lowed to approach the electrodes as near as they can.

Figure 3 shows several charge density profiles for differ-
ent values ofW with k fixed. As expected, ifkW@1, the
profiles for different values ofW are very similar since the
corrections to the caseW→` are of ordere−2kW. This can be
seen in the plots forkW=5 andkW=10 in Fig. 3. The dif-
ferences from the caseW→` can be only be noticed for
small values ofkW, as in the caseskW=1 andkW=0.16 of
Fig. 3. However, let us remark that for any value ofW, the
charge density from an electrode up to the middle of the slab
is strictly monotonic(increasing or decreasing depending on
the sign ofoazaqa

3).

B. Electric potential

For the present geometry, the electric potential can be
computed from the charge density as

Fsxd − Fs0d =
4p

«
E

0

x

sx8 − xdrsx8ddx8. s4.20d

This gives

Fsxd − Fs0d =
2pb

«2k So
g

qg
3zgDfF̃skxd − F̃s0dg,

s4.21d

with the reduced electric potential

F̃sx̃d − F̃s0d =
1

2
feW̃/2Eis− 3W̃/2d − e−W̃/2Eis− W̃/2dg

s4.22ad

+
1

4
He−sW̃/2+x̃dEiF− SW̃

2
+ x̃DG − eW̃/2+x̃EiF− 3SW̃

2
+ x̃DGJ

s4.22bd

FIG. 3. The charge density profile in the slab for several values
of the widthW at fixedk.
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+
1

4
He−sW̃/2−x̃dEiF− SW̃

2
− x̃DG − eW̃/2−x̃EiF− 3SW̃

2
− x̃DGJ

s4.22cd

+F1 −
ln 3

4
− 8E

1

` u2e−2uW̃du

s4u2 − 1ds1 − e−2uW̃d
G 1 − coshx̃

coshsW̃/2d
s4.22dd

− 2E
1

` e−3uW̃fcoshs2ux̃d − 1g

s4u2 − 1ds1 − e−2uW̃d
du. s4.22ed

Figure 4 shows the electric potential profile for different val-
ues of the widthW.

An interesting quantity is the potential difference between
a plate (for example,x=W/2) and the middle of the slab
sx=0d, which can be obtained from the previous expression
by replacingx by W/2 [the term (4.22c) in the previous
equation has the limit −sln 3d /4 when x=W/2]. Figure 5
shows a plot of the potential difference between the middle
of the slab and a plateF0=Fs0d−Fs±W/2d=Fs0d as a func-

tion of W. It is interesting to know the limit whenW→`.
From Eq.(4.22), we get

F0 =
W→`

2pb

«2k
o
g

qg
3zg. s4.23d

For an asymmetric electrolyte, a nonzero potential difference
between the middle of the electrolyte and any plate builds
up, although both plates are grounded. The sign of this po-
tential difference is given by the parameteroazaqa

3. This
potential difference is a monotonic function(increasing or
decreasing depending on the sign ofoaqa

3za) of the widthW
with an extremum value forW→` given by Eq.(4.23).

It is interesting to comment on a few points on the case
when only one electrode is present, which has been previ-
ously studied by Aqua[18] using diagrammatic methods. In

the limit W→`, with X̃= x̃+W̃/2, from Eq. (4.22) we re-
cover Aqua’s expression for the electric potential:

F̃sX̃d − F̃0 = S ln 3

4
− 1De−X̃ +

1

4
fe−X̃Eis− X̃d − eX̃Eis− 3X̃dg.

s4.24d

We can notice that far away from the electrode, the potential
behaves as

FsXd − F0 ,
X→`

2pb

«2k So
g

qg
3zgDS ln 3

4
− 1De−kX = Feff e−kX,

s4.25d

where we defined

Feff =
2pb

«2k So
g

qg
3zgDS ln 3

4
− 1D . s4.26d

This result suggests the following interpretation. If we were
to understand this result using a mean-field linearized
Poisson-Boltzmann equation, we can suppose that the elec-
trode has an effective potentialFeff given by Eq.(4.26). The
potential of the electrode, which is zero in our case, gets
additively renormalized byFeff by the effect of the fluctua-
tions around the mean field. This interpretation follows the
same philosophy that the one of the theory of the renormal-
ized charge in highly charged colloids[35,36], except that in
this case the potential renormalization is due to the effect of
the correlations and not to the nonlinear effects of the mean
field theory. If the electrode was at a fixed potentialV, the
effective potential as seen far from the electrode would be
V+Feff [18].

In the spirit of this interpretation, notice that the renormal-
ization of the potentialFeff is positive if oaqa

3za is negative,
and it is negative otherwise. This potential renormalization
only occurs for asymmetric electrolytes.

It is interesting to mention that a similar situation occurs
in the charge renormalization of colloids due to the nonlinear
effects in the mean-field approach for asymmetric electro-
lytes, although in the other direction. Indeed if the charge
(say, positive) of a colloid is high enough to be in a nonlinear
regime, but small enough to be in a nonsaturation regime, it
has been found that the first deviation(quadratic correction)

FIG. 4. The electric potential profileFsxd for different values of
the widthW of the slab at fixedk. From top to bottom,kW=10, 5,
1, 0.16.

FIG. 5. The potential differenceF0 between the middle of the
slab and one electrode as a function of the widthW of the slab.
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of the effective charge from the bare charge have the sign of
oaqa

3za [37–39]. In particular, in an intermediate regime, the
effective charge of the colloid could be higher than the bare
charge ifoaqa

3za has the same sign as the bare charge. This
analogy is, however, only qualitative. The context in the case
of colloids is somehow different from the one considered
here. In the colloids the renormalization is due to the nonlin-
ear effects of the mean-field approach, and here we consid-
ered the corrections due to the correlations.

V. SUMMARY AND CONCLUSION

We have obtained corrections due to fluctuations to the
mean-field description of an electrolyte confined in a metal-
lic slab of width W. We considered two models to describe
the metallic electrodes. The ideal conductor model is more
tractable, but it neglects the fluctuations of the potential in-
side the electrodes. For this(academic) model, the disjoining
pressure of the system is always positive and it increases if
the separationW decreases, indicating a repulsive force on
the metallic plates by the electrolyte and a stable system. We
also confirmed[30] that for large separationsW, the disjoin-
ing pressure has an algebraic decay inW−3, pd
,fkBTzs3d / s8pdgW −3. This large-W algebraic finite-size
correction is universal: it does not depend on the microscopic
constitution of the system.

For the more realistic model of the good conductor elec-
trodes, the behavior of the pressure is completely different.
There is no algebraic decay in 1/W3 in the pressure. Its de-
cay is exponentiale−2kW at large distances. Furthermore the
disjoining pressure is negative, thus suggesting that there is
an attractive force between the electrodes.

We obtained some results for the density profiles and the
electric potential which are independent of the model used to
describe the electrodes. We retrieved[16–18] a very interest-
ing behavior if the electrolyte is asymmetric, in particular if
oaqa

3zaÞ0. In this case the system is not locally neutral,
there is a local charge density with the same sign thatoaqa

3za

near the electrodes. Similarly the electric potential is not zero
inside the electrolyte although both plates are grounded: a
potential difference builds up between each electrode and the
interior of the system. The potential inside the electrolyte has
the same sign thatoaqa

3za.
As possible perspectives to this work let us mention the

following. Here we studied the first fluctuations corrections
to the mean-field description of the electrolyte. We consid-
ered the most simple situation at the mean-field level: both
plates are grounded and the mean-field potential is zero ev-
erywhere. We choose to study this situation in order to show
clearly the effects of fluctuations. However, our method can
actually be extended to study more general situations, for
example, when a potential difference is imposed between the
electrodes. In this case the mean-field description is the
Poisson-Boltzmann theory studied by Gouy[1] and Chap-
man [2], which can be a linear theory if the potential differ-
ence is small, or a nonlinear theory if the potential difference
is high. On the top of this mean-field description, a generali-
zation of our method can be used to find the corrections due
to the micro-ions correlations(whether the mean field is lin-
ear or nonlinear).
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APPENDIX A: GENERAL EXPRESSION
FOR THE DENSITIES

The density can be computed from the grand potential
using Eq.(4.1). However, to perform the functional deriva-
tive for arbitrary fugacitieszasr d, we should find a more
general expression for the grand potential than the one given
by Eq. (2.11), which is restricted to constant fugacities satis-
fying the pseudoneutrality condition(2.1). Similar calcula-
tions to the one presented here can also be found in Refs.
[25,40,41] in the case of unconfined systems.

In general, the sine-Gordon transformation allows to write
the grand partition function without any approximation as
[14,24]

J =
1

ZG
E Df expf− Ssfdg, sA1d

with ZG given by Eq.(2.9) and the actionS given by

Ssfd = −E Fb«

8p
fsr dDfsr d

+ o
a

zasr debqa
2v0sr ,r d/2e−ibqafsr dGdr . sA2d

Let us define the Gaussian average as

k¯lG =
1

ZG
E Dfs¯de−s1/2dEfsr df−b«D/4pgfsr ddr . sA3d

Notice that the covariance of the preceding functional Gauss-
ian measure iskfsr dfsr 8dlG=b −1vsr ,r 8d. Therefore, the last
term of Eq.(A2) is very similar to a normal ordering, since
by definition

:expf− ibqafsr dg: = ebqa
2vsr ,r d/2e−ibqafsr d. sA4d

However, the important difference is that in Eq.(A2), we
subtract the self-energyv0sr ,r d for an unconfined system,
not the self-energyvsr ,r d for a confined system. As previ-
ously mentioned, this has very important physical conse-
quences for confined systems. To proceed, it is natural to
define a pseudonormal ordering as

<exps− ibqafsrdd < = ebqa
2v0sr ,r d/2e−ibqafsr d sA5d

and to write down the action as
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S= −E Fb«

8p
fsr dDfsr d + o

a

zasr d < e−ibqafsr d<Gdr .

sA6d

As we mentioned in Sec. II, if we use the Coulomb potential
v0 defined by Eq.(2.4), the self-energyv0sr ,r d is infinite. In
principle, one should introduce a short-distance cutoff. With-
out this cutoff, both quantitiese−ibqafsr d and v0sr ,r d in Eq.
(A5) are not properly defined when taken separately. How-
ever, their combination in the definition(A5) of the pseudo-
normal ordered exponential : :exps−ibqafsr dd : : is well de-
finedevenin the case of a vanishing short-distance cutoff. In
particular, later on we will proceed to do an expansion of this
exponential in powers of : :s−ibqafsr ddn: :. These quantities
are well defined for a vanishing short-distance cutoff and
they are of ordersGadn in the Coulombic coupling constant.

For arbitrary position-dependent fugacities the stationary
point of the actionS is f=−ic with c solution of the mean
field Poisson-Boltzmann equation

Dcsr d +
4p

«
o
a

zasr dqae−bqacsr d = 0. sA7d

Notice that if one takes constant fugacities satisfying the
pseudoneutrality conditionoazaqa=0, the solution of the
mean-field Poisson-Boltzmann equation is simplycsr d=0.

Let us return to the general case of position-dependent
fugacities. Expanding the action to the quadratic order inf
around the stationary point leads toSs−ic+fd=Smf+S1

+osf2d, with

Smf = Ss− icd =E Fb«

8p
csr dDcsr d − o

a

zasr de−bqacsr dGdr

sA8d

the action evaluated at the mean-field solution and

S1 =
1

2
E − b«

4p
fsr dDfsr d

+ o
a

sbqad2zasr de−bqacsr d::fsr d2::dr . sA9d

We can now compute the functional derivative(4.1) with
respect to the fugacities to find

nasr d = −
dSmf

dzasr d
−
E Df

dS1

dzasr d
e−S1

E Dfe−S1

. sA10d

However, we should take special note of the terms that de-
pend on the mean fieldcsr d, since the latter is a function of
the fugacities via the Poisson-Boltzmann equation(A7). In
particular from Eq.(A7), we have

sDr − k2dU dcsr d
dzasr 8d

U
0

= −
4p

«
qadsr − r 8d, sA11d

where udcsr d/ dzasr 8d u0 is evaluated for constant fugacities
satisfying the pseudoneutrality condition(2.1) and csr d=0.
We can then write

U dcsr d
dzasr 8d

U
0

= qavDHsr ,r 8d, sA12d

with vDHsr ,r 8d the DH potential satisfying the DH equation
(4.3) and the imposed boundary conditions. Taking this into
account, we find the required functional derivatives evalu-
ated at constant fugacities satisfying Eq.(2.1) and csr d=0,
as

U dSmf

dzasr d
U

0
= − 1 sA13d

and

U dS1

dzasr d
U

0
=

sbqad2

2
::fsr d2::

−
b3qa

2 o
g

qg
3zgE vDHsr 8,r d::fsr d2::dr .

sA14d

For constant fugacities, the actionS1 reduces to

S1u0 =
1

2
E − b«

4p
fsr dDfsr d + o

g

sbqgd2zg::fsr d2::dr .

sA15d

If we define the average

k¯lDH =
E Dfs¯de−uS1u0

E Dfe−uS1u0

, sA16d

we have

bk::fsr d2::lDH = vDHsr ,r d − v0sr ,r d. sA17d

Replacing(A13) and (A14) into Eq. (A10) and using(A17)
gives Eq.(4.2) for the densities.

APPENDIX B: ON THE IMPORTANCE OF THE
BOUNDARY CONDITIONS

As was mentioned in Sec. III, there is an important dif-
ference on the behavior of the disjoining pressure in the case
with ideal conductor boundaries and the case when the elec-
trolyte is confined by a walls made of material with a dielec-
tric constant«w [31]. Namely, for the latter case, the pressure
has an exponential decaye−2kW at large separationsW,
whereas in the case presented here we found an algebraic
decay in 1/W3, which is, furthermore, universal(i.e., inde-
pendent of the microscopic detail): notice that the coefficient
of W−3 in Eq. (3.8) is just a number independent of the De-
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bye lengthk−1 and of the other microscopic parameters.
Although the ideal boundary conditions case considered

here is formally obtained when«w=`, this limit has a very
different behavior than in the case 0,«w,` [the ideal di-
electric boundaries case,«w=0, is also special, in that case
there is also an algebraic decay at large separationsW−3 in
the pressure[42] similar to the one found here]. This differ-
ence is not only present in the behavior of the pressure, but
also in the correlation functions. For instance, it is known
that for dielectric boundaries with 0,«w,`, the charge cor-
relation along the walls have an algebraic decay asur 'u−3,
where r ' is the direction parallel to the walls[43,44],
whereas for ideal conductor boundaries«w=` (or ideal di-
electric «w=0) this decay is faster that any power law(see
the review Ref.[45] and references cited therein).

In this appendix, we show how both kinds of boundary
conditions can be related, and understand the presence of the
universal term in 1/W3 in the Dirichlet boundary conditions
case and its absence in the case of insulating boundaries
without image forces. The following analysis relies on a
macroscopic description of the electrolyte in terms of collec-
tive modes, which actually disregards the microscopic detail
of the system, but can give a correct description of some
universal properties of the system for instance the presence
of the 1/W3 term in the pressure.

Let us consider an electrolyte confined in the slab domain
D with separationW and with insulating void boundaries.
For simplicity and without loss of generality, we will take the
dielectric constant of the solvent«=1. It is well known that
the electric potentialF of a linear collective mode of oscil-
lation with frequencyv of this electrolyte can be described
by a Laplace type of equation

xvDF = 0 sB1d

inside the domainD, with an effective dielectric constant
xv=1−vp

2/v2 and wherevp is the plasma frequency(see,
for instance,[46]). Outside the domain where the electrolyte
is confined,F satisfies a Laplace equationDF=0 since there
are no real charges outside. The potential should also satisfy
the boundary conditionsFin=Fout and ]nFout=xv]nFin,
where ]nF denotes the component of(minus) the electric
field normal to the boundary.

One can distinguish between two type of modes. Ifxv

Þ0, F has a vanishing Laplacian inside the domain, there
are no charges inside the domain. Only at the boundaries are
there some surface charges. These are the surface modes.
They represent a system of two parallel walls in the vacuum
with fluctuating surface charges. Thus, the contribution of
the surface modes to the pressure is the same as the one of
the Lifshitz theory[34] in the classical(i.e., nonquantum)
limit [47,48]. This contribution comes from the well-known
Casimir forces, it is attractive and for large separations, it is
given by −kBTzs3d / s8pW3d.

If v=vp, xv=0 and charges inside the domain can exist
sinceDFÞ0 insideD is acceptable. These are the volume
modes that oscillate all at the same frequencyv=vp, the
plasma frequency. Due to the boundary conditions, the po-
tential for volume modes satisfy Neumann boundary condi-
tions outside the domain]nFout=0, and sinceF is harmonic
outside and vanishes at infinity, this implies thatF=0 every-
where outside the domainD. In conclusion, the volume
modes represent a system of volume charges that satisfy Di-
richlet boundary conditions for the potential. The volume
modes of the electrolyte confined by insulating void bound-
aries are very similar to the system we studied here with
ideal conductor boundaries. If one computes the contribution
to the pressure coming from these volume modes, one will
find the same result as the one we have found in Sec. III A,
namely, that the pressure has an universal algebraic decay for
large separationsW given by +kBTzs3d / s8pW3d. This contri-
bution gives a repulsive force and is exactly the opposite as
the one coming from the surface modes.

Adding both contributions from the surface and the vol-
ume modes, one finds that the algebraic contributions to the
pressure cancel each other. In conclusion for the system con-
fined by insulating void boundaries there is no term in 1/W3

in the pressure as previously noted[31]. However, for ideal
conductor boundary conditions, a repulsive term in 1/W3 for
the pressure is present.

The above analysis is somehow similar to the one done in
the comparison between ideal conductor and good conductor
model, in the sense that the absence of the 1/W3 algebraic
term in the pressure in the insulating void boundaries case
and the good conductor case is due to a cancellation between
the Lifshitz term and the one from the ideal conductor
model. However, the specific details are different.
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