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Description beyond the mean-field approximation of an electrolyte confined between
two planar metallic electrodes
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We study an electrolyte confined in a slab of widthcomposed of two grounded metallic parallel elec-
trodes. We develop a description of this system in a low coupling regime beyond the megRdisisbn—
Boltzmann approximation. There are two ways to model the metallic boundaries: as ideal conductors in which
the electric potential is zero, and it does not fluctuate, or as good conductors in which the average electric
potential is zero but the thermal fluctuations of the potential are not zero. This latter model is more realistic.
For the ideal conductor model we find that the disjoining pressure is positive behaves\adot /large
separations with a prefactor that is universal, i.e., independent of the microscopic constitution of the system.
For the good conductor boundaries, the disjoining pressure is negative and it has an exponential decay for large
W. We also compute the density and electric potential profiles inside the electrolyte. These are the same in both
models. If the electrolyte is charge asymmetric, we find that the system is not locally neutral and that a nonzero
potential difference builds up between any electrode and the interior of the system although both electrodes are
grounded.
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I. INTRODUCTION ture in this case is very simple: the mean-field potential in

In this paper. we studv an electrolvte solution Confinedthe electrolyte is zero everywhere and the fluid is uniform
paper, y ¥t nd locally neutral. We will describe the first fluctuations

between two parallel planar metallic electrodes. The study o round this mean-field picture in a low coupling regime

the electrical double layer near an electrode and more 9eMihere the average Coulombic energy of the micro-ions of

e.rall'y near any Qb]eCt sgbmergeq n an glectrolyte IS qf CUthe solution is much smaller than their thermal energy.
cial importance in chemical physics and in colloidal science. We should mention that this same problem was recently

This problem was first considered by Golly and indepen- . qiqereq in Ref[13]. However, the authors of Refl3]

dentlyf b%' C]:chap:jna_mZ] alrposltl qdceintqry ago. 'I('jher:r Wﬁrk 'S" made a mistake that has lead them to the wrong conclusions,
part? tl € Otm ations of colloidal scient®} and the phys-  5q explained below. The electrolyte is confined between two
ics of electrolyteg4]. conductor parallel planes. Each particle polarizes the planes.

b chjwever, their V]Y.OEE gnd subseguEntID(je_veloprgelnts A% here is an interaction energy between each particle and the
ased on a mean-field description: the Poisson-Boltzmang, i, ation charge that it induces in the electrodes. In

equation. Although this mean-field approach describes accy; ¢ [13], the authors forgot to include this energy in the
rately several properties of the systems, in some situations l—tiamilton’ian and this error made most of their conclusions
misses some subtle effects due to correlations. As an eXAacorrect. '

ample, we can mention the old controversy about the possi- The outline of this paper and our main results can be
bility of attraction between Iik_e-charged colloidi3,5] summarized as follows. In Sec. Il, we present the models
recently renewed by some experlm_e-ntal restBisg). lthas . 4er consideration and explain the metltibd] used to find
been shown[9-17 that the mean-field approadlactually the thermodynamic properties of the system. Actually, there

any local density approximatigreannot predict any attrac- are two ways to model the metallic electrodes. In a first

tive effe(?tive interaction. Therefore, t'he study of ?leCt,rOIyt?model, the boundaries are supposed to be made of an ideal
suspensions beyond the mean-field approximation

: IRonductor material. This model is very simple, but it has the

|m|c%<:]r_tant. L din th ithoudah i defect of neglecting the fluctuations of the electric potential
s paper s oriented In that sense, although we Will N0t ¢ glectrodes. In the second model, which is more realis-

consider here the problem of like-charged attraction betweeﬂC the electrodes are supposed to be genuine Coulombic

colloids, but the study of an electrolyte solution ConﬁnEdsystems with very good conducting properties. We will call
between two parallel metallic planar electrodes beyond th‘ﬁwis model the good conductor model. In this model, the

mean-field approximation. We will be interested in quest'onsscreening length vanishes inside the conducting electrodes,

such as what forcc_e is exerted on the p'a”af electrodes, is the average electric potential is zero in the electrodes, but the
attractive or repulsive, etc. To have a clear picture of the roleyactric potential can fluctuate. We will obtain results for

of the correlations in this problem, we will consider the Case5th models and compare them using results from R

when the two electrodes are grounded. The mean-field pic- || gac. Ill, we compute the grand potential of the system

and the pressure. For the ideal conductor model we find that
the disjoining pressure is positive. For large separatibrof
*Electronic address: gtellez@uniandes.edu.co the slab, the disjoining pressure behaves a#f1/0On the
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other hand, for the good conductor model, the disjoiningwill show in Sec. IV, there is a nonvanishing charge density

pressure turns out to be negative and it decaye &¥' for  near the electrodes. However, this charge density induces in

large separations, witk the inverse Debye length. the electrodes a polarization charge of opposite sign and the
Finally, in Sec. IV, we find the micro-ion density profiles total chargesystem plus electrodgess zero.

and the electric potential inside the electrolyte. These quan- There are two models that can be used to describe the

tities are the same regardless of the model used to descriledectrodes[15,21. The simpler one is the ideal conductor

the electrodegideal conductor or good conducjoin that  model. In this model, the interaction potential between two

section, we retrieve the important res(itt6—1§ that for  unit charges located at=(x,y,2) andr’=(x',y’,Z') is the

charge asymmetric electrolytes, a nonzero potential differsolution of Poisson equation

ence builds up between each electrode and the middle of the A

electrolyte solution and the system is not locally neutral, al- N A ,

though)é)oth confining plates )z/are grounded. g Au(rr’) == ?5“ -, (2.2

satisfying the Dirichlet boundary conditionsgr,r’)=0 if

x'=xW/2. It can be computed using, for example, the
As explained in Sec. | the system under consideration isnethod of images,

an electrolyte confined between two grounded conductor pla-

nar electrodes separated by a distaté et us choose the 1

axis in the direction perpendicular to the electrodes, the ori- o(r,r)==2 _ 2 _ 1 \2712

oc i e | [(X=X"+2nW)*+ (r | = 1')7]
gin is in the middle of the electrodes and the electrodes are

1. MODEL

+oo

located atx=xW/2. We will eventually also consider the 1

limiting case whenW— . In this case, we shall use the T [(x+x +(2n+ DW)2+(r, —r' )22’
coordinateX=x+W/2 which measures the distance from one +

electrode. 2.3

We will model the electrolyte as composed of several SP€vherer 1 =(y,2) is the transversal part of the position vector

cies Of. pointiike micro-ions .W'th charges, labeled by_ @ ¢ ande is the dielectric constant of the solvent. For future
Greek index. The solvent will be modeled as a continuum . ; X

: ; . - . reference, we define the Coulomb potential for an unconfined
medium with dielectric constamt As is well known[19,20,

a system of charged point particles described by classicaﬁys'[em as

statistical mechanics is not stable. In principle, we should 1 1

introduce some short-distance cutoff, for instance, the radius or,r)y ==
of the ions, to avoid the collapse of particles of different elr—r'|
signs. However, in the low coupling regime considered herewhich will be needed in the following.

most physical quantities have a well-defined value when this' \otice that with this ideal conductor model. the micro-

short-distance cutoff vanishes. Therefore, our model willsoqic electric potential deduced frag.3) vanishes on the
give valuable quantitative information on the system pro-giacirades, for any configuration of the system. Then, not
Y'de? tr&e_ 'o?] radlusl s much smaller that the others 1engthgy the average electric potential will vanish on the elec-
mvor\]/e In the pr? hemﬁ cle of th , i trodes, but also its fluctuations.

The position of thath particle of the speciea will be In a real situation, even if the electrodes have very good

Iabele;d ast - We shall work in the grandi;canon'i%all( €N~ conducting properties, the electric potential inside the con-
semble at a reduced inverse temperafgrel /(keT), With ks gctor will be subjected to thermal fluctuations. This leads us
the Boltzmann constant anidthe absolute temperature. The {5 the other model that can be used to describe the elec-

average number of particledl,) of the speciesx is con-  yoges; the good conductor model. In this model, the elec-
trolled by the chemical potential,,. We shall use the fugac- trodes are genuine Coulomb systems with good conducting
ity {,=e/A}, where A, is the thermal de Broglie wave- properties. We will restrict ourselves to a classigainquan-
length of the particles, which appears as usual in classicalym) description of these conductors. We will consider that
(i.e., nonquantum statistical mechanics after the trivial the screening length in the conductors vanishes. This ensures
Gaussian integration over the kinetic part of the Hamiltonianthat the electrodes have good Conducting properties_ It is

, (2.9

We shall impose the pseudoneutrality condition shown in[15] that in this limit the average electric potential
D _ vanishes on the electrodes. However, the fluctuations of the
Gada=0. 2.1 potential do not vanish in this limit.

A natural question then arises: how are related the ideal
In Appendix B of Ref.[14], it is explained that this choice is conductor model and the good conductor one? This question
equivalent to suppose that there is no electric potential difhas already been addressed in R&b] and we will make
ference between the plates and the interior of the system iextensive use of the results presented there. It is shown in
the mean field approximation. The pseudoneutrality condiRef. [15] that the densities and electric potential profiles in-
tion ensures the neutrality of the reservoir, however, as wside the electrolyte are the same in both models. Thus, we
will see below, it does not ensure the global neutrality of thewill work with the (more simpley ideal conductor model for
system confined with Dirichlet boundary conditions. As wethe determination of these profiles in Sec. IV.
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On the other hand, the results for the grand potential andne can then take the limit of a vanishing cutoff. This has
for the pressure are different in both models, but there arbeen done rigorously in Ref22]. It turns out that the final
simple relations between thefd5]. We will use the ideal results are the same as if one takes the short-distance cutoff
conductor model for the calculation of these quantities inequal to zero from the start. Therefore, to simplify the alge-
Sec. lll and using the relations found [ih5], we will obtain  bra we will take from the start a system of point particles
the results for good conductor model. From now on, we conwithout short-distance cutoff.
sider the ideal conductor model unless stated otherwise. Now we follow the method proposed recently by the au-

Although to write down the Hamiltonian of the system is thor and collaborators in Ref$14,23 to study in general
a trivial exercise in electrostatics, to clearly show what theconfined Coulombic systems in a low coupling regime. Let
problem is with the previous studil3] of this system, we us define the Coulombic couplingE,=Bq2¢*/e. The
will detail a few (well-known) points before proceeding. method proposed in Refl4] is valid forI' ,< 1.

First, consider the case when only a planar electrode is lo- In the method exposed in Refl4], the sine-Gordon
cated atX=0. Bringing first a unit charge from infinity to a transformatior{24] is performed in the grand-canonical par-
position r =(X,y,z) at a distanceX from the plane cost a tition function, and the action of the corresponding field
nonzero energy, contrary to the case of an unconfined sysheory is then expanded to the quadratic orgelid in the
tem. This is because of the interaction between the particlow Coulombic coupling regime around the stationary
and the polarization charge it induces in the plane. In thigmean-field solution (here ¢=0). For details, the reader is
very simple geometry, this interaction can also be understootkferred to Ref[14] and to Appendix A. The grand partition
as the potential energy between the particle and an imagenction can then be written as

charge located at”=(-X,y,z). This energy is —1(4eX),

which can be formally written a&l/2)[v(r,r)—v%(r,r)] [in o = 1 Do exfd- ()], (2.8
this caseu(r,r’) is the potential([r—r'|2=|r=r""|"Y/e Zg

when only one electrode is presgnthis interaction energy \,ith

should be included in the Hamiltonian.

Following the same lines, in the general case of two me- 1 BeA
tallic planes, the potential energy of the system reads Zc= | D¢ ex -3 #(r)| - - $(r)dr (,

1 / 1 2.9
H= 52 E qaqu(ra,ivry,j) + EE E qzzy[v(ra,i!ra,i) ( )
ay 1] a | andS(¢) is an action, quadratic i, given by
- Uo(ra,i!ra,i)]' (25) 1 _ BS
In the first sum, the prime means that the casey andi S(#) = Ef A GNAG(r) + 2 (BA,)?E, 2 $(r) =2 dr,
=] should be omitted. The second sum is the energy between 4
each particle and the polarization charge it has induced in the (2.10

electrodes, as discussed previously. Introducing the micro- . o
scopic charge density defined as where :: ¢(r)=:: is a pseudonormal ordered producsee

Appendix A for details.
) =2 > q,80 -1, (2.6) The field ¢(r) is a mathematical intermediary. At the
a i ’ mean-field level, the stationary equation for the actibe-

, , . fore it is expanded to the quadratic orgds Poisson—
we can formally write the potential part of the Hamiltonian ggtzmann equation, aridh(r) can be interpreted as the elec-
of the system as tric potential. However, this relation breaks down when we

1 1. Ne consider the fluctuations as in the present case, for instance,
H= —J er dr'p(Hu(r,r)p(r’) ==, > ino(rai,rai)- the correlations ofp(r) are short-rangegi25], whereas the
2 | Y correlations of the electric potential are known to be long-
(2.7) ranged[26,27. The Gaussian functional integration in Eg.
(2.8) can be performe@14] to obtain
The domain of integration in the first term is the space be- ) -1
tween the two parallel elect_rod(as'\N/2<x<W/“2). N_otlce ) == ll—[ (1 _ K_>H e:_o} eE Ve, (2.11)
that from the first term written in terms of “continuous m a
fields we subtract the infinite “self-energy” of a particle
v9(r,r), but with the potential energy® corresponding to an where\,, are the eigenvalues of the Laplacian operator sat-
unconfined system. isfying the Dirichlet boundary conditions amﬂ] are the ei-
With the Coulomb potentiab® given by Eq.(2.4) this  genvalues of the Laplacian operator defined in the whole
self-energy is infinite. The appearance of infinite quantitiesspaceR® without boundaries. We will call this case, in the
can be avoided, and the subsequent analysis can be doflowing, the free boundary conditions case. The volume of
more rigorously by modifying the Coulomb potential the system i8/ and k== 47¢,B8q%/ ¢ is the inverse Debye
v0r,r’) by introducing a short-distance cutoff that smearslength. The second product in E@.11) involving A2, comes
out the singularity at =r’. At the end of the calculations, from the subtraction of the self-energy teu®(r ,r).

n n’-.m
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km ax 2

In this part, we use the ideal conductor model to describend £(3) is the Riemann zeta function evaluated gnat to
the electrode. In what follows, we will use a superscript “id” be confused with the fugacitiesn Eq. (3.4), all terms that
in the thermodynamic quantities. vanish wherk,,,,— % have been omitted.

A few comments are in order. Concerning the surface ten-
sion v, it is divergent when the cutof,,,,— . This is nor-

For the present geometry, the eigenvalues of the Laplaciamal: it is due to the strong attraction that each particle and its
for Dirichlet boundary conditions and free boundary condi-images of opposite charge in the electrodes feel. The small
tions, respectively, ara=-k2-(n7)?/W? with ne N* and  coupling regime of an electrolyte near a plane metallic wall
k e R? and \2=-K? with K e R3. We find that the grand can also by studied from a diagrammatic Mayer expansion.
potential Q'd takes the formQd=(); +Q'd with Q) This is done in section 5 of Ref29] for a two-dimensional

exc

=kgTVZ,(, the ideal gas contribution arﬂgﬂxc the excess Coulombic system. These calculations can easily be adapted

grand potentlal From Eq2.11), we find the excess grand !0 @ three-dimensional system to show that the surface ten-
potential % . per unit area of a plate, as sion vy is related to the integral of the screened interaction
X

energy between a particle and its image: {e2xX)/(4X).
id 1 ) This energy is not integrable at short distances and its inte-
Wexc™ 2 |“H I+—F— |d%k gral has a logarithmic divergenceXt0. In this picture, one
2(2m) (nw) 2

By= (3.5

I1l. GRAND POTENTIAL AND PRESSURE p ( P l)
A. Ideal conductor model 167

1. Grand potential

R? =1 can impose a short-distance cutd@ the particles cannot
approach below this distance to the electrode, and the surface
Wi d3K tension is proportional to I&D. Actually, our ultraviolet cut-
- 2(277)3f K2 (3D Off Kyayx1/D.
K The second comment concerns the algebraic finite-size
The product under the logarithm can be performed exactigorrection kgT{(3)/(16mW?) to the grand potential. This

[28] to obtain finite-size correction is universal, it does not depend on the
details of the microscopic constitution of the system, and it

Wl = = max k  sinh(Wy«? kz) kdk has been proved to exist even beyond the low coupling re-

@exe™ Vi (2+K2  sinh(kwW) gime considered here provided that the electrolyte is in a

conducting phase and it has good screening properties, in
f made (3.2 particulqr if it can screen an external infinitesimal dipo_Ie
(277)2 0 : : [30]. This correction is a consequence only of the screening
properties of the system: that explains its universality. How-
Notice that we introduced two ultraviolet cutoffg,,, and  ever, as we will see later, this term is only present for the
Kmax for both integrals since each integral, taken separatelyideal conductor model considered in this section. For the
is ultraviolet divergent. However, together they should give agood conductor model, this algebraic correction in the grand
finite result wherky,,— % andK,,,— > as far as the bulk potential is absent.
properties are concernedndeed, in the limitW—o we We should also mention that this algebraic finite-size
should recover the well-known bulk resylt4,22 Bw,= correction is not present in the case of insulating plates
-«®WI/(127). This requirement imposes that the cutoffs [30-33. Indeed, if the boundary is made of a dielectric ma-
should be related b¥K, .= 7knax/ 2. DOINg the change of terial, there is a subtle cancellation between the term found
variable K=7k/2 in the second integral, the excess grandhere and the one from the Lifshitz interacticthe Casimir

potential per unit area can finally be written as effec). For dielectric boundary conditions, the disjoining
5 pressure has an exponential deea§"V at large separations
= J e ( k__ sinhWyk?+k )> W and it is attractivg31,32, as opposed to the present case
W6 V2 + k2 sinh(kwW) of ideal conductor boundary conditions. Further details on
W this interesting difference are discussed in Appendix B.
- %]dk (3.3 2. Pressure

The pressure is obtained from the usual relatipn
In principle, we should take the limky,— %, however, it -gu/sW. From Eq.(3.3), we find that the excess pressure
should be noted that the above expression has a Iogarlthmwd is given by
divergence whelk,,,,— %, which manifests itself in the sur-

% 2
face tension. This can be seen clearly if we expapg for 1 f [K_ + K2 cothk
KW>1, as BPec= olL2 kW)
i KW REN _ e =
BwlS.= - o " 2By+ ——— Tom? O 2V, (3.9 - kVk? + k% coth WA K? + k) |dk. (3.6)
with the surface tensioty given by Although the grand potential has an ultraviolet divergence
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and should be regularized as explained earlier, the pressure 0.4
proves to be well defined fdt,,— 0 (and W= 0). This is 0.35
expected since from the largi-expansion(3.4) of the grand
potential, we can see that the ultraviolet divergent yidue
surface tension contributipmloes not depend ow. Notice, 0.25
however, that forW—0 the pressure is divergent. Let us . 0.2
mention that the nondivergence of the pressure with the cut-
off and, more precisely, the fact that it is independent of the

surface tensiony is special to this planar geometry. If we 0.1
were to consider a confining geometry with curved bound- 0.05
aries(for example an electrolyte confined in a spherical do-

main), the surface tension would be a dominant term in the 0.5 1 1.5 2 2.5 3
pressure: due to the curvaturethe disjoining pressure for KW

large systems would bpyoc—vy/R, see Ref[33] for an ex- L _
ample of this effect. FIG. 1. The disjoining pressure of the electrolyte confined by

ideal conductor electrodes. It is positive and always decreasing with
increasingW, indicating that there is a repulsive force between the
o ideal conductor parallel plates.

Bpy

0.15

Doing a few manipulations to Eq3.6), we can cast the
pressure in a form more adequate to study the disjoinin
pressurep{%, difference between the pressy'® and the bulk
pressurep®, and its large// behavior. The bulk pressure,

expressed in terms of the fugacities, is obtained from the For the following discussion, it is useful to introduég
limit W— o of Eq. (3.4), and it is given by the free energy of the electrodes in absence of the electrolyte.

It is shown in Ref[15] thatF=F'9+F,, whereF? is the free
energy of the electrolyte in the ideal conductor model, which
can be obtained from the results of the previous section. The

argument of Ref[15] can easily be applied to the grand
The well-known expression of the bulk pressure in terms ofotential, thus,

the densities will be recovered in the E4.17), when we )
obtain the expression of the bulk densities in terms of the o= 0"+ w, (3.10
fugacities.

We then find the disjoining pressure

3

/spb=2§a+1%7. (3.7)

with o the grand potentiglper unit area of the platgsf the
syster’r_zj when the electrodes are described as good conduc-
3 (7 55— — tors, ' the grand potentialper unit areafor the ideal con-
Brs = %,3 + EJ uvu“+ 11 — coth(xWyu“+ 1) ]du ductor model, which can be obtained from £8.3), and wy
the grand potential of the good conducting electrodes alone
(3.8) in the space in the absence of the electrolyte.
The largeW expansion of this latter termy, is given by
) oy Lifshitz theory [34] in the classical regime as
W:wm +0(e7Y), (3.9 —kBT§(3)/(167-rW2).. Thus, it cancels the similar contribution
that we found inw' in Eq. (3.4. When the electrodes are
For large separationd of the electrode plates, the disjoining described as good conductofehich is a more realistic
pressure is positive and decays as\#/ The force exerted mode), there is no long-range contribution in\W# to the
on the plates is therefore repulsive and the system is stable: drand potential of the system, as opposed to the ideal con-
it is compressed the pressure increases. This actually holdgictor model.
for any separation, as can be seen in Fig. 1.

0

2. Pressure

B. Good conductor model The pressure is the force per unit area that the electrolyte
exerts on one plate, say the onexatW/2. It can be com-

We now study the electrolyte confined by good conductorputed by means of the Maxwell stress tenJgy. It is p=

electrodes. We will not use any superscript in the thermody-_TXX evaluated ak=W/2. In Ref.[15], it is shown that the

namic quantities in order to differentiate them from the ONeS,\ o< tensor in the ideal conductor mod® and the one in

computed for the ideal conductor model. the good conductor modal,, are related by

1. Free energy and grand potential €

T,U«V(r) - Tﬂv(r) = _(aﬂ(yl,) - éﬂ&aa:r>e*(r:r/)r’=r'
Let F be the free energy of the system composed of the am 2

electrolyte and the electrodes. These latter ones are consid- (3.11
ered as Coulomb systems with a vanishing screening length

(high density of charged particlein the regionx<-W/2  with G*(r,r")=v%r,r')=ov(r,r’) is (minug the “‘images”
and x>W/2. The electrolyte is in the region contribution to the Coulomb potentialin the ideal conduc-
-W/2<x<W/2. tor model.
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kW IV. DENSITY AND ELECTRIC POTENTIAL PROFILES
0.5 1.5 2 25 3 The difference in the results for the pressure using the
-0.2 ideal conductor model and the good conductor one are dras-
tic. However, the results for the density and electric potential
_0.4 profiles inside the electrolyte are the same in both models, as
V{ was shown in Ref[15]. Therefore, we will concentrate in
& 5.6 this section on the ideal conductor model, which is more
tractable.
-0.8
A. Densit
1 ensity

The densityn,(r) can be obtained from the usual func-
FIG. 2. The disjoining pressure of the electrolyte confined byiignal derivative.

good conductor electrodes. It is negative and always increasing with

increasingW, indicating that there is an attractive force between the 5In 2
two conductor parallel plates. No(r) = 41—~ ) (4.7)
The right-hand side of Eq3.11) can be computed explic- " APPendix A, it is shown that
itly, giving ,BC]
3 na(r)=§a<1 = Toon(r,n) =v(r,n)]
Ty—To=——. (3.12
8’7TW3 qu
F Ao 3 ’ ot
Thus, the pressure for the good conductor model is ) Ey &y qyf voH(r ", F)[vpH(r’r’)
)
P=p'- o 5 (3.13 — 0 r)]dr’ ), (4.2

Using Eg.(3.8), we finally obtain the disjoining pressure

where r,r’) is the Debye-Hucke{DH) potential, solu-
when the electrodes are modeled as good conductors: vor(r.r') 4 elbH) p

tion of DH equation
3

S - [ 4
de"4wf0 UNUT+ 211 - cottlueWu™+ 1) Jdu. (A—KZ)UDH(r,r’):-gﬁ(r—r’), 4.3

(3.14 satisfying the Dirichlet boundary conditioms,y(r,r’)=0 if
Notice that since the function coth in the integrand is greateK = +W/2 Equation(4.2) gives the density up to the order
than 1, the disjoining pressure is always negative. Figure f in the Coulombic couplings. For the present calcula-
shown a plot of the disjoining pressure as a function of thdlons we found that the most convenient form dgy, is as a
width W. We notice that the pressure is now an increasing-ourier transform in the transverse direction=(y,z). In
function of W. This behavior is just the opposite of that ob- Fourier transform, DH Eq4.3) reduces to an ordinary linear
tained with the ideal conductor model. Now, for lafdeas  differential equation in thex variable, which can be easily
well, the disjoining pressure decays exponentiallyezs". solved. We then find

4m dk  sinH k2 + k(W12 —x')]sinH{ VK2 + 2(WI2 +x)]
e Jy2 (2m)? Vk? + k?sinh(WH/ K2+ k)

vpH(r,r') = ekre, (4.9

if x<x" and exchange the roles pfandx’ if X’ <x. Using this expression i.4), we find that the density can be expressed
as

27620, >, a3,
f(x) + ——————F5(x%) |, (4.5)
KE&

2
000 =4, 1+50
2¢e

with
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=] 2k sinH k2 + 10WI2 =) ]sinH V2 + 1(W/2 +%)]
f,(%) = - = — -1 ¢dk (4.6)
o [ Vko+1 sinh(Vk? + 1W)
[
and _ ~ ~ ~
+ %{eW/z"XEi{— 3(— + x)} - e"(W/z‘y‘)Eil— (VEV 7()]}
X * 4k ,k2+ 1
)= — o — f {1 o —coth i+ 1 1)} (4.13D
coshw/2) Jo 4 +3
(47) e} 3uW
. Zf e osr(2ux)2du (4.130
— 4uc-1(1-e
* k cosiZX\k? + 1) L@ -1 -
dk (4.9 where Ei{z)=-[7€7'/t dt is the exponential integral func-

0 VK2 + 1(4K? + 3)sinh(WHKZ + 1)

-

ke +1

e}

+f0

cothWAKZ + 1) — 1} dk, (4.9

tion. The advantage of these latter expressions is that one can
immediately see that the terms written as integrals are of
orderO(e ?Y) whenW— . Therefore, we can easily obtain
the expression for density in the case of one electrode alone,
with X=x+W/2, as

where we have used distances measured in Debye length

units X= kx and W= «W. Notice that the factors multiplying
f, and f, in the density, Eq(4.5), are of order™®? in the

coulombic couplings. Our approach neglects corrections of

higher order thaf™>'2,

After doing the change of variable= Vk?+1 in the above
integrals, some of them can be performed explicitly, and do
ing some manipulations, we find the following convenient
expressions fof;(X) and f,(X):

—(W-2%) —(\7v+2>‘<) o -

3uW
.60 = 1+e N +2f e “Weosh2ux)du
W-2% W+ 1 1-g 2w
l ~
+=In(1 -2V (4.10
W
and
l ~
f,(%) = fPX) + f2%) - 1-=In(1-e2Y), (4.1)
W
with
= SO {1—'”—3—8fe i du]
coshW/2) 4 1 (AU -1)(1-e2uW)
(4.12
and
1) g W
fP®) = Z{e"\”z XE{— 3(5 - x)}

X

I}

01150

_ —(\7V/2—7<)Ei|:_ (

NSt

Bqa ( —2KX>
X) = 1 1
n(X)=¢,| 1+—— e \ 1T 55
27070, 2 O3,
» [ _KX( In 3)
t—— |\ 1-—
B ek 4
=T A KXEi
+e Ei( 3KX)4e Ei( KX)_1:|

(4.149

Far away from the metallic wallX— <, we find the bulk
density

20,2, A3y

82K

2
nizéa(uﬁg:" ) (4.15

Replacing back into Eq4.14), we find an expression for the
density profile in terms of the bulk density

Ny(X) = ni’,{
2mB%0, > o)
Y 1 _e

[l

.\ eoH¥Ej(- 3kppX) — € “PHXEi(— kppX)
4

qu —2KkppX

=~ (4.163

In3
+

SZKDH

|

(4.16D

with corrections of higher order thal®?. Here, xpy
=\4mpZ, nt; g/ e. We recover the expression that Aqua and
Cornu have previously obtained in their studies of the prop-
erties of a classical Coulombic system near a Wai—13
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using diagrammatic methods, up to a small difference: the —
first term (4.169 appears in[18] as an exponential Boltz- |- kw=s
mann factor of the screened interaction between a particle T KWEID
and its image. Here, this exponential Boltzmann factors ap-
pears linearized since the Coulombic coupling is small. Our
density profile and the one found [48] will agree, in the
low coupling regime considered here, for distances not to
close to the electrode and our results are reliable in this case.
On the other hand, very close to the electrode, at distances
comparable to the ion radius, our results will differ from
those of Ref[18], this is a defect of the pointlike model for
the micro-ions used here.

We can use Eg4.15), which relates the fugacities to the  FIG. 3. The charge density profile in the slab for several values
bulk densities into the expressi@f8.7) of the bulk pressure of the widthW at fixed «.
expressed in terms of the fugacities, to recover the well-

N
=

w
=
T

31

2e(prx,8 9,7 p(x)
s ,
=

—_
=3
T

=]
Y

known equation of state of DH theofg: >.93¢,#0 and the system is not locally neutral. Further-
3 more, the charge density diverges near the plates as
b— b _ KoH - . . .
Bp —Ena—E. (4.17  1/(x=WI/2) which is not integrable. The total charge

a

induced in the electrodes is infinite if the particles are al-

Returning to the general case, for any arbitrary separatiolpWed to approach the electrodes as near as they can.
W of the plates, it can be noticed that the density diverges at Figure 3 shows several charge density profiles for differ-
x=+W/2 as 1{xFW/2). The density does not have a finite €Nt values oW with « fixed. As expected, ikW> 1, the
value at the contact of the electrodes, but it diverges. This igrofiles for different values otV are very_glwllar_smce the
an expected behavior, since each particle is strongly attracté"Tections to the cas&/— o are of order™**™. This can be
to its images in the electrodes. This is related to the diverS€en in the plots fokW=5 and«W=10 in Fig. 3. The dif-
gence of the surface tension and the necessity to impose&rénces from the case/—c can be only be noticed for
short-distance minimum distance of approach of the particle§Mall values oW, as in the casesW=1 and«W=0.16 of

to the planar electroddB o 1/k,., as explained in the previ- F19- 3. However, let us remark that for any valuewf the
ous section. The logarithmic divergence indB of the sur- charge density from an electrode up to the middle of the slab

face tension is closely related to the divergence of the denfS Strictly monotonigincreasing or decreasing depending on
sities as 1(x ¥ W/2) at the contact of each electrode. the sign of2,£,d,)-

The charge density turns out to be
B. Electric potential

For the present geometry, the electric potential can be
computed from the charge density as

(0= qun(x) = ‘;—:(2 gaqi)ﬂxx), 4.19

with the reduced charge density

Pp() =112 + f,(%) (4.193 D(x) - D(0) = 2T f ' (X' =x)p(x)dx'.  (4.20
€ Jo
eW-5) W q| - W
== +— + =1 eV27Ej| - 3| —-% This gives
W-% W+X 4 2
N 7 - 7 2T ~ ~
_ —(W/2—7<)Ei|:_ (V_V _7(> } } + }{GW/zﬁE{_ 3(V_V+7(>} d(x) - P(0) = jf(g q?;gy)[(D(KX) -®(0)],
2 4 2 Y
- (4.21)
- ‘(‘7V’2+R)Ei{—(v—v+7<>}}+ -3
2 4 with the reduced electric potential
4 foc W2e Wy :| cosfx - - 1 G o~ e o
L (A D)L -2 cosi(\7V/2) O(X) - P(0) = E[e Ei(- 3W/2) — e "“Ei(- W/2)]

(4.223

© | 2 -3uW ~
u“e *""cosh2ux)du
+ SJ H2uX (4.19b

1 (42— 1)(1-e2W)

1) e W G W
In the case of a two-component symmetric electrolygies + —{e‘(W’Z”‘)Eil— (— + x)] - eW’2+XE|[— 3( + x)} }
-0, we haveX, l, qizo, therefore, the system is locally 2
neutral p(x)=0. For a general asymmetric electrolyte, (4.22b
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ke? tion of W. It is interesting to know the limit whellV— o,
2nBE ¢, d(x) From Eq.(4.22), we get
211',[)’
Dy = E CHa (4.23
W—oe 8 K

For an asymmetric electrolyte, a nonzero potential difference
between the middle of the electrolyte and any plate builds
up, although both plates are grounded. The sign of this po-
tential difference is given by the parame®,q>. This
potential difference is a monotonic functigincreasing or
decreasing depending on the signﬂmiga) of the widthw
with an extremum value foWW— « given by Eq.(4.23.

KX It is interesting to comment on a few points on the case
when only one electrode is present, which has been previ-

FIG. 4. The electric potential profik(x) for different values of ously studied by Aqu@ilS] uslng diagrammatic methods. In
the widthW of the slab at fixedc. From top to bottomgW=10, 5,  the limit W— o, with X=X+W/2, from Eq. (4.22 we re-

2 4

1, 0.16. cover Aqua’s expression for the electric potential:
-~~~ In 3 v S N
1) - W _ W D(X) = D= — - 1|e™*+ ~[eEi(- X) - €"Ei(- 3X)].
+21 e W2Rg| | = -] | - V2| - 3| = -% 4 4
4 2 2 (4.29
(4.220 . .
We can notice that far away from the electrode, the potential
behaves as
In3 * ue 24y 1 - cosk
+|1-——-8 = - In 3 —KkX — KX
4 1 (4w’ -1)(1-e?™ | coshWi2) D(X) — Do Nm R (2 57) T ljeT =Dgte
(4.220 4.25
® & 3W osH2UX) — 1 where we defined
- Zf W[ R )2 ] . (4.22¢ 2mB In 3
_ —2U T,
1 (A?-1)(1-€ W) D = E(E q%)<7 - 1). (4.2
Figure 4 shows the electric potential profile for different val- Y
ues of the widthw. This result suggests the following interpretation. If we were

An interesting quantity is the potential difference betweento understand this result using a mean-field linearized
a plate (for example,x=W/2) and the middle of the slab poisson-Boltzmann equation, we can suppose that the elec-
(x=0), which can be obtained from the previous expressionrode has an effective potenti®.; given by Eq.(4.26). The
by replacingx by W/2 [the term(4.229 in the previous potential of the electrode, which is zero in our case, gets
equation has the limit @n 3)/4 whenx=W/2]. Figure 5 additively renormalized byb.« by the effect of the fluctua-
shows a plot of the potential difference between the middlgions around the mean field. This interpretation follows the
of the slab and a pla®,=®(0)-P(xW/2)=P(0) as afunc- same philosophy that the one of the theory of the renormal-
ized charge in highly charged colloii35,3¢, except that in
ke @, this case the potential renormalization is due to the effect of
Ma the correlations and not to the nonlinear effects of the mean
e field theory. If the electrode was at a fixed potentialthe

1 effective potential as seen far from the electrode would be
0.8 V+d [18].
In the spirit of this interpretation, notice that the renormal-
0.6 ization of the potentiadb is positive ifanzga is negative,
and it is negative otherwise. This potential renormalization
0.4 only occurs for asymmetric electrolytes.
It is interesting to mention that a similar situation occurs
0.2 in the charge renormalization of colloids due to the nonlinear
effects in the mean-field approach for asymmetric electro-
5 4 6 8 10 kW lytes, although in the other direction. Indeed if the charge

(say, positivg of a colloid is high enough to be in a nonlinear
FIG. 5. The potential differencé®, between the middle of the regime, but small enough to be in a nonsaturation regime, it
slab and one electrode as a function of the widtlof the slab. has been found that the first deviatigquadratic correction
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of the effective charge from the bare charge have the sign of ACKNOWLEDGMENTS
aniga [37-39. In particular, in an intermediate regime, the

effective charge of the colloid could be higher than the bare

charge ifEMiia has the same sign as the bare charge. Thigarher version of the manuscript and for some discussions

analogy is, however, only qualitative. The context in the cast%:r?gcgegggngcgr‘]zudggir%‘ggzlge%ler:’vg‘ri i\(/jvzzl gg:‘t?;fz;osru%nd
of colloids is somehow different from the one considered : s )
here. In the colloids the renormalization is due to the nonlinporteol by COLCIENCIAS under Project No. 1204-05-13625

@nd by ECOS-Nord/COLCIENCIAS-ICETEX-ICFES.

The author thanks B. Jancovici for his comments on an

ear effects of the mean-field approach, and here we consi
ered the corrections due to the correlations.

APPENDIX A: GENERAL EXPRESSION
FOR THE DENSITIES

V. SUMMARY AND CONCLUSION

We have obtained corrections due to fluctuations to the
mean-field description of an electrolyte confined in a metal- The density can be computed from the grand potential
lic slab of widthW. We considered two models to describe Using Eq.(4.1). However, to perform the functional deriva-
the metallic electrodes. The ideal conductor model is mordive for arbitrary fugacities{,(r), we should find a more
tractable, but it neglects the fluctuations of the potential in-general expression for the grand potential than the one given
side the electrodes. For thigcademig model, the disjoining by Eq.(2.11), which is restricted to constant fugacities satis-
pressure of the system is always positive and it increases ffing the pseudoneutrality conditiof2.1). Similar calcula-
the separatioW decreases, indicating a repulsive force ontions to the one presented here can also be found in Refs.
the metallic plates by the electrolyte and a stable system. W25,40,41 in the case of unconfined systems.
also confirmed30] that for large separationd, the disjoin- In general, the sine-Gordon transformation allows to write
ing pressure has an algebraic decay W3, py the grand partition function without any approximation as
~[ksTZ(3)/(8m)]W 3. This largeW algebraic finite-size [14,24
correction is universal: it does not depend on the microscopic
constitution of the system. _
For the more realistic model of the good conductor elec- == Z_G D exd=S(4)].
trodes, the behavior of the pressure is completely different.
There is no algebraic decay in\W# in the pressure. Its de- ith Zs given by Eq.(2.9) and the actiorS given by
cay is exponentiag 2V at large distances. Furthermore the
disjoining pressure is negative, thus suggesting that there is Be
an attractive force between the electrodes. S(¢) =- f 8—¢(r)A¢(f)
We obtained some results for the density profiles and the .
electric potential which are independent of the model used to 20 ,
describe the electrodes. We retrie\jé6—19 a very interest- + 2 £, (r) P /2B ) }dr. (A2)
ing behavior if the electrolyte is asymmetric, in particular if “«
anigcﬂﬁo. In this case the system is not locally neutral,
there is a local charge density with the same sign¥hat ¢,
near the electrodes. Similarly the electric potential is not zero
inside the electrolyte although both plates are grounded: a ¢ :ifDQS(,_,)e—(uz)f¢(r)[—ﬁsA/47r]¢(r>dr (A3)
potential difference builds up between each electrode and the G Zs :
interior of the system. The potential inside the electrolyte has
the same sign that ,q3¢. Notice that the covariance of the preceding functional Gauss-
As possible perspectives to this work let us mention thgan measure i$4(r)(r'))g=8 "L (r,r’). Therefore, the last

to the mean-field description of the electrolyte. We consid4,y gefinition

ered the most simple situation at the mean-field level: both
plates are grounded and the mean-field potential is zero ev-
erywhere. We choose to study this situation in order to show
clearly the effects of fluctuations. However, our method ca . . . .

actuaﬁy be extended to study more general situations, fo owever, the |mportant0d|fference Is that n HA2), we
example, when a potential difference is imposed between th%UbtraCt the self-energy™(r,r) for an unconfined SVSte”?'
electrodes. In this case the mean-field description is thgot the self_—energy)(r_,r) for a confmed system. AS previ-
Poisson-Boltzmann theory studied by Gojij and Chap- ously mentloned,_ this has very important phys_|cal conse-
man[2], which can be a linear theory if the potential differ- quénces for confined systems. To proceed, it is natural to
ence is small, or a nonlinear theory if the potential differencél€fine a pseudonormal ordering as

is high. On the top of this mean-field description, a generali-

(A1)

Let us define the Gaussian average as

Xt~ 1 B0, p(r)]: = B DI2griBas0) - (Ag)

. 2 _
zation of our method can be used to find the corrections due s exp(—iB8a,d(r)) o = efdarolN2gmiBdad)  (AB)
to the micro-ions correlation@vhether the mean field is lin-
ear or nonlinegr and to write down the action as
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47

0 &

SYAr)
OL,(r")

(A6)  where 5¢(r)/ 8L,(r")|o is evaluated for constant fugacities
satisfying the pseudoneutrality conditig®.1) and ¢(r)=0.
As we mentioned in Sec. I, if we use the Coulomb potentialWe can then write
v° defined by Eq(2.4), the self-energy®(r,r) is infinite. In
principle, one should introduce a short-distance cutoff. With- %r))
8L, (r!

out this cutoff, both quantities™#%#" andv(r,r) in Eq.
with vpy(r,r’) the DH potential satisfying the DH equation

(A5) are not properly defined when taken separately. How
ever, their combination in the definitiqi5) of the pseudo- (4.3) and the imposed boundary conditions. Taking this into
account, we find the required functional derivatives evalu-

normal ordered exponential ::expBq,®(r)):: is well de-
finedevenin the case of a vanishing short-distance cutoff. In_.. 4 -+ ~onstant fugacities satisfying E8.1) and ¢(r)=0,

particular, later on we will proceed to do an expansion of this,
exponential in powers of (=i8q,¢(r))"::. These quantities
are well defined for a vanishing short-distance cutoff and OS

(A =KD qQudr —r’), (A1)

S:-f [:38 HDAG(T) + > £, (r) 2 €h%d0) (g

8

:anDH(r!r,)a (A12)

0

they are of orde(I',)" in the Coulombic coupling constant. 8¢.(r) 0: -1 (A13)
For arbitrary position-dependent fugacities the stationary “
point of the actionSis ¢=-i with i solution of the mean and
field Poisson-Boltzmann equation 59, ) (Bqa)z..¢(r)z..
3La(r) o 2

M)+ IS ¢ a0 =0, (A7)
8 o

Notice that if one takes constant fugacities satisfying the
pseudoneutrality conditio ,,q,=0, the solution of the

mean-field Poisson-Boltzmann equation is simigly)=0.

Let us return to the general case of position-dependent
fugacities. Expanding the action to the quadratic ordegin

around the stationary point leads ®&-iy+@)=Sy+S;
+0(¢?), with

Sni=S(=i9) :f [gvﬁ(r)mp(r) = £ ()P |
(A8)

the action evaluated at the mean-field solution and
_1[ =B
S = zf . d(r)Ag(r)
+ 2 (B0 o1 PUM i p(r)2dr . (A9)

We can now compute the functional derivatiy®1) with
respect to the fugacities to find

oS
Do e
n (r) - _ 5Snf _J 5§a(r) (AlO)
“ 3Lo(r) f D

3
- %E qigyf Upn(r' 1) (r)?:dr.
Y

(A14)

For constant fugacities, the acti&@ reduces to

S_L|0: 1‘ f __’&S¢(r)A¢(r) + E (qu)zg,y::(ﬁ(r)z::dr .
41
Y

2

(A15)

If we define the average

J 'Dd)( e Silo
Cou="F————, (A16)
quge— Silo
we have

B b(r)% Dpp = vpu(r,r) = vo(r,r). (A17)

Replacing(A13) and (Al14) into Eq.(A10) and using(A17)
gives Eq.(4.2) for the densities.

APPENDIX B: ON THE IMPORTANCE OF THE
BOUNDARY CONDITIONS

As was mentioned in Sec. Ill, there is an important dif-
ference on the behavior of the disjoining pressure in the case
with ideal conductor boundaries and the case when the elec-
trolyte is confined by a walls made of material with a dielec-
tric constants,, [31]. Namely, for the latter case, the pressure
has an exponential decag 2V at large separation§V,

However, we should take special note of the terms that dewhereas in the case presented here we found an algebraic
pend on the mean fielg(r), since the latter is a function of decay in 1A%, which is, furthermore, universdl.e., inde-

the fugacities via the Poisson-Boltzmann equatiai). In
particular from Eq(A7), we have

pendent of the microscopic detaihotice that the coefficient
of W23 in Eq. (3.9 is just a number independent of the De-

011508-11



GABRIEL TELLEZ PHYSICAL REVIEW E 70, 011508(2004

bye length«™* and of the other microscopic parameters. One can distinguish between two type of modesy/Jf
Although the ideal boundary conditions case consideredt 0, ® has a vanishing Laplacian inside the domain, there
here is formally obtained wheg, =, this limit has a very are no charges inside the domain. Only at the boundaries are
different behavior than in the case<@,, <~ [the ideal di- there some surface charges. These are the surface modes.
electric boundaries case,,=0, is also special, in that case They represent a system of two parallel walls in the vacuum
there is also an algebraic decay at large separatigiisin with fluctuating surface charges. Thus, the contribution of
the pressurg42] similar to the one found hefeThis differ-  the surface modes to the pressure is the same as the one of
ence is not only present in the behavior of the pressure, bijfi€ Lifshitz theory[34] in the classicali.e., nonquantum
also in the correlation functions. For instance, it is known!Mit [47,48. This contribution comes from the well-known
that for dielectric boundaries with<0s,,< %, the charge cor- Casimir forces, it is attractive and for large separations, it is
relation along the walls have an algebraic decayras?, glv?n b_y _kBTg(_?’)/(gw\N?' inside th . .
whee | is the decion paralel o e walgis ., L1t 1o, 20 s e e e oo o
co - .
\évlzgfi?z fgr())ldti?sl gzgg;citsozat;?gp?;;?’;ﬁy p()g\r/vfreﬁ}{lwile modes that oscillate all at the same frequemf:ywp, the
the reviev\;v Ref[45] and references cited thergin plas_ma frequency. Due to th'e boundary conditions, the po-
, L . tential for volume modes satisfy Neumann boundary condi-
In this appendix, we show how both kinds of boundaryyions gutside the domaif®,,=0, and sincab is harmonic
conditions can be related, and understand the presence of i§side and vanishes at infinity, this implies tdat 0 every-
universal tgrm in W3 in the Dirichlet bo_undary conditions ‘where outside the domai®. In conclusion, the volume
case and its absence in the case of insulating boundariggodes represent a system of volume charges that satisfy Di-
without image forces. The following analysis relies on arichlet boundary conditions for the potential. The volume
macroscopic description of the electrolyte in terms of collec-modes of the electrolyte confined by insulating void bound-
tive modes, which actually disregards the microscopic detaibries are very similar to the system we studied here with
of the system, but can give a correct description of somedeal conductor boundaries. If one computes the contribution
universal properties of the system for instance the presenag the pressure coming from these volume modes, one will
of the 1MP term in the pressure. find the same result as the one we have found in Sec. Il A,
Let us consider an electrolyte confined in the slab domaimamely, that the pressure has an universal algebraic decay for
D with separationW and with insulating void boundaries. |arge separationg/ given by +gTZ(3)/(87W?). This contri-

For simplicity and without loss of generality, we will take the pution gives a repulsive force and is exactly the opposite as
dielectric constant of the solvent=1. It is well known that  the one coming from the surface modes.

the electric potentiadp of a linear collective mode of oscil- Adding both contributions from the surface and the vol-
lation with frequencyw of this electrolyte can be described yme modes, one finds that the algebraic contributions to the
by a Laplace type of equation pressure cancel each other. In conclusion for the system con-
fined by insulating void boundaries there is no term it/
X AP =0 (B1) in the pressure as previously notggl]. However, for ideal

conductor boundary conditions, a repulsive term i\ for
inside the domairD, with an effective dielectric constant the pressure is present.
szl—wf)/wz and wherew, is the plasma frequencgsee, The above analysis is somehow similar to the one done in
for instance[46]). Outside the domain where the electrolyte the comparison between ideal conductor and good conductor
is confined @ satisfies a Laplace equatidriP =0 since there model, in the sense that the absence of théflalgebraic
are no real charges outside. The potential should also satistgrm in the pressure in the insulating void boundaries case
the boundary conditionsb;,=®,,; and 9,Pou= X0 Pin, and the good conductor case is due to a cancellation between
where d,® denotes the component ¢minug the electric  the Lifshitz term and the one from the ideal conductor

field normal to the boundary. model. However, the specific details are different.
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