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Thermal effects in the shear-transformation-zone theory of amorphous plasticity:
Comparisons to metallic glass data
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We extend our earlier shear-transformation-zone theory of amorphous plasticity to include the effects of
thermally assisted molecular rearrangements. This version of our theory is a substantial revision and generali-
zation of conventional theories of flow in noncrystalline solids. As in our earlier work, it predicts a dynamic
transition between jammed and flowing states at a yield stress. Below that yield stress, it now describes
thermally assisted creep. We show that this theory accounts for the experimentally observed strain-rate depen-
dence of the viscosity of metallic glasses, and that it also captures many of the details of the transient
stress-strain behavior of those materials during loading. In particular, it explains the apparent onset of super-
plasticity at sufficiently high stress as a transition between creep at low stresses and plastic flow near the yield
stress. We also argue that there are internal inconsistencies in the conventional theories of these deformation
processes, and suggest ways in which further experimentation as well as theoretical analysis may lead to better
understanding of a broad range of nonequilibrium phenomena.
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I. INTRODUCTION Earlier defect theories of deformation in glassy materials
appear to us to be incomplete in important respects and, in

In the first paper of this serigd], we showed that ener- some cases, to contain physically unrealistic assumptions.
getic constraints determine the principal ingredients of arhese theories generally start by assuming that the plastic
shear-transformation-zon&T2) theory of amorphous plas- strain ratee” is the product of the density of defeaidimes
ticity. That analysis pertained strictly to the behavior of non-an Eyring rate factof8]:
crystalline solids well below their glass temperatures. We
turn our attention here to the roles played by thermal fluc- & = 2ny exp(— A_G>Si I-( Q S) (1.1)
tuations, specifically, to the ways in which glassy materials kgT 2kgT/’ '

make transitions from thermally activated creep to viscoplas- ) ) . . .
tic flow near yield stresses. wherewv is a molecular vibration frequenciG is an activa-
The atomic mechanisms of plastic deformation are mos{ion Parierkg is Boltzmann's constand, is the temperature,

often described as arising from dislocation motion. This pic-? IS @n atomic volume, anslis the deviatoric stress.e., the

ture breaks down in amorphous solids in which the dislocaShe2r streégs The authors of these theories then attempt to

tion, being a lattice defect, ceases to provide a useful descrifl€Scribe the deformation dynamics by postulating equations
tion of the microstructural dynamics. In this paper, we Of motion forn. The most common choice for such an equa-

describe further progress in the shear-transformation-zonn of motion has the form

theory of amor_phous plast.icity that we lorigi.nally constructed n=—kn(n-ngg) + P(eP). (1.2)

to relate plastic deformation to specific microstructural de-

grees of freedom in noncrystalline solids. From its inceptionHere, k; is a thermally activated rate factar, is the thermal

our STZ picture has been based on the ideas of Cohen, Turequilibrium density of flow defects in the absence of external
bull, Spaepen, Argon, and othdi2-5], who postulated that driving forces, andP is a production rate that vanishes when
plastic deformation in amorphous materials occurs at localthe strain rate is zero. An important example of the use of
ized sites usually called flow defects. A number of computathis equation is the paper by De Hey al. [9]. As we shall
tional studieqe.g. Refs[6,7]) have provided support for the see, our STZ theory has many features in common with Eqg.
idea that a model based on localized defects can capture tlig.2); indeed, some form of each of the terms in this equation
dynamics of deformation in such systems. The basic premiswill appear here.

of our version of the STZ theory is that these defects must be There are important differences, however. Theories based
dynamic entities that carry orientational information; and ouron Egs.(1.1) and (1.3) make no attempt to describe what
most striking conclusion is that, once these orientational deactually happens when a zone undergoes a shear transforma-
grees of freedom are taken into account, the system so déen. Despite the fact that the Eyring formula in EG.1)
scribed exhibits an exchange of dynamic stability betweerdescribes the balance between forward and backward transi-
jammed and flowing states at a stress that we identify as #ions in some kind of two-state system, the dynamics of
yield stress. atomic scale structural rearrangements described bylEq.
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is decoupled from the population dynamics described by Egtheory[1] in a way that prepares concepts and notation for
(1.2). The latter equations therefore implicitly assume thatthe discussion of thermal relaxation in Sec. Ill. Section IV is
there exists some fast relaxation mechanism—faster than amevoted to analysis of these theoretical results and compari-
other rate introduced explicitly in the theory—which causesson with experiments. Finally, in Sec. V, we return to various
zones instantaneously to lose their memory of prior transforfundamental issues that are raised earlier in the paper or are
mations. relevant to its conclusions. In particular, we discuss how our

Another major difference is in the choice of the produc-original, fully nonlinear STZ theory10] may need to be
tion functionP. In some theories? is chosen to be linearly invoked in order to make better contact with atomic-scale
proportional toe”, which is impossible becaus@must be a mechanisms; we briefly address the important issue of shear
non-negative scalar whilé”' is a tensor that can change sign. banding; and we discuss the question of departures from
Such theories generally are used only in cases whriss  thermodynamic equilibria in driven systems—a question that
positive, which may mean that the authors intend to use theve shall not be able to avoid in the present analysis.
magnitude ofe? in more general situations; but the latter
convention also would be unsatisfactory becali8é is a
nonanalytic function that is not likely to arise from any first- . ELEMENTS OF THE LOW-TEMPERATURE STZ
principles analysis of molecular mechanisms. In our own THEORY

earlier paper(10], we tried using the rate of plastic work, |n order that this account be reasonably self-contained,
s €, in our analog of the production term. That function is @and to provide some new perspectives about the discussion
scalar with a satisfactory physical interpretation but, as wenat follows, we start by reviewing the basic elements of the
remarked there, it also suffers from a sign problem because ibw-temperature STZ theory.
can be negative during unloading. We believe that we have Throughout the following analysis, we take our original
solved this problem in Refl], and shall make extensive use STz picture[10] more literally than perhaps is necessary. We
of the technique described there in what follows. assume that, instead of being structureless objects as in the
Spaeperi3,4] has introduced an important modification of eaylier theories described in the Introduction, the STZ's are
the above ideas by postulating that the defect density  tyo-state systems. In the presence of a shear stress, they can
directly determined by the excess free volume in the systemyeform by a finite amount in one direction before becoming

vy, via a relation of the form jammed and, when jammed in one direction, they can trans-
. form in the opposite direction in response to a reversed
v stress. Importantly, our STZ's are ephemeral; they are cre-
n o ex , (1.3 - o ! ;
or ated and annihilated during irreversible deformations of the
material.

whereV* is a molecular volume. Spaepen’s proposal is that The literal interpretation to be used here requires that all
the production tern® in Eq. (1.2) should be proportional to STZ’s have approximately the same size and dynamic prop-
the growth rate ob;. More recently, Johnsoet al.[11] have erties. To visualize such an STZ, think of a void in an elastic
proposed a dynamic free volume model that includes a phematerial, and place a small group of molecules inside it in
nomenological parameter very roughly analogous to theuch a way that their average free volume is somewhat larger
yield stress that emerges from our STZ theory. Unfortu-than that for most other molecules in the system. The void
nately, Spaepen, Johnson and otl(erg., Ref[9]) postulate  has some degree of structural stability; it can deform elasti-
an equation of the forny; = e”', which again violates sym- cally but, because of the configuration of molecules on its
metry or analyticity requirements. In short, we believe thatsurface, it resists collapse. Rearrangements of the molecules
these theories require a critical reformulation in order to enthat are caged within the void couple to its shape and there-
able a meaningful atomic-scale analysis of amorphous pladere to the stress field in the elastic medium in which the
ticity. void is embedded. This picture suggests that the system un-

In addition to reformulating earlier theories of amorphousdergoes two distinct kinds of irreversible events: volume
plasticity, one of our principal goals in this paper is to gain asconserving shear deformations, i.e., the STZ transformations,
simple as possible an understanding of recent experimentahd dilations or contractions in which the STZ'’s are created
results on plastic flow in metallic glasses. In particular, weor annihilated(Nothing in this picture rules out the possibil-
refer to work by Kato et al. [12] on amorphous ity that transient dilations occur during intermediate stages of
Pd,Ni;(CusgPo, and the results of Lt al. [13], who mea- the shear transformations.

sured properties of bulk amorphous  For simplicity, as in Refs[1,10], we consider a two-
Zryq 2 Tigs g Cuypp 5 Nigg Beys s over a remarkably wide range dimensional model, and we subject this system only to pure
of strain rates and temperatures. shear deformations. As we shall show at the beginning of

For the sake of simplicity, we restrict ourselves through-Sec. 1V, the properties of this model are easily reinterpreted
out this paper to the quasilinear theory discussed in R§f.  in terms appropriate to simple uniaxial stress experiments in
We also make other assumptions which, as we shall indicatdree dimensions, so long as we are willing to assume that
at several places in our presentation, raise fundamental issuttge system remains spatially uniform. We further restrict our-
regarding nonequilibrium states in deforming solids. selves to molecular materials in contact with thermal reser-

Our order of presentation is as follows. In Sec. Il, we voirs (as opposed to granular materials or foanss that we
review the elements of the low-temperature, quasilineamay assume that an ambient temperature determines an un-
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derlying fluctuation rate. At low temperatures, thermal fluc- The assumption in Eq2.2) that the annihilation and cre-
tuations provide an attempt frequency for stress-induced mation rates are both proportional to the same funciiomas
lecular rearrangements, but are too small to activateserious implications in this theory. Among those implications
transitions over energy barriers in the absence of externas the requirement that,, be a strain-rate independent con-
driving forces. This attempt frequency will never appear ex-stant. Note thai,. is the total density of zones generated in a
plicitly in our analysis but, rather, is embedded in the ratesystem that is undergoing steady plastic deformation. It is not
factors to be introduced below. the same as the quantity, introduced in Eq(1.2), which is

For present purposes, we need to consider only situatiorthe equilibrium density at nonzero temperature and zero
in which the orientation of the principal axes of the stressstrain rate, and ordinarily is said to go rapidly to zero as the
and strain tensors remains fixed. That is, we do not considéemperature decreases below the glass transition. On the
situations in which a fully tensorial version of the STZ other handn, is a property of low-temperature materials at
theory will be necessary, as in the necking calculations renonzero strain rates.
ported in Ref.[14]. Therefore it is sufficient to assume that The form in which we have cast ER.2) is consistent
the population of STZ's consists simply of zones orientedwith a fundamental assumption that we are making about the
along the two relevant principal axes of the stress tensonature of our low-temperature theory. Specifically, we are
Exactly the same equations as the ones we shall use here cassuming that the only relevant time scales at low tempera-
be derived starting from the assumption that #neriori tures arery and the inverse of the strain rate. This means
distribution of orientations of the zones is continuous andhat, under steady-state conditions at strain rates less than
symmetric[15,16. Without loss of generality therefore we some value of orderal, the number of events in which the
let the deviatoric stress be diagonal along xhg axes; spe- molecules rearrange themselves is not proportional to the
cifically, let s,,=-s,y=s ands,,=0. Then choose the “+” time but to the strain. That picture seems intuitively reason-

zones to be oriente@longateglalong thex axis, and the “~”  able. If the system requires a certain number of STZ-like
zones along thg axis; and denote the population density of rearrangements in order to achieve some deformation, then it
zones oriented in the “+/-" directions by the symimgl should not mattefwithin limits) how fast that deformation
With these conventions, the plastic strain rate is: takes place. The picture breaks down, of course, when there
are competing rearrangement mechanisms. For example, we
Pl=- 'églyz = A[R(_ sn_-R(9n,]. (2.1)  shall see that the density of STZ's becomes strain-rate de-
0 pendent when we introduce thermal fluctuations, because

Here\ is a material-specific parameter with the dimension<Such fluctuations will induce rearrangements at a rate that is
of volume (or area in strictly two-dimensional modgls Independent of the strain rate. We also expect that the picture

which must be roughly the same order of magnitude as th'&Y fail in plolymerlc glasstes or pql)([cr)(/jstalllne tSOH:jS’ v;/rr]]ered
volume of an STZ, that is, a few cubic or square atomic{i?gre colmp ex components may introduce extra length an
spacings. The remaining factor on the right-hand side of Eq. '?h?caienil dimensional arqument. leading to a nonzer
(2.1) is the net rate per unit volume at which STZ’s trans- rate-insdz e?u?ent v?iljeoog :Irgelzjidehilntiaat agfuzgamoentzlo'
form from “=" to “+” orientations.R(s)/ 7y andR(-s)/ 7y are o P ) r e y .
wym g m «m o wym - difficulty in theories of the kind summarized by Eq4.1)

the rates for “+” to “=” and “~" to “+” transitions respec- d h heories h ivle |
tively, wherer, is the time scale that characterizes the low-2NC (1.2). These theories ave no sensible low-temperature

’ 0 limit because both the strain rate in Ed..1) and the rate

temperature plastic response. For simplicity, we write thes?actor k. in Eq. (1.2) vanish rapidly asT—0. Yet, even at

rates as explicit functions of only the deviatoric stress .
LT temperatures so low that thermal fluctuations cannot cause
although they depend implicitly on the temperature and pres- )
- molecular rearrangements, such systems must deform irre-
sure and perhaps other quantities.

The equation of motion for the populations generally versibly when sheared. . . .
) = We shall use the energetic arguments introduced in Ref.
must be a master equation of the form

[1] to determine the factoF in Eq. (2.2), but first we must
) discuss the state variables and specific forms for the transi-

. _ Ny
70 N =R(F9n; ~ RN, +I'(s, .. -)<_ -ne tion rates. We define dimensionless state variables by writing

2

M + — T
2.2 LS L Ul (2.3
N, N

The first two terms on the right-hand side are the stress-

driven transition rates introduced in the preceding paragraphn a more general treatmeft4,16,17, A remains a scalar
There is no analog of these terms in Ef.2). They describe  density, butA becomes a traceless symmetric tensor with the

volume-conserving, pure-shear deformations which preservgame transformation properties as the deviatoric stress. We
the total population of the STZ's. The last two terms in pa-z|sg define

rentheses, proportional 6, describe creation and annihila-

tion of STZ's. In the low-temperature theor¥, is nonzero 1 _ 1 _S
only when the plastic strain rate is nonzero; the molecularS_ Z[R( S-R+9] €= Z[R( SR+ T= c’
rearrangements required for creating or annihilating STZ's (2.4)
cannot occur spontaneously, that is, in the absence of exter- '
nal driving forces. Then the STZ equations of motion become
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“pl — _ .
™o €= & (LA T9) - Al B9 = 2OV (A3- A= g A A+ QBAN).
0

A =2C(S[A T(s) - A]-T(sAAA; (2.6 212

The left-hand side of Eq2.12) is the rate at which plastic
work is done by the applied stresssS. On the right-hand
) side, €y Sy ¢ is the state-dependent recoverable internal en-
oA =T(s,A,A)(1-A). (2.7 ergy, andQ is the dissipation rate. So long as the STZ’s
. . remain uncoupled from the heat bath,must be positive in
Here, o=\ n., is roughly the fraction of the total volume of qrqer for the system to satisfy the second law of thermody-
the low-temperature system in steady-state flow that is COVhamics, that is, for the work done in going around a closed
ered by the STZ's. This is a material-specific quantitylfs cycle in the space of variables A, and A to be non-
small, then the disorder induced in the system by deformanegative.
tion is small. Conversely, ik, is large, then the STZ-like As argued in Ref[1], the simplest and most natural
defects cover the system and the material in some seng@jce for—and, so far as we can tell, the only one that

“melts” under persistent straining. produces a sensible theory—is that it be the energy dissipa-
Throughout this paper, we shall use only what we call thg;jg, rate per STZ. That is,

“quasilinear” version of these equatiofi$8]. That is, we

and

note that7(s) andC(s) are, respectively, antisymmetric and _ €Sy
symmetric dimensionless functions §fand write QEAAN) = To ATEA.L). (2.13
s With this hypothesis, we can use Eq2.10) and (2.1)) to
T(s) = ;y =T C9=1, (2.8 write Eq.(2.12 in the form

~ _ Iy oy ~
where s, will turn out to be the yield stress. The choice 2(As—A)s:ﬂI‘(1—A)+£[Z(AS—A)—FA]+AI‘.

C(s)=1is, in effect, our definition of the time constani.

As pointed out in earlier papeid,18], this quasilinear ap- (2.14
proximation has important shortcomings. Neglecting therpen, solving forl”, we find

stress dependence 6fs) means that we overestimate the

amount of plastic deformation that occurs at small stresses _ 2(AS—A)(S—dylaA)

and therefore also overestimate the rate at which orienta- B A+ (L =A)(aplaA) = Aol dA)”
tional memory disappears in unloaded systems. Moreover, ] )

the quasilinear approximation is too simplistic to be related!© assure thal’ remains non-negative for & we must let
directly to atomic mechanisms, a point that we shall com- A

ment upon further in Sec. V. Nevertheless, the quasilinear —=—, (2.19
theory has the great advantage that it is mathematically trac- dA A

table and easy to interpret. It will serve to illustrate the mainsg that the numerator becomesA23-A/A)2 Then (see
points that we wish to make in this paper, but aspects of thgef, [1]), we choose

nonlinearities associated with and 7 will need to be rein-

(2.19

troduced before we shall be able to understand fully the non- _A A?
equilibrium behavior of amorphous solids. ¥A.A) = 2 (1 * AZ)' (2.17)
Equations(2.5—2.7) now become
so that
TO-EpI = EO(AE— A), (29) 4A(A'§_ A)Z
FrGAAN=—T——T""—""7.
G ) (1+A)(A%-A?

This result has the physically appealing feature that it di-
verges whem\? approaches its upper limk?, thus enforcing

a natural boundary for dynamical trajectories in the space of
) the state variabled andA.

A =T(EA,A)(1-A). (2.11 It is convenient at this point to replace the varialldoy

. . , m=A/A, so that the equations of motion become
The quantityn,, I'/ 7y is the STZ creation rate and therefore

plays exactly the same role as the phenomenological defect Toe” = €A — m); (2.19
production rates that we discussed—and complained

(2.18
7oA = 2(A%-A) - TG, A, A)A; (2.10

and

about—in the Introduction. We can derive an expression for ) 2mE-m)

that rate by using the energy-balance argument introduced in oM=2(8-m)|1- 1+ N1-m) ; (2.20
Ref. [1]. As before, we start by writing the first law of ther-

modynamics in the form and
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A _|4G-m) (1‘A) 7ohe = R(EIN- — REESN, +[[(5,A,4) + (T)](E—n)
TOA_{l—mz] 1+A) (ezp W ) Al P
At the stable fixed point of Eq2.21), A=1, Eq.(2.20 be- - K p(T)(n++ n_)m- (3.3
comes N, /

The first and second appearances(F) on the right-hand
5 , (2.22 side of Eq.(3.3) correspond, respectively, to its two roles
(1-m) described above. The second of these terms, the quadratic
form with a dimensionless multiplicative constatis simi-
lar to then? term on the right-hand side of E@l.2). This
bimolecular mechanism has been discussed extensively in
Refs.[21-23.

Equations(2.9—2.11) now become

’Tolé'pl = Eo(Ag_ A) (34)

(unchanged from befoyg

. 28-m)(1-Sm)
o= —"""-5—+

which exhibits explicitly the exchange of stability at1
between jammed states with=S and flowing states with
m=1/s.

IIl. THERMAL EFFECTS

We return now to Eq(2.2), the low-temperature master
equation for the STZ population densiting, and ask what
changes need to be made in order to incorporate thermal N — O AE A _ .
effects at temperatures near the glass transition. One obvious 7oA = 2(AS=A) = [(I5,A,4) +p(D]A = kp(DAA;
possibility is to modify the rate factoiR(+s) to include ther- (3.9
mal activation across energy barriers; indeed, we eventually,q
shall have to do thatsee Sec. Y. However, our quasilinear _
approximation_ makes it difficult to do this systematically. A =[TEAA) +p(M]A-A) -« p(T)Az, (3.6

The more important thermal effects are those that are . .
completely missing in Eq(2.2), specifically, the thermally The next step is to repeat the energy_-balance analysis of
assisted relaxation—i.e., aging—of the STZ variables thaFds:(2.12~2.18) to recompute the functiohi(S,A,A). We
can occur spontaneously in the absence of external driving GSSert that Eqc2.13 relatingI" and the dissipation rat@
plastic strain rate. There are two ways in which relaxationMust remain unchanged by the addition of the thermal relax-
must occur. First, thermal fluctuations ought to act much like2tion terms in Eq(3.3). That is,T" in Eq. (3.3) must be the
deformation-induced disorder in causing theto relax to-  €nergy dissipated per STZ when plastic work is done on the
ward their steady-state valuas/2. Second, there should be System. The expression for the internal eneygi, A) must
some annealing mechanism that causes the total STZ pop(gMain as given by Eq2.17) because Eq(2.16 is still
lation to decrease. Both of these mechanisms involve dilalequired by the non-negativity condition. The result, after
tions and contractions of the kind associated with creationserting the terms proportional {&(T) into Eqgs.(2.14) and
and annihilation of STZ’s; thus, again for simplicity, we as- (2.19), and transforming ton=A/A, is
sume that there is just a single relaxation rate, denoted
p(T)/ 7y, that characterizes them. As we shall see, that rate LEA,m +p(T)

will have the Vogel-Fulcher or Cohen-Grg4t9] form, rap- 4 (3-m)*+2 p(T) + k p(T)A(L +nP)

=A

idly becoming extremely small as the temperatirdalls (L+A)(1-md
below the glass temperature. Specifically we expecttiBt _
has the form = AT'(§,A,m,T). (3.7
Ayl Note thatl is non-negative, as is necessary because it is a
p(T) = py €x Tom) (3. prefactor for the annihilation and creation rates. The non-

negativity condition no longer strictly applies toitself be-
wherep, is a dimensionless prefactaxV¥! is the activation ~cause the system is now coupled to the heat bath.
volume required to nucleate a dilational rearrangement, and The new equations of motion fon and A are
v¢(T) is usually identified as the free volume. The Cohen-

Pl = -
Grest approximation fop¢(T) has the form 7o €= € AG-m), 3.8
T _— oMm=2G-m) -mlCGA,mT), 3.9
i 1 o, [T, 5.2 o= 2(3-m) - mG,A,mT) (3.9
26} and
wherev,, To and T, are fitting parameters. This expression A~
was found by Masuhet al.[20] and Luet al.[13] to provide o, = FEAMT(1I-A) =« p(T)A. (3.10
a fairly accurate fit to their datgWe shall not use this for-
mula explicitly in what follows) As in previous presentations, we recover Bingham-like
In accord with the preceding remarks, our proposed fornmplasticity for smallp and for stresses abos, i.e.,$>1. In
for the modified master equation is that case, the equations of motion revert to Egs.

011507-5



FALK, LANGER, AND PECHENIK PHYSICAL REVIEW E70, 011507(2004

2.19+2.2)) so that, in steady staté\—1 andm—1/s. s
gl'hu?_( D y = lim — l:—SV—T0 , (3.149
P02 € €p(T)
) ~ 1\ i i i i i
ol @(S_ :>; <=1 (3.1 which conﬂrmg our expectatlion tha(T) is the rate function
To 3 that governs viscous relaxation.

This theory exhibits no power-law rheology for flow above
the yield stress. As we shall see, however, it does exhibitV- ANALYSIS AND COMPARISON WITH EXPERIMENTS

behavior that_looks Ii_ke superp_lasf[icity. _ Before making comparisons with experiments, we must
The more interesting behavior is thermally assisted creepyi,in to the question of how to generalize our two-

below the yielg stres§< 1, and the transition between creep 4imensional theory into one that can be applied to three-
and flow neafs=1. For present purposes, we only need t04imensional experiments. The basic structure of our equa-
consider cases in which(T)<1. In the steady-state creep yjong of motion must be preserved, with due respect for the
region wher&<1 andm=Ss, Egs.(3.7) and(3.9 tell us that  glevant symmetries, in any generalization of this theory to
S-mis small of ordemmp. Then the quantityS-m)? in the  higher dimensions. That is, our variab&se?, andm must

numerator ofl" is negligible compared to the other terms. become traceless symmetric tensors, andnust remain a

The steady-state version of E@.10) becomes simply scalar, so that Eq$3.8) and(3.9) become
2 1 — ) .Eﬁlzfo A(éij _mij), (41)
1-An(e) = < AJ(R); An() = 5= (V1+4x-1), and
3.1 . =
(312 oy = 2@ ~m) -TEAMDm. (4.2

where the subscripN denotes the low-stress Newtonian The energy-balance analysis yields
limit.

In the complete absence of a driving str&sshe exact T'GAMT)
steady-state solutions of Eq8.9) and(3.10 arem=0 and VR —
A=An(k). Thus the analog ofiey in Eq. (1.2) is n.. An(x), = 2(5; = my) S —my) + 2p(T) + kp(MAQ +m ),
which is a temperature-independent quantity instead of be- (1+A)(1-m)
ing, as is usually assumed, a rapidly varying function of the (4.3

form exd—AVY'/v¢(T)]. Indeed, the temperature dependence _ _ _
of N is often invoked in the context of equations such agvhere we are using the summation convention, antd
Eq. (1.2) to interpret calorimetric datf9,24. Because of its  — (+/2Mj M. o _ _
lack of a temperature-dependent, our present theory can- _Thg experiments in yvh|ch we are interested involve only
not predict the specific heat peak near the glass transitiojniaxial stresses, say, in thedirection. If there are no trac-
that is seen by the latter authors. We could fix this problem ifflons In they or z directions, and if we can ignore spatial
an ad hoc manner by assigning some temperature depenionuniformities, then the total stress; is diagonal with
dence ton,, and/or k. However, such a procedure would x5 0yy=0z=0. Similarly, for the deviatoric stress,,
simply gloss over the fundamental difficulty that we are fac-=Szz= ~Sod 2; andmy,=m;;=-m/2. Thusi?=3/4 mg,. We
ing here—that the limiting steady-state valuefoimust de- ¢&n now make thex components of Eqsi4.1) and (4.3
pend upon the order in which we take the limits~0 and IOE‘; exactly like EBS(@13-9)aIaUd,(3-D by definingm?
€’ — 0, but that no such behavior appears in our equations. M mfﬁ“‘ M $=13/45,, €=, and by replacing,
This is the same situation that we discussed in the paragrapk¥ €=\4/3 €. Note that the dynamical exchange of stabil-
following our first introduction ofn.. in Eq. (2.2); we shall 1Y i-e., plastic y|eId|ng,_ still occurs &=1; thus our_scalmg
return to it in Sec. V. For the present, we leave the situatior the stress by, remains correct. When comparing to the
as is, with a temperature-independeqg, and with the un- data, Whlch_ls presented m_telms of th_e uniaxial str;ess
derstanding that we cannot yet use these equations to de“x« We Write 0=(3/2)s,,=3sS or, equivalently,c=0,S,
scribe behavior much above the glass temperature. whereoy is the tensile yield stress. Equati@14), however,
To compute the viscosity, it is easiest first to st A remains unchanged witk ra_1tf|1er th,ﬂf‘f& because viscosity
: L~ , now is expressed ag=s,,/2¢eh=s/\3e".
=0 in Egs.(3.9 and(3.10 and eliminatel” to find To illustrate the principal results of our analysis, we first
follow the lead of Katoet al. [12] and Luet al. [13] by
G-m)(1-A)= Kp(T)mA, (3.13 looking for scaling in the steady-state behavior of our sys-
2 tem. To be specific about what we mean here, we show in
Figs. 1 and 2 sets of stress-strain curves for various tempera-
which is an exact relationship between the steady-state vatures and fixed strain rates. As we shall explain shortly, these
ues ofs, A andm at any strain rate. Combining these resultsfigures are to be compared with Figs. 1 and 2 in R&8].
in the limitS=m— 0, we compute the Newtonian viscosity (See also Fig. 1 in Ref9] and Fig. 1 in Ref[12].) A general
7N feature of these curves is that, when the strain rate is held
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FIG. 1. Theoretical curves of tensile stress versus strain for the
bulk metallic glass Zg; 5Ti13.4€Cuy» NijgBes, 5 at several different FIG. 3. Scaling behavior in the STZ theory: shear stias a
temperatures as shown. The strain rate!f&'=1x 101 s, For function of strain rate scaled byy. This graph is plotted for the
clarity, the curves have been displaced by constant increments alorggme set of temperatures as shown in Fi@),4but for a larger
the strain axis. range of strain rates.

constant, the stress rises through a maximum, decreases $g8led strain rate, and compared with experimental data

the material softens, and then reaches a steady-state valdi@ken from Fig. @) of Ref.[13]. The same theoretical func-

We shall discuss the initial transients later in this section, butions and data points are replotted in Figbyto show the

look first at the late-stage, steady-state behavior. normalized viscosityy/ ny as a function of the scaled strain
We compute the steady-state flow stress as a function dte. The latter figure is directly comparable to R&g], Fig.

the strain rate by solving Eqe3.9) and (3.10 with m=A 9(b). Note that the range of strain rates shown in F|gs. 4

=0. Then, as in Ref12,13, we plots=s/s, as a function of corre_sponds to the range of the experlmental data and |s.sub-

7 € for eight different values of the relaxation rat€T) stantially smaller than that shown in Fig. 3.. The thepreUcaI

corresponding to the eight different temperatures for whiciuve that lies above the rest at high strain rates isTior

data are reported in Reffl3]. The results are shown in Fig.

3. As discovered by Katet al.[12], all of these curves lie on 2 10° | "
top of one another for stress@s<1 but, in our case, they ‘ s
diverge from each other in the flowing regin®; 1, where = o
the Bingham-like behavior shown in E¢.11) sets in. & /[
Figure 4a) contains the same theoretical curves as those % 10 L ¥ :g;g&
shown in Fig. 3, but plotted there as tensile stress versus 8 v 603 K
b7 > 613K
i R b
9 1.0x107 5" 10" b :gggﬁ
— 3.2x107°s” b)
1500 . o—a 50x10°s” 10°

o—o0 20x10*s™

< z
a G
= 8
o 1000 t . g 2
[22] —1
@ B 10
& N
. 3
500 r 7 5
o— p-d
107
0 = I7 ls '9 I10
0 0.1 0.2 0.3 0.4 10 10 10 10
Strain Newtonian viscosity * strain rate (Pa)

FIG. 2. Theoretical curves of tensile stress versus strain for the FIG. 4. Tensile stress and viscosity as functions of scaled strain
bulk metallic glass Zg ;Ti;3 &Cus, NijgBes, 5 at several different rate 7 e®@. The data points for the bulk metallic glass
strain rates as shown. The temperatur@+$643 K. For clarity, all  Zr,q 5Ti13dCuo NijgBey, s are taken from Ref{13], Figs. 9a) and
but the first of these curves have been displaced by the sanf&b). The solid curves are theoretical results computed for the same
amount along the strain axis. set of temperatures as shown.
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a) | 3 ing viscositiesyy(T) at different temperatures, a value for

the ratio ¢y/ 79 in EQ. (3.14) determines the overall scale
factor for the functionp(T). Thus our fitting procedure has
been to start by choosing valuesofnd ¢,/ 7. We then use
those values to determingT) and to compute steady-state
solutions of Egs(3.9), (3.10, and(2.19. From these solu-
tions we compute steady-state stress versus strain-rate rela-
tions that can be compared with the experimental data. We
then iterate this process to find best-fit values fomand

Steady state stress (MPa)
=

10 60/ 70- ] )
b) Our best-fit parameter values, obtained by the procedure
10" outlined above, arac=120 andey/ 70=260 s*. Our corre-

sponding values op(T), along with our estimates of the
viscosities, are shown in Table I. We emphasize that these
values are not much better than order-of-magnitude esti-
mates.

As is obvious in Fig. 5, there is scatter in the experimental
data, and there may also be systematic errors. For example,
the two points at the highest strain rates 1o6+663 K fall
well below our theoretical curve for that temperature while

- - - the theoretical fits look good for the temperatures on either
Str;ig rate (1391) side, i.e.,T=643 and 683 K. WQ could improvg the fits to all
three of these curves by choosing a substantially larger value

FIG. 5. Tensile stres&) and viscosity(b) as functions of strain of «; but we would do this at the expense of poor(_-:-r f'ts_ _at
rate for different temperatures as shown. The data points are for tHOWer temperatures. However, the values of the viscosities
bulk metallic glass Zf, 5Ti13dCyo NizBess s as reported by Ref. that we can deduce from RdfL3], Fig. 10 seem uncertain,
[13], Figs. 7 and 8. The solid lines are theoretical curves. possibly by factors of 2 or 3; so our estimatesp¢T) and

therefore all our theoretical curves—especially those at the
=683 K, the highest of the temperatures reported in Reflower temperatures—might be modified by more accurate
[13]. The data points at that temperature all lie at scaledsiscosity data.
strain rates that are too small to test this predicted breakdown Within the above uncertainties, our theoretical fits to the
of the scaling law. experimental data are relatively insensitive to our choices of

Our Fig. 5a) shows individual theoretical and experimen- the two parameters that we have allowed ourselves. On the
tal curves of tensile stress as a function(ofscalegl strain  one hand, this insensitivity gives us confidence in the basic
rate for different temperatures. Here, the experimental datstructure of our theory; on the other hand, it means that we
are from Ref[13], Fig. 7. These curves are replotted in Fig. cannot yet test the theory in as much detail as we would like.
5(b) to show(unscalegiviscosity as a function of strain rate, For example, the yield stresg probably ought to be a func-

Viscosity (PaS)
)

1 ()8 1 1
10° 10

analogous to Refl13], Fig. 8. tion of temperature, decreasing slowlyn contrast to the
In constructing these figures, we have determined our therapidly varying viscosity from room temperature through
oretical parameters as follows: the experimental range. Its behavior should be roughly like

We have used the value of the room-temperature tensiléhat of the shear modulus, which must soften as the system
yield stress reported in Refl3], 0,=1.9 GPa. Thusoc  approaches the glass transition. Also, as we have discussed
=1.% GPa. above, we expect that, ultimately will be temperature de-

Rather than using the Cohen-Grest formula with parampendent because it is proportionalrg. We could improve
eters from Ref[20], we have taken the limitingvanishing the fits, for example, at the lower temperatures shown in Fig.
strain rat¢ Newtonian viscosities directly from Refl13], 5, by incorporating such temperature dependences into our
Fig. 10, and have checked that these val@@srt from one equations; but it seems to make little sense to do so without
apparently misplaced pointare consistent with the data first resolving various uncertainties in both the theory and the
points in Ref.[13], Fig. 9. experiments.

Given the above constraints, we are left with only two  Our main conclusion from this steady-state analysis is that
parametersx and €/ 7, (or, equivalently,e)), that can be we are observing a transition from thermally assisted creep
adjusted to fit the steady-state experimental data in[R8f,  to viscoplastic flow in the neighborhood of the dynamic yield
Fig. 7. Because we know experimental values for the limit-stress. At low stresses and strain rates, the linear response

TABLE |. Experimental data for viscosity taken from R¢L3], and values op used in the present calculations.

Temperature K 573 593 603 613 623 643 663 683
Viscosity (Pag  4.00x 10  4.03x 10  8.99x 102  4.03x10%2  7.29x10" 4.27x10° 3.68x10°  3.99x 10
p 1.07x108 1.06x107 4.77x107 1.06x10°% 588x10°% 1.01x10% 1.17x10° 1.15x1072
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rate experiments such as those shown in our Figs. 1 and 2
and in Figs. 1 and 2 of Refl13]. To plot these curves, we

08 | solve
oy . 4¢
> 06 ST - \/j_OA(g_ m), (4.4
5 E 3’7'0
[}
c
w04 -

along with Egs(3.9) and(3.10) to computés as a function of
the total strain. We use the value of Young’s modulus given
in Ref. [13], E=96 GPa, to estimat&/o,=50. For time-
4/0/ dependent calculations, we must choose a value of the time
i scalerp, which multiplies the time derivatives in Eg&.9)
0 and (3.10. To do this, we keep the ratiey/ 7y fixed at its
value obtained from the steady-state calculations, and we
adjust the value og; so as to fit the transient stress-strain
curves. Our best-fit value igg=0.7, which means that,
=2.7x107°s. We emphasize that this value, like our esti-
mates forx and €,/ 7, remains highly uncertain. It is pos-
relation contains only the factoyy1/p(T), thus we obtain  sible that we may eventually be able to sharpen our estimate
the simple scaling. Near the yield stress, however, our themf the time scaler, by using the time-dependent stress-
retical strain rate increases by several orders of magnitudelaxation data shown in RefL3]. In fact, we can reproduce
for small increments of stress, and the experimental behaviahose results about as well as the other results shown here,
tracks this trend accurately. This behavior resembles supepuyt our theory in this case is especially sensitive to our qua-
plasticity. ~Interestingly, the theoretical scaling persistssjlinear approximation plus other uncertainties regarding the
thrc_>ugh thg “superplas'uc" region and does not break dOW%xperiments.
until true viscoplastic flow begins. , Our Figs. 1 and 2 are drawn so as to be directly compa-
Before returning to the transient stress-strain curve§gpie to Figs. 1 and 2 in Ref13]; that is, we use the same
sho_wn in Figs. 1 and 2, we show one other stea}dy-state P'&train rates and temperatures. The one other parameter that
diction of our theory for which there are no data in Réf], we must choose for solving Eq8.9), (3.10, and(4.4) is the

but which seems to be potentially important. In Fig. 6, we. .. ; :
have used our steady-stgte soluti)énsrfpi)and/\ to ploq[ the initial value of A, which we denote by§0. Theoretically, .the .
smallest value ofA, that can be achieved by annealing is

. ; ] st X
dimensionless internal energy=(A/2)(1+m?) as a function Ay(k)=0.087(for x=120): therefore we have used this value

of the strain rate”!, for the set of temperatures used in the ; . ~
preceding figures. The energymight be measured by dif- of A, for these two figures. The initial values ofands are

ferential scanning calorimetrgDSC), as has been done by always chosen to be zero. _
Hasan and Boyce in studies of polymeric glag@s26. De In all cases, th_e agreement between 'gheory and experi-
Hey et al.[9] also report DSC results, which they interpret asments seems satisfactory given the various uncertainties.
measurements of free volume. We assume that Fig. 4 in ReThe peak heights and positions for fixed strain rafé"
[9], apart from the scale on the vertical axis, is at least quali=0.1 $* and varying temperatures in Fig. 1, and for fixed
tatively the same as a graph giversus strain rate analogous temperaturél =643 K and varying strain rates in Fig. 2, are
to our Fig. 6. The two figures are similar to one another if wewithin about ten percent of their experimental values. The
look at our theoretical curves only at small strain rates.  experimental curves for low temperatures and large strain
An important feature of our Fig. 6 is that, at fixed strain rates end where the samples break; the dashed lines in our
rate, s decreases a$ increases. That trend is exactly what figures indicate our theoretical extensions of those parts of
we expect for thermally assisted creep; the higher the tenthe curves for which no experimental data is available. The
perature, the fewer STZ’s are needed in order to sustain @ne systematic discrepancy is that our initial theoretical
given flow rate, and thus the smaller the internal energyslopes are smaller than the experimental ones. This is an
Note, however, that our theory predicts that all of theseartifact of our quasilinear approximation, which ignores the
curves converge to a single, temperature independent, valrong stress and temperature dependence of the féor
— AN(k)/2 in the limit €'— 0. On the other hand, De Hey in Egs.(2.5) and(2.6) (see remarks in Sec.)VIn the limit of
et al. plausibly assert that the equilibrium value of the STZlow temperatures and very small strain rates, our theory pre-
density,ng,, should be an increasing function of temperature dicts this initial slope to bé&/(1+E €, Ag/20y) instead of
If so, these curves must cross each other and the trend gimply E. This does not happen in the fully nonlinear theory
temperature dependence must be reversed at small enougtesented in Ref10]. We have chosen not to include these
values ofeP!. An extension of these measurements to smallenonlinear effects in our calculations here because they
strain rates might therefore provide a test of our differingintroduce additional undetermined parameters, and they are
assumptions about the STZ density, not necessary to describe the shear softening and shear thin-
So far, we have examined only steady-state behavior. Weing observed at higher stresses near the glass transition
turn next to stress-strain curves obtained in constant straifemperature.

L
—1

® 107 107 100 107 10
Strain rate (s

10

FIG. 6. Dimensionless energy as a function of strain rate for
the same set of temperatures shown in the preceding figures.
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peratures well below the glass temperature, the transitions
between STZ states are not thermally activated but, rather,
1000 | ] are controlled entropically. That is, the rate factors are deter-
mined by the number of paths that the molecules within a
zone can follow in moving around each other while going

= I [

S 7o from one state to the other. The exponential factor in Eq.
?3’ y (5.2) is an approximation for a weighted measure of that
g s00f )/ ) — Ag= Ay=0.087 1 number of paths. Its dependence means that greater weight
* f o ﬁofg'? must be given to paths moving in the direction of the stress

than opposite to it. The exponential form &¥"¢(s) is the
simplest non-negative function that becomes arbitrarily small
at larges and introduces just one new parameter, the effec-
ok ‘ : tive STZ stiffnessu. The quasilinear version of the theory
0 01 Strai 0.2 0.3 correspondsroughly) to the limit of smalls and small values
train hear,
of AV5"**vs.

FIG. 7. Tensile stress as a function of strain for several different Comparison of Eq(5.1) with Eq. (3.1) indicates that the
values of Ag. Curves are plotted fo®®®=32x102st at T  natural way to include thermal effectsR{s) is simply to let
=643 K. vs have theT-dependent Cohen-Grest form shown in Eq.
(3.2. This means that, at low, the ratioAV5"7v(T) be-
comes very large, which, in turn, implies that the functions

Finally, in Fig. 7, we use the material parameters deduceé(s) and7(s) introduced in Eq(2.4) become strongly stress
above for the system studied in RgE3] to plot stress-strain  dependent, and the quasilinear approximations made in Egs.
curves for differentAy’s, all at temperaturd =643 K and  (2.8) are no longer valid. Importantly((s) becomes very
€°®=3 2x 1072 s7L. The differentAy's correspond to differ- small for smalls, so that plastic deformation is strongly sup-
ent initial states of disorder produced by varying the annealpressed at stresses appreciably below the yield stress.
ing times and temperatures. Presumably, annealing for longer The strong stress dependenceCéd) and 7(s) should be
times at lower temperatures produces smaller valuesypf especially apparent in transient behavior of the kind shown
but it seems difficult to make quantitative estimates of thisin Figs. 1, 2, and 7. Here, the initial response to loading at
effect. These curves may be compared qualitatively wittsmall stress will be almost entirely elastic, and plastic defor-
those shown in Ref9], Fig. 9, where larger initial densities mation will begin only later in the process. We shall have to
of STZ’s produce larger plastic responses and correspondise the fully nonlinear theory when undertaking more de-
ingly smaller overshoots during the early stages of deformatailed comparisons with these kinds of experimental results.
tion. Shear localizationAll of the analysis in this paper per-

tains to spatially homogeneous systems. In order to make
V. CONCLUDING REMARKS closer contact with experiments, we shall have to understand

. . . . . why and when these systems become unstable against shear
The comparison with experiments discussed in the preE)anding and inhomogeneous failure modes, especially frac-

ceding section leads us to believe that the STZ theory ca Lre

tures the main features of the experimental data, but that we dne mechanism for shear localization that we have not
shall ha\_/e_ to improve it in sp_ecif_ic respects if we are O entioned in this presentation is the elastic interaction be-
develop itinto a yet more quantitative, predlctlve descrlptlo_ntWeen STZ's studied in Ref17]. As shown in that paper, an

of plastic Qeform§t|on n amqrph(_)us solids. We canclude th'ETZ-Iike event generates a quadrupolar stress field that in-
paper by identifying three directions for the next phases o uces other nearby events along preferred spatial directions

these investigations. and suppresses events elsewhere. The result is a tendency

Fully nonlme_ar, temperat_u_re-dependent transition rates ., ard shear localization that should be interesting to exam-
When we examine the quasilinear STZ theory in the contex

) . —“ne in the context of this more general version of the STZ
of a theory that includes thermal fluctuations, we see that it '?heory g

a §pecia| case in whic.h _the shear rearrangements aré Not o gecong mechanism that seems likely to play a role in
i:_)emg podeletﬂ. as reallstl(;:atllyl as ttr:e Slzatlons or .Colnga?'shear localization is already built into our equations of mo-
lons. 10 See this In moreé detall, go back o our onginal Relq, \yhen we write them in terms of spatially varying fields.

[10], fully nonlinear version of the low-temperature rate faC'From Egs.(3.7) and (3.10, we see that the STZ density

250 (i /S

tors R(s): grows most rapidly, within limits, in regions wherealready
1 Avshea(s) . _ is large. This feedback effect, perhaps coupled to the effect
R(s) = IGX%— U—) Avshea(g) = AV g Sk, of elastic interactions mentioned above, is our best guess at
0 f

present about how shear banding will emerge in the STZ
(5.)  theory.
Effective temperature and the interpretation Qf;nFi-
whereAVshed(s) is the activation volume required to nucle- nally, we return to Spaepen’s suggestion that the density of
ate a shear transformation. Our idea here was that, at ten$TZ's might be directly related to the free volume as in Eq.
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(1.3). Note thatv; appears in that equation, not as an exten- There is increasing evidence that something like this hap-
sive quantity related directly to the difference between thepens in sheared foams or granular mateifias-33. In those
actual volume and some hypothetical close-packed volumesystems, the usual kinetic temperature is zero because the
but rather as an intensive variable analogous to a temperaonstituents have very large masses, but an effective tem-
ture. For example, Mehta and Edwal@3] have introduced perature determined by response-fluctuation relations goes to
an intensive variable, thermodynamically conjugate to vol-a nonzero limit when the deformation rate becomes arbi-
ume, which must govern density fluctuations in relationstrarily small. In our present system, there is a true kinetic
such as Eq(1.3) or (3.1) in much the same way as ordinary temperature, but below the glass transition that temperature
temperature governs energy fluctuations. Recently Shi anid so small that thermally assisted molecular rearrangements
Falk [28,29 have shown that while the interior of a shear are effectively frozen out. During irreversible processes such
bands in molecular-dynamics simulations has a high densitgs plastic deformation therefore the slow, configurational de-
of active STZ's, the actual density in that region is negligibly grees of freedom characterized fymight fall out of equi-
lower than in the rest of the system, but measurable strudibrium with the fast, therma(vibrationa) degrees of free-
tural disordering occurs in the shear band that leads to sofdom, and each may accurately be described by its own
ening. “temperature.” We suspect that some such description of our
The idea thajy=uv¢/V" in Eq. (1.3) might more generally system will be necessary in order to resolve the two-limit
be interpreted as an effective temperature seems especiallyoblem that we have encountered here.
appealing in light of our argument that the limiting steady-
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