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We analyze the behavior of supercooled fluids under shear both theoretically and numerically. Theoretically,
we generalize the mode-coupling theory of supercooled fluids to systems under stationary shear flow. Our
starting point is the set of generalized fluctuating hydrodynamic equations with a convection term. A nonlinear
integrodifferential equation for the intermediate scattering function is constructed. This theory is applied to a
two-dimensional colloidal suspension. The shear rate dependence of the intermediate scattering function and
the shear viscosity is analyzed. We have also performed extensive numerical simulations of a two-dimensional
binary liquid with soft-core interactions near, but above, the glass transition temperature. Both theoretical and
numerical results show the following.(i) A drastic reduction of the structural relaxation time and the shear
viscosity due to shear. Both the structural relaxation time and the viscosity decrease asġ−n with an exponent
nø1, whereġ is the shear rate.(ii ) Almost isotropic dynamics regardless of the strength of the anisotropic
shear flow.
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I. INTRODUCTION

Complex fluids such as colloidal suspensions, polymer
solutions, and granular fluids exhibit very diverse rheological
behavior [1,2]. Shear thinning is among the most well-
known phenomena. Such behavior is predicted for simple
liquids as well[3,4], but the effect is too small to observe at
temperatures well above the glass transition temperature. For
supercooled liquids, however, the situation is different. Re-
cently, strong shear thinning behavior was observed by ex-
periments performed on soda-lime silica glasses above the
glass transition temperature[5]. Yamamotoet al. have done
extensive computer simulations of a binary liquid with a
soft-core interaction[6] near their glass-transition tempera-
ture and found non-Newtonian behavior. The same behavior
was found for other systems such as Lennard-Jones mixtures
[7,8] and polymer melts[9], too. For all cases, the structural
relaxation time and the shear viscosity decrease asġ−n,
whereġ is the shear rate andn is an exponent which is less
than but close to 1. For such systems driven far from equi-
librium, the parameterġ is not a small perturbation but plays
a role similar to an intensive parameter which characterizes
the “thermodynamic state” of the system[10]. Such rheo-
logical behavior is interesting in its own right, but under-
standing the dynamics of supercooled liquids in a nonequi-
librium state is more important because it has possibilities to
shed light on another typical and perhaps more important
nonequilibrium problem, namely, that of nonstationary ag-
ing. Aging is characterized by slow relaxation after a sudden
quench of temperature below the glass transition tempera-
ture. In this case, the waiting time plays a similar role to(the
inverse of) the shear rate. Aging behavior has been exten-
sively studied in spin glasses(see Ref.[11], and references
therein). Aging is also observed in structural glasses[12].
There have been recent attempts to study the aging of struc-

tural glasses theoretically[13] but no analysis and compari-
son to experiments or simulation results[12] have been pre-
sented due to the complicated nonstationary nature of the
problem.

The relationship between aging and a driven, steady-state
system was considered using a schematic model based on the
exactly solvablep-spin spin glass by Berthier, Barrat, and
Kurchan [14]. This theory naturally gives rise to effective
temperatures. The validity of their idea was tested numeri-
cally for supercooled liquids[7]. There have also been at-
tempts to observe aging by exerting shear on the system
instead of quenching the temperature[15]. Recently, there
have been attempts to develop the mode-coupling theory for
the sheared glasses[16,17]. Fuchs and Cates have developed
the mode-coupling theory for the sheared colloidal suspen-
sions using projection operator techniques[17]. They have
analyzed a closed equation for the correlation function for a
schematic model where the shear is exerted on all direction
equally (“the isotropically sheared hard sphere model”). In
their model, shear is turned on at the initial time and there-
fore the dynamics are genuinely nonstationary.

In this paper, we investigate the dynamics of supercooled
fluids under shear both theoretically and numerically for a
realistic system. We extend the standard mode-coupling
theory (MCT) for supercooled fluids and compare the solu-
tions with the numerical simulation results. We mainly focus
on the microscopic origin of the rheological behavior. The
relationship with the more generic aging problem will not be
discussed here. Since our goal is the investigation of shear
thinning behavior, we have neglected violations of the
fluctuation-dissipation theorem. We start with generalized
fluctuating hydrodynamic equations with a convection term.
Using several approximations, we obtain a closed nonlinear
equation for the intermediate scattering function for the
sheared system. The theory is applicable to both normal liq-
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uids and colloidal suspensions in the absence of hydrody-
namic interactions. Similar approach has been applied to the
self-diffusion of the hard sphere colloidal suspension at rela-
tively low densities by Indraniet al. [18]. Extensive com-
puter simulations are implemented for a two-dimensional bi-
nary liquid interacting with soft-core interactions. The effects
of shear on microscopic structure, the structural relaxation
time, and rheological behavior are discussed. Results both
from the theory and the simulation show good qualitative
agreement despite the differences between the systems con-
sidered. Special attention is paid to the directional depen-
dence of the structural relaxation.

The paper is organized as follows. In the next section, we
develop the MCT for sheared suspensions. Complexities
which do not exist in mean-field spin glass models and how
those complexities should be treated are elucidated here. A
possible way to explore the situation without invoking the
fluctuation-dissipation theorem is also discussed. In Sec. III,
the model and our simulation method are explained. The
results both from theory and simulation are discussed in Sec.
IV. In Sec. V we conclude.

II. MODE-COUPLING THEORY

We shall consider a two-dimensional colloidal suspension
under a stationary shear flow given by

v0sr d = G · r = sġy,0d, s2.1d

whereġ is the shear rate andsGdab= ġdaxdby is the velocity
gradient matrix. Generalization to higher dimensions is
trivial. We start with the generalized fluctuating hydrody-
namic equations[19,20]. This is a natural generalization of
the fluctuating hydrodynamics developed by Landau and Lif-
shitz [21] to short wavelengths where the intermolecular cor-
relations become important. Fluctuating fields for the num-
ber densityrsr ,td and the velocityvsr ,td of the colloidal
suspension obey the following set of nonlinear Langevin
equations:

] r

] t
= − = · srvd,

m
] srvd

] t
+ m= · srv ·vd = − r ¹

dF
dr

− z0rsv − v0d + fR,

s2.2d

wherem is the mass of a single colloidal particle,F is the
free energy of the system, andz0 is a bare collective friction
coefficient for colloidal particles.z0 has a weak density and
distance dependence due to hydrodynamic interactions[22]
but we shall neglect these effects. The friction term is spe-
cific for the colloidal case. In the case of liquids, it should be
replaced by a stress term which is proportional to the gradi-
ent of the velocity field multiplied by the shear viscosity.
Both cases, however, lead to the same dynamical behavior on
the long time scales which are of interest here.fRsr ,td is the
random force which satisfies the fluctuation-dissipation theo-
rem (FDT) of the second kind[23,50]

kfR,isr ,tdfR,jsr 8,t8dl0 = 2kBTrsr ,tdz0di jdsr − r 8ddst − t8d
s2.3d

for tù t8, where k¯l0 is an average over the conditional
probability for a fixed value ofrsr ,td at t= t8. Note that the
random force depends on the density and thus the noise is
multiplicative. This fact makes a mode-coupling analysis
more involved as we discuss later in this section. We assume
that the second FDT holds even in nonequilibrium state since
the correlation of the random forces are short ranged and
short lived, and thus the effect of the shear is expected to be
negligible. The first term on the right-hand side of the equa-
tion for the momentum is the osmotic pressure term. Here we
assume that the free energyF is well approximated by that
of the equilibrium form and is given by the well-known ex-
pression

bF .E dr rsr dhln rsr d/r0 − 1j

−
1

2
E dr 1E dr2 drsr 1dcsr12ddrsr 2d, s2.4d

where b=1/kBT, r0 is the average density, andcsrd is the
direct correlation function. We have neglected correlations of
more than three points, such as the triplet correlation func-
tion c3sr 1,r 2,r 3d, whose effect becomes important for the
fluids with stronger directional interactions such as silica
[24]. Under shear, it is expected thatcsrd will be distorted
and should be replaced by a nonequilibrium steady state
form cNEsr d, which is an anisotropic function ofr . It is,
however, natural to expect that this distortion is small on the
molecular length scales which play the most important role
in the slowing down of structural relaxation near the glass
transition. The distortion of the structure under shear is given
up to linear order in the shear rate by[25]

SNEskd = SskdH1 +
k̂ · G · k̂

2kD0

dSskd
dk

J , s2.5d

where Sskd and SNEskd is the static structure factor in the
absence and in the presence of the shear, respectively.D0
=kBT/z0 is the diffusion coefficient in the dilute limitk

;uk u and k̂ ;k / uk u. The direct correlation function in the
Fourier representation ofcsrd is related to the structure factor
by ncskd=1−1/Sskd. From Eq.(2.5), we find that the distor-
tion due to the shear is characterized by the Péclet number
defined by Pe=ġs2/D0, wheres is the diameter of the par-
ticle. Hereafter we shall neglect the distortion and use the
direct correlation function at equilibrium, assuming the
Péclet number is very small.

We linearize Eq.(2.2) around the stationary state asr
=r0+dr and v=v0+dv, where r0 is the average density.
Transforming to wave vector space, we obtain the following
equations:

S ]

] t
− k · G ·

]

] k
Ddrkstd =

ik

m
Jkstd,
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S ]

] t
− k · G

]

] k
+ k̂ · G · k̂DJkstd = −

ik

bSskd
drkstd

−
1

mb
E

q
i k̂ ·qcsqddrk−qstddrqstd −

z0

m
Jkstd + fRkstd,

s2.6d

where Jkstd=mr0k̂ ·dvkstd is the longitudinal momentum
fluctuation, andeq;edq / s2pd2. We have neglected the qua-
dratic terms proportional toJqJk−q. Note that Eq.(2.6) does
not contain coupling to transverse momentum fluctuations
even in the presence of shear.

The direct numerical integration of Eq.(2.6) is in prin-
ciple possible but it is expensive and not theoretically en-
lightening [26]. Rather we shall construct the approximated
closure for the correlation functions, a so-called mode-
coupling approximation[27–29]. There are several ap-
proaches to derive mode-coupling equations, including the
use of the Mori-Zwanzig projection operator and a decou-
pling approximation[27], or implementation of a loop ex-
pansion developed in the context of the equilibrium critical
phenomena and generalized to the dynamic case[29,30].
Both approaches lead to essentially the same equations if the
system is at equilibrium. Under nonequilibrium conditions,
however, the loop expansion approach is more straightfor-
ward and flexible. We shall adopt the loop expansion ap-
proach to the nonlinear Langevin equation with both multi-
plicative noise and the full convection term. Equation(2.6)
can be cast to a general form of the nonlinear Langevin equa-
tion written as

dxi

dt
= mi j xj +

1

2
Vi jkxjxk + fR,i , s2.7d

wherexstd=fdrkstd ,Jkstdg is a field variable,mi j is the linear
coefficient matrix, and the nonlinear coupling coefficientVi jk
is the vertex tensor which satisfies the symmetric relation
Vi jk =Vikj. Finally, fR,istd is the random force field which sat-
isfies the second FDT,

kfR,istdfR,jst8dl0 = kBLijsxddst − t8d, s2.8d

whereLijsxd is thex-dependent Onsager coefficient which is
to be expanded to the lowest order as

Lijsxd = Lij
s0d + Lij ,k

s1d xk, s2.9d

where Lij ,k
s1d ;]Lijsxd /]xkux=0. Comparing Eq.(2.7) with Eq.

(2.6), the elements of the linear coefficient matrix are given
by

mrkrk8
= k · G ·

]

] k
dk,k8,

mrkJk8
=

ik

m
dk,k8,

mJkrk8
=

ik

bSskd
dk,k8,

mJkJk8
= Sk · G ·

]

] k
− k̂ · G · k̂Ddk,k8 −

z0

m
dk,k8.

s2.10d

Nonzero elements of the vertex tensor are given by

VJkrk8rk9
= −

1

bV
hi k̂ ·k8csk8d + i k̂ ·k9csk9djdk,k8+k9,

s2.11d

whereV is the volume of the system. Finally,

LJkJk8

s0d = z0r0TVdk,−k8

LJkJk8,rk9

s1d = Tz0dk+k8,k9. s2.12d

All other components are zero. In the above expressions,

dk,k8 ;
s2pd2

V
dsk − k8d

is the Dirac delta function. We construct the closure equation
for the correlation functionCijst ,t8d=kxistdxjst8dl. Since we
are treating the stationary state, the time translation invari-
ance holds and, thus,Cijst ,t8d=Cijst− t8d. A general scheme
for the loop expansion method for the Langevin equation
with multiplicative noise has been discussed by Phythian
[31]. Up to one loop, the equation for the correlation func-
tion is written as[32]

dCijst − t8d
dt

− miaCa jst − t8d − 2kBLia
s0dĜa j

† st − t8d

=E
−`

t

dt1oia
st − t1dCa jst1 − t8d +E

−`

t8
dt1 Diast − t1d

3Ĝa j
† st1 − t8d

dĜijst − t8d
dt

− miaĜa jst − t8d

= di jdst − t8d +E
t8

t

dt1 oia
st − t1dĜa jst1 − t8d s2.13d

with the memory kernels defined by

oi j
std = ViabĜalstdCbmstdVlm j + kBViabĜalstdĜbmstdLlm,j

s1d ,

Dijstd =
1

2
ViabCalstdCbmstdV jlm + 2kBViabĜalstdCbmstdLjl,m

s1d

+ 2kBLia,b
s1d Ĝal

† stdCbmstdV jl,m. s2.14d

In these expressions, we have introduced the propagator de-
fined by

Ĝijst − t8d =K dxistd
dfR,jst8d

L . s2.15d

Ĝij
†st− t8d;Ĝjist8− td is the conjugate of the propagator.

Equation(2.13) together with Eq.(2.14) are so-called mode-
coupling equations.
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Without further assumption, one needs to solve the
coupled equation for the correlation function and the propa-
gator. The propagator can be eliminated, however, if the
fluctuation-dissipation theorem of the first kind(first FDT) is
valid. The first FDT relates the correlation function to the
response functionxi jstd via the equation

xi jstd = −
ustd
kBT

dCijstd
dt

, s2.16d

whereustd is the heaviside function. Note that the response
function xi jstd is generally neither the same as, nor propor-

tional to, the propagatorĜijstd. xi jstd represents the response
of the system to the perturbation via external fields or

through the boundary, whereasĜijstd represents the response
to a random force field. If the Langevin equation is linear,
both are the same, but this is not true in general for the
nonlinear Langevin equation. To one loop, to be consistent
with the mode-coupling approximation, the response func-
tion is written as[32,33]

xi jst − t8d =
1

T
Ĝikst − t8dhM s0d + L s0djkj +

1

T
E dt1 Ĝikst − t1d

3VkabĜalst1 − t8dCbmst1 − t8dhM s1d + L s1djl j ,m,

s2.17d

where the tensorsMij
s0d and Mij ,k

s1d are defined byMijsxd
.Mij

s0d+Mij ,k
s1d xk. Mijsxd is the matrix which is defined by the

reversible part of the nonlinear Langevin equation. In gen-
eral, we can express the Langevin equation as

dxi

dt
= visxd + Mijsxd

dS

dxj
+ Lijsxd

dS

dxj
+ fR,i , s2.18d

whereS is the entropy of the whole system andvisxd is a
term which originates from the nonequilibrium constraint
such as the convection for the sheared system. From this
definition, the reversible term does not contribute to the en-
tropy production and thus the matrixMijsxd is antisymmet-
ric. For the system considered here, the nonzero elements are
given by

MrkJk8
= − MJk8rk

= − ikTsr0Vdk,−k8 + drk+k8d. s2.19d

If the system is in equilibrium, one may eliminate the
propagator in favor of the correlation function in Eq.(2.13)
by using the first FDT, Eq.(2.16) [32,34,35]. If the system is
out of equilibrium, one has to solve the coupled equations
(2.13). For the case of thep-spin-glass model with an exter-
nal drive, Berthieret al. have analyzed the equation similar
Eq. to(2.13) [14]. They have found that there is a systematic
deviation from the first FDT which is reminiscent of viola-
tions of FDT that occur during aging. Extensive computer
simulation supports these results[7]. A similar analysis for
real fluids is necessary but it is inevitably more involved due
to the complicated tensorial nature of the nonlinear coupling.
In this paper, we shall not focus on the fundamental problem
of the validity of the fluctuation-dissipation theorem and as-
sume that the first FDT is valid. We shall show that even

with this simplification, the theory can explain qualitative
several aspects of the dynamical behavior very well. Using

the first FDT, as in equilibrium case, one can eliminateĜijstd
from Eq. (2.13) and the final expression is given by[32]

dCijst − t8d
dt

− mikCkjst − t8d − 2kBLik
s0dĜkj

† st − t8d

=E
t8

t

dt1 Mikst − t1dCkjst1 − t8d s2.20d

with the memory kernel given by

Mijstd = −
1

2
ViabCalstdCbmstdhVklm − 2LklmjCkj

−1s0d.

s2.21d

These equations are almost identical to the conventional
mode-coupling equations[34,35] except fors−2Lklmd term
which appears in the vertex term of the memory kernel. The
third term on the left-hand side of Eq.(2.20) enters naturally
to guarantee the time-reversal symmetry of the correlation
function.Li jk is defined by

Li jk ; Lia
s0dSa jk

s3d + Lia,j
s1d Sak

s2d + Lia,k
s1d Sa j

s2d, s2.22d

where we have definedSij
s2d andSijk

s3d by

Sij
s2d ; U ]2S

] xi ] xj
U

x=0
and Sijk

s3d ; U ]3S

] xi ] xj ] xk
U

x=0
.

s2.23d

The terms−2Lklmd is a new term which originates from the
multiplicative noise. Since the density- and velocity-
dependent part of the entropy is given by

S=E dr
J2sr d

2Trsr d
+

1

T
F, s2.24d

Sij
s2d andSijk

s3d are given by

SJkJk8

s2d = −
1

mr0TV
dk,−k8,

Srkrk8

s2d = −
kB

r0SskdV
dk,−k8,

Srkrk8rk9

s3d =
kB

r0
2V2dk+k8+k9,0,

SJkJk8rk9

s3d =
1

mr0
2TV2dk+k8+k9,0. s2.25d

Combining this with Eq.(2.12), we find thatLi jk =0 for all
elements. Therefore, the final expression for the mode-
coupling equation in the present case becomes equivalent
with the conventional one[27]. Note that the situation will
change if we consider different physical situation: For ex-
ample, if we start with the diffusion equation, which is ob-
tained in the overdamped limit of Eq.(2.6), Li jk plays an
essential role[36].
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Now let us substitute all matrix elements given by Eqs.
(2.10) and(2.11) to Eq. (2.20), we have the set of equations
given by

S ]

] t
− k · G ·

]

] k
DCrkrk8

std = − ikCJkrk8
std,

S ]

] t
− k · G ·

]

] k
− k̂ · G · k̂DCJkrk8

std

= −
ik

mbSskd
Crkrk8

std −
z0

m
CJkrk8

std

−
1

m
E

0

t

dt1o
k9

dzsk,k9,t − t1dCJk9rk8
st1d,

s2.26d

where

o
k

;
V

s2pd2 E dk . s2.27d

The memory kerneldzsk ,k8 ,td is given by

dzsk,k8,td =
m

2 o
q1

o
q2

o
p1

o
p2

o
k9

VJkrq1
rq2

Crq1
rp1

stdCrq2
rp2

std

3 VJk9rp1
rp2

CJk9Jk8

−1 s0d

=
b

2nVo
q

o
p

VJkrqrk−q
Crqrp

stdCrk−qr−k8−p
std

3 VJ−k8rpr−k8−p
=

1

2n2Nb
E

q
E

p
Vksq,k

− qdCrqr−p
stdCrk−qr−k8+p

stdVk8sp,k8 − pd,

s2.28d

whereN is the total number of the particles in the system and
we have defined the vertex function

Vksq,k − qd = k̂ ·qncsqd + k̂ · sk − qdncsuk − qud.

s2.29d

In the derivation of Eq.(2.28), we have used the momentum
equal-time correlation function given by

CJkJk8
s0d =

mnV

b
dk,−k8. s2.30d

If the system is in equilibrium, time and space translational
invariance is satisfied and the correlation function becomes
Casr dbsr8dstd=Casr−r8dbs0dstd or, in k space, Cakbk8

std
=Cakb−k

std3dk,−k8. In the presence of shear, however, this
should be modified as[37]

Casr dbsr8dstd = Casr−r8stddbs0dstd, s2.31d

where we defined the time-dependent position vector by

r std ; expfGtg · r = r + ġtyêx, s2.32d

whereêx is an unit vector oriented along thex axis. In wave
vector space, this is expressed as

Cakbk8
std = Cakstdb−k

std 3 dkstd,−k8 = Cak8stdbk8
std 3 dk,−k8s−td

s2.33d

with the time-dependent wave vector defined by

kstd = expftGtg ·k = k + ġtkxêy, s2.34d

wheretG denotes the transpose ofG. Figure 1(b) shows how
the shear flow advects a positional vectorr by Eq. (2.32) in
a time interval of durationt. The corresponding time-
dependent wave vector,(2.34), is shown in Fig. 1(c). Equa-
tions(2.31) and(2.33) state that the fluctuations satisfy trans-
lational invariance in a reference frame flowing with the
shear contours. Using this property, Eq.(2.28) becomes

dzsk,k8,td =
1

2r0
2Nb

E
q
E

p
Vksq,k − qdCrqr−qstd

3stdCrk−qr−kstd+qstd
stdVk„td„pstd,kstd

− qstd…dp,qstddk8,kstd =
1

2r0
2NVb

E
q

Vksq,k

− qdCrqr−qstd
stdCrk−qr−kstd+qstd

stdVkstd„pstd,kstd

− qstd…dk8,kstd ; dzsk,td 3 dk8,kstd. s2.35d

Introducing the intermediate scattering function by

Fsk,td ;
1

N
Crks−tdr−k

std =
1

N
kdrks−tdstddr−ks0dl,

s2.36d

dzsk ,td can be rewritten as

dzsk,td =
1

2r0b
E

q
Vksq,k − qdF„qstd,t…F„kstd − qstd,t…

3 Vkstd„pstd,kstd − qstd…, s2.37d

This is the memory kernel in the presence of the shear. This
has exactly the same structure as the equilibrium one[27]
except for the time dependence appearing on the wave vec-
tors. The physical interpretation of Eq.(2.37) is simple: The
memory kernel has the general structure of two correlation
functions sandwiched by two vertex functions. This means

FIG. 1. (a) Geometry of shear flow.(b) Shear advection in real
space.(c) Shear advection in Fourier space.
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that the interactions of two fluctuations with modesq and
k −q scatter at a certain time and then propagate freely in a
“mean field” and after a timet, they recollide and interact.
Under shear, however, by the time the second interactions
take place, the fluctuations are streamed away by the flow.

We also define the cross correlation function

Hsk,td ;
1

N
CJks−tdr−k

std =
1

N
kJks−tdstddrk

* s0dl. s2.38d

Then, Eq.(2.26) can be rewritten as

dFsk,td
dt

= − iks− tdHsk,td,

dHsk,td
dt

= − k̂s− td · G · k̂s− tdHsk,td −
iks− td

mbS„ks− td…
Fsk,td

−
z0

m
Hsk,td −

1

m
E

0

t

dt8 dz„ks− td,t − t8…Hsk,t8d.

s2.39d

Note that in the above equation, the differential operator
k ·G ·] /]k disappears because

dFsk,td
dt

=
] Fsk,td

] t
− ks− td · G ·

]

] ks− td
Fsk,td.

s2.40d

The memory kernel Eq.(2.37) appearing in Eq.(2.39) con-
tains the nonlinear coupling with the correlation function it-
self and therefore the equation should be solved self-
consistently. Indrani and Ramaswamy have derived an
equation similar to Eq.(2.39) for the velocity correlations of
a single tagged particle in a three-dimensional hard sphere
colloidal suspension[18]. They were interested in the rela-
tively low density regime, and did not solve the resulting
equation self-consistently.

For colloidal suspensions the relaxation time of the mo-
mentum fluctuations is of the order oftm=m/z0 and is much
shorter than the relaxation time for density fluctuations
which is of the order of or longer thantd=s2/D0. In other
words, we may invoke the overdamped limit. Thus, we ne-
glect the inertial termdHsk ,td /dt. Likewise the first term of
the right-hand side in the second equation of Eq.(2.39) is
estimated to be of order ofġtm and thus should be very small
as long as the Péclet number is small. Thus, the equation for
the momentum fluctuations may be written as

0 = −
iks− td

mbS„ks− td…
Fsk,td −

z0

m
H„k,td −

1

m
E

0

t

dt8 dz„ks− t…,t

− t8…Hsk,t8d. s2.41d

Substituting this back into the first equation of Eq.(2.39), we
arrive at the equation for the intermediate scattering function

dFsk,td
dt

= −
D0ks− td2

S„ks− t…d
Fsk,td −E

0

t

dt8 M„ks− td,t

− t8…
dFsk,t8d

dt8
, s2.42d

where the memory kernel is given by

Msk,td =
D0

2r0

k

kstdEq
Vksq,k − qdVkstd„qstd,kstd − qstd…

3 F„kstd − qstd,t…F„qstd,t…. s2.43d

Equations(2.42) and (2.43) are the final mode-coupling ex-
pressions. We have started from the equation for both the
density and the momentum fields and proceeded via the stan-
dard mode-coupling approach, taking the overdamped limit
at the end. It should be possible to derive the same result
starting from the diffusion equation with an interaction term
which is obtained by taking the overdamped limit in Eq.
(2.6). In order to arrive at the same result, however, one
needs to use a different resummation scheme that involves
the irreducible projection operator[38].

Equation(2.42) is a nonlinear integrodifferential equation
that can be solved numerically. An efficient numerical rou-
tine to solve the mode-coupling equation is elucidated in
Ref. [39]. Since our equation is not isotropic ink due to the
presence of shear, the numerics are more involved than in the
equilibrium case. We shall solve the equation by dividing the
lower half plane into anNk3 sNk−1d /2 grid, whereNk is the
grid number which we have chosen to be an odd number. We
do not need to consider the upper half plane because it is a
mirror image of the lower one.kx, for example, is discretized
askx,0=−kc,kx,1=−kc+dk, . . . ,kx,Nk

=−kc+Nkdk=kc, wheredk

=2kc/Nk is the grid size andkc is a cutoff wave vector. Any
value outside the boundaryukxu , ukyu.kc is replaced by the
value at the boundary.

III. SIMULATION METHOD

To prevent crystallization and obtain stable amorphous
states via molecular dynamics(MD) simulations, we choose
a model two-dimensional system composed of two different
particle species 1 and 2, which interact via the soft-core po-
tential

vabsrd = essab/rd12 s3.1d

with sab=ssa+sbd /2, wherer is the distance between two
particles anda,b denote particle speciessP1,2d. We take the
mass ratio to bem2/m1=2, the size ratio to bes2/s1=1.4,
and the number of particlesN=N1+N2, N1=N2=5000. Simu-
lations are performed in the presence and absence of shear
flow keeping the particle density and the temperature fixed at
n=n1+n2=0.8/s1

2 (n1=N1/V, n2=N2/V) and kBT=0.526e,
respectively. Space and time are measured in units ofs1 and
t0=sm1s1

2/ed1/2. The size of the unit cell isL=118s1. In the
absence of shear, we impose microcanonical conditions and
integrate Newton’s equations of motion
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dr i
a

dt
=

pi
a

ma
,

dpi
a

dt
= f i

a s3.2d

after very long equilibration periods so that no appreciable
aging(slow equilibration) effect is detected in various quan-
tities such as the pressure or in various time correlation func-
tions. Here,r i

a=srxi
a ,ryi

a d andpi
a=spxi

a ,pyi
a d denote the position

and the momentum of theith particle of the speciesa, andf i
a

is the force acting on theith particle of speciesa. In the
presence of shear, by defining the momentumpi8

a=pi
a

−maġryi
a êx (the momentum deviations relative to mean Cou-

ette flow), and using the Lee-Edwards boundary condition,
we integrate the so-called SLLOD equations of motion so
that the temperaturekBTf;N−1oaoispi8

ad2/mag is kept at a
desired value using a Gaussian constraint thermostat to
eliminate viscous heating effects[40]. The system remains at
rest fort,0 for a long equilibration time and is then sheared
for tù0. Data for analysis have been taken and accumulated
in steady states which can be realized after transient waiting
periods.

We shall calculate the incoherent and the coherent parts of
the scattering function for the binary mixture by using the
definitions[41]

Fssk,td =
1

Na
Ko

i=1

Na

ef−ihks−td·r i
astd−k·r i

as0djgL s3.3d

and

Fabsk,td =
1

NKo
i=1

Na

ef−iks−td·r i
astdgo

j=1

Nb

efik·r j
bs0dgL , s3.4d

respectively, witha,bP1,2. Thea relaxation timeta of the
present mixture, which is defined by

F11sk0,tad . Fssk0,tad = e−1, s3.5d

is equal tota.1800 time units in the quiescent state for
uk0u=2p /s1.

IV. RESULTS

A. Microscopic structure

The partial static structure factorsSabskd are defined as

Sabskd =E dr eik·rkn̂asr dn̂bs0dl, s4.1d

where

n̂asr d = o
j

Na

dsr − r j
ad sa = 1,2d s4.2d

is the local number density of the speciesa. Note the dimen-
sionless wave vectork is measured in units ofs1

−1. For a
binary mixture there are three combinations of partial struc-
ture factorsS11skd, S22skd, and S12skd. They are plotted in
Fig. 2(a) in the quiescent state after taking an angular aver-
age overk. A density variable representing the degree of
particle packing, corresponding to the density of an effective

one component system, can be defined for the present binary
system by

r̂effsr d = s1
2n̂1sr d + s2

2n̂2sr d. s4.3d

The corresponding dimensionless structure factor is given by

Srrskd = s1
−4E dr eik·rkdr̂effsr ddr̂effs0dl = n1

2S11skd

+ n2
2ss2/s1d4S22skd + 2n1n2ss2/s1d2S12skd,

s4.4d

where dr̂eff= r̂eff−kr̂effl. One can see from Fig. 2(b) that
Srrskd has a pronounced peak atk.5.8 and becomes very
small s,0.01d at smallerk demonstrating that our system is
highly incompressible at long wavelengths. BecauseSrrskd
behaves quite similarly toSskd of one component systems,
we examine space-time correlations inr̂effsr d rather than
those in the partial number densityn̂asr d for the present bi-
nary system. The usage ofr̂effsr d makes comparisons of our
simulation data with the mode-coupling theory developed for
a one component system more meaningful.

We next examine the anisotropy in the static structure
factorSrrskd in the presence of shear flow. Figures 3–6 show
Srrskd plotted on a two-dimensionalkx-ky plane(upper part)
and the angular averaged curves(lower part) within the re-
gions (a)–(d) obtained atġ=10−4, 10−3, 10−2, and 10−1, re-
spectively(in units oft0

−1). One sees that, at the lowest shear
ratesġ=10−4d, the shear distortion is negligible but at higher
shear rate the distortion becomes prominent. Atġ=10−3, at
all regions except for the region(d), the peak heights of
Srrskd start decreasing. This is contrary to the estimate from
the linear response theory given by Eq.(2.5) which predicts
no distortion in the regions(a) and (c) but distortion to the
higher (b) and lower(d) peaks. This seems to indicate that
the nonlinear effects due to the shear become important.
Ronis has explored the higher shear regime for the structure
factor of hard sphere colloidal suspensions and concluded

FIG. 2. Partial structure factorsSabskd in (a) and Srrskd in (b)
defined by Eq.(4.4) for the present binary mixture.
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that at higher shear, the peak should always be lower than the
equilibrium value together with a shift that depends on the
direction [25]. Figure 6 shows that peaks in all directions
have been lowered and the peak with maximal distortion
[region (b)] is shifted to the lower wave vectors while the
opposite is true for the shift of the region with minimal dis-
tortion [region (d)]. The qualitative agreement with Ronis’
theory is good but it is not clear that our results can be
explained by a simple two-body theory such as that of Ronis.
Recently Szamel has analyzedSskd for hard sphere colloidal
suspensions up to the linear order inġ [42]. He took the
three-body correlations into account and found quantitative
agreement with the shear viscosity evaluated usingSskd.

It should be noted that because our system is a liquid, we
cannot directly refer to the Péclet number since the bare dif-
fusion coefficientD0 does not exist. Therefore, a direct and
quantitative comparison with the theories discussed above is
not possible. However, estimates from the relaxation times
self-diffusion coefficient evaluated in Ref.[6] allow us to
estimate a Péclet number in the range between 10−1 and 102,
which corresponds to the highest shear rates explored in the
theoretical analysis of this paper.

B. Intermediate scattering function: Numerical results

Here, we examine the dynamics of the local density vari-
able r̂effsr ,td. To this end, we defined the intermediate scat-
tering function

Frrsk,td = n1
2F11sk,td + n2

2ss2/s1d4F22sk,td

+ 2n1n2ss2/s1d2F12sk,td s4.5d

by taking a linear combination of the partial scattering func-
tions defined in Eq.(3.4). Note that Frrsk ,0d=Srrskd by
definition. To investigate anisotropy in the scattering func-
tion Frrsk ,td, the wave vectork is taken in four different
directionsk10, k11, k01, andk−11, where

kmn =
k

Îm2 + n2
smêx + nêyd s4.6d

and m ,nP0,1 as shown in Fig. 7. The wave vectork (in
reduced units) is taken to be 2.9, 5.8, and 10[see also Fig.
2(b)]. Because we use the Lee-Edwards periodic boundary
condition, the available wave vectors in our simulations
should be given by

k =
2p

L
fnêx,sm− nDxdêyg, s4.7d

wheren andm are integers,Dx=Lġt is the difference in the
x coordinate between the top and bottom cells as depicted in
Fig. 6.5 of Ref.[40]. To suppress statistical errors, we sample
about 80 available wave vectors aroundkmn and calculate
Frrsk ,td using Eqs.(4.5) and (3.4), and then we average
Frrsk ,td over sampled wave vectors. The sampled wave vec-
tors are shown as the spots in Fig. 7.

FIG. 3. Srrskd for ġ=10−4. The solid line isSrrskd at equilib-
rium. Dots represent those observed in the region indicated in the
skx,kyd plane above.

FIG. 4. Srrskd for ġ=10−3. All symbols are as in Fig. 3.

MIYAZAKI, REICHMAN, AND YAMAMOTO PHYSICAL REVIEW E 70, 011501(2004)

011501-8



Figures 8–10 showFrrsk ,td /Srrskd for k=2.9, 5.8, and
10, respectively. We have observed that all of the partial
scattering functionsF11sk ,td, F12sk ,td, andF22sk ,td behave
in a similar manner asFrrsk ,td, which demonstrates that the
effective single component scattering function typifies the
dynamics of the whole system. Several features are notice-
able. First, the quantitative trends as a function ofk are simi-
lar for different values ofġ. Secondly, shear drastically ac-
celerates microscopic structural relaxation in the supercooled
state. The structural relaxation timeta decreases strongly
with increasing shear rate asta, ġ−n with n.1. Lastly, the
acceleration in the dynamics due to shear occurs almost iso-
tropically. We observed surprisingly small anisotropy in the
scattering functions even under extremely strong shearġta
.103. A similar isotropy in the tagged particle motions has
already been reported in Ref.[6]. The observed isotropy is
more surprising than that observed in single particle quanti-
ties. In particular, the fact that different particles labels are
correlated in the collective quantity defined in Eq.(3.4)
means that a simple transformation to a frame moving with
the shear flow cannot completely remove the directional
character of the shear. Our results providepost factojustifi-
cation for the isotropic approximation of Ref.[17]. This sim-
plicity in the dynamics is quite different from behavior of
other complex fluids such as critical fluids or polymers,
where the dynamics become noticeably anisotropic in the
presence of shear flow.

C. Intermediate scattering function: MCT results

We evaluateFsk,td for the two-dimensional colloidal sus-
pension theoretically using Eq.(2.42) with Eq. (2.43). Fol-

lowing the procedure explained in Sec. II, we have solved
Eq. (2.42) self-consistently. For the static correlation func-
tion cskd andSskd, the analytic expressions derived by Baus
et al.were used(see the Appendix) [43]. The number of grid
points was chosen to beNk=55. We have also calculated
solution of Eq. (2.42) for the larger grid sizes up toNk
=101 but qualitative differences between results obtained
with different grid numbers were not noticeable. We chose
kcs=10p as the cutoff wave vector. The best estimate for the

FIG. 5. Srrskd for ġ=10−2. All symbols are as in Fig. 3. FIG. 6. Srrskd for ġ=10−1. All symbols are as in Fig. 3.

FIG. 7. Sampled wave vectors.
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transition density isfc=0.72574 forNk=670 at equilibrium,
where f=ps2r0/4 is the volume fraction. ForNk=55, a
higher value,fc=0.76645 is obtained. Figures 11–13 show
the behavior ofFsk ,td renormalized by its initial valueSskd
for f=fc3 s1−10−4d for various shear rates from Pe510−10

to 10−1, where Pe is the Péclet number defined by Pe
= ġs2/D0. The wave vectors were chosen to beks=3.0 (Fig.
11), ks=6.7 (Fig. 12), and ks=12.0 (Fig. 13). ks=6.7 is
close to the position of the first peak ofSskd. At each wave
vector, we have observedFsk ,td /Sskd for four directions de-
noted by(a)–(d) in Fig. 7 and defined by Eq.(4.6). For shear
rates smaller than Pe=10−10 no effect of shear is observed.
For Peù10−10, we observe a large reduction of relaxation
times due to shear. We define the structural relaxation time
ta as in Eq.(3.5). We find that, although the amplitudes of
relaxation defer depending onk, the shear dependence of the
relaxation time and its shear dependence is almost indepen-

dent ofk. The shear rate dependence of the relaxation time is
given by tasġd, ġ−1, consistent with the simulation results
discussed in the previous subsection. The four curves for a
fixed shear rate but for different wave vector directions ex-
hibit almost perfect isotropy, in qualitative agreement with
the behavior observed in the simulations. Thus the apparent
anisotropy of the vertex function in Eq.(2.43) provides vir-
tually no anisotropic scattering. Forks=3, we see perfectly
isotropic scattering. Forks=6.7 and 12.0, the curves show
small anisotropy that is still consistent with the simulation
results. Note that the differences shown in the plateau value
for ks=12.0 is an artifact due to our use of a square grid
which produces an error in the radial distances depending on
direction. The differences are noticeable but small in(b) and
(d) for ks=12.0. In these calculations, we have used the

FIG. 8. Fsk ,td /Sskd at ks1=2.8 for various shear rates and at
the different observing points(a) k10, (b) k11, (c) k01, and(d) k−11

as explained in Fig. 7.

FIG. 9. Fsk ,td /Sskd at ks1=5.8. All symbols are as in Fig. 8.

FIG. 10. Fsk ,td /Sskd at ks1=10. All symbols are as in
Fig. 8.

FIG. 11. Fsk ,td /Sskd for ks=3 for different observing points
and for various shear rates. From the right to the left, Pe=10−10,
10−7, 10−5, 10−3, and 10−1. The thick dotted lines are at(a) in Fig. 7.
The thin dotted lines are at(b). The thick solid lines are at(c). The
thin solid lines are at(d). The density isf=fc3 s1−10−4d. The
time t is scaled bys2/D0.
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static structure factor at equilibrium and the distortion of the
structure due to the shear was neglected. However, as shown
in Figs. 3–6, the shape ofSskd becomes weakly anisotropic
under shear. In order to see if the anisotropy of the structures
affects the dynamics, we have implemented the same MCT
calculation usingSskd and ncskd with an anisotropic sinu-
soidal modulation mimicking those observed in the simula-
tions. We found that, as long as modulations are small, no
qualitative change was observed and the dynamics was still
isotropic.

It is surprising that, although the perturbation is highly
anisotropic, the dynamics of fluctuations are almost isotro-
pic. The reason for the isotropic nature of fluctuations may
be understood as follows: The shear flow perturbs and ran-
domizes the phase of coupling between different modes. This
perturbation dissipates the cage that transiently immobilizes
particles. Mathematically, this is reflected through the time
dependence of the vertex. This “phase randomization” occurs
irrespective of the direction of the wave vector, which results

in the essentially isotropic behavior of relaxation. This
mechanism is different from that of many complex fluids and
of dynamics near a critical point under shear, in which an-
isotropic distortion of the fluctuations at small wave vectors
by shear plays an essential role[37].

D. Viscosity

The shear-dependent viscosityhsġd is evaluated by modi-
fying the mode-coupling expression for the viscosity near
equilibrium [44]. This can be done by following the same
procedure explained in Sec. II for the total momentum both
from solvent molecules and colloids. The equation for the
total momentum is given by the Navier-Stokes equation. The
nonlinear term in the equation comes from the osmotic pres-
sure of the suspension particles. Neglecting the coupling of
the density field of colloids with that of the solvent mol-
ecules, one obtains the mode-coupling expression for the vis-
cosity. In the presence of the shear, the same modification as
in Eq. (2.37) is necessary and the wave vectors should be
replaced by their time-dependent counterparts. The final re-
sult is given by

hsġd = h0 +
1

2b
3 E

0

`

dtE dk

s2pd2

3
kxkxstd

S2skdS2
„kstd…

] Sskd
] ky

] Sskstdd
] kystd

F2
„kstd,t…, s4.8d

whereh0 is the viscosity of the solvent alone. The integral
over k can be implemented for the set ofFsk,td evaluated
using Eq.(2.42). In Fig. 14, we have plotted the shear de-
pendence of the reduced viscosity defined by

hRsġd ;
hsġd − h0

h0
s4.9d

for various densities aroundfc. The strong non-Newtonian
behavior is observed at high shear rate and large densities,
which is again in qualitative agreement with the simulation
results for liquids reported in Ref.[6]. The shear thinning
exponent extracted from the data between 10−10,Pe,1 is

FIG. 12. Fsk ,td /Sskd for ks=6.7. All symbols are as in
Fig. 11.

FIG. 13. Fsk ,td /Sskd for ks=12. All symbols are as in
Fig. 11.

FIG. 14. The reduced viscosity,(4.9), versus the shear rate for
various densities. Here Pe=ġs2/D0. From top to bottom;f
=0.766549, 0.76650, 0.766453, 0.76640, 0.76600, and 0.75600.
The highest density is 4310−5% larger thanfc.
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hRsġd~ġ−n with n.0.99. This is in agreement with the ex-
ponent estimated from the simulation results and the struc-
tural relaxation timetasġd observed in the simulation and in
the theory discussed in the previous subsections. For larger
shear rates, Pe.1, the exponent becomes smaller, which is
again consistent with computer simulation[6]. However, one
should not trust this reasoning for Pe.1. As discussed in
Sec. IV A, it is expected that the distortion of structurecskd
and Sskd by shear becomes important and one should take
these effects into account in the theory. In this regime, how-
ever, the glassy structure has already been destroyed and the
system becomes more similar to a “liquid.” In the liquid
state, the shear-thinning exponent is always expected to be
smaller than 1 and range between 0.5 and 0.8[3,4,7,45].

Slightly abovefc, plastic behavior is observed, which im-
plies the presence of the yield stress. Note that this is an
artifact of the theory becausefc predicted from the mode-
coupling theory is much lower than the real glass transition
density. Below the real glass transition densityfg, it is ex-
pected that shear thinning behavior similar to that predicted
by MCT for f,fc will result.

V. CONCLUSIONS

In this paper, we presented the derivation of the mode-
coupling equation for therealistic supercooled fluids under
shear and compared the results with the molecular dynamic
simulation. Our starting point is fluctuating hydrodynamics
extended to the molecular length scales. A simple closed
equation for the intermediate scattering function was de-
rived. We applied the theory to a two-dimensional colloidal
suspension with hard-core interactions. The numerical analy-
sis of the equation revealed very good agreement with simu-
lation results for a related system: a binary liquid interacting
with a soft-core potential. Theory and simulation showed
common features such as(i) drastic reduction of relaxation
times and the viscosity and(ii ) nearly isotropic relaxation
irrespective of the direction of the shear flow. The fact that
the dynamics is almost isotropic supports the validity of the
schematic models proposed so far, in which the anisotropic
nature of the nonequilibrium states was not explicitly consid-
ered[14,17].

The mode-coupling theory developed in this paper is far
from complete. The most crucial approximation is the use of
the first FDT, which was employed when we close the equa-
tion for dynamical correlators. It is already known that the
first FDT is violated for supercooled systems under shear as
well as aging systems[7]. Without the first FDT, one has to
solve simultaneously the set of mode-coupling equations for
the propagator and correlation function, which couple each
other through the memory kernels. Research in this direction
is under way. A simple argument, however, should suffice to
explain the success of the present theory with regard to shear
thinning behavior. Consider a system that evolves out of
equilibrium with one effective temperatureTeff. Crudely, we
can use the effective steady state version of FDT violation in
the form

xi jstd = −
ustd

kBTeff

dCijstd
dt

s5.1d

to eliminate the response functionxi jstd in favor of the cor-
relation functionCijstd from the set of mode-coupling equa-

tions. We thus expect for the behavior of the structural relax-
ation timetasġd will be unaffected as long as Eq.(5.1) holds.
Another important approximation was to neglect the small
distortion of the structure[cskd and Sskd] due to shear. The
simulation supports that the distortion is negligibly small at
the low shear rates(small Péclet number). The construction
of the equation for equal-time correlation functions such as
the structure factor might be more subtle and should be con-
sidered in future. Simulation results show that the structure is
distorted in a noticeable and anisotropic manner at high shear
rates; the peak height of the first peak ofSskd was lowered as
much as 10% atġ=10−1. It is interesting that the dynamics is
still isotropic and qualitative behavior is not affected even
for such high shear rates.

In the absence of shear, MCT is known to break down at
densities well below the real glass-transition density, where
MCT incorrectly predicts a fictitious nonergodic transition.
Beyond this MCT crossover density, activated hopping be-
tween the local minima of the free energy surface is expected
to dominate the dynamics of the system. Sollichet al.
[46,47] have analyzed a schematic model for hopping pro-
cesses and explained similar shear thinning behavior. Lacks
[48] has also rationalized shear thinning behavior in terms of
changes of the free energy barriers due to shear. It is inter-
esting that the totally different picture given by MCT leads to
some qualitatively similar conclusions. The analysis of the
violation of the first FDT and effective temperatures has the
possibility of clarifying the difference between these distinct
pictures. Barratet al. have shown by simulation that the first
FDT is violated in a sheared liquid and observed nontrivial
effective temperatures[7]. This is consistent with the conclu-
sion of Berthieret al. [14] for the nonequilibriump-spin
model. On the other hand, the trap model predicts multiple
effective temperatures[47]. Future effort will be directed to-
wards extracting effective temperatures from our fluctuating
hydrodynamic approach.

In Sec. II we have mentioned that there are subtle prob-
lems in constructing an equation for the intermediate scatter-
ing function alone: The “correct” MCT equation can be de-
rived if you start from the nonlinear Langevin equations for
the density and momentum fields, taking the overdamped
limit at the end. But difficulties arise if the overdamped limit
is taken for the Langevin equation at the beginning. These
problems exist even for systems at equilibrium and are re-
lated to generic problems that exist in loop expansion meth-
ods. These subtleties were already recognized in the mid
1970’s[34] and recently pointed out in the context of glassy
systems by Schmitzet al. [49]. A detailed study of these and
issues related to the field-theoretic approach to out-of-
equilibrium glassy liquids will be discussed in a future pub-
lication [32].
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APPENDIX: STATIC STRUCTURE FOR THE
TWO-DIMENSIONAL FLUIDS WITH THE

HARD-CORE INTERACTION

Bauset al.have derived an approximated analytic expres-
sion of the direct correlation functioncskd for the
d-dimensional hard sphere fluids[43]. For the two-
dimensional system, it is given by

ncskd = − f
] hfZsfdj

] f F4s1 − a2fdfsksd

+ a2fHa2SJ1saks/2d
aks/2

D2

+
16

p
E

1/a

1

dx s1

− x2d1/2SJ1sksd
ks

− saxd2J1saksxd
aks

DJG , sA1d

where Jnsxd is the Bessel function of the first kind,

f=ps2r0/4 is the packing fraction,r0 is the number density,
and s is the diameter of spheres.a is a parameter which is
determined by solving

2

p
Fa2sa2 − 4darcsinS1

a
D − sa2 + 2dÎa2 − 1G =

1

f2F1 − 4f

− H ] hfZsfdj
] f

J−1G . sA2d

Zsfd;p/r0kBT is the compressibility factor which is ex-
panded by a rescaled virial series as

Zsfd = s1 − fd−2S1 + o
n=1

`

cnfnD , sA3d

wherecn is a coefficient which is related to the virial coeffi-
cients via a recurrence relation. We truncated the series at
n=6. The coefficientscn are given byc1=0, c2=0.1280,c3
=0.0018,c4=−0.0507,c5=−0.0533, andc6=−0.0410.
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