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Supercooled liquids under shear: Theory and simulation
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We analyze the behavior of supercooled fluids under shear both theoretically and numerically. Theoretically,
we generalize the mode-coupling theory of supercooled fluids to systems under stationary shear flow. Our
starting point is the set of generalized fluctuating hydrodynamic equations with a convection term. A nonlinear
integrodifferential equation for the intermediate scattering function is constructed. This theory is applied to a
two-dimensional colloidal suspension. The shear rate dependence of the intermediate scattering function and
the shear viscosity is analyzed. We have also performed extensive numerical simulations of a two-dimensional
binary liquid with soft-core interactions near, but above, the glass transition temperature. Both theoretical and
numerical results show the followingi) A drastic reduction of the structural relaxation time and the shear
viscosity due to shear. Both the structural relaxation time and the viscosity decregSewdth an exponent
v<1, wherevy is the shear rate(ii) Almost isotropic dynamics regardless of the strength of the anisotropic

shear flow.
DOI: 10.1103/PhysRevE.70.011501 PACS nuni®er64.70.Pf, 61.43.Fs, 05.70.Ln, 47.5@
[. INTRODUCTION tural glasses theoreticallyL 3] but no analysis and compari-

Complex fluids such as colloidal suspensions, polymefOn 0 €xperiments or simulation resuli2] have been pre-

solutions, and granular fluids exhibit very diverse rheologicaP€Nt€d due to the complicated nonstationary nature of the

behavior [1,2]. Shear thinning is among the most well- problem. . . .
known phenomena. Such behavior is predicted for simple The relationship between aging and a driven, steady-state

liquids as well[3,4], but the effect is too small to observe at SYStem was considered using a schematic model based on the
temperatures well above the glass transition temperature. FgXaCtly solvablep-spin spin glass by Berthier, Barrat, and

supercooled liquids, however, the situation is different. Re-, urchan[14]. This theory naturally gives rise to effective

L . temperatures. The validity of their idea was tested numeri-
cen_tly, strong shear thinning be_hawo_r_was observed by exéall;f) for supercooled quu)i/d$7]. There have also been at-
periments p_erformed on soda-lime silica glasses above ﬂ}%mpts to observe aging by exerting shear on the system
glass transition temperatufg]. Yamamotoet al. have done

. . . . 0 . instead of quenching the temperatyddb]. Recently, there
extensive computer simulations of a binary liquid with apaye heen attempts to develop the mode-coupling theory for
soft-core interactior6] near'thelr glas_s—transmon tempera- the sheared glassés6,17). Fuchs and Cates have developed
ture and found non-Newtonian behavior. The same behavighe mode-coupling theory for the sheared colloidal suspen-
was found for other systems such as Lennard-Jones mixtur&fons using projection operator techniquég]. They have
[7,8] and polymer melt$9], too. For all cases, the structural analyzed a closed equation for the correlation function for a
relaxation time and the shear viscosity decreaseyds  schematic model where the shear is exerted on all direction
wherey is the shear rate anelis an exponent which is less equally (“the isotropically sheared hard sphere modgelh
than but close to 1. For such systems driven far from equitheir model, shear is turned on at the initial time and there-
librium, the parametey is not a small perturbation but plays fore the dynamics are genuinely nonstationary.

a role similar to an intensive parameter which characterizes In this paper, we investigate the dynamics of supercooled
the “thermodynamic state” of the systefh0]. Such rheo- fluids under shear both theoretically and numerically for a
logical behavior is interesting in its own right, but under- realistic system. We extend the standard mode-coupling
standing the dynamics of supercooled liquids in a nonequitheory (MCT) for supercooled fluids and compare the solu-
librium state is more important because it has possibilities tdions with the numerical simulation results. We mainly focus
shed light on another typical and perhaps more importantn the microscopic origin of the rheological behavior. The
nonequilibrium problem, namely, that of nonstationary ag-relationship with the more generic aging problem will not be
ing. Aging is characterized by slow relaxation after a sudderdiscussed here. Since our goal is the investigation of shear
quench of temperature below the glass transition temperdhinning behavior, we have neglected violations of the
ture. In this case, the waiting time plays a similar rolgttee ~ fluctuation-dissipation theorem. We start with generalized
inverse of the shear rate. Aging behavior has been extenfluctuating hydrodynamic equations with a convection term.
sively studied in spin glasségsee Ref[11], and references Using several approximations, we obtain a closed nonlinear
therein. Aging is also observed in structural glasgég]. equation for the intermediate scattering function for the
There have been recent attempts to study the aging of strusheared system. The theory is applicable to both normal lig-
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uids and colloidal suspensions in the absence of hydrody- (fg;(r,t)fg;(r’,t"))o = 2kgTp(r,t) & 8(r —r') St —t")
namic interactions. Similar approach has been applied to the ' ' 2.3
self-diffusion of the hard sphere colloidal suspension at rela- '

tiVer |OW densities by |ndl’anét al. [18] EXtenSiVe com- for t;t’, where <>0 is an average over the conditional
puter simulations are implemented for a two-dimensional bi'probability for a fixed value op(r ,t) att=t'. Note that the
nary liquid interacting with soft-core interactions. The eﬁeCtSrandom force depends on the density and thus the noise is
O.f shear on micro.scopic structure, th-e structural relaxatior?nultiplicative. This fact makes a mode-coupling analysis
time, and rheological be“"%""’f are discussed. Resullts _bo%ore involved as we discuss later in this section. We assume
from the theory and the simulation show good qualitativey,; the second FDT holds even in nonequilibrium state since
agreement despite the differences between the systems cqiy oo rrelation of the random forces are short ranged and
sidered. Special attention is pald to the directional Olepenéhort lived, and thus the effect of the shear is expected to be
dence of the ;tructura_l relaxation. . negligible. The first term on the right-hand side of the equa-
The paper is organized as follows. In the next section, W&o, for the momentum is the osmotic pressure term. Here we
develop the MCT for sheared suspensions. ComplexmeaSsume that the free energ¥is well approximated by that

which do not exist in mean-field spin glass models and ho f the equilibrium form and is given by the well-known ex-
those complexities should be treated are elucidated here. ession

possible way to explore the situation without invoking the
fluctuation-dissipation theorem is also discussed. In Sec. I,
the model and our simulation method are explained. The szfdr p(r){In p(r)/py— 1}
results both from theory and simulation are discussed in Sec.
IV. In Sec. V we conclude.

_%Jdrlf dr2 op(ry)c(ri)dp(ra), (2.4

Il. MODE-COUPLING THEORY where B=1/kgT, pg is the average density, ardr) is the
We shall consider a two-dimensional colloidal suspensiorflirect correlation function. We have neglected correlations of

under a stationary shear flow given by more than three points, such as the triplt_at correlation func-
. tion c4(rq,ro,r3), whose effect becomes important for the
Vo(r) =T -1 =(w,0), (2.)  fluids with stronger directional interactions such as silica

[24]. Under shear, it is expected ther) will be distorted

where y is the shear rate and’) ,5= ¥4I iS the velocity S
gradient matrix. Generalization to higher dimensions isand should be replaced by a nonequilibrium steady state

trivial. We start with the generalized fluctuating hydrody- O™ Cne(r), which is an anisotropic function of. It is,

namic equation$19,20. This is a natural generalization of however, natural to expect that this distortion is small on the
the fluctuating hydrodynamics developed by Landau and LifMmelecular length scales which play the most important role
shitz[21] to short wavelengths where the intermolecular cor-" the slowing down of structural relaxation near the glass
relations become important. Fluctuating fields for the num ransition. The distortion of the structure under shear is given

ber densityp(r,t) and the velocityv(r,t) of the colloidal UP t0 linear order in the shear rate [36]

suspension obey the following set of nonlinear Langevin ‘o I?dSIk)
equations: K) =SS 1+ 2
Swe(k) =S(k) *D, ok | (2.5
Loy v
at PY)s where S(k) and Sye(k) is the static structure factor in the

absence and in the presence of the shear, respectgly.
a(pv) S5F =kgT/{o is the diffusion coefficient in the dilute limik
m— T tmv. (pv-v)=-pV o op(v = Vo) + 1, =|k| andk=k/|k|. The direct correlation function in the
Fourier representation afr) is related to the structure factor
(2.2) by nc(k)=1-1/9k). From Eq.(2.5), we find that the distor-
wherem is the mass of a single colloidal particl&,is the  tion due to the shear is characterized by the Péclet number
free energy of the system, adglis a bare collective friction defined by Pe%0?/D,, whereo is the diameter of the par-
coefficient for colloidal particlesf, has a weak density and ticle. Hereafter we shall neglect the distortion and use the
distance dependence due to hydrodynamic interac{id?s direct correlation function at equilibrium, assuming the
but we shall neglect these effects. The friction term is spePéclet number is very small.
cific for the colloidal case. In the case of liquids, it should be ~We linearize Eq.(2.2) around the stationary state as
replaced by a stress term which is proportional to the gradi=po+dp and v=vy+4v, where p, is the average density.
ent of the velocity field multiplied by the shear viscosity. Transforming to wave vector space, we obtain the following
Both cases, however, lead to the same dynamical behavior gfluations:
the long time scales which are of interest hdggr ,t) is the )
random force which satisfies the fluctuation-dissipation theo- (i —k-T- i) Spi(t) = 5] (t)
rem (FDT) of the second kind23,5Q at ak /K m
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d J =~ ~ ik Jd - ~ &o
— -k -I'—+k-I'"-K |J(t) == ———pi(t =lk-I' —=k-T'K|&k = = x:-
(at ok ) k() BS(K) P (1) M3, 3,0 ( Ik ) Kk ™ ok

(2.10

1 S o
- — | ik -qc(q) Spx—q(t) dpg(t) — = (1) + fre(t),
mﬁfq 96(0) pi-q(1) 294V m 0+ D Nonzero elements of the vertex tensor are given by

(2.6) 1 " ! ! " 4 '’
R _ o Jeowrpr = _\/{Ik k'c(k’) +ik - K"c(K")} S 4k
where J, (t)=mpgk - dvi(t) is the longitudinal momentum B
fluctuation, andf = fdq/(2m)2 We have neglected the qua- (2.1)
dratic terms propqrtional t3¢Jk—q- Note that Eq(2.6) does. whereV is the volume of the system. Finally,
not contain coupling to transverse momentum fluctuations
even in the presence of shear. L) = ZopoTV

The direct numerical integration of E(R.6) is in prin- Kk ’
ciple possible but it is expensive and not theoretically en- @ B
lightening [26]. Rather we shall construct the approximated LJkaupku‘T§05k+k'lk”' (2.12
closure for the correlation functions, a so-called mode- .
coupling approximation[27-29. There are several ap- All other components are zero. In the above expressions,
proaches to derive mode-coupling equations, including the (2m)?
use of the Mori-Zwanzig projection operator and a decou- Ok = v
pling approximation[27], or implementation of a loop ex-
pansion developed in the context of the equilibrium criticalis the Dirac delta function. We construct the closure equation
phenomena and generalized to the dynamic d2€g3Q. for the correlation functiorCy;(t,t") =(x(t)x(t)). Since we
Both approaches lead to essentially the same equations if thge treating the stationary state, the time translation invari-
system is at equilibrium. Under nonequilibrium conditions, gnce holds and, thuQij(t,t’):Cij(t—t’). A general scheme
however, the loop expansion approach is more straightforfor the loop expansion method for the Langevin equation
ward and flexible. We shall adopt the loop expansion apywith multiplicative noise has been discussed by Phythian

proach to the nonlinear Langevin equation with both multi-{31]. Up to one loop, the equation for the correlation func-
plicative noise and the full convection term. Equati@®6)  tion is written as[32]

can be cast to a general form of the nonlinear Langevin equa-
tion written as dG;(t-t")
dt
dx

1
P EViJkXJXk *+fris 2.7

ok =K')

— iaCajlt—t) = 2kgLOGT (t - ')

t t!
:f dtlzia(t_tl)caj(tl_tl)"'J dt; Dia(t =ty
wherex(t) =[ 8p(t), Jc(1)] is a field variable w;; is the linear - w
coefficient matrix, and the nonlinear coupling coefficight . dé—-(t -t') .
is the vertex tensor which satisfies the symmetric relation XGZj(tl—t’)—”dt— = KiaGqj(t=t')
Vijk=Vij- Finally, fr;(t) is the random force field which sat-
isfies the second FDT,

(fri(DfRrj(t"))o =kgLij(x) ot —t'), (2.8
whereL;;(x) is thex-dependent Onsager coefficient which is with the memory kernels defined by

tob ded to the | t ord - - .
0 Pe Sxpanded 1o The ToWestorferas S, (0 =V0sGan(DCa, 0V + keViagGa (DG, (DL,

t
= 5ot —t') + f dy >, (t-t)G,t-t) (213

t

Lij() = L + Lif i (2.9
where Li(.l) = dL;;(X)/ I y=0. Comparing Eq(2.7) with Eq. _1 - @
N leme : Dij () = =V0sCar(MC3, 0V + 2KeVi0sGon (D Cp, (L
(2.6), the elements of the linear coefficient matrix are given 10 = 5VapCan(OCau OV + ZKeViapCar (D Cpu(OL,
by A
+ 2kgL{Y LGl (DC OV} - (2.14)
J
Mppo = KT é_kak,k/, In these expressions, we have introduced the propagator de-
fined by
ik ~ o | ()

=— Gjt-t)=\——,-)- 2.1

Mp 3 = mék,kr, Ij( ) <5fR,j(t,) ( 5

éﬁ(t—t’)zéji(t’—t) is the conjugate of the propagator.
- S5 Equation(2.13) together with Eq(2.14) are so-called mode-
Iu’\]kpkr kK’ . .

BSK) coupling equations.
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Without further assumption, one needs to solve thewith this simplification, the theory can explain qualitative
coupled equation for the correlation function and the propaseveral aspects of the dynamical behavior very well. Using

gator. The propagator can be eliminated, however, if thene first FDT, as in equilibrium case, one can eliminatgt)

fluctuation-dissipation theorem of the first kitfitst FDT) is  from Eq.(2.13 and the final expression is given b§2]
valid. The first FDT relates the correlation function to the

response functiory::(t) via the equation dG;(t—t) , A ,
P (0 . jq . L~ it 1) - kL - 1)
Xij(H) =- E_J_dt . (2.1 t
B :j dtl Mik(t_tl)ckj(tl_t,) (220)
t’

where 4(t) is the heaviside function. Note that the response
function y;;(t) is generally neither the same as, nor propor-with the memory kernel given by
tional to, the propagatdg;;(t). x;(t) represents the response 1
of the system to the perturbation via external fields or Mij(t)=—EViaBCm(t)CﬁM(t){Vkm—ZEKW}CEjl(O)-
through the boundary, where@s(t) represents the response
to a random force field. If the Langevin equation is linear, (2.2
both are the same, but this is not true in general for therhese equations are almost identical to the conventional
nqnllnear Langevm e_quatlon. TO on_e |OOp, to be COﬂSIStenﬁ]ode-Coup"ng equation534,3a except for(_ZLK)\,u,) term
with the mode-coupling approximation, the response funcwhich appears in the vertex term of the memory kernel. The
tion is written as[32,33 third term on the left-hand side of E(2.20) enters naturally

1. 1 . to guarantee the time-reversal symmetry of the correlation
Xij(t—t") = ?Gik(t—t/){M(O) + L(O)}kj + = f dt; Gy (t-ty) function. Ly is defined by

: o L= LOShLESRLASY, (222
XViagGun(t1 = 1) Cp,(t; =t )M + LYY, |
Kaf=ean et Mo where we have define§? andS?> by
(2.17) J 1k
o " _ 2 #S 3 #S

where the tensorsv;” and M;;, are defined byM;; (x) 3,— = and Sj= —_——— .

(0) (1) . < L . X o"Xj x=0 IX; é’X]— I Xk | x=0
=M. +M:" % M;i(x) is the matrix which is defined by the

ij ij,K J (2.23)

reversible part of the nonlinear Langevin equation. In gen-
eral, we can express the Langevin equation as The term(-2Ly,,,) is a new term which originates from the

dx 5S SS multiplicative noise. Since the density- and velocity-
— =p;i(x) + Mij(x)& +L(x)— +fgi,  (2.18 dependent part of the entropy is given by
j

dt Py

FPr) 1
where S is the entropy of the whole system andx) is a S:f drz_l_L + T_}‘, (2.29
term which originates from the nonequilibrium constraint p(r)

such as the convection for the sheared system. From th§j2> andsl(j3k> are given by

definition, the reversible term does not contribute to the en-

tropy production and thus the matri;;(x) is antisymmet- 2 —_ 1 Se
ric. For the system considered here, the nonzero elements are ! mpeTV 7
given by
k
M., = =My = = KT(poVd - + dpyarr) . (2.19 §? = —2_5 .,

A peSIKV
If the system is in equilibrium, one may eliminate the

propagator in favor of the correlation function in EG.13 3 _ £5

by using the first FDT, Eq(2.16) [32,34,35. If the system is Pbicpir 22 TR 00
out of equilibrium, one has to solve the coupled equations

(2.13. For the case of thp-spin-glass model with an exter- 3 1

= 5k+k'+k",0- (2-25)

nal drive, Berthieret al. have analyzed the equation similar W™ moZT\2
0

Eq. to(2.13 [14]. They have found that there is a systematic
deviation from the first FDT which is reminiscent of viola- Combining this with Eq(2.12), we find thatL, =0 for all

tions of FDT that occur during aging. Extensive computerelements. Therefore, the final expression for the mode-
simulation supports these resuf. A similar analysis for coupling equation in the present case becomes equivalent
real fluids is necessary but it is inevitably more involved duewith the conventional ong27]. Note that the situation will

to the complicated tensorial nature of the nonlinear couplingchange if we consider different physical situation: For ex-
In this paper, we shall not focus on the fundamental problenample, if we start with the diffusion equation, which is ob-
of the validity of the fluctuation-dissipation theorem and as-tained in the overdamped limit of Eq2.6), Ly plays an
sume that the first FDT is valid. We shall show that evenessential rolg36].
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Now let us substitute all matrix elements given by Egs.
(2.10 and(2.1)) to Eq.(2.20, we have the set of equations
given by

J 1% .
(E -k-TI'- E)Cpkpk,(t) =- IkCJkpk,(t),
J k- k-T-k
E -k-T- _k -k-I'- C\]kpk,(t)
ik o
- m,BS(k) Cpkpk’(t) - Ecjkpk'(t)

1 t
- fo dt% (kK" t=1y)Cy (1),

(2.26

where

(2.27)

The memory kerneb¢(k,k’,t) is given by

Sk k' =2 22 33 3 S Vi 50 o 0Cs, 5, O

di 92 P1 P2 Kk”

X VJk,,pp Pp, Jk,,Jk,( )

ZWEE et Craps OCo i (D)

J J Vk(q!k
q Jp

P,
(2.28

*Vaseneon ™ 20PNg

- Q)Cp p—p(t)Cpk—qp—k’+p(t)Vk,(p’k, -

PHYSICAL REVIEW E 70, 011501(2004)

flow

@

(b)

FIG. 1. (a) Geometry of shear flowb) Shear advection in real
space(c) Shear advection in Fourier space.

r(t) =exdI't] -r =r + ytyg,, (2.32

whereg, is an unit vector oriented along theaxis. In wave
vector space, this is expressed as

Copebir® = Cap 5, (0 X S,k = Cayo i O X S0
(2.33
with the time-dependent wave vector defined by
k(t) = exdTt] -k =k + ytke@, (2.39

where'l" denotes the transpose Bf Figure 1b) shows how
the shear flow advects a positional veatdoy Eq.(2.32) in

a time interval of durationt. The corresponding time-
dependent wave vecta2.34), is shown in Fig. {c). Equa-
tions(2.31) and(2.33 state that the fluctuations satisfy trans-
lational invariance in a reference frame flowing with the
shear contours. Using this property, £g.28 becomes

1
BJq f Vk(qik - Q)Cpqp_q(t)

205N
X(t)C OV (1), k(1)

o¢(k,k', 1) =

Pr-qP-k(t)+q(t)

1
= (1)) 3p.q0 Sk’ k() = %TV[J Vi(g,k
q

~0)C,,;.,,(OC (Vi (P ()

Pk-gP—k()+q(t)

whereN is the total number of the particles in the system and

we have defined the vertex function

Vi(g,k =) =k - qne() +k - (k - g)nc(k - q).
(2.29

In the derivation of Eq(2.28), we have used the momentum
equal-time correlation function given by

mnV
(Sk -k’ -

2.30
s (2.30

Cyy,(0) =

If the system is in equilibrium, time and space translational
invariance is satisfied and the correlation function becomes

Ca(r)B(r’)(t):Ca(r—r’)B(O)(t) or, in k space, Cakﬁk’(t)
:Cakﬁ_k(t)x S -«'- In the presence of shear, however, this
should be modified ag37]

Ca(r)ﬁ(r’)(t) = Ca(r—r’(t

where we defined the time-dependent position vector by

a0, (2.3)

=q(V)) &' kv = (K1) X Scr ko) (2.39

Introducing the intermediate scattering function by

1
F(k,t) = N<5Pk(—t)(t) dp-(0)),

(2.36)

=

N Pk( 1)P-k

o((k ,t) can be rewritten as
1
a¢(k,t) = —f Vi(a,k = q)F(q(t),HF(k(t) —q(t),1)
ZPOB q

X Vi (p(1), k(1) —a(v), (2.37

This is the memory kernel in the presence of the shear. This
has exactly the same structure as the equilibrium (@7
except for the time dependence appearing on the wave vec-
tors. The physical interpretation of E@Q.37) is simple: The
memory kernel has the general structure of two correlation
functions sandwiched by two vertex functions. This means
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that the interactions of two fluctuations with modgsand dF(k,t) Dok(—1)? t )

k—q scatter at a certain time and then propagate freely in a at - Ski-D) F(k,t) —f dt’ M(k(-1),t
“mean field” and after a timé, they recollide and interact. 0

Under shear, however, by the time the second interactions ,dF(K,t)

take place, the fluctuations are streamed away by the flow. - )T’ (2.42

We also define the cross correlation function
where the memory kernel is given by

1 1 .
H(k,t) = NCJK(_I)p_k(t):N(Jk(_t)(t)ﬁpk(o». (2.38 Dy k
M(k,) ==~ Vi(a,k = aq)Vike(at),k(t) —q(t))
2pok(®)
Then, Eq.(2.26) can be rewritten as
X F(k(t) —q(t),HF(q(t),t). (2.43
dFk,v =—ik(=t)H(k,t), Equations(2.42) and(2.43 are the final mode-coupling ex-
d pressions. We have started from the equation for both the
density and the momentum fields and proceeded via the stan-
dH(K, 1) A . ik(~ 1) dard mode-coupling approach, taking the overdamped limit
—— =—k(=t) - T - k(= t)H(Kk,t) - ——————F(k,t) at the end. It should be possible to derive the same result
dt mBS(k(-1)) starting from the diffusion equation with an interaction term
% 1 [t which is obtained by taking the overdamped limit in Eg.
——H(k,t)——f dt’ s¢(k(=t),t—t")H(k,t"). (2.6). In order to arrive at the same result, however, one
m MJo needs to use a different resummation scheme that involves

(2.39 the irreducible projection operat88g].
Equation(2.42) is a nonlinear integrodifferential equation

Note that in the above equation, the differential operatothat can be solved numerically. An efficient numerical rou-

k-I'-d/ ok disappears because tine to solve the mode-coupling equation is elucidated in
Ref. [39]. Since our equation is not isotropic kndue to the
dF(k,t)  aF(k,1) 9 presence of shear, the numerics are more involved than in the
- gt kK(=t)-I"- mF(k,t). equilibrium case. We shall solve the equation by dividing the

lower half plane into amN, X (N,—1)/2 grid, whereN, is the
(2.40  grid number which we have chosen to be an odd number. We
do not need to consider the upper half plane because it is a
The memory kernel Eq2.37) appearing in Eq(2.39 con-  mirror image of the lower on,, for example, is discretized
tains the nonlinear coupling with the correlation function it- as Ky0=—Ke,Ke1=—Ke+ S, - ’kX,Nk:_kc+ Ny S=k., Where &,
self and therefore the equation should be solved self=2k /N, is the grid size andk. is a cutoff wave vector. Any
consistently. Indrani and Ramaswamy have derived a®ggjye outside the boundaty, [k,| >k is replaced by the
equation similar to Eq(2.39) for the velocity correlations of  yajue at the boundary.
a single tagged particle in a three-dimensional hard sphere
colloidal suspensioffil8]. They were interested in the rela-
tively low density regime, and did not solve the resulting

equation self-consistently. o To prevent crystallization and obtain stable amorphous
For colloidal suspensions the relaxation time _of the Moates via molecular dynami¢dD) simulations, we choose
mentum fluctuations is of the order af=m/{, and is much 5 model two-dimensional system composed of two different

shqrte( than the relaxation time for density fluctuationspartide species 1 and 2, which interact via the soft-core po-
which is of the order of or longer thamy=0?/Dy. In other  iantial

words, we may invoke the overdamped limit. Thus, we ne-

glect the inertial terndH(k ,t)/dt. Likewise the first term of Vap(r) = (o112 (3.1
the right-hand side in the second equation of Ef39) is

estimated to be of order ofr,, and thus should be very small with o,,=(0,+0y)/2, wherer is the distance between two
as long as the Péclet number is small. Thus, the equation fgsarticles andh, b denote particle speciés 1,2). We take the

Ill. SIMULATION METHOD

the momentum fluctuations may be written as mass ratio to ben,/m;=2, the size ratio to ber,/o;=1.4,
and the number of particldé=N;+N,, N;=N,=5000. Simu-
ik(—=1) & 1 , lations are performed in the presence and absence of shear
i mBS(k(-t)) Fk,t) - EH(k't) B n_JO dt’ o0(k(= 1)t flow keeping the particle density and the temperature fixed at

n=n,+n,=0.8/0% (",=N;/V, n,=N,/V) and kgT=0.526,
-t")H(k,t"). (2.41 respectively. Space and time are measured in units eind
70=(m, a3/ €)*2. The size of the unit cell it =1180,. In the
Substituting this back into the first equation of £2.39, we  absence of shear, we impose microcanonical conditions and
arrive at the equation for the intermediate scattering functiorintegrate Newton’s equations of motion
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dar? p} dpf

=" — =f2 3.2 Sp(k) (a)
dat my dt : e Saalk)

———= 8p(k) A
after very long equilibration periods so that no appreciable 1T 12 4 )

aging(slow equilibration effect is detected in various quan-
tities such as the pressure or in various time correlation func-
tions. Herey = (r5;, ry;) andpf'=(pj;, py;) denote the position
and the momentum of th¢h particle of the species, andf?
is the force acting on thé&h particle of species. In the
presence of shear, by defining the momentyii=p®
—-m, &, (the momentum deviations relative to mean Cou-
ette flow), and using the Lee-Edwards boundary condition,
we integrate the so-called SLLOD equations of motion so
that the temperaturkgT[=N"12_i(p/#2/m,] is kept at a
desired value using a Gaussian constraint thermostat to
eliminate viscous heating effedi40]. The system remains at
rest fort< 0 for a long equilibration time and is then sheared
for t=0. Data for analysis have been taken and accumulated
in steady states which can be realized after transient waiting FIG. 2. Partial structure factoi§;,(k) in (a) and S,,(k) in (b)
periods. defined by Eq(4.4) for the present binary mixture.

We shall calculate the incoherent and the coherent parts of
the scattering function for the binary mixture by using theone component system, can be defined for the present binary

definitions[41] system by
Peri(r) = o20y(r) + odh(r). 4.3
(K t)—— Ee[ k(=030 -k-r 20} (3.3 Per(r) = o1 (r) + a5ny(r) (4.3
Ny The corresponding dimensionless structure factor is given by
and _ -4 ikt o ~ — 2
Spp(k) - 0-]_ J dr € <5Peﬁ(r)5peﬁ(o)> - nlsll(k)
Fas(k,t) = E e ik(-o i 12 dikrio1) (3.4 + 1205l 1) *Spa(K) + 20ny( 0l 1) 2S15(K) ,
i=1 j=1 (4 4)
respectively, witha,b e 1,2. Thea relaxation timer, of the A . i
present mixture, which is defined by Where peii=peri—(per). One can see from Fig.(d) that
S,,(K) has a pronounced peak kt=5.8 and becomes very
F11(Ko 7o) = Fe(ko, 7,) = €77, (3.5  small(~0.01) at smallerk demonstrating that our system is

is equal tor,=1800 time units in the quiescent state for N1gNly incompressible at long wavelengths. Becafggk)
Ko|=27/ ;. behaves quite similarly t&k) of one component systems,

we examine space-time correlations pgg(r) rather than
those in the partial number density(r) for the present bi-
IV. RESULTS nary system. The usage pfx(r) makes comparisons of our
A. Microscopic structure simulation data with the mode-coupling theory developed for
a one component system more meaningful.

The partial static structure facto8,(k) are defined as We next examine the anisotropy in the static structure

' factorS,,(k) in the presence of shear flow. Figures 3—6 show
Sik) = J dr €XT(A,(r)hy(0)), (4.1) S, (k) plotted on a two-dimension#l-k, plane(upper pant
and the angular averaged curvgswver pary within the re-
where gions (a)—(d) obtained aty=10"%, 1073, 102, and 10%, re-
N spectively(in units of 751). One sees that, at the lowest shear
3 rate(y=10"%), the shear distortion is negligible but at higher

shear rate the distortion becomes prominentyAtl0 3, at

all regions except for the regio(d), the peak heights of

is the local number density of the specasNote the dimen- S, (k) start decreasing. This is contrary to the estimate from
sionless wave vectok is measured in units of;*. For a  the linear response theory given by Eg.5) which predicts
binary mixture there are three combinations of partial strucno distortion in the regionga) and(c) but distortion to the
ture factorsS;y(k), Syy(k), and S;(k). They are plotted in  higher (b) and lower(d) peaks. This seems to indicate that
Fig. 2@ in the quiescent state after taking an angular averthe nonlinear effects due to the shear become important.
age overk. A density variable representing the degree ofRonis has explored the higher shear regime for the structure
particle packing, corresponding to the density of an effectivefactor of hard sphere colloidal suspensions and concluded

fa(r) =2 8r-rd) (a=1,2 4.2)
j
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10
5
0
FIG. 3. S,,(k) for y= 104 The solid line isS,,(k) at equilib- FIG. 4. S,,(k) for y= 1073, All symbols are as in Fig. 3.
rium. Dots represent those observed in the region indicated in the
k.,k,) plane above.
(ol P Fon(k,8) = W2 13(K,0) + N30l ry) F il 1)
that at higher shear, the peak should always be lower than the + 2N (ol 71) ?F 1ok, 1) (4.5

equilibrium value together with a shift that depends on the

direction [25]. Figure 6 shows that peaks in all directions Py taking a linear combination of the partial scattering func-
have been lowered and the peak with maximal distortiorfions defined in Eq(3.4). Note thatF,,(k,0=S,,(k) by
[region (b)] is shifted to the lower wave vectors while the definition. To investigate anisotropy in the scattering func-
opposite is true for the shift of the region with minimal dis- tion F,.(k,t), the wave vectok is taken in four different
tortion [region (d)]. The qualitative agreement with Ronis’ directionsk g, Kq1, Koy, andk_q;, where
theory is good but it is not clear that our results can be

explained by a simple two-body theory such as that of Ronis. B . .
Recently Szamel has analyz&k) for hard sphere colloidal Kpun= \"W(Meer &)
suspensions up to the linear order yn[42]. He took the

three-body correlations into account and found quantitative, w,ve0,1 as shown in Fig. 7. The wave vector(in
agreement with the shear viscosity evaluated usitig. reduced unitgis taken to be 2.9, 5.8, and I8ee also Fig.

It should be noted that because our system is a liquid, wg )1 Because we use the Lee-Edwards periodic boundary
cannot directly refer to the Péclet number since the bare d'f(':ondition, the available wave vectors in our simulations
fusion coefficientD, does not exist. Therefore, a direct and ghquid be given by
quantitative comparison with the theories discussed above is
not possible. However, estimates from the relaxation times o
self-diffusion coefficient evaluated in Reff6] allow us to k=—[n&,(m-nDyg], 4.7
estimate a Péclet number in the range betweeh 40d 16, L

which corresponds to the highest shear rates explored in the ) o ) )
theoretical analysis of this paper. wheren andm are integersD, =Lt is the difference in the

x coordinate between the top and bottom cells as depicted in
Fig. 6.5 of Ref[40]. To suppress statistical errors, we sample
about 80 available wave vectors aroukg, and calculate

Here, we examine the dynamics of the local density vari+,,(k,t) using Egs.(4.5 and (3.4), and then we average
able pen(r ,t). To this end, we defined the intermediate scat-F ,,(k,t) over sampled wave vectors. The sampled wave vec-
tering function tors are shown as the spots in Fig. 7.

(4.6

B. Intermediate scattering function: Numerical results
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10 10

5 5

0 0
) )
C/J& C/J&

04 6 8
k

FIG. 5. S,,(k) for ¥=1072. All symbols are as in Fig. 3. FIG. 6. S,,(k) for y= 10°L. All symbols are as in Fig. 3.

Figures 8-10 showF,,(k,1)/S,,(k) for k=2.9, 5.8, and |owing the procedure explained in Sec. II, we have solved
10, respectively. We have observed that all of the partiakq (242 self-consistently. For the static correlation func-
scattering functions(k,t), Fyo(k, 1), andFpy(k,t) behave o o(k) and S(k), the analytic expressions derived by Baus

in a similar manner ag,,,(k,t), which demonstrates that the et al. were usedsee the Appendq43]. The number of grid
effective single component scattering function typifies the oints was chosen to bE.=55. We have also calculated
dynamics of the whole system. Several features are notic olution of Eq.(2.42) for lEhe Iérger grid sizes up tol,

able. First, the quantitative trends as afuncﬂorkaf_e SIMP ~101 but qualitative differences between results obtained
lar for different values ofy. Secondly, shear drastically ac- - ~~ . . .
alth different grid numbers were not noticeable. We chose

celerates microscopic structural relaxation in the supercooled ™ .
state. The structural relaxation time, decreases strongly "<~ 10m as the cutoff wave vector. The best estimate for the

with increasing shear rate ag~ y~” with v=1. Lastly, the
acceleration in the dynamics due to shear occurs almost iso-
tropically. We observed surprisingly small anisotropy in the
scattering functions even under extremely strong shear
=10°. A similar isotropy in the tagged particle motions has
already been reported in Rg6]. The observed isotropy is -
more surprising than that observed in single particle quanti-

ties. In particular, the fact that different particles labels are
correlated in the collective quantity defined in E®3.4) ~ 0
means that a simple transformation to a frame moving with
the shear flow cannot completely remove the directional
character of the shear. Our results provtest factojustifi-
cation for the isotropic approximation of R¢1.7]. This sim-
plicity in the dynamics is quite different from behavior of
other complex fluids such as critical fluids or polymers,
where the dynamics become noticeably anisotropic in the -10
presence of shear flow. . .

10

C. Intermediate scattering function: MCT results k
X
We evaluatd=(k,t) for the two-dimensional colloidal sus-
pension theoretically using E¢2.42 with Eq. (2.43. Fol- FIG. 7. Sampled wave vectors.
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1 : : . . : :
k=10 @
—— (b)
(©)
(d
< )
cn& Q&
< 0.5 S
- 2
& A
0
1072

FIG. 10. F(k,t)/S(k) at koy=10. All symbols are as in
FIG. 8. F(k,t)/Sk) at koy=2.8 for various shear rates and at Fig. 8.
the different observing point®) kg, (b) k11, (€) Ko7, and(d) k_q4
as explained in Fig. 7. dent ofk. The shear rate dependence of the relaxation time is
given by 7,(y) ~ %, consistent with the simulation results

transition density isp.=0.72574 forN,=670 at equilibrium, discussed in the previous subsection. The four curves for a
where ¢=ma?py/4 is the volume fraction. FON,=55, a fixed shear rate but for different wave vector directions ex-
higher value,$.=0.76645 is obtained. Figures 11-13 showhibit almost perfect isotropy, in qualitative agreement with
the behavior of(k,t) renormalized by its initial valu&(k) the behavior observed in the simulations. Thus the apparent
for ¢=. X (1-10%) for various shear rates from P&0'°  anisotropy of the vertex function in E¢R.43 provides vir-
to 101, where Pe is the Péclet number defined by Peually no anisotropic scattering. F&r=3, we see perfectly
=ya?/D,. The wave vectors were chosen tokse=3.0(Fig.  isotropic scattering. Foko=6.7 and 12.0, the curves show
11), ko=6.7 (Fig. 12, and ko=12.0 (Fig. 13. ko=6.7 is  small anisotropy that is still consistent with the simulation
close to the position of the first peak 8(k). At each wave results. Note that the differences shown in the plateau value
vector, we have observdek ,t)/S(k) for four directions de- for ko=12.0 is an artifact due to our use of a square grid
noted by(a)«(d) in Fig. 7 and defined by Eq4.6). For shear which produces an error in the radial distances depending on
rates smaller than Pe=T18 no effect of shear is observed. direction. The differences are noticeable but smafhbinand
For Pe=1071° we observe a large reduction of relaxation (d) for ko=12.0. In these calculations, we have used the
times due to shear. We define the structural relaxation time

1

7, as in Eg.(3.5. We find that, although the amplitudes of (@) =
relaxation defer depending dqthe shear dependence of the 09 t gg;
relaxation time and its shear dependence is almost indepen- 08 | (d) —
1 0.7
~ 06t
e
o 05|
, 047
< 03 |
S
= | 0.2t
< o 0.1
L i L
LLQ
0 L 1 L L I L
10% 102 10° 10% 10* 10° 10% 10" 10"
t
FIG. 11. F(k,t)/S(k) for ko=3 for different observing points
and for various shear rates. From the right to the left, Pe¥10

107,105, 1073, and 10%. The thick dotted lines are &) in Fig. 7.
The thin dotted lines are &@b). The thick solid lines are gt). The
thin solid lines are atd). The density is¢=¢. X (1-10%). The
FIG. 9. F(k,t)/S(k) atko,=5.8. All symbols are as in Fig. 8. time t is scaled byo?/D,.
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1 %ﬁ% : 10'2
09 r 58; 1010
08 r -
0.7 108
' B a6
- 10
_ 0.6 S—E
2 05t 1 10% 1
)
; 04t i 102 L
03t ; E 100 L L L L I
o2 | | 107% 10® 10® 10% 102 10° 10?
: ] Pe
0.1 ] : 1 . )
: \ FIG. 14. The reduced viscosit$.9), versus the shear rate for
0 = VR various densities. Here Péw?/D,. From top to bottom;¢
4 a2 100 102 1nd 406 108 1010 1T 0 '
107107 107 107 107 107 10710710 =0.766549, 0.76650, 0.766453, 0.76640, 0.76600, and 0.75600.

The highest density is % 105% larger thang,.

FIG. 12. F(k,t)/Sk) for ko=6.7. All symbols are as in

Fig. 11. in the essentially isotropic behavior of relaxation. This

. . ) ) mechanism is different from that of many complex fluids and
static structure factor at equilibrium and the distortion of the¢ dynamics near a critical point under shear, in which an-

structure due to the shear was neglected. However, as showtyqpic distortion of the fluctuations at small wave vectors
in Figs. 3—6, the shape (ﬁ(k)_ becomgs weakly anisotropic by shear plays an essential rg&¥].
under shear. In order to see if the anisotropy of the structures
affects the dynamics, we have implemented the same MCT _ _
calculation usingS(k) and nc(k) with an anisotropic sinu- D. Viscosity
soidal modulation mimicking those observed in the simula- The shear-dependent viscosiyy) is evaluated by modi-
tions. We found that, as long as modulations are small, ndying the mode-coupling expression for the viscosity near
gualitative change was observed and the dynamics was stidiquilibrium [44]. This can be done by following the same
isotropic. procedure explained in Sec. Il for the total momentum both
It is surprising that, although the perturbation is highly from solvent molecules and colloids. The equation for the
anisotropic, the dynamics of fluctuations are almost isotrototal momentum is given by the Navier-Stokes equation. The
pic. The reason for the isotropic nature of fluctuations maynonlinear term in the equation comes from the osmotic pres-
be understood as follows: The shear flow perturbs and rarsure of the suspension particles. Neglecting the coupling of
domizes the phase of coupling between different modes. Thithe density field of colloids with that of the solvent mol-
perturbation dissipates the cage that transiently immobilizeecules, one obtains the mode-coupling expression for the vis-
particles. Mathematically, this is reflected through the timecosity. In the presence of the shear, the same modification as
dependence of the vertex. This “phase randomization” occurih Eq. (2.37) is necessary and the wave vectors should be
irrespective of the direction of the wave vector, which resultsreplaced by their time-dependent counterparts. The final re-

] sult is given by

(al) """""""" o)
0.9t (b) ............... | (): +i % f dtf dk
0.8+ ééj} — | TV 987 g (2m)?
I ] kke(t)  9dS(Kk) d Skt
07 x il IS IO ) ) (a9
. 06f ] SRSk ak,  dk/t)
Yool ] where 7, is the viscosity of the solvent alone. The integral
-l 1 % & over k can be implemented for the set Bfk,t) evaluated
o 047 1 4 ! using Eq.(2.42. In Fig. 14, we have plotted the shear de-
0.3t : pendence of the reduced viscosity defined by
0.2t :' ] ) —
: | 1Y) -7
osl : | mR(y) = = 4.9
. 3 7o
0 —7—s R for various densities around,.. The strong non-Newtonian
-4 -2 0 2 4 6 8 10 12 C
107107 107 10 1t0 107 107107710 behavior is observed at high shear rate and large densities,

which is again in qualitative agreement with the simulation
FIG. 13. F(k,t)/S(k) for ke=12. All symbols are as in results for liquids reported in Ref6]. The shear thinning
Fig. 11. exponent extracted from the data between'd@Pe<1 is
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7r(y) <y " with »=0.99. This is in agreement with the ex- tions. We thus expect for the behavior of the structural relax-
ponent estimated from the simulation results and the strucation timer,(y) will be unaffected as long as E¢p.1) holds.
tural relaxation timer,(y) observed in the simulation and in Another important approximation was to neglect the small
the theory discussed in the previous subsections. For largelistortion of the structurgc(k) and S(k)] due to shear. The
shear rates, Pel, the exponent becomes smaller, which issimulation supports that the distortion is negligibly small at
again consistent with computer simulatif#j. However, one  the low shear rategsmall Péclet numbgrThe construction
should not trust this reasoning for Pd. As discussed in  of the equation for equal-time correlation functions such as
Sec. IV A, itis expected that the distortion of structet&) e structure factor might be more subtle and should be con-
and S(k) by shear becomes important and one should takgjgered in future. Simulation results show that the structure is
these effects into account in the theory. In this regime, howyistorted in a noticeable and anisotropic manner at high shear
ever, the glassy structure has already been destroyed and es; the peak height of the first peaksok) was lowered as

s%/stten:hbecr?mes;hmo_re similar tota “Iilquid.” In thet Iijq'j['idbmuch as 10% ay=10"1. It is interesting that the dynamics is
state, the shear-thinning exponent is always expected to he., : - =
smaller than 1 and range between 0.5 and[8,8,7,45. Sill isotropic and qualitative behavior is not affected even

: ; P .. for such high shear rates.
Slightly aboveg,, plastic behavior is observed, which im- .
plies the presence of the yield stress. Note that this is a In the absence of shear, MCT is known to break down at

artifact of the theory becausg, predicted from the mode- Hensi'gies well below 'ghe reall g_Igss—transition qensity, y\{here
coupling theory is much lower than the real glass transitiod/CT incorrectly predicts a fictitious nonergodic transition.

density. Below the real glass transition densfly, it is ex- ~ Beéyond this MCT crossover density, activated hopping be-
pected that shear thinning behavior similar to that predictedveen the local minima of the free energy surface is expected

by MCT for ¢ < ¢ will result. to dominate the dynamics of the system. Sollieh al.
[46,47 have analyzed a schematic model for hopping pro-
V. CONCLUSIONS cesses and explained similar shear thinning behavior. Lacks

In this paper, we presented the derivation of the model48] has also rationalized shear thinning behavior in terms of
coupling equation for theealistic supercooled fluids under changes of the free energy barriers due to shear. It is inter-
shear and compared the results with the molecular dynamiesting that the totally different picture given by MCT leads to
simulation. Our starting point is fluctuating hydrodynamicssome qualitatively similar conclusions. The analysis of the
extended to the molecular length scales. A simple closediolation of the first FDT and effective temperatures has the
equation for the intermediate scattering function was depossibility of clarifying the difference between these distinct
rived. We applied the theory to a two-dimensional colloidalpictures. Barragt al. have shown by simulation that the first
suspension with hard-core interactions. The numerical analy=DT is violated in a sheared liquid and observed nontrivial
sis of the equation revealed very good agreement with simueffective temperatured]. This is consistent with the conclu-
Iapion results for a relate_d system: a binary quui(_j interactingsion of Berthieret al. [14] for the nonequilibriump-spin
with a soft-core potential. Theory and simulation showedmgdel. On the other hand, the trap model predicts multiple
common features such &9 drastic reduction of relaxation gffective temperaturef@7]. Future effort will be directed to-

times and the viscosity andi) nearly isotropic relaxation \4-ds extracting effective temperatures from our fluctuating
irrespective of the direction of the shear flow. The fact thathydrodynamic approach

the dynamics is almost isotropic supports the validity of the In Sec. Il we have mentioned that there are subtle prob-

schematic models proposed so far, in which the anisotropi . . : ) :
nature of the nonequilibrium states was not explicitly consid-.Fems In constructing an equation for the intermediate scatter

ered[14,17. ing function alone: The “correct” MCT equation can be de-

The mode-coupling theory developed in this paper is falnved if you start from the nonlynear Lan'gevm equations for
from complete. The most crucial approximation is the use of_he_ density and mome_”t“m f'EI_dS’ _taklng the overdamped
the first FDT, which was employed when we close the equa!_lmlt at the end. But dlfflqultles arise if the overd_am_ped limit
tion for dynamical correlators. It is already known that thelS taken for the Langevin equation at the beginning. These
first FDT is violated for supercooled systems under shear aBroblems exist even for systems at equilibrium and are re-
well as aging systemg]. Without the first FDT, one has to lated to generic problems that exist in loop expansion meth-
solve simultaneously the set of mode-coupling equations fopds. These subtleties were already recognized in the mid
the propagator and correlation function, which couple eaci970's[34] and recently pointed out in the context of glassy
other through the memory kernels. Research in this directiosystems by Schmitet al. [49]. A detailed study of these and
is under way. A simple argument, however, should suffice tassues related to the field-theoretic approach to out-of-
explain the success of the present theory with regard to sheaquilibrium glassy liquids will be discussed in a future pub-
thinning behavior. Consider a system that evolves out ofication [32].
equilibrium with one effective temperatufieg. Crudely, we
can use the effective steady state version of FDT violation in
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APPENDIX: STATIC STRUCTURE FOR THE
TWO-DIMENSIONAL FLUIDS WITH THE
HARD-CORE INTERACTION

Bauset al. have derived an approximated analytic expres-

sion of the direct correlation functionc(k) for the
d-dimensional hard sphere fluid$43]. For the two-
dimensional system, it is given by

nc(k) =— ¢M|:4(1 —a2¢)f(ka)
d¢
2. ) Jl(aka/2))2 16 fl
vad a( ako/2 +7T 1/a x (
12 Jy(ko) _ 2J1(akax)>
X°) <—k(r (ax) E— , (A1)

where J,(x) is the Bessel function of the first kind,

PHYSICAL REVIEW E 70, 011501(2004

¢=ma’pyl 4 is the packing fractiory, is the number density,
and o is the diameter of spherea.is a parameter which is
determined by solving

E[az(a2 - 4)arcsir(l> - (a2+2)Va?- 1]
o a
_{a{¢z<¢>}}-1]_

X

Z(p)=plpokeT is the compressibility factor which is ex-
panded by a rescaled virial series as

A

G

(A2)

Z(¢)=(1- ¢)'2(1 +2 cn¢”) : (A3)

n=1
wherec, is a coefficient which is related to the virial coeffi-
cients via a recurrence relation. We truncated the series at
n=6. The coefficientg, are given byc,;=0, ¢,=0.1280,c;
=0.0018,c,=-0.0507,c5=—-0.0533, andctz=—0.0410.
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