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Rosenfeld’s perturbative method[J. Chem. Phys.98, 8126 (1993)] for constructing the Helmholtz energy
functional of classical systems is applied to studying inhomogeneous Lennard-Jones fluids, in which the key
input—the bulk direct correlation function—is obtained from the first-order mean-spherical approximation
(FMSA) [J. Chem. Phys.118, 4140 (2003)]. Preserving its high fidelity at the bulk limit, the FMSA shows
stable and satisfactory performance for a variety of inhomogeneous Lennard-Jones fluids including those near
hard walls, inside slit pores, and around colloidal particles. In addition, the inhomogeneous FMSA reproduces
reliably the radial distribution function at its bulk limit. The FMSA is found, in particular, much better than the
mean-field theory for fluids near hard surfaces. Unlike alternative non-mean-field approaches, the FMSA is
computationally as efficient as the mean-field theory, free of any numerical determination of structure infor-
mation, weight functions, or empirical parameters.
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I. INTRODUCTION

Inhomogeneous fluids with both repulsive and attractive
intermolecular forces have been active research subjects, be-
cause they often serve as a benchmark to study a variety of
interesting problems such as interfacial phenomena, surface
adsorption, wetting, capillary condensation, etc. Today, the
most promising method to handle these systems seems to be
the classical density-functional theory(DFT), which treats
the Helmholtz free energy as a function of density distribu-
tion. DFT has enjoyed some remarkable successes[1] for
fluids with solely repulsive forces. One example is provided
by the fundamental measure theory(FMT) for inhomoge-
neous hard spheres proposed by Rosenfeld over a decade ago
[2–4]. In particular, the latest modified fundamental measure
theory(MFMT) yields very accurate density profiles for hard
spheres near walls and inside slit pores as well as the corre-
lation functions for homogeneous hard spheres and mixtures
[5–8]. In contrast, DFT theories for fluids with an attractive
component in the intermolecular potential, as typically rep-
resented by the Lennard-Jones(LJ) potential, are less satis-
factory. Even to date, the most popular method for the dis-
persion force remains to be the van der Waals(VDW) or
mean-field theory(MFT). MFT is computationally efficient
and can describe qualitatively some inhomogeneous phe-
nomena. Nevertheless, the inherited problems are standing: it
neglects the fluid structure completely and its performance is
highly system-dependent. For instance, in comparison with
simulation results, the density profiles predicted by MFT ap-
pear satisfactory for LJ fluids confined in attractive slit pores,
but the prediction is very poor when they are near a hard
surface. The deficiencies of MFT can be immediately recog-

nized by the fact that at the homogeneous limit the DFT is
reduced to the well-known VDW equation of state, which is
only qualitative for the phase diagram and chemical potential
calculations. Both properties are vital to any study of inho-
mogeneous fluids[9].

Earlier efforts to remedy the MFT resorted to some modi-
fications [10,11] of the effective hard-sphere diameter for
representing the repulsive force. These modifications are at
best semiempirical and do not fix the fundamental problems
of MFT [12]. Recently, a modified MFT was proposed by
Katsov and Weeks[13,14] by adopting the so-called effec-
tive reference field or the effective external potential. This
theory was further modified by Huang and Chandler[15]. In
order to generate the effective self-consistent field, the modi-
fied MFT needs to solve two coupled integral equations si-
multaneously and reconcile with the bulk fluid behavior by
an empirical input of the LJ equation of state. The approach
has successfully addressed interfacial and hydrophobic phe-
nomena in inhomogeneous fluids, which is hardly expected
for a traditional MFT. In other non-mean-field approaches,
Tang et al. [16] proposed the inhomogeneous Barker-
Henderson(BH) theory, which was an extension from the
original version[17] for the uniform LJ fluid. This approach
preserves the good performance of the BH theory for bulk
fluids and shows some improvements over the MFT. Regret-
fully, the improvements are limited to some cases and not
durable in general. For instance, at the highest densitysT*
=1.35, r* =0.82d demonstrated in Ref.[16], the BH theory
severely exaggerated the density distribution of LJ molecules
around hard walls and the exaggeration persists over dis-
tances even far away from the surface. More disturbingly, it
is sometimes even inferior to the corresponding MFT if the
same BH diameter is adopted, as shown later on. More so-
phisticated DFT theories have been proposed recently to take
into account correlations in inhomogeneous LJ fluids
[18–20]. Most of these theories are derived from either
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weighted density approximation(WDA) or perturbation ex-
pansions. While these theories show considerable improve-
ments over MFT in reported cases, their applicability to other
geometries is often undisclosed. In addition, all of these
methods resort to a numerical solution to the Ornstein-
Zernike (OZ) equation for either radial distribution function
(RDF) or direct correlation function(DCF) to construct the
free-energy functional. Such a construction often demands
massive computational effort; moreover, it needs extra inputs
and parameters to maintain a consistent application to both
bulk and inhomogeneous properties[20]. In addition, a po-
tentially fatal problem emerges when the OZ equation loses
the solution[20,21].

Very recently, we presented[9] a new DFT based on the
solution of the first-order mean-spherical approximation
(FMSA) [22,23], originally developed for homogeneous flu-
ids. In comparison with alternative approaches, FMSA pos-
sesses a number of advantages. First, it provides analytical
expressions for both RDF and DCF for many conventional
intermolecular forces including the LJ potential, thus avoid-
ing expensive numerical work. Second, the first-order solu-
tion ensures free from any solution breakdown of the OZ
equation. Probably, FMSA is to date one of the most accurate
theories for thermodynamic properties of simple fluids, espe-
cially for phase diagram and chemical potential. In the DFT,
the FMSA was extended for inhomogeneous systems through
the so-called energy route, in spirit analogous to the BH
theory by Tanget al. [16]. For LJ fluids near hard walls and
inside slit pores[9], the FMSA gives rather good results and
its performance is apparently better than MFT. Nevertheless,
the FMSA suffers the same problem as the BH theory does:
it yields an exaggerated oscillating density profile at high
densities. It is further found that for LJ molecules around
colloid particles, it fails to give a reasonable density distri-
bution. These drawbacks suggest that a good homogeneous
theory does not warrant better results by a simple inhomoge-
neous extension, and that there are some inadequacies behind
the two DFTs. Since both DFTs are formulated through the
energy route, we logically suspect that the energy route is
accountable for these problems.

In this work, the free-energy functional is reconstructed
through Rosenfeld’s perturbative method[24] or the DCF
route(DCF-FMSA), since the method requires the bulk fluid
DCF as the key input. This is in contrast to our previous
energy route FMSA, which makes use of RDF to formulate
the functional(RDF-FMSA). The DCF-FMSA preserves all
advantages of RDF-FMSA for bulk fluids. The DFT is com-
putationally much more attractive due to the analytical avail-
ability of DCF. It is applied to several representative geom-
etries and undergoes the self-consistency test.

II. THEORY

In general, the intrinsic Helmholtz free energyFfrsr dg in
DFT can be split into ideal and excess parts

Ffrsr dg = Fidfrsr dg + Fexfrsr dg, s1d

where the ideal intrinsic Helmholtz energyFidfrsr dg is ex-
actly given

Fidfrsr dg = kTE dr rsr dhlnfrsr dL3g − 1j. s2d

In Eq. (2), k is the Boltzmann constant,T the absolute tem-
perature, andL the thermal wavelength. The excess free en-
ergy Fexfrsr dg represents the contribution from intermolecu-
lar interactions and its functional form is the central topic of
DFT. Once the excess free-energy functional is determined,
one finds the density profile by solving the Euler-Lagrange
equation,

rsr d = rb expSbmex− b
dFexfrsr dg

drsrd
− bVextsr dD , s3d

whereVextsr d is the external potential andrb andmex are the
density and excess chemical potential of the corresponding
bulk fluid, respectively.

The excess free-energy functional can be further decom-
posed into the contributions from the short-ranged repulsion
and longer-ranged attraction,

Fexfrsr dg = Frep
ex frsr dg + Fatt

exfrsr dg. s4d

The split between the repulsion and attraction for the LJ
potential

usrd = 4«Ss12

r12 −
s6

r6 D s5d

can be made by the BH theory with an effective diameter
[17,26]

d =
1 + 0.2977T*

1 + 0.33163T* + 1.047710−3T*2 s, T * =
kT

«
. s6d

The hard-sphere system with the BH diameter can reason-
ably represent the repulsive part of the LJ potential, and the
representation has been well validated in the homogeneous
limit [22,26]. As in the previous work[9], we will apply the
MFMT for the functionalFrepfrsr dg in Eq. (4). The MFMT
functional reduces to the Bounlik-Mansoori-Carnaha-
Starling equation of state in the bulk limit, which is consis-
tent with the repulsive part of the homogeneous FMSA.
Mathematical expressions of the MFMT functional have
been well documented elsewhere and readers may refer to
these references for details[7].

To obtain the attractive Helmholtz energy functional,
Rosenfeld assumed that it could be perturbatively con-
structed around that for the bulk fluid at equilibrium[24].
Furthermore, Rosenfeld observed that for charged Yukawa
mixtures, the free-energy functional follows the same
second-order pattern at both weak(ideal gas) and strong cou-
pling (ideal liquid) limits. Therefore, he deduced that the
functional for any attractions can be interpolated by second
order and the second-order functional can be constructed by
a perturbation expansion around the bulk fluid, i.e.,
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bFatt
exfrsr dg = bFatt

exsrbd + bmatt
exE Drsr 1ddr 1

−
1

2
E cattsr 1 − r 2dDrsr 1dDrsr 2ddr 1 dr 2,

s7d

where Drsr d=rsr d−rb and the subscriptb stands for the
bulk fluid; matt

ex andcattsr d are the attractive part of the excess
chemical potential and the DCF of the bulk fluid, respec-
tively. Using a functional expansion[25], Eq. (7) is proven
equivalent to the assumption that all the higher-order DCFs
are dominated by those of hard spheres. The assumption is
further supported by the universality of bridge functions
among classical homogeneous fluids observed by Rosenfeld
[27]. The observation underlies the reference hypernetted-
chain approximation(RHNC) developed some years ago for
homogeneous fluids[28].

Equation(7) is appealing for its readiness in numerical
implementation: all the inputs are those of the bulk fluid. In
particular, the second-order DCF with the relation

csr 1 − r 2d = csur 1 − r 2ud s8d

can be obtained from an analytical theory, such as FMSA.
The perturbative method is completely free of any weighted

density and of any higher-order DCFs, as appeared in many
other DFTs. One also sees that Eq.(7) reduces to the attrac-
tive free energy of FMSA at the homogeneous limit, and the
basic relation in DFT,

]sbFexfrsr dgds2d

]rsr 1d]rsr 2d b = − csr 1 − r 2d, s9d

is held. In implementing Eq.(7), we retrieve the attractive
Helmholtz energy and the chemical potential directly from
Ref. [22]. The DCF is also derivable as discussed very re-
cently [29]. For the LJ potential, the derivation can be facili-
tated by its mapping into the two-Yukawa function

usrd = 5 `, r , d

− k1«
e−z1sr−dd

r
+ k2«

e−z2sr−dd

r
, r . d

, s10d

where k1=k0e
z1ss−dd, k2=k0e

z2ss−dd, k0=2.1714s, z1
=2.9637/s, and z2=14.0167/s. This mapping greatly en-
hances the simplicity of FMSA for thermodynamic proper-
ties, RDF, and herein the desired DCF. It can be deduced that
the attractive part of the FMSA-DCF is simply given by

cattsrd = c1
YukawasT1

* ,z1d,r/dd − c1
YukawasT2

* ,z2d,r/dd, s11d

with the definitions ofT1
* =T* d/k1 and T2

* =T* d/k2. The
first-order Yukawa DCF can be copied from Ref.[29],

rc1
YukawasT * , z,rd

=5
e−zsr−1d

T*
, r . 1

e−zsr−1d

T*
−

1

s1 − hd4z6Q2szdT*

hS2szde−zsr−1d + 144h2L2szdezsr−1d − 12h2fs1 + 2hd2z4 + s1 − hds1 + 2hdz5gr4j
h + 12hfSszdLszdz2 − s1 − hd2s1 + h/2dz6gr2 − 24hfs1 + 2hd2z4 + s1 − hds1 + 2hdz5gr + 24hSszdLszdj, r ø 1

6 s12d

with

Qstd =
Sstd + 12hLstde−t

s1 − hd2t3
, s13d

Sstd = s1 − hd2t3 + 6hs1 − hdt2 + 18h2t − 12hs1 + 2hd,

s14d

Lstd = S1 +
h

2
Dt + 1 + 2h, h =

1

6
pr. s15d

Note that Eqs.(11) and (12) indicate that

cattsrd = − busrd, r . d, s16d

which is the first-order approximation to the exact relation

cattsrd = expf− busrdg − 1 s17d

at the infinite low density. This approximation infers that
FMSA and the full MSA, as well, is not accurate at very low
densities and temperatures. Nevertheless, the effect on ther-
modynamic properties is negligible in most circumstances.
For instance, phase diagram calculations, which are quite
sensitive to low temperatures and densities, can be satisfac-
torily made by the FMSA[9,22]. It is worth mentioning that
the availability of the FMSA-DCF, as is in(12), is guaran-
teed, while all other methods for obtaining the DCF could
face severe challenges in the states near to and below the
critical point [29].

III. RESULTS AND DISCUSSION

In this section, we will demonstrate the applications of the
DCF version of FMSA for LJ fluids under a variety of con-
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finements. First, it should be mentioned that all features of
the FMSA at the homogeneous limit, as discussed exten-
sively in our earlier RDF version[9], are preserved. These
features are crucial to calculating those properties at inhomo-
geneous conditions such as gas-liquid transition, chemical
potential, and so on. Second, in the following DFT applica-
tions to inhomogeneous LJ fluids, the corresponding MFT
results are also supplied to serve as a comparison. One
should be aware that, in order to obtain a meaningful density
profile, the chemical potential in the Euler-Lagrange equa-
tion has to be calculated accordingly by the MFT at the cor-
responding bulk density, despite that such a potential is very
poor [9]. In addition, our MFT differs from others in the
literature not only in the MFMT for the short-ranged repul-
sion, but also in using the BH diameter and the correspond-
ing split for attraction. By fixing all these conditions identi-
cal to each other, we can eliminate any ambiguities in
comparing the two theories. Finally, the DCF outside the
hard core in Eq.(11) should re replaced by the original LJ
potential (5) if its values atr .3s are non-negligible[22],
and for those systems with a cutoff in computer simulation,
one can make a mean-field correction to compensate the cut-
off effect as done by others[20].

A. Near hard walls

These systems were studied in our RDF version of FMSA
for the reduced bulk densityr* s=rs3d 0.5 and 0.65, as well
as by Tanget al. [16], using the BH perturbation theory. In
addition to MFT, the results of RDF-FMSA are also plotted
for comparison. Figures 1 and 2 suggest that both DCF-
FMSA and RDF-FMSA successfully account for the deple-
tion around the solid-fluid interface and that their perfor-
mance is quantitatively satisfactory. In contrast, the MFT is
not only quantitatively unreliable but also qualitatively ques-
tionable, because it fails to represent the depletion, and the
density oscillation cannot be sufficiently suppressed. Clearly,
the MFT problems are caused by its structureless free-energy
functional, while the structure is well represented in

FMSA—either through RDF or DCF. The poor performance
of MFT was repeated for Yukawa molecules in contact with
the hard wall[25], where the depletion emerges at low tem-
peratures. Comparing the two versions of FMSA at the two
densities, the DCF version appears slightly better, as shown
in Fig. 2.

However, the good impression about RDF-FMSA is not
sustainable at high densities. The finding in Fig. 3 atr*
=0.82 is very striking: the RDF-FMSA severely exaggerates
the density oscillation and the exaggeration persists over
large distances, while the computer simulation reveals that
the oscillation is rapidly suppressed. This magnitude and per-
sistence of oscillation were also shared by the BH theory
[16]. Somehow unexpectedly, the MFT yields a quite good
density profile, especially in suppressing the oscillation, de-
spite its poor performance at the two other densities. It
should be pointed out that this observation is contrary to that
of Tang et al. [16] regarding MFT. The present MFT is
implemented by making use of the BH parameter and the
MFMT for the repulsive functional, while Tanget al. [16]
utilized the unit diameter and a WDA for the repulsive part.
Obviously, using the same BH diameter is much fairer in
comparison. The findings in Fig. 3 infer that the RDF or
energy route to construct the free-energy functional is sound
at low and moderate densities but could go astray at high

FIG. 1. Density profilesr* szd=rszds3,rb
* =rbs3,z* = z/sd of a

LJ fluid in contact with a hard wall atT* skT/«d=1.35. The symbols
are the Monte Carlo(MC) simulation data[31] and three lines are
the results of MFT, RDF-FMSA, and DCF-MSA, respectively.

FIG. 2. The same as in Fig. 1 except at a moderate bulk
density.

FIG. 3. The same as in Fig. 1 except at a high bulk density.

Y. TANG AND J. WU PHYSICAL REVIEW E70, 011201(2004)

011201-4



densities, where the attraction role should be diminished.
Conversely, MFT poorly takes into account the attractive
force but the account happens to be right at high densities. In
contrast to the two unstable theories, the DCF-FMSA is as
good as in Figs. 1 and 2 and suppresses successfully the
oscillation. In a separate investigation[25], the DCF-FMSA
is found equally stable for inhomogeneous Yukawa fluids
from low to high temperatures. Therefore, throughout the
remaining part of this paper, we will test only the DCF ver-
sion of FMSA and refer to it as FMSA for brevity.

B. Inside slit pores

Figures 4–7 give the density profiles of LJ fluids in attrac-
tive slit pores with the widthH* s=H /sd=3, 4, 5, and 7.5,
respectively. The interaction between LJ molecules and the
wall is simulated by Steele’s 10-4-3 potential,

Vsszd = «wF2

5
Ssw

z
D10

− Ssw

z
D4

−
sw

4

3Dsz+ 0.61Dd3G ,

s18d

in which the parameters are related to those of the LJ poten-
tial by

sw = s, «w = 6.283«, D = 0.7071s s19d

for H* =3, 4, 7.5, and

sw = 0.903s, «w = 12.96«, D = 0.8044s s20d

for H=5. In these slits, the external potential in the Euler-
Lagrange equation should read

Vextszd = Vsszd + VssH − zd. s21d

Besides computer simulations[30,32,33], a number of mod-
els have been developed for these attractive slit pores.
Vanderlicket al. [34] compiled the results of several typical
earlier models: the generalized van der Waals, generalized
hard-rod, and Tarazona and Yvon-Born-Green forH* =3, 4.
Kierlik and Rosinberg[35] studied these systems by a scalar
version of FMT and a modified hard-sphere diameter, which
fits better liquid densities of phase coexistence. Using the
same modified diameter, Choudhury and Ghosh[19] studied
these pores by constructing the hard-sphere free-energy func-
tional through a third-order DCF. Note that all of these stud-
ies were concentrated only on the repulsive functional and
treated the attractive part in a mean-field manner.

Figures 4–7 suggest that the performance of the FMSA is
overall comparable to that of the MFT, of which the FMSA
yields a better density profile forH* =3 and slightly under-

FIG. 5. The same as in Fig. 4 exceptH* =4.

FIG. 6. The same as in Fig. 4 exceptH* =5 and the simulation
data[32].

FIG. 7. The same as in Fig. 4 exceptH* =7.5 and the simulation
data[33].

FIG. 4. Density profile of a LJ fluid inside a slit poreH*
=H /s=3.0. The symbols are the computer simulation data[30].
The solid and dashed lines are the predictions of the FMSA and
MFT, respectively.
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estimates the density peaks forH* =4. If compared with
those DFT models studied by Vanderlicket al. [34], in which
their quantitative performance is far from satisfactory our
FMSA is much better. It appears that the MFT of Kierlik and
Rosinberg[35] resembles much the present MFT, since both
of them are based on FMT. The theory of Choudhury and
Ghosh[19] is also satisfactory, but conspicuously underesti-
mates these peaks inH* =5.0. In general, the FMSA is as
good as the theory of Kierlik and Rosinberg, and of
Choudhury and Ghosh. It is proper to remind that these ap-
parently similar performances should not undermine the fun-
damental difference between the FMSA and those mean-field
approaches: the FMSA with the rigorously derived BH diam-
eter is very reliable at the bulk limit, while the applicability
of those MFTs with a forged diameter is questionable.

C. Around colloid particles

The colloid particle discussed here is simply represented
by a hard-sphere solute with varying size, surrounded by the
LJ molecules. The introduced external potential reads

Vextsrd = H`, r/s , S

0, r/s . S
, s22d

in which S is the dimensionless distance between the particle
and a LJ molecule. The inhomogeneous system exhibits an
interesting phenomenon that resembles the hydrophobic ef-
fects. Close to the particle with a size comparable to a LJ
molecule, the density profile is highly oscillatory and very
much like a RDF of the LJ fluid. With the increasing particle
size, however, the oscillation rapidly fades away and a dry-
ing layer with a vapor-like density is formed around the par-
ticle surface. If the particle is large enough, the recovery
from the drying layer to the bulk density over space can be
essentially monotonous. To a large extent, this behavior is
similar to that of LJ molecules around hard walls discussed
earlier. In fact, a wall can be viewed as a special sphere of
infinite diameter.

Figure 8 shows that our FMSA is able to account for the
aforementioned phenomenon: The drying process with the
increasing particle size is successfully reproduced and the
agreement between the theory and computer simulation[36]
is excellent. In contrast, the density profiles from the MFT
are highly oscillatory in all cases and their first peaks always
occur at the contact. Again, this behavior is quite similar to
what we saw earlier for hard walls. Therefore, it is conclu-
sive that a plain MFT is incapable of showing depletion
around hard walls or hard spheres. Since the only difference
between the FMSA and the MFT is the DCF, one can deduce
that a reliable DCF is essential to account for depletion
within the framework of the present DFT. It is noted that the
modified MFT [13] can also successfully address the size-
induced drying phenomena due to the adoption of the effec-
tive external potential.

D. Self-consistency test

The self-consistency test can be easily performed by fix-
ing a LJ molecule at the origin, or by setting the external

potential in Eq.(22) the same as the LJ potential. The result-
ing density profile should provide the the structural informa-
tion of the bulk LJ fluid through the relationgsrd=rsrd /rb.
However, since the density profile is solved from the Euler-
Lagrange equation, while the conventional RDF is obtained
by solving the OZ equation or by the homogeneous FMSA,
the two pieces of information do not necessarily coincide
with each other. Therefore, the degree of coincidence be-
tween the two functions will reveal the global consistency of
our FMSA. The results of the two functions, together with
computer simulation data[37], are depicted in Fig. 9. There
is an excellent agreement between the RDF of density profile
and that of the homogeneous FMSA, with only minor dis-
crepancies near the first peak. In addition, these results are in
very good agreement with computer simulation data, demon-
strating the high fidelity of FMSA. It is notable that the tem-
perature and density in the Fig. 9 is very close to the triple
point of the LJ fluid, and the observed consistency and ac-
curacy are more persuasive than other states.

FIG. 8. Density profilessr * = r /sd of a LJ fluid around colloid
particles with different sizes. The symbols are the computer simu-
lation data[36]. The solid and dashed lines are the predictions of
the FMSA and MFT, respectively. To enhance visual clarity, the
profiles of S=1, 2, and 3 are shifted upward by 2.4, 1.6, and 0.8,
respectively.

FIG. 9. Consistency test between RDF from the FMSA density
profile (solid line) and from the homogeneous FMSA(dashed line).
The symbols are the computer simulation data[37].

Y. TANG AND J. WU PHYSICAL REVIEW E70, 011201(2004)

011201-6



Rosenfeld also conducted[38] a similar consistency test
based on the hard-sphere free-energy functional from the
original FMT and the DCF from the RHNC approximation.
While the resulting RDF is apparently very close to what we
achieve here, Rosenfeld’s method is computationally much
more cumbersome: the hard-sphere diameter has to be deter-
mined implicitly inside an integral, and a numerical solution
to the RHNC has to be performed. Note that these burdens
are fully waived within the FMSA.

IV. CONCLUSION

Rosenfeld first proposed[24] the perturbative method to
treat the attractive functional by making use of the DCF of
the corresponding bulk fluid. He argued that this treatment is
simpler than all other DFTs in the literature and is theoreti-
cally justified due to its plain interpolation between the ideal-
gas and “ideal-liquid” limits. Since then, however, this
method has found no further elaboration except one applica-
tion to homogeneous fluids[38]. This absence is caused, at
least in part, by insufficient and inaccurate knowledge about
the attractive DCF. Rosenfeld’s prescription for the DCF is to
solve simultaneously the OZ and the Euler-Lagrange equa-
tions. The prescription is computationally quite expensive
and may face deadlock if the solution to the OZ equation is
unattainable. It remains unclear to what extent Rosenfeld’s
prescription can be applied to inhomogeneous fluids.

In this work, we made two modifications in implementing
Rosenfeld’s method: the hard-sphere functional is replaced

by the more accurate MFMT and the attractive functional
by the FMSA-DCF. These modifications tremendously re-
duce the computation work and avoid potential numerical
breakdown. In particular, since the FMSA-DCF is analyti-
cally attainable, the implementation of the FMSA is as com-
fortable and efficient as of the MFT.

Our FMSA has been applied to several representing inho-
mogeneous systems, including LJ molecules near hard walls,
inside silt pores, and around colloid particles. The theory
successfully remedies the deficiencies of its earlier RDF ver-
sion and is capable of describing the surface depletion of LJ
fluids. In contrast, the widely used MFT, although good for
confined attractive surfaces such as slits, fails to account for
the depletion. The FMSA is also highly self-consistent in the
sense that it yields almost an identical RDF from two differ-
ent routes. The quantitative performance of the FMSA, is at
least comparable to several other theories reported individu-
ally for these systems. Therefore, the FMSA developed in
this work is comprehensively reliable and computationally
efficient. Together with its exclusive advantages at the homo-
geneous limit, the FMSA is very promising for practical ap-
plications.
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