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Modeling inhomogeneous van der Waals fluids using an analytical direct correlation function
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Rosenfeld’s perturbative methgd. Chem. Phys98, 8126(1993] for constructing the Helmholtz energy
functional of classical systems is applied to studying inhomogeneous Lennard-Jones fluids, in which the key
input—the bulk direct correlation function—is obtained from the first-order mean-spherical approximation
(FMSA) [J. Chem. Phys118 4140(2003]. Preserving its high fidelity at the bulk limit, the FMSA shows
stable and satisfactory performance for a variety of inhomogeneous Lennard-Jones fluids including those near
hard walls, inside slit pores, and around colloidal particles. In addition, the inhomogeneous FMSA reproduces
reliably the radial distribution function at its bulk limit. The FMSA is found, in particular, much better than the
mean-field theory for fluids near hard surfaces. Unlike alternative non-mean-field approaches, the FMSA is
computationally as efficient as the mean-field theory, free of any numerical determination of structure infor-
mation, weight functions, or empirical parameters.
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I. INTRODUCTION nized by the fact that at the homogeneous limit the DFT is
) ) ) ~ reduced to the well-known VDW equation of state, which is

_ Inhomogeneous fluids with both repulsive and attractivegn|y qualitative for the phase diagram and chemical potential
intermolecular forces have been active research subjects, bgy|culations. Both properties are vital to any study of inho-
cause they often serve as a benchmark to study a variety ?ﬁogeneous fluidga].
interesting problems such as interfacial phenomena, surface ggylier efforts to remedy the MFT resorted to some modi-
adsorption, wetting, capillary condensation, etc. Today, thejcations [10,11] of the effective hard-sphere diameter for
most promising method to handle these systems seems 10 h&yresenting the repulsive force. These modifications are at
the classical density-functional theoFT), which treats  pest semiempirical and do not fix the fundamental problems
the Helmholtz free energy as a function of density distribu-of MET [12]. Recently, a modified MFT was proposed by
tion. DFT has enjoyed some remarkable succe$spsor  Katsov and Week$13,14 by adopting the so-called effec-
fluids with solely repulsive forces. One example is providediye reference field or the effective external potential. This
by the fundamental measure theaiyMT) for inhomoge-  theory was further modified by Huang and Chandls]. In
neous hard spheres proposed by Rosenfeld over a decade gg@er to generate the effective self-consistent field, the modi-
[2—4]. In particular, the latest modified fundamental measurgjed MFT needs to solve two coupled integral equations si-
theory(MFMT) yields very accurate density profiles for hard myitaneously and reconcile with the bulk fluid behavior by
sp_heres near walls and inside slit pores as well as the_ Correm empirical input of the LJ equation of state. The approach
lation functions for homogeneous hard spheres and mixturegas successfully addressed interfacial and hydrophobic phe-
[5-8]. In contrast, DFT theories for fluids with an attractive nomena in inhomogeneous fluids, which is hardly expected
component in the intermolecular potential, as typically rep<oy g traditional MFT. In other non-mean-field approaches,
resented by the Lennard-Jongs)) potential, are less satis- Tang et al. [16] proposed the inhomogeneous Barker-
factory. Even to date, the most popular method for the disyenderson(BH) theory, which was an extension from the
persion force remains to be the van der Wadl®W) or  griginal version[17] for the uniform LJ fluid. This approach
mean-field theoryMFT). MFT is computationally efficient yreserves the good performance of the BH theory for bulk
and can describe qualitatively some inhomogeneous phep,ids and shows some improvements over the MFT. Regret-
nomena. Nevertheless, the inherited problems are standing:f'ﬁ"y, the improvements are limited to some cases and not
neglects the fluid structure completely and its performance igrable in general. For instance, at the highest der(3ity
highly system-dependent. For instance, in comparison Wit@1_35'p*:0_82) demonstrated in Ref16], the BH theory

simulati(_)n results, the denSity pro_files _predictec_zl by MFT 8P-severely exaggerated the density distribution of LJ molecules
pear satisfactory for LJ fluids confined in attractive slit pores,, .o \nq hard walls and the exaggeration persists over dis-

but the prediction is very poor when they are near a hardynces even far away from the surface. More disturbingly, it
surface. The deficiencies of MFT can be immediately recodis sometimes even inferior to the corresponding MFT if the
same BH diameter is adopted, as shown later on. More so-
phisticated DFT theories have been proposed recently to take
*Corresponding author. into account correlations in inhomogeneous LJ fluids
Email address: yiping.tang@honeywell.com [18-20. Most of these theories are derived from either
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weighted density approximatiofWDA) or perturbation ex- . 5
pansions. While these theories show considerable improve- Fp(r)] = kTJ dr p(r){In[p(r)A~] - 1}. 2
ments over MFT in reported cases, their applicability to other

geometries is often undisclosed. In addition, all of thes .
methods resort to a numerical solution to the Ornsteinﬁn Ed. (2), kis the Boltzmann constaril, the absolute tem-

Zernike (OZ) equation for either radial distribution function perature, and\ the thermal wavelength. The excess free en-

(RDF) or direct correlation functiofDCF) to construct the ergy F*{p(r)] represents the contribution from intermolecu-
free-energy functional. Such a construction often demandgr interactions and its functional form is the central topic of
massive computational effort; moreover, it needs extra input FT. Once the excess fre_e-energy f_unct|ona| is determined,
and parameters to maintain a consistent application to botA"€ finds the density profile by solving the Euler-Lagrange
bulk and inhomogeneous propertigd]. In addition, a po- equation,
tentially fatal problem emerges when the OZ equation loses or
the solution[20,21). _ _ 0F%p(r)]

Very recently, we presentd®] a new DFT based on the P = po exp(ﬁ,uex B Sp(r) PVedn) ], ()
solution of the first-order mean-spherical approximation

(FMSA) [22,23, originally developed for homogeneous flu- ynerev, (r) is the external potential ang, and u, are the

ids. In comparison with alternative approaches, FMSA pOSyensity and excess chemical potential of the corresponding
sesses a number of advantages. First, it provides analyticg|, k fiuid respectively.

expressions for both RDF and DCF for many conventional The excess free-energy functional can be further decom-

intermolecular forces including the LJ potential, thus avoid-poseq into the contributions from the short-ranged repulsion
ing expensive numerical work. Second, the first-order soluz 4 longer-ranged attraction

tion ensures free from any solution breakdown of the OZ

equation. Probably, FMSA is to date one of the most accurate

theories for thermodynamic properties of simple fluids, espe- F1p(r)]= F?é(p[f’(r)] +Fadp(n)]. (4)

cially for phase diagram and chemical potential. In the DFT,

the FMSA was extended for inhomogeneous systems throughhe split between the repulsion and attraction for the LJ

the so-called energy route, in spirit analogous to the BHPotential

theory by Tanget al. [16]. For LJ fluids near hard walls and

inside slit poreg9], the FMSA gives rather good results and 12 46

its performance is apparently better than MFT. Nevertheless, u(r) = 48<ﬁ B E) (5)

the FMSA suffers the same problem as the BH theory does:

it yields an exaggerated oscillating density profile at high : . .

de%sities. It is fggcher found that f?)r LJ m)élgcules arou%dCan be made by the BH theory with an effective diameter

. ; o . s L [17,26

colloid particles, it fails to give a reasonable density distri-

bution. These drawbacks suggest that a good homogeneous

theory does not warrant better results by a simple inhomoge- - 1+0.2977* o T* = kT (6)

neous extension, and that there are some inadequacies behind 1+0.3316F* +1.047710°%T2 g

the two DFTs. Since both DFTs are formulated through the

energy route, we logically suspect that the energy route ishe hard-sphere system with the BH diameter can reason-

accountable for these problems. ably represent the repulsive part of the LJ potential, and the
In this work, the free-energy functional is reconstructedrepresentation has been well validated in the homogeneous

through Rosenfeld’s perturbative meth@@4] or the DCF  |imit [22,26. As in the previous work9], we will apply the

route(DCF-FMSA), since the method requires the bulk fluid MEMT for the functionalF{p(r)] in Eq. (4). The MFMT

DCF as the key input. This is in contrast to our previousfynctional reduces to the Bounlik-Mansoori-Carnaha-

energy route FMSA, which makes use of RDF to formulatestarling equation of state in the bulk limit, which is consis-

the functional(RDF-FMSA). The DCF-FMSA preserves all tent with the repulsive part of the homogeneous FMSA.

advantages of RDF-FMSA for bulk fluids. The DFT is com- pjathematical expressions of the MFMT functional have

putationally much more attractive due to the analytical aVaiI'been well documented elsewhere and readers may refer to
ability of DCF. It is applied to several representative geom-these references for detalfg].

etries and undergoes the self-consistency test. To obtain the attractive Helmholtz energy functional,
Rosenfeld assumed that it could be perturbatively con-
Il. THEORY structed around that for the bulk fluid at equilibriui4].

o ) Furthermore, Rosenfeld observed that for charged Yukawa
In general, the intrinsic Helmholtz free enerBp(r)] i mixiures, the free-energy functional follows the same
DFT can be split into ideal and excess parts second-order pattern at both we@deal gas and strong cou-
_ rid e pling (ideal liquid) limits. Therefore, he deduced that the
Flp(r)]1=Fp]+ F1p(n)], . @ functional for any attractions can be interpolated by second
where the ideal intrinsic Helmholtz enerdy[p(r)] is ex-  order and the second-order functional can be constructed by
actly given a perturbation expansion around the bulk fluid, i.e.,
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density and of any higher-order DCFs, as appeared in many
BFap(r)]= BFau(py) + Bﬂgtxtf Ap(ry)dry other DFTs. One also sees that [Ef). reduces to the attrac-

tive free energy of FMSA at the homogeneous limit, and the
basic relation in DFT,

ABFp(r)])?
() dp(r)ap(r,)

where Ap(r)=p(r)-p, and the subscripb stands for the is held. In implementing Eq(7), we retrieve the attractive
bulk fluid; ug; andc,(r) are the attractive part of the excess Helmholtz energy and the chemical potential directly from
chemical potential and the DCF of the bulk fluid, respec-Ref. [22]. The DCF is also derivable as discussed very re-
tively. Using a functional expansiof25], Eq. (7) is proven  cently[29]. For the LJ potential, the derivation can be facili-
equivalent to the assumption that all the higher-order DCF#ated by its mapping into the two-Yukawa function

are dominated by those of hard spheres. The assumption is

1
- 5 J Catl(r1 = r2)Ap(r ) Ap(ry)dry dr,

p=—C(ry—ry), 9

further supported by the universality of bridge functions S (r_d)oo’ i) r<d
among classical homogeneous fluids observed by Rosenfeld ury=y_ K Se ' +K Se z r>d’ (10
[27]. The observation underlies the reference hypernetted- ! r 2 ro’

chain approximatiofRHNC) developed some years ago for where ky=ko@t @, ko=keT ) k=217145, 2

homogeneous fluidg28]. = _ . ]

Equation(7) is appealing for its readiness in numerical H2.9637tihry af‘d Z|27t14‘21|:6|\7ﬂgA1;h'strTapp'gg gregtly en-
implementation: all the inputs are those of the bulk fluid. Int.anCS‘EF € S('mp 'C'.ytﬁ desi dOISCFerIrtno yganalcdpro%etrr-] i
particular, the second-order DCF with the relation €S, » and nerein the aesire - It can be deduced tha

the attractive part of the FMSA-DCF is simply given by

c(ry=ra)=c(ry—ry)) ) Cart(r) = ¢V RYATY, 2, r/d) — Y KA T, 2, r/d), (12)

can be obtained from an analytical theory, such as FMSAwith the definitions ofT;:T* d/k, and T;:T* d/k,. The
The perturbative method is completely free of any weightedirst-order Yukawa DCF can be copied from REZ9],

reyukawq T 7 1)

p
e—z(r—l)
, r>1
T*
< e—z(r—l) 1
) T a-92aT 12
{22V + 1442L 420" - 1271 + 29)%Z + (1 - (L + 2 2]r*
|+ 129[S(2)L(20Z7 - (1 - p)?(1 + pl2)Z8]r? = 249 (1 + 29)°Z* + (1 — ) (1 + 29)2°]r + 249S(27)L(2)}, r<1
[
with Carl(r) = exd - Bu(r)] -1 (17)
S(t) + 127L(t)et at the infinite low density. This approximation infers that
Q)= T d-p (13)  EMSA and the full MSA, as well, is not accurate at very low

densities and temperatures. Nevertheless, the effect on ther-
modynamic properties is negligible in most circumstances.
S(t) = (1 - 7)t>+ 69(1 - Pt*+ 187t — 12(1 + 279), For instance, phase diagram calculations, which are quite
(14) sensitive to low temperatures and densities, can be satisfac-
torily made by the FMSA9,22]. It is worth mentioning that
1 the availability of the FMSA-DCF, as is i(l2), is guaran-
L(t) = (1 +1])t+ 1+29, p==mp. (15) teed, while all other methods for obtaining the DCF could
2 6 face severe challenges in the states near to and below the
Note that Eqs(11) and(12) indicate that critical point [29].
Ill. RESULTS AND DISCUSSION
Can(r) == Bu(r), r >d, (16) _ _ , o
In this section, we will demonstrate the applications of the
which is the first-order approximation to the exact relation DCF version of FMSA for LJ fluids under a variety of con-

011201-3



Y. TANG AND J. WU PHYSICAL REVIEW E70, 011201(2004)

1.00 1.50
0D MC o Me
0.80 .- ::: _— py'=0.50 120 b e wET 05’=0.65
-_—— X == = RDF-FMSA
———DCF-FMSA @mmm DCF-FMSA
0.60 - 0.90 }
E E
'q .Q.
. P W~y (a B M= -
0404 . 060 By *, & =
A
N —
0.20 < 0.30 |
0.00 + + t + t 0.00 t L L
0.00 1.00 2.00 3.00 4.00 5.00 0.00 1.00 2.00 3.00 4.00 5.00
z* 112 212
FIG. 1. Density profile(p* (Z):p(Z)O‘a,p;:pbO'3,Z* =z/0) of a FIG. 2. The same as in Fig. 1 except at a moderate bulk

LJ fluid in contact with a hard wall &* (kT/&)=1.35. The symbols ~ density.

are the Monte CarlgMC) simulation datg31] and three lines are

the results of MFT, RDF-FMSA, and DCF-MSA, respectively. FMSA—either through RDF or DCF. The poor performance
of MFT was repeated for Yukawa molecules in contact with

finements. First, it should be mentioned that all features othe hard wall[25], where the depletion emerges at low tem-
the FMSA at the homogeneous limit, as discussed exterieratures. Comparing the two versions of FMSA at the two
sively in our earlier RDF versiofi9], are preserved. These densities, the DCF version appears slightly better, as shown
features are crucial to calculating those properties at inhomd? Fig. 2. _ _ _
geneous conditions such as gas-liquid transition, chemical However, the good impression about RDF-FMSA is not
potential, and so on. Second, in the following DFT applica-Sustainable at high densities. The finding in Fig. 3pat
tions to inhomogeneous LJ fluids, the corresponding MFT=0.82 is very striking: the RDF-FMSA severely exaggerates
results are also supplied to serve as a comparison. Orfge density oscillation and the exaggeration persists over
should be aware that, in order to obtain a meaningful densitjarge distances, while the computer simulation reveals that
profile, the chemical potential in the Euler-Lagrange equathe oscillation is rapidly suppressed. This magnitude and per-
tion has to be calculated accordingly by the MFT at the corSistence of oscillation were also shared by the BH theory
responding bulk density, despite that such a potential is ver{16]. Somehow unexpectedly, the MFT yields a quite good
poor [9]. In addition, our MFT differs from others in the density profile, especially in suppressing the oscillation, de-
literature not only in the MFMT for the short-ranged repul- SPite its poor performance at the two other densities. It
sion, but also in using the BH diameter and the correspongshould be pointed out that this observation is contrary to that
ing split for attraction. By fixing all these conditions identi- Of Tang et al. [16] regarding MFT. The present MFT is
cal to each other, we can eliminate any ambiguities inmplemented by making use of the BH parameter and the
comparing the two theories. Finally, the DCF outside theMFMT for the repulsive functional, while Tangt al. [16]
hard core in Eq(ll) should re rep|aced by the 0rigina| LJ utilized the unit diameter and a WDA for the repulsive part.
potential (5) if its values atr >3¢ are non-negligiblg22], ~ Obviously, using the same BH diameter is much fairer in
and for those systems with a cutoff in computer simulationcomparison. The findings in Fig. 3 infer that the RDF or

one can make a mean-field correction to compensate the cl@Nergy route to construct the free-energy functional is sound
off effect as done by othelg0]. at low and moderate densities but could go astray at high

3

A. Near hard walls
o ] 28 o MC py=0.82
These systems were studied in our RDF version of FMSA

for the reduced bulk density* (=po°) 0.5 and 0.65, as well
as by Tanget al. [16], using the BH perturbation theory. In
addition to MFT, the results of RDF-FMSA are also plotted
for comparison. Figures 1 and 2 suggest that both DCF-
FMSA and RDF-FMSA successfully account for the deple- il
tion around the solid-fluid interface and that their perfor-
mance is quantitatively satisfactory. In contrast, the MFT is |
not only quantitatively unreliable but also qualitatively ques-
tionable, because it fails to represent the depletion, and the . . . .
density oscillation cannot be sufficiently suppressed. Clearly, ° ! 2 3 4 8

the MFT problems are caused by its structureless free-energy

functional, while the structure is well represented in FIG. 3. The same as in Fig. 1 except at a high bulk density.

15

p*@)
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FIG. 4. Density profile of a LJ fluid inside a slit pore* FIG. 6. The same as in Fig. 4 except =5 and the simulation
=H/=3.0. The symbols are the computer simulation da@.  data[32].
The solid and dashed lines are the predictions of the FMSA and

MFT, respectively. ow=0, £,=6.28%, A=0.7071r (19

densities, where the attraction role should be diminished©’ H*=3, 4, 7.5, and

Conversely, MFT poorly takes into account the attractive 0y, =0.90%, &, =12.96, A=0.8044r (20)
force but the account happens to be right at high densities. In

contrast to the two unstable theories, the DCF-FMSA is ador H=5. In these slits, the external potential in the Euler-
good as in Figs. 1 and 2 and suppresses successfully tthé@grange equation should read

oscillation. In a separate investigati¢®5], the DCF-FMSA _ _

is found equally stable for inhomogeneous Yukawa fluids Veud?) =Ve(2) + Ve(H ~2). 29
from low to high temperatures. Therefore, throughout theBesides computer simulatiofi30,32,33, a number of mod-
remaining part of this paper, we will test only the DCF ver-els have been developed for these attractive slit pores.

sion of FMSA and refer to it as FMSA for brevity. Vanderlicket al. [34] compiled the results of several typical
) ] earlier models: the generalized van der Waals, generalized
B. Inside slit pores hard-rod, and Tarazona and Yvon-Born-GreenHdr=3, 4.

Figures 4—7 give the density profiles of LJ fluids in attrac-Kierlik and Rosinberd35] studied these systems by a scalar
tive slit pores with the widttH* (=H/0)=3, 4, 5, and 7.5, version of FMT and a modified hard-sphere diameter, which

respectively. The interaction between LJ molecules and théts better liquid densities of phase coexistence. Using the

wall is simulated by Steele’s 10-4-3 potential, same modified diameter, Choudhury and Ghddj studied
0 . 4 these pores by constructing the hard-sphere free-energy func-
V(2= [Z(ﬂv) _ (ﬂv) _ Tw } tional through a third-order DCF. Note that all of these stud-
° "5 z 3A(z+0.610)% |’ ies were concentrated only on the repulsive functional and

(19) treated the attractive part in a mean-field manner.
Figures 4-7 suggest that the performance of the FMSA is
in which the parameters are related to those of the LJ potersverall comparable to that of the MFT, of which the FMSA

tial by yields a better density profile fdi* =3 and slightly under-
4,00 4.00
3.00 T=1.20 300 T=1.20

p*,=0.5925 p*,=0.5925

p*(2)

2.00

p*z)
n
3

1.00
1.00

0.00
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
z

0.00 T
0.00 1.00 2,00 3.00 4.00

2
FIG. 7. The same as in Fig. 4 excépt =7.5 and the simulation
FIG. 5. The same as in Fig. 4 except =4. data[33].
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estimates the density peaks foi* =4. If compared with s
those DFT models studied by Vanderliekal. [34], in which 450 .
their quantitative performance is far from satisfactory our 4e X p%=0.70

FMSA is much better. It appears that the MFT of Kierlik and
Rosinberg 35] resembles much the present MFT, since both

of them are based on FMT. The theory of Choudhury and _ **
Ghosh[19] is also satisfactory, but conspicuously underesti—§m
mates these peaks K*=5.0. In general, the FMSA is as 200
good as the theory of Kierlik and Rosinberg, and of
Choudhury and Ghosh. It is proper to remind that these ap- S =40
parently similar performances should not undermine the fun- P

damental difference between the FMSA and those mean-fielc ** JMWW
approaches: the FMSA with the rigorously derived BH diam- O e T o e e sm s
eter is very reliable at the bulk limit, while the applicability r

of those MFTs with a forged diameter is questionable.

FIG. 8. Density profilegr*=r/o) of a LJ fluid around colloid
particles with different sizes. The symbols are the computer simu-
C. Around colloid particles lation data[36]. The solid and dashed lines are the predictions of
The colloid particle discussed here is simply representeé® FMSA and MFT, respectively. To enhance visual clarity, the
by a hard-sphere solute with varying size, surrounded by th@rofiles ofS=1, 2, and 3 are shifted upward by 2.4, 1.6, and 0.8,
LJ molecules. The introduced external potential reads respectively.

», rlo<S$S (22) potential in Eq(22) the same as the LJ potential. The result-

0, rlo>S’ ing density profile should provide the the structural informa-

. . , , ) i _tion of the bulk LJ fluid through the relatiog(r)=p(r)/ py.

in which Sis the dlmenS|onIess distance between the Pa_rt'd‘?-lowever, since the density profile is solved from the Euler-

gnd a L'J molecule. The inhomogeneous system exhlbl'ts aLnagrange equation, while the conventional RDF is obtained
interesting phenomenon that resembles the hydrophobic efy, "sq|ying the 0z equation or by the homogeneous FMSA,
fects. Close to the particle with a size comparable 10 a Lyne two pieces of information do not necessarily coincide
molecule, the density profile is highly oscillatory and very yjth each other. Therefore, the degree of coincidence be-

much like a RDF of the LJ fluid. With the increasing particle yeen the two functions will reveal the global consistency of
size, however, the oscillation rapidly fades away and a drygr FMSA. The results of the two functions, together with
ing layer with a vapor-like density is formed around the par-compyter simulation dat87], are depicted in Fig. 9. There
ticle surface. If the particle is large enough, the recoverys o excellent agreement between the RDF of density profile
from th_e drying layer to the bulk density over space can b%nd that of the homogeneous FMSA, with only minor dis-
essentially monotonous. To a large extent, this behavior i§renancies near the first peak. In addition, these results are in
similar to that of LJ molecules around hard walls dlscusseq,ery good agreement with computer simulation data, demon-
earlier. In fact, a wall can be viewed as a special sphere ofiating the high fidelity of FMSA. It is notable that the tem-
infinite diameter. perature and density in the Fig. 9 is very close to the triple

Figure 8 shows that our FMSA is able to account for the,int of the LJ fluid, and the observed consistency and ac-
aforementioned phenomenon: The drying process with th%uracy are more persuasive than other states.
increasing particle size is successfully reproduced and the

agreement between the theory and computer simul&86n 280 . —
is excellent. In contrast, the density profiles from the MFT
are highly oscillatory in all cases and their first peaks always %
occur at the contact. Again, this behavior is quite similar to
what we saw earlier for hard walls. Therefore, it is conclu-
sive that a plain MFT is incapable of showing depletion
around hard walls or hard spheres. Since the only differencey,

between the FMSA and the MFT is the DCF, one can deduce 1o
that a reliable DCF is essential to account for depletion
within the framework of the present DFT. It is noted that the "]
modified MFT [13] can also successfully address the size-
induced drying phenomena due to the adoption of the effec-
tive external potential. 000

0.00 0.50 1.00 1.50 2.00 2.50 3.00
r

VexdI) :{

2.50

0.50

D. Self-consistency test . .
! y FIG. 9. Consistency test between RDF from the FMSA density

The self-consistency test can be easily performed by fixprofile (solid line) and from the homogeneous FM%#ashed ling
ing a LJ molecule at the origin, or by setting the externalThe symbols are the computer simulation di&3.
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Rosenfeld also conductd@8] a similar consistency test by the more accurate MFMT and the attractive functional
based on the hard-sphere free-energy functional from thby the FMSA-DCF. These modifications tremendously re-
original FMT and the DCF from the RHNC approximation. duce the computation work and avoid potential numerical
While the resulting RDF is apparently very close to what webreakdown. In particular, since the FMSA-DCF is analyti-
achieve here, Rosenfeld’s method is computationally mucleally attainable, the implementation of the FMSA is as com-
more cumbersome: the hard-sphere diameter has to be detéortable and efficient as of the MFT.
mined implicitly inside an integral, and a numerical solution Our FMSA has been applied to several representing inho-
to the RHNC has to be performed. Note that these burdensiogeneous systems, including LJ molecules near hard walls,

are fully waived within the FMSA. inside silt pores, and around colloid particles. The theory
successfully remedies the deficiencies of its earlier RDF ver-
IV. CONCLUSION sion and is capable of describing the surface depletion of LJ

. . fluids. In contrast, the widely used MFT, although good for
Rosentfeld first propose[24] the perturbative method 10 confined attractive surfaces such as slits, fails to account for
treat the attractive functional by making use of the DCF Oftne depletion. The FMSA is also highly self-consistent in the
the corresponding bulk fluid. He argued that this treatment igense that it yields almost an identical RDF from two differ-
simpler than all other DFTs in the literature and is theoreti-gnt routes. The quantitative performance of the FMSA, is at
cally justified due to its plain interpolation between the ideal-jeast comparable to several other theories reported individu-
gas and “ideal-liquid” limits. Since then, however, this 4|y for these systems. Therefore, the FMSA developed in
method has found no further elaboration except one applicanis work is comprehensively reliable and computationally
tion to homogeneous fluid88]. This absence is caused, at gfficient. Together with its exclusive advantages at the homo-

least in part, by insufficient and inaccurate knowledge abougeneous limit, the FMSA is very promising for practical ap-
the attractive DCF. Rosenfeld’s prescription for the DCF is topjications.

solve simultaneously the OZ and the Euler-Lagrange equa-

tions. The prescription is compute}tlonally quite expensive ACKNOWLEDGMENTS

and may face deadlock if the solution to the OZ equation is
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