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Superroughening by linear growth equations with spatiotemporally correlated noise
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We give an extensive study on a class of interfacial superroughening processes with finite lateral system size
in 1+1 dimensions described by linear growth equations with spatiotemporally power-law decaying correlated
noise. Since some of these processes have an extremely long relaxation time, we first develop a very efficient
method capable of simulating the interface morphology of these growth processes even in very late time. We
numerically observe that this class of superrough growth processes indeed gradually develops macroscopic
structures with the lateral size comparable to the lateral system size. Through the rigorous analytical study of
the equal-time height difference correlation function, the different-time height difference correlation function,
and the local width, we explicitly evaluate not only the leading anomalous dynamic scaling term but also all the
subleading anomalous dynamic scaling terms which dominate over the ordinary dynamic scaling term. More-
over, the relation between the macroscopic structure formation and anomalous interfacial roughening of the
superrough growth processes is analytically investigated in detail.
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I. INTRODUCTION 27 for tlz<|,
The interfacial roughening phenomenon has drawn con- W2(l,t) ~ 12092z for | <t <L, (2)
siderable interest for its generic behaviors widespread in na- [2x-9 2¢  for L < tY2,

ture [1]. One of the most important physical quantities re-

lated to the interfacial roughening phenomena is the global

interfacial widthw(L ,t), which describes the statistical aver-

age of the interface height fluctuation relative to the averagén contrast to the ordinary dynamic scaling ansatz, we see

interface height over the whole system of lateral dizat  that the spatial scaling hefe(l,t) vs I] in the intermediate

time t. People have observed that the global interfacialand |ate time regime is described by the local roughness

widths w(L,_t) of the rough interfaces obey the ordinary dy- exponenty’ (=x—«) instead of the global roughness expo-

namic scaling ansat?] nent y. The third nonzero independent exponentwhich

Wz for | _describes the Ioca_l orientational instability of the superrough
1y ' (1) interfaces, is the signature of the anomalous dynamic scaling

Lx for t#>L. behavior.

Interestingly, many fluctuating systems in various fields

w(L,t) ~{

Here, the two independent exponertaindz are known as

: h as atmospheric variabilif9], currency exchange rates
the global roughness exponent and the dynamic exponen(tSUC : g .
respectively. In contrast to the global interfacial width [10]; Pathological heart dynamidd1], and nucleotide con-

W(L,1), the local interfacial widtiw(l,t) describes the statis- Cce€ntrations in deoxyribose nucleic acid sequerjte} etc)
tical average of the interface height fluctuation relative to the!l €xhibit trends in addition to stochastic noise. Their data
average interface height within the local window of lateralProfiles bear much resemblance with the interface morphol-
size I(<L) at time't. From the point of the experimental ©9Y of the superrough growth processes. However, the val-
measurements, the local interfacial widt(l,t) is much Ues of the scaling exponents r_eported in various experiments
more accessible than the global interfacial widttL,t) for ~ [3-5,9-12 spread over a considerable range. One source of
both time and economic concerns. Since it is generally bethe different exponent values could be the correlated nature
lieved that the kinetically roughened interfaces are selfOf the noise. The presence of correlations in noise can
affine, most people only measunél ,t) in the experiments. ~change the scaling exponents and produce a family of con-
Recently, this assumption of self-affinity is challenged bytinuously changing universality class¢g a universality
the observations of the peculiar interfacial features of theclass is identified by its scaling exponentslthough the
“superrough” growth processdse., the global roughness origin of the correlations in noise is not understood, it has
exponenty>1). People have both experimental§~5] and  been successfully applied to explain many recent experi-
numerically[6—8] observed that the local interfacial widths ments in related fields such as the growth of diamond films
w(l,t) of the superrough growth processes in finite system$13], daily temperature fluctuation in Hungaiyl4], dis-
of lateral sizeL obey the anomalous dynamic scaling ansatzcharge of neurons in motor and parietal areas of the primate
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cortex [15], bursting dynamics of a fiber laser with an in- T —_ 2 ~

jected signal[16], etc. Thus, we are motivated to take an ka1 = = vy ke, ) +77(kn, D,

extensive study on the superrough growth processes with wherek, = n(2z/L) withn=0,+1,+2,....

spatiotemporally correlated noise. We will undertake a deep (5)

investigation on the superrough growth processes with finite

lateral system size df in 1+1 dimensions described by the Under the assumption of the flat initial conditions, the solu-

following class of linear growth equations with spatiotempo-tion is then obtained

rally correlated noise: t
T _ ke KM~
h(k,t) = €™ f dre”n (k,, 7) (6)

0
ah(x,t) = (= )™ h(x,t) + 7(x,1)

with positive integem, 3

with
7(Kny DK, 7) = D | Ke| 2|7 = 7/ 2418, . (7)

whereh(x,t) denotes the interface height at positiorand ~ Subsequently, by Fourier transforming this result back to
time t and 7(x,t) represents Gaussian-distributed noise ofSPace, the exact form of the interface heigl,t) can be
zero mean and power-law decaying correlation obtained. Wg then perform some simulation to p|ctor_|ally
observe the interface morphology. Note that the dynamic ex-
ponentz=2m and thus this class of the growth processes
W: D|x - x'[2 Yt -t/ |20 have extremely Iong relaxation time as th_e_valuem)fn-
creases. Here we first develop a very efficient method ca-
with0<p<1/2and 0< §<1/2. (4)  pable of simulating the interface morphology of these growth
processes even in the very late time. By employing E6js.

) and(7), we have
Here and throughout this paper, the overbar denotes the sta-

tistical average. Note that, fon=1 and 2, Eq(3) with white = = 2 t L
noise denotes respectively the well-known Edwards- h(kn't)h(kl't)‘5n,—IDp|kn| dre™n
Wilkinson equation[17] and the Mullins-Wolf-Villain equa- 0
tion [18]. By using the simple scaling analysis, it is straight- t M) J126-1
forward to obtain the values of the global roughness Xf dr’e™ 7= 7|
exponenty=2mé+p+(2m-1)/2 and the dynamic exponent 0
z=2m, which is independent gf and 6. Thus, the interfacial s (_DL)“( |_(2m+2p+4m0)
growth processes described by E¢3) and (4) with 2mé -l 126 J10n
+p+(2m-1)/2>1 display superroughening phenomena. om,

The outline of this paper is as follows. We first analyti- Xf”k” dre 201 _e—2(vkﬁ"‘r—7)]
cally obtain the exact form of the interface heightg,t) and 0

then numerically simulate the interface morphology in order . K 8

to get the overall pictorial features of the growth processes = In+1Skn.0). (8)
described by this class of equations. Then, we will undertak&ince all thez(x,1)'s follow the normal distribution, all their
an extensive analytical study of the equal-time height differ4jnear combinations including all the real and imaginary

ence correlation function. Special attention will be paid to ~ , ~ , L
the intermediate and late timg asymptotic behavicﬂfsbfpt) parts of 7(ky,t)'s and h(k,,t)'s follow the normal distribu-

. : . tion
becau;e the anomalous .dynamlc scallng. behaviors of super- We then take the following four steps.
rough interfaces appear in these two regimes. For complete- ~ ) ) o )
ness, we also derive the different-time height difference cor- (1) N(ko,t) is set to O, since it is irrelevant to the relative
relation function at the steady state in detail. Finally, we will heights.
focus on the relations among the equal-time height difference (2) h(k ,»,t) is real and follows the normal distribution
correlation function, the local width, and the global width. In with mean zero and standard deviatidﬁ(kuz,t).
addition, the relation between the macroscopic structure for- (3) For  0<n<L/2, h(k,,th(k,,t)=h(k,,t)h(k,,t)"
mation and anomalous interfacial roughening of superrough = = )
growth processes will be discussed in detail. =Sk, t) and h(ky,t)h(k,,t)=0. Thus,h(k,,t) is a complex

random variable with the real part and the imaginary part
mutually independent and both following the normal distri-

Il INTERFACE CONEIGURATION bution with zero mean and standard de\iiati\@ kn,t)/2.
(4) Perform Fourier transformation d¢h(k,,t)’s} to get
Now let us consider a one-dimensional interfdt&,t)  {h(x,t)’s}.

defined on a linear substrate, from0 tox=L, with periodic We pictorially observe that the growth process described
boundary conditions. By Fourier transforming E®) into by Egs.(3) and (4) with 2mé+p+(2m-1)/2>1, starting
k-space, we obtain from the flat initial condition, gradually develops a macro-
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BN 4D, < 1 - cogky) [

V4 A Y p
/ A G(r vt) =
0.005 |- / AN - L En:l vkﬁm+2p

_ e—Vkﬁm(zt—T)] 7,2(9—1_ (l l)

d 7.[ e Vkﬁmf
0

It is easily seen from Eq11) that there exists a characteris-
tic wave vectork[=(»t)"2"]. It separates the time evolu-
tion of G(r,t) into three regimesk.>1/r, 1/r>k.>1/L,
andk.<1/L.

For k.>1/L, we can approximate E@ll) by taking the
limit L—o and thus

. | . I . | LT I 2D, * 1-cogkr)
0 50 100 + 150 200 250 G(F,t)|kc>1/L R 0 dk K220
FIG. 1. A series of different-time snapshots of the interface con- t N Mot 26-1
figuration for the growth processes described by Egsand (4) X | dde -€ 17
with m=3, p=0.2,0=0, v=1/2, D,=1, and the lateral system size 0
L=256. The interface configurations at tinhe 10, t=1CP, andt 2Dp o 1
=10° are represented by the solid, dotted, and dashed curves and =1+ 2p+4m0+2m—lf drr*
magnified for clarity inh direction by 400 times, 20 times, and m 0
unchanged, respectively. ® 1 - cogk rx) p2m,
-
X i 2pHamAEam (e7-¢€ 0. (12

scopic structure with the lateral size comparabld_tBe-
sides, the periodic boundary condition restricts the macro- ) ) ) )
scopic structure in the form of global mountains or valleys.We then derive the early and intermediate time asymptotes of
For a larger value ofn, there is less restriction on the local G(r,t) from Eq. (12). First, for the early time regimek.
interfacial slope variation and, consequently, the macro®> 1/r>1/L), the asymptotes db(r,t) is readily obtained to
scopic structure becomes rougher. Thus, as the valua of the leading order

increases, the values of the exponeptznd « both become

larger. For illustration, Fig. 1 demonstrates a series of differ- D

ent time snapshots of interface configurations of the growth G(r,) |k s ~ O(?%gkg(zwlmmrﬂ))- (13
processes described by E@8) and (4) with p=0.2 andéd v

=0 for m=3.

After substitutingk,=(vt)~¥2", the global roughness expo-
nent y=2mé+p+(2m-1)/2, and the dynamic exponemt
=2m into Eq. (13), the early time asymptote d&(r,t) can
also be expressed as

We will take an extensive analytical study of the equal-
time height difference correlation functid®(r,t) and rigor-
ously evaluate its asymptotic forms in different time regimes. G(r,0)|ierzy ~ O( Té%),ztlez> . (14)
G(r,t) is defined as v

Ill. EQUAL-TIME HEIGHT DIFFERENCE CORRELATION
FUNCTION

Next, for the intermediate time regim@/L<k.<1/r),
G(r,t) = ([h(x,t) = h(x + r,) ] = (h*(x,)) + (h*(x +1,t)), we first employ the following relations

- 2(h(x,Hhh(x+r, 1)), 9

oo ~ . 0 ~ 2m
with (...), denoting the lateral spatial average over the whole f 7?le de dxf(x)e >
g K . 0 7,1I2m
system of lateral sizke throughout this paper. By doing some
calculation, we get ” 1 * A om
= ————— | f(x)xemiramigm2Tgy,
g"!(j+20)f0 ®)

gkt j=0

—————— 2D,<
(h(x,t)h(x+r,t)>L=—LEn§lW

t m m YR ) - ) -ye2m
% j defe " - g @] 201 (10) fo 7 ledr L/Zdef(X) fo f(x) 9 (20;x"M)dx

0

Subsequently(r,t) is obtained as follows: with 4(260;x°™ denoting the incomplete Gamma function
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[19], then perform the integration by parts systematically, and thus rewrit¢12pas

2D - 1 - 4m(1 - coK.IX) 2m
G I’,t L ~ p . . f X2m]+4m0dx X—Zp—4m0e—2x
( )|kc>l/L ’7TV1+26 2p+4m0+2m—1<j§::4) j I (] + 20) 0 zp +4mé+2m-1

om .
(kcr)Zp—1X2p—1—2p—4moe—2x msm kCI'X

~ El (- 1P AmI’(2m+ 2p + 4mé — 2p)
=1 I'(2m+ 2p + 4méb)

N 4ml’(2m+ 2p +4mo—-2p - 1)
I'2m+ 2p +4meo)

2
(kcr ) 2py2p-2p=AmPg=2x mCO $<CI'X:|

m L(1+2p+4m6)
I'(2m+ 2p + 4m6)

—1. —1—29— _oy2m .
(kcr)Zm 1y~1-2p-4mog-2x msm kerx

+(=1)

I'(A +2p +4mo)
2ml’'(2m+ 2p + 4mé)

- (-m (ker)2™? f m dyy'l'z""”mv(Zﬂ;y)sin(kcry”zm)> : (15)
0

Subsequently, by employing the following relatigii®]:

% ~(ar+1)/2m
@, —2x2m _ 2 (a + 1)
X dx= r ,
f 0 2m 2m

S b < I‘(a+v+r+2rj)( bz)j T(»)T(adr) S(r—a>
a=1, . _ E - —
JOX sin(bx) v; e T +r+2))(2) + DI\ T O 7

with [b,r,Rec>0;Rga+v)>-r;Rev>0;Rea <r],

we eventually obtain, after some tedious calculation, the intermediate time asymp®te, fas follows:

2D, . . .
G, V)| vzypeteeLzry = g&, : 2‘“‘”““12 Coq(ker) 2+ C(kr)2m+4me ZP] (16)
gq=1

with the coefficients

-1 q+121+20-(2q—2p+1)/2m 20-20+1 20-20+ 1
2= ) 9=2p* 2)g (261 --2L%2 (17)
(2m+ 2p +4me - 2q - 1)(2q)! 2m 2m
for g<m,
20-2p+1
=DUr@A+20+ 4m0)F<—2m - 1) (= 1)a+1p1+20-(20-2p+1)/2m (Zq -2p+ 1)
Coy= +
2 20-2p+1 (2m+2p+4mé-2q- 1) 2m
2ml'(2m+ 2p + 4mé6) ~ om 1-26|(29-2m+ 1)!
B (20 ,_2d4=2+ 1) 1 ['(1+ 2p + 4mo) L C 1)%220-(24-2p+1)/2m
12\ =5 2m (29)!  T'(2m+ 2p+4mh)(29 - 2m+ 1)! m(2q - 2m+ 1)!
20-2p+1
T(1+20+ 4ma)r<q—p - 1)
r'(2m+ 2p + 4m6) 12\ =% 2m
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for g=m, and
I'(1+2p+4mo)
C=(-1m r(20)I(-2p-4
D o 2p + 4may | 2O 20— 4mo)
xsin(2mé + p) (19

with B,(a,b) denoting the incomplete beta functifio]. Af-

ter substitutingk.=(»t)"Y2", the global roughness exponent

x=2mé+p+(2m-1)/2, and the dynamic exponemt=2m
into Eq. (16), the intermediate time asymptote @fr,t) can
also be expressed as

G(r, )| zpptersny = 2 Cot2X P42+ C'r2x (20)
=1

with the coefficients Cy,=Cp[2D,1"X"¥"%/ (711*?)] and
C’'=C[2D,/(mv**?)]. Note that, in the right-hand sidehs)

PHYSICAL REVIEW E 70, 011105(2004)

of Eq. (20), the termsCj, t*x~9/2r24 with q< y are all domi-
nant over the ternC’rZX in the limit of t>r?/v. Recall that,

for the ordinary dynamic scaling behaviors, the intermediate
time asymptote ofG(r,t) scales ag?; i.e., G(r,t>r?/v)
~O(r?Y). Thus, the growth processes described by E8js.
and (4) with 2mé+p+(2m-1)/2>1 all display the anoma-
lous dynamic scaling behaviors with the leading anomalous
term Cyt?x" V%2 and the subleading anomalous terms
{Cot2x2zd | Cyp 120 1XDIz X} dominant over the ordi-
nary dynamic scaling terr@'r2¥, where[ y] denotes the in-
teger part ofy throughout this paper.

Subsequently, for the late time regime>L?*/v, we
now have k.<1/L. The property of k.<1/L in this
regime implies thatvkﬁmt>1 for all positive integern
in Eq. (11):

G(r,H 4D,[(26) | 1= cotlar) | D, (29" {5(1 - 2m-2p- 4me; 1)
WitsLz = 1+20L ) 2m+2p+4m0 1+20F(2m+ 2P + 4m0) COS[7T(m+ p+ 2m9)] P !
r r
+¢(1-2m-2p—-4m6;0) - §<1 -2m-2p-4mg;1 —[> - §<1 -2m- 2p—4m0;E>] (21)

with {(v;u) denoting the generalized zeta functifi®]. By
employing the following relations{(v;u+1)={(v;u)-1/u”
for u=0, ¢(v;1)=¢(v) (Riemann’'s zeta function and
al(v;u)y=—v{(v+1;u), we then obtain

log,,t

FIG. 2. The log-log plot of the numerical solution of the equal-

time height difference correlation functida(r,t) vs timet for the
growth processes described by E(®. and (4) with m=1 (circle),

{1-BD+{1-p0)~-L(1-1-8)~L1~-B:9)

_ S rep+1-p)
=551- -B).
2,,% 2pt! I'1-p) {ep+1-p)

25 T y T y T T | E—
- o 6=0.1,p=0.1 e
x 0=03,p=02 e
0= ¢ 0=04,p=04 P ]
< ---- slope = 2(x—1 e e
~ P -
S A
I oas| o o -
~, -~ e
(Da ’ el L
S ’,9 /__r ______
0 & X Y -
L 10 e e .
. o al el
- & . o __e,.———e'"—
,,,,,,, ol o__,_-e—""e_ ’
S e T
- 1 A 1 . 1 : 1
2 3 5
log L

FIG. 3. The log-log plot of the numerical solution of the satu-
rated equal-time height difference correlation functi@(r
=10,L) vs the lateral system size for the growth processes de-

m=2 (cros9, andm=3 (diamond, respectively. The data points for scribed by Eqs(3) and (4) with m=2 and the noise correlation
them=2 andm=3 cases are shifted upward by 5 units and 10 unitsindices (p, #)=(0.1,0.2 (circle), (0.2,0.3 (crosy, and (0.4,0.9

for visibility.

(diamond, respectively.
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Consequently, the late time asymptoteGif,t) is obtained: with the slope equal to @z and 2/Z=2(xy-1)/z]
are drawn along the data to make the crossover more visib-

. le.The figure clearly shows th&(r,t) evolves through three
&)l D, I'(26)L>m2+ame-t S Ao (1/L) different time regimes, distinct from the ordinary dynamic
M Dl = 2o por] 2" scaling behaviors. In addition, Fig. 3 shows the saturated

value of the equal-time height difference correlation

A+ 2082 function, Gg,(r,L), vs the lateral system sizein the log-log

+A(r/L) ’ (22) scale for the growth processes described by E)sand(4)

with m=2, and the noise indicegp, #)=(0.1,0.2, (0.2,0.3,
and(0.4,0.4. Thus, the corresponding values of the scaling

exponents are (y,z,x)=(2,4,), (2.9,4,19, and

with the coefficients Ay=-2 tarfm(m+p+2me)L(2q+1  (3.5,4,2.3 forthe(p,0)=(0.1,0., (0.2,0.3, and(0.4,0.9

—2m-2p-4me){(2q+1-2m-2p—-4mé)/[m(2q)!] and A  Cases, respectively. Thg parameters are set tesik D,
=1 /{T'(2m+2p+4mé)cog m(m+p+2mé)]}. By substituting =1, andr=10. The straight lines with the slope equal to
the exponenty=2m+p+(2m-1)/2 into Eq. (22), the 2k[=2(x—1)] are drawn along the data. All the data points fit

asymptote ofG(r,t) in the late time regime can also be ex- the analytlcal predwtlon very well. Note that, for the 'OI’dI-
nary dynamic scaling ansatz, the saturated valug(oft) is

pressed as independent of the lateral system sizaf r <L. In contrast,
Ggafr,L) — o asL — oo for the superrough interfaces. In Sec.
* V, we will discuss in detail this intriguing feature, local ori-
G Vs rz, = 2 AgglL2XVr2 4+ Ar2x (23)  entational instability, of the superrough
o=1 interfaces.

with the coefficients Ay,=D,['(20)Ay/v"*?* and A’
=D,I'(20)A/v'*%. We see that, in the rhs of E¢23), the
terms Ay, 2X"9r20 with <y are all dominant over the
ordinary dynamic scaling termA’'r?X, sinceL>r. To com-
pare them with Eq(20), it is just like the timet in the

intermediate time asymptote @(r,1) being substituted by For completeness, we also study the different-time height

O(L*/ v). . ; ) 9
From the obtained early, intermediate, and late timedlfference correlation function at the steady state, which is

asymptotes ofG(r,t), we have analytically shown that defined as

G(r,t) of the growth processes described by E§$.and(4) Gy(r,n) = {(h(x,t) =h(x+r,t+ D) =12, (24)
with 2mé+p+(2m-1)/2>1 does satisfy, to the leading or-

der, the anomalous dynamic scaling ansatz given in(Eq.

with | substituted by. The local roughness exponept=1 By performing some calculation, we have
(independent ofn, p, and ) for all the superrough growth
processes described by E@8) and(4), while the exponent

IV. DIFFERENT-TIME HEIGHT DIFFERENCE
CORRELATION FUNCTION AT THE STEADY STATE

k=x—1=2ml+p+(2m-3)/2. In addition to the different (hGHhOX+Tt+ 7)) o121

spatial scaling behavior betwe&ir,t) and the global inter- © e w -

facial width, the other key feature of anomalous dynamic = 2D, i(f d+' +e2vkﬁmff dr’
scaling ansatz is that, at the reginév<t<L?/ v, G(r,t) Ly s K™%\ Jg .

does not saturate but still increases with time and the lateral ,

system _sizel'_ enters as an importanf[ cytoﬁ‘ for this super- + f dT,ezykﬁmT/>e—Vkﬁ"‘(r+T’>( 7)26-1, (25)
rough situation. In the thermodynamic linfit — o), G(r,t) 0

then can increase with time indefinitely. For illustration, Fig.
2 shows the numerical solution &(r,t) vst in the log-log
scale for the interfaces described by E(®. and (4) with
m=1, 2, 3, and the noise correlation indices0.1, #=0.3. oD 21 o -
Thus, the corresponding values of the scaling exponents argy(r,7) = —~ —[zj dr - cosknr<e"’kn TJ dr’

leading to

Y=12,2.8,4.42=2, 4,6, andd(=y—1)=0.2, 1.8, 3.4 for the Ly oo k™2 0
m=1, 2, 3 cases, respectively. The parameters are set to be " .
v=1,D,=1,r=10, and the lateral system size 1(° (for the + eykﬁmff dr’ + e—ukﬁmrJ dT/ezvkﬁmr’)]
m=1 case, 3000 (for m=2), 500 (for m=3). For visibility, - 0

the data points for then=2 and 3 cases are shifted upward o)
by 5 and 10 units, respectively, in Fig. 2. The straight lines xe M T (7)20°1, (26)
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We then derive the asymptote GL(r, 7) in the limit of r¥/ v<7<L?*/ v as follows:

D * dk coskr * * * oMz A
Gy(r,7) — G4(r,0)= 1’129f 2m+2p+4m0(2f dr’ - e_"kzmTJ dr’ - e”kzmTJ dr’ - e_"kzmTJ dr' e )e‘T (7)%01
g o K 0 0 0

vk2My
D * ’ . * 2m (Tr)1/2m 2m ’ “ 2m
= L dre ™ ()21 ZJ dx—J dxe> —J dxe” - " dxe™
77_V1+2¢9 4mt9+2p+2m—1J0 ( ) 0 0 0 (s1)l/2m
coskgrx
xAme+2p+2m’ 27

with k.= (v7)~Y2", By performing integration by parts systematically and using the following relafib®is
< sin bx r sin(am/2 -1<Rea<l
f xa~t dy= L@ sinam2) 4 6 and “ ,
0 cosbx b* | codamn/2) O0<Rea<1

fo xte X dx = i1“( @t l)
0 2m \ 2m /'

we can first obtain the following double integrals involved in the asympto®6f, 7):

Y _emdX Sinkerx 2j+ ( ,u—a+1> ; mw=1
fo dreT(v) foe x“{coskcrx} (0)12:‘,2m(21+ )'(k‘:)]#r 2m with n=0]"

2jtu—a+1l 2jtpu—a+l
| F(JM—Q>F<1_29_JM—“)
(-1 2m 2m

% ) (e oadx) sinkgrx - - j
d ! T ’ 20—1[ eX — = A
JO TeT(7) o x* | coskgrx ,%Zm(ZJ' + )t -2 o
=1
with {“ }
w=0
2 tu-—a+l
r(2¢9)r<1—2(9——J £z )
2m

© , © m Sn r - —_ J . = 1
f dr'e” (T’)Zﬁ—lj e d—:({ In ket }:2 ( .1) . (keh)?*# with {’u }
o (o yL2m x| coskyx | 15 2m(2]) + w)! F<1_ZJ +,u—a+1> w=0

2m

By employing the earlier obtained relations and with some tedious calculation, we eventually obtain the asyn@joterof
as follows:

D 1 2am-2p-4mg| ~
Go(r, Dy rerzry = Go(r,0) = W > dog(ker) 2+ d(kr ) Ame+2o+2m-1 (29)
g=1

with the coefficients

~ (- 1)9 1+29-2p )
Oaq = (20)! (2m— 1+ 2o+ 4ml - 20) F<26)F< 2m 20
r(—“zq_z”—2a)r<1——1+2q_2p) r(za)r(l——“zq_z”)
2m 2m . 2m
1+2q—2p>
2m

I'(1-20) F<1+20_ 29

for g<m,
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(- 1)9 1 I'(2p+4mé+ 1) 1 2q 1+29-2p
doq = (20)F -20
(2m-1+2p+4méb-2q)| (29)! F(2m+ 2p+4mh) (29— 2m+ 1)'
1+29-2 1+29-2
r( Z?n p_20>r<1_ 2(:n p) r(za)r< ) 1+29-2
- + o reor(HEE2 ze)
I'(1-26) 1+ 2q 2p 2m
I''1+20-
1+29-2 1+29-2 1+29-2
r(L -1- 26)I‘<2 . ﬁ) r(za)r(z - ﬂ)
2m 2m 2m
- T'(1-26) ¥ 1+29-2 (30
r(z +26- —p)
2m
[
for g=m, and Then, following the derivation in Sec. Ill, we obtain the as-
ymptotes of the local interfacial widtw(l,t) as follows:
Aml'(2p + 4mh + 1) (i) Fort<l?/v:
d=(-1pm1 [(20)I'(-2p—4mé
Y ame 2p + ame) | 2OT (=20~ 4m0)
D
xsin[(p + 2mé)7]. (31) wi(l,t) ~ (—15,)—,}2)(/2) (35)
After substitutingk,=(»7)~Y2", the global roughness expo- . , L
nent y=2mé+p+(2m-1)/2, and the dynamic exponemt (i) Forl*/v<t<L*/v:
=2m into Eq. (28), the asymptote of5(r,7) can also be "
written as Wz(l,t) — E CgptZ(X_p)/Zl 2p 4 C//IZX (36)
p=1

_ ~ 1 2(x=q)/z.2q re2x
Gl Dzt etz = GolF,0) = 2ty V1204 d'y with the coefficients Cj,=Cj /[(2p+1)(2p+2)] and C”

=1
! @y =Cll@x+DEx+2)]
(i) Fort>L* v
with the coefficientsdy,=d,[2D 12X~/ (711*2%)] and d’ .
=d[2D / (mv'*?)]. Indeed we see that the terms WA = S AL 120020 4 ATj2x (37)
d P “alz2a with q< y are all dominant over the ordinary Y
dynamlc scaling ternd’r2x in the limit of r>r?/v.
with the coefficients Agp:Aép/[(2p+ 1)(2p+2)] and A’
V. LOCAL WIDTH AND MACROSCOPIC STRUCTURE =A"/[(2x+1)(2x+2)]. Note that, in the intermediate
FORMATION time regime |1*/v<t<L?% v, the Ileading anomalous
_ _ _ term [Cot2xV/42]  and the subleading anomalous
With the extensive studies about the asymptoteS(oft), terms {C”tz(X‘ /24, C” tz<X—[X]>/z|2[X]} dominate over

one can easily obtain the asymptotes of the local interfaci

1 2x
width w(l.1), defined as at!he ordinary dynamlc scalmg ternC’lX and, in the

late time regimet>L?*/ v, the leading anomalous term

) 5 [AJL2xD12]  and the subleading anomalous terms
W (I t) = <<(h(X t) - <h(X t)>|) >|>L (33) {A"LZ(X_2)| A” LZ(X_[X])|2[X]} dominate over the ordi-

with (...), denoting the lateral spatial average calculated'@"Y dynamlc scahng term1%¢ for wi(1, 1) of the growth
within a local window of lateral sizé throughout this paper. processes described by Eq8) and (4) with 2mg+p+(2m
From the definitions ofG(r,t) and w(l,t), the relation be- ~1)/2>1. The main reason pausmg the difference betwe_en
tweenw(l,t) and G(r 1) is obtained the local and gIong scalmg is that _aII th(_ase syperrqqgh in-
terfaces are associated with local orientational instability but,
1 at the same time, with periodic boundary conditions restrict-
W2(|,t)=—2f (1 =1)G(r,t)dr. (34) ing the development of global interfacial widths, as illus-
1“Jo trated in Fig. 1.
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Finally, we would like to quantitatively investigate the VI. CONCLUSION
temporal development of local orientational instability of this
class of superrough growth processes. The term “local inter-

facial orientation” quantitatively refers tl,t), the slope of In conclusion, we take an extensive study of a class of

a straight line segment obtained by least squares fit to thguperrough ipterfacia! growth processes With_ finite lateral
interfacial configuration in the local window of sizeat a  SYStém sizé in 1+1 dimensions described by linear growth

given timet. By some calculation, we have equations with spatiotemporally power-law decaying corre-
lated noise, Eqs(3) and (4). By using the scaling analysis,
we have the global roughness expongmt2mé+p+(2m
—-1)/2 and the dynamic exponemt2m, independent op

and 6. Thus, the interfacial growth processes described by
Egs.(3) and(4) with 2mé+p+(2m-1)/2>1 display super-

Subsequently, after some tedious calculation, we obtain threoughenmg phenomena. Since some of these processes have

explicit relation betwees(r 1) and(s&(,1), 12, the average extremely long relaxation time, we first develop a very effi-

. . . : - ~cient method capable of simulating the interface morphology
magnitude of the local interfacial orientation, as follows: : !
of these growth processes even in the very late time. We

numerically observe that this class of superrough growth
12 processes indeed gradually develop macroscopic structures
(L) = I_Gf G(r,H@Pr-2r*=1%dr. (39  with the lateral size comparable to the lateral system size.
0 The cause of the anomalous dynamic scaling behaviors in the
superrough growth processes governed by EQ)sand(4) is
Next, following the derivation in Sec. Ill, we obtain the as- totally attributed to the formation of global mountains and
ymptotes ofs’(l,t)), as follows: valleys in the interface morphology. The asymptotes of the
equal-time height difference correlation functi@tr,t) are
summarized as follows:

2
S, = 13 (0= (OINKO) (39)

(i) Fort<I*/v:

(s%(1,))L ~ O(D t++2#1273), (40)

(i) Forl¥/v<t<L?v: (

D
G(r,t)~ O(ng%hth’z> fort<r¥v;

[

(s*(1,0)), = 21 Copt? X P22 4 Tl 2072 (41) { G(rt)=2] ChtPX 224 C'r2¢ for rfy <t <Ly,
p= g=1

W|th~the coefficients Czp:{18p/[(p+/1)(p+ 2)(2p+ 1)]}C2p Grp=3 AéqLZ(X‘q)rzq AT forts LYy,
and C={18x/[(x+ 1 (x+2)(2x+1)]}C". )

\
(iii) Fort>L*v:

S~ 202 o K 1252 Note that, in the intermediate time regime, the terms
(s°(1,t) = %Asz NP2+ ALK (42 qcprviz2 Chp t2x /720y are all dominant over
> the ordinary dynamic scaling ter@r2X and, in the late time
~ regime, the terms{AL?0x~r2 . Aj 12 dr2X) are
with the coefficients Ag,={18p/[(p+1)(p+2)(2p+1)J}A;,  all dominant over the ordinary dynamic scaling teAfr?x
and A={18x/[(x+1)(x+2)(2x+ DA, for the growth processes described by E¢®). and (4)
Recall that, for the systems obeying the ordinary dynamidVith 2mé+p+(2m-1)/2>1. The local interfacial width has
scaling ansatz, the local interfacial orientation saturate$h€ asymptotic behaviors similar to those Gfr,t) and
quickly after the growth time reaching the regitre|?/v. In distinct from the scaling behaviors of the global interfacial
contrast, for the growth processes described by Bjsand ~ Width. Through our detailed analytic study, we explicitly
(4) with 2mé+p+(2m-1)/2>1, the leading anomalous Obtain not only the leading anomalous dynamic scaling term

term [Cot2XD/Z and the subleading anomalous termsPUt aiso all the subleading anomalous dynamic scaling terms
which are dominant over the ordinary dynamic scaling term.

{CPX2742, . Cyp P 1/42X1°2) dominate over the or-  Next, we take a quantitative study on the temporal develop-
dinary dynamic scaling terr@12¥2 in the intermediate time ment of local orientational instability of these superrough
regime I?/ v<t<L?% v and the system size enters as an interfaces. The asymptotes of the average magnitude of local
important cutoff for the temporal development of local ori- interfacial orientation, (s*(1,t)) "2, are summarized as
entational instability. follows:
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( 1+26)2p—3
(s%(1,0).~O(D t*#1%73) | for t < 1%,

) (0,00 = 2 Copt?X P24 CI22, for 1Yy <t < LAv;
p=1

(S(1,0)= > AgpL2XPIZP 2+ N2, for t > LY.

\ Pt
[
The term “local orientational instability” quantitatively refers x=1/2 andz=3/2 with 0< #=<0.167,
to the anomalous termfC,t?x~/z . Cy t2xlxdiz2xl-2) 1.44 + 3.39
dominant over the ordinary dynamic scaling te@I?2 in X =1.6%+0.22 andz= 1+26

the intermediate time regimé/v<t<L%/ v and the global
lateral system sizke enters as an important cutoff due to the
periodic boundary conditions. The most distinct difference between the KPZ interfaces and
By contrast, the well-known Kardar-Parisi-ZhatigPZ)  the superrough interfaces described by E&.and (4) is
equation[20] with spatiotemporally correlated noise in 1 that in the former cases there exists a critical value of the
+1 dimensions do obey the ordinary dynamic scaling ansatmoise correlation indexo.=1/4 or §,=0.167 marking the
[21,22. Especially for the case of purely spatially correlatedstability boundary between the short-range and long-range
noise(p # 0 and6=0), the (1 +1)-dimensional KPZ interface noise fixed points, while for the latter cases the long-range
conserves the Galilean invariance and thus holds the scalimpise correlations are always prevalent in the renormaliza-
relation y+z=2, very different from the superrough inter- tion group sense. In a word, the presence of correlations in
faces described by Eq$3) and (4). The explicit relation noise can change the scaling exponents and produce a
between the scaling exponeriig andz) and the noise cor- family of continuously changing universality classes. This
relation indices(p and 6) for the (1+1)-dimensional KPZ might be one of the reasons why the values of the scaling
interfaces with purely spatiallyor temporally correlated —exponents reported in experiments scatter over a consid-
noise has been obtained by the extensive dynamiceagrable range. The results derived in this report can help
renormalization-group calculations in Ref81,22. For ex-  for pinning down this issue and offer a reference for the
plicit comparison with the superrough interfaces describednterpretation of experiments.
by Eqgs.(3) and(4), we list out their results as follows:

with 0.167<< § < 1/2.
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